| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it> |
| * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it> |
| * |
| * This code is *strongly* based on EHCI-HCD code by David Brownell since |
| * the chip is a quasi-EHCI compatible. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/dmapool.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/timer.h> |
| #include <linux/list.h> |
| #include <linux/interrupt.h> |
| #include <linux/usb.h> |
| #include <linux/usb/hcd.h> |
| #include <linux/moduleparam.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| |
| #include <asm/irq.h> |
| #include <asm/unaligned.h> |
| |
| #include <linux/irq.h> |
| #include <linux/platform_device.h> |
| |
| #define DRIVER_VERSION "0.0.50" |
| |
| #define OXU_DEVICEID 0x00 |
| #define OXU_REV_MASK 0xffff0000 |
| #define OXU_REV_SHIFT 16 |
| #define OXU_REV_2100 0x2100 |
| #define OXU_BO_SHIFT 8 |
| #define OXU_BO_MASK (0x3 << OXU_BO_SHIFT) |
| #define OXU_MAJ_REV_SHIFT 4 |
| #define OXU_MAJ_REV_MASK (0xf << OXU_MAJ_REV_SHIFT) |
| #define OXU_MIN_REV_SHIFT 0 |
| #define OXU_MIN_REV_MASK (0xf << OXU_MIN_REV_SHIFT) |
| #define OXU_HOSTIFCONFIG 0x04 |
| #define OXU_SOFTRESET 0x08 |
| #define OXU_SRESET (1 << 0) |
| |
| #define OXU_PIOBURSTREADCTRL 0x0C |
| |
| #define OXU_CHIPIRQSTATUS 0x10 |
| #define OXU_CHIPIRQEN_SET 0x14 |
| #define OXU_CHIPIRQEN_CLR 0x18 |
| #define OXU_USBSPHLPWUI 0x00000080 |
| #define OXU_USBOTGLPWUI 0x00000040 |
| #define OXU_USBSPHI 0x00000002 |
| #define OXU_USBOTGI 0x00000001 |
| |
| #define OXU_CLKCTRL_SET 0x1C |
| #define OXU_SYSCLKEN 0x00000008 |
| #define OXU_USBSPHCLKEN 0x00000002 |
| #define OXU_USBOTGCLKEN 0x00000001 |
| |
| #define OXU_ASO 0x68 |
| #define OXU_SPHPOEN 0x00000100 |
| #define OXU_OVRCCURPUPDEN 0x00000800 |
| #define OXU_ASO_OP (1 << 10) |
| #define OXU_COMPARATOR 0x000004000 |
| |
| #define OXU_USBMODE 0x1A8 |
| #define OXU_VBPS 0x00000020 |
| #define OXU_ES_LITTLE 0x00000000 |
| #define OXU_CM_HOST_ONLY 0x00000003 |
| |
| /* |
| * Proper EHCI structs & defines |
| */ |
| |
| /* Magic numbers that can affect system performance */ |
| #define EHCI_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */ |
| #define EHCI_TUNE_RL_HS 4 /* nak throttle; see 4.9 */ |
| #define EHCI_TUNE_RL_TT 0 |
| #define EHCI_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */ |
| #define EHCI_TUNE_MULT_TT 1 |
| #define EHCI_TUNE_FLS 2 /* (small) 256 frame schedule */ |
| |
| struct oxu_hcd; |
| |
| /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */ |
| |
| /* Section 2.2 Host Controller Capability Registers */ |
| struct ehci_caps { |
| /* these fields are specified as 8 and 16 bit registers, |
| * but some hosts can't perform 8 or 16 bit PCI accesses. |
| */ |
| u32 hc_capbase; |
| #define HC_LENGTH(p) (((p)>>00)&0x00ff) /* bits 7:0 */ |
| #define HC_VERSION(p) (((p)>>16)&0xffff) /* bits 31:16 */ |
| u32 hcs_params; /* HCSPARAMS - offset 0x4 */ |
| #define HCS_DEBUG_PORT(p) (((p)>>20)&0xf) /* bits 23:20, debug port? */ |
| #define HCS_INDICATOR(p) ((p)&(1 << 16)) /* true: has port indicators */ |
| #define HCS_N_CC(p) (((p)>>12)&0xf) /* bits 15:12, #companion HCs */ |
| #define HCS_N_PCC(p) (((p)>>8)&0xf) /* bits 11:8, ports per CC */ |
| #define HCS_PORTROUTED(p) ((p)&(1 << 7)) /* true: port routing */ |
| #define HCS_PPC(p) ((p)&(1 << 4)) /* true: port power control */ |
| #define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */ |
| |
| u32 hcc_params; /* HCCPARAMS - offset 0x8 */ |
| #define HCC_EXT_CAPS(p) (((p)>>8)&0xff) /* for pci extended caps */ |
| #define HCC_ISOC_CACHE(p) ((p)&(1 << 7)) /* true: can cache isoc frame */ |
| #define HCC_ISOC_THRES(p) (((p)>>4)&0x7) /* bits 6:4, uframes cached */ |
| #define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */ |
| #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/ |
| #define HCC_64BIT_ADDR(p) ((p)&(1)) /* true: can use 64-bit addr */ |
| u8 portroute[8]; /* nibbles for routing - offset 0xC */ |
| } __packed; |
| |
| |
| /* Section 2.3 Host Controller Operational Registers */ |
| struct ehci_regs { |
| /* USBCMD: offset 0x00 */ |
| u32 command; |
| /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */ |
| #define CMD_PARK (1<<11) /* enable "park" on async qh */ |
| #define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */ |
| #define CMD_LRESET (1<<7) /* partial reset (no ports, etc) */ |
| #define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */ |
| #define CMD_ASE (1<<5) /* async schedule enable */ |
| #define CMD_PSE (1<<4) /* periodic schedule enable */ |
| /* 3:2 is periodic frame list size */ |
| #define CMD_RESET (1<<1) /* reset HC not bus */ |
| #define CMD_RUN (1<<0) /* start/stop HC */ |
| |
| /* USBSTS: offset 0x04 */ |
| u32 status; |
| #define STS_ASS (1<<15) /* Async Schedule Status */ |
| #define STS_PSS (1<<14) /* Periodic Schedule Status */ |
| #define STS_RECL (1<<13) /* Reclamation */ |
| #define STS_HALT (1<<12) /* Not running (any reason) */ |
| /* some bits reserved */ |
| /* these STS_* flags are also intr_enable bits (USBINTR) */ |
| #define STS_IAA (1<<5) /* Interrupted on async advance */ |
| #define STS_FATAL (1<<4) /* such as some PCI access errors */ |
| #define STS_FLR (1<<3) /* frame list rolled over */ |
| #define STS_PCD (1<<2) /* port change detect */ |
| #define STS_ERR (1<<1) /* "error" completion (overflow, ...) */ |
| #define STS_INT (1<<0) /* "normal" completion (short, ...) */ |
| |
| #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT) |
| |
| /* USBINTR: offset 0x08 */ |
| u32 intr_enable; |
| |
| /* FRINDEX: offset 0x0C */ |
| u32 frame_index; /* current microframe number */ |
| /* CTRLDSSEGMENT: offset 0x10 */ |
| u32 segment; /* address bits 63:32 if needed */ |
| /* PERIODICLISTBASE: offset 0x14 */ |
| u32 frame_list; /* points to periodic list */ |
| /* ASYNCLISTADDR: offset 0x18 */ |
| u32 async_next; /* address of next async queue head */ |
| |
| u32 reserved[9]; |
| |
| /* CONFIGFLAG: offset 0x40 */ |
| u32 configured_flag; |
| #define FLAG_CF (1<<0) /* true: we'll support "high speed" */ |
| |
| /* PORTSC: offset 0x44 */ |
| u32 port_status[0]; /* up to N_PORTS */ |
| /* 31:23 reserved */ |
| #define PORT_WKOC_E (1<<22) /* wake on overcurrent (enable) */ |
| #define PORT_WKDISC_E (1<<21) /* wake on disconnect (enable) */ |
| #define PORT_WKCONN_E (1<<20) /* wake on connect (enable) */ |
| /* 19:16 for port testing */ |
| #define PORT_LED_OFF (0<<14) |
| #define PORT_LED_AMBER (1<<14) |
| #define PORT_LED_GREEN (2<<14) |
| #define PORT_LED_MASK (3<<14) |
| #define PORT_OWNER (1<<13) /* true: companion hc owns this port */ |
| #define PORT_POWER (1<<12) /* true: has power (see PPC) */ |
| #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */ |
| /* 11:10 for detecting lowspeed devices (reset vs release ownership) */ |
| /* 9 reserved */ |
| #define PORT_RESET (1<<8) /* reset port */ |
| #define PORT_SUSPEND (1<<7) /* suspend port */ |
| #define PORT_RESUME (1<<6) /* resume it */ |
| #define PORT_OCC (1<<5) /* over current change */ |
| #define PORT_OC (1<<4) /* over current active */ |
| #define PORT_PEC (1<<3) /* port enable change */ |
| #define PORT_PE (1<<2) /* port enable */ |
| #define PORT_CSC (1<<1) /* connect status change */ |
| #define PORT_CONNECT (1<<0) /* device connected */ |
| #define PORT_RWC_BITS (PORT_CSC | PORT_PEC | PORT_OCC) |
| } __packed; |
| |
| /* Appendix C, Debug port ... intended for use with special "debug devices" |
| * that can help if there's no serial console. (nonstandard enumeration.) |
| */ |
| struct ehci_dbg_port { |
| u32 control; |
| #define DBGP_OWNER (1<<30) |
| #define DBGP_ENABLED (1<<28) |
| #define DBGP_DONE (1<<16) |
| #define DBGP_INUSE (1<<10) |
| #define DBGP_ERRCODE(x) (((x)>>7)&0x07) |
| # define DBGP_ERR_BAD 1 |
| # define DBGP_ERR_SIGNAL 2 |
| #define DBGP_ERROR (1<<6) |
| #define DBGP_GO (1<<5) |
| #define DBGP_OUT (1<<4) |
| #define DBGP_LEN(x) (((x)>>0)&0x0f) |
| u32 pids; |
| #define DBGP_PID_GET(x) (((x)>>16)&0xff) |
| #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok)) |
| u32 data03; |
| u32 data47; |
| u32 address; |
| #define DBGP_EPADDR(dev, ep) (((dev)<<8)|(ep)) |
| } __packed; |
| |
| #define QTD_NEXT(dma) cpu_to_le32((u32)dma) |
| |
| /* |
| * EHCI Specification 0.95 Section 3.5 |
| * QTD: describe data transfer components (buffer, direction, ...) |
| * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram". |
| * |
| * These are associated only with "QH" (Queue Head) structures, |
| * used with control, bulk, and interrupt transfers. |
| */ |
| struct ehci_qtd { |
| /* first part defined by EHCI spec */ |
| __le32 hw_next; /* see EHCI 3.5.1 */ |
| __le32 hw_alt_next; /* see EHCI 3.5.2 */ |
| __le32 hw_token; /* see EHCI 3.5.3 */ |
| #define QTD_TOGGLE (1 << 31) /* data toggle */ |
| #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff) |
| #define QTD_IOC (1 << 15) /* interrupt on complete */ |
| #define QTD_CERR(tok) (((tok)>>10) & 0x3) |
| #define QTD_PID(tok) (((tok)>>8) & 0x3) |
| #define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */ |
| #define QTD_STS_HALT (1 << 6) /* halted on error */ |
| #define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */ |
| #define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */ |
| #define QTD_STS_XACT (1 << 3) /* device gave illegal response */ |
| #define QTD_STS_MMF (1 << 2) /* incomplete split transaction */ |
| #define QTD_STS_STS (1 << 1) /* split transaction state */ |
| #define QTD_STS_PING (1 << 0) /* issue PING? */ |
| __le32 hw_buf[5]; /* see EHCI 3.5.4 */ |
| __le32 hw_buf_hi[5]; /* Appendix B */ |
| |
| /* the rest is HCD-private */ |
| dma_addr_t qtd_dma; /* qtd address */ |
| struct list_head qtd_list; /* sw qtd list */ |
| struct urb *urb; /* qtd's urb */ |
| size_t length; /* length of buffer */ |
| |
| u32 qtd_buffer_len; |
| void *buffer; |
| dma_addr_t buffer_dma; |
| void *transfer_buffer; |
| void *transfer_dma; |
| } __aligned(32); |
| |
| /* mask NakCnt+T in qh->hw_alt_next */ |
| #define QTD_MASK cpu_to_le32 (~0x1f) |
| |
| #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1) |
| |
| /* Type tag from {qh, itd, sitd, fstn}->hw_next */ |
| #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1)) |
| |
| /* values for that type tag */ |
| #define Q_TYPE_QH cpu_to_le32 (1 << 1) |
| |
| /* next async queue entry, or pointer to interrupt/periodic QH */ |
| #define QH_NEXT(dma) (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH) |
| |
| /* for periodic/async schedules and qtd lists, mark end of list */ |
| #define EHCI_LIST_END cpu_to_le32(1) /* "null pointer" to hw */ |
| |
| /* |
| * Entries in periodic shadow table are pointers to one of four kinds |
| * of data structure. That's dictated by the hardware; a type tag is |
| * encoded in the low bits of the hardware's periodic schedule. Use |
| * Q_NEXT_TYPE to get the tag. |
| * |
| * For entries in the async schedule, the type tag always says "qh". |
| */ |
| union ehci_shadow { |
| struct ehci_qh *qh; /* Q_TYPE_QH */ |
| __le32 *hw_next; /* (all types) */ |
| void *ptr; |
| }; |
| |
| /* |
| * EHCI Specification 0.95 Section 3.6 |
| * QH: describes control/bulk/interrupt endpoints |
| * See Fig 3-7 "Queue Head Structure Layout". |
| * |
| * These appear in both the async and (for interrupt) periodic schedules. |
| */ |
| |
| struct ehci_qh { |
| /* first part defined by EHCI spec */ |
| __le32 hw_next; /* see EHCI 3.6.1 */ |
| __le32 hw_info1; /* see EHCI 3.6.2 */ |
| #define QH_HEAD 0x00008000 |
| __le32 hw_info2; /* see EHCI 3.6.2 */ |
| #define QH_SMASK 0x000000ff |
| #define QH_CMASK 0x0000ff00 |
| #define QH_HUBADDR 0x007f0000 |
| #define QH_HUBPORT 0x3f800000 |
| #define QH_MULT 0xc0000000 |
| __le32 hw_current; /* qtd list - see EHCI 3.6.4 */ |
| |
| /* qtd overlay (hardware parts of a struct ehci_qtd) */ |
| __le32 hw_qtd_next; |
| __le32 hw_alt_next; |
| __le32 hw_token; |
| __le32 hw_buf[5]; |
| __le32 hw_buf_hi[5]; |
| |
| /* the rest is HCD-private */ |
| dma_addr_t qh_dma; /* address of qh */ |
| union ehci_shadow qh_next; /* ptr to qh; or periodic */ |
| struct list_head qtd_list; /* sw qtd list */ |
| struct ehci_qtd *dummy; |
| struct ehci_qh *reclaim; /* next to reclaim */ |
| |
| struct oxu_hcd *oxu; |
| struct kref kref; |
| unsigned int stamp; |
| |
| u8 qh_state; |
| #define QH_STATE_LINKED 1 /* HC sees this */ |
| #define QH_STATE_UNLINK 2 /* HC may still see this */ |
| #define QH_STATE_IDLE 3 /* HC doesn't see this */ |
| #define QH_STATE_UNLINK_WAIT 4 /* LINKED and on reclaim q */ |
| #define QH_STATE_COMPLETING 5 /* don't touch token.HALT */ |
| |
| /* periodic schedule info */ |
| u8 usecs; /* intr bandwidth */ |
| u8 gap_uf; /* uframes split/csplit gap */ |
| u8 c_usecs; /* ... split completion bw */ |
| u16 tt_usecs; /* tt downstream bandwidth */ |
| unsigned short period; /* polling interval */ |
| unsigned short start; /* where polling starts */ |
| #define NO_FRAME ((unsigned short)~0) /* pick new start */ |
| struct usb_device *dev; /* access to TT */ |
| } __aligned(32); |
| |
| /* |
| * Proper OXU210HP structs |
| */ |
| |
| #define OXU_OTG_CORE_OFFSET 0x00400 |
| #define OXU_OTG_CAP_OFFSET (OXU_OTG_CORE_OFFSET + 0x100) |
| #define OXU_SPH_CORE_OFFSET 0x00800 |
| #define OXU_SPH_CAP_OFFSET (OXU_SPH_CORE_OFFSET + 0x100) |
| |
| #define OXU_OTG_MEM 0xE000 |
| #define OXU_SPH_MEM 0x16000 |
| |
| /* Only how many elements & element structure are specifies here. */ |
| /* 2 host controllers are enabled - total size <= 28 kbytes */ |
| #define DEFAULT_I_TDPS 1024 |
| #define QHEAD_NUM 16 |
| #define QTD_NUM 32 |
| #define SITD_NUM 8 |
| #define MURB_NUM 8 |
| |
| #define BUFFER_NUM 8 |
| #define BUFFER_SIZE 512 |
| |
| struct oxu_info { |
| struct usb_hcd *hcd[2]; |
| }; |
| |
| struct oxu_buf { |
| u8 buffer[BUFFER_SIZE]; |
| } __aligned(BUFFER_SIZE); |
| |
| struct oxu_onchip_mem { |
| struct oxu_buf db_pool[BUFFER_NUM]; |
| |
| u32 frame_list[DEFAULT_I_TDPS]; |
| struct ehci_qh qh_pool[QHEAD_NUM]; |
| struct ehci_qtd qtd_pool[QTD_NUM]; |
| } __aligned(4 << 10); |
| |
| #define EHCI_MAX_ROOT_PORTS 15 /* see HCS_N_PORTS */ |
| |
| struct oxu_murb { |
| struct urb urb; |
| struct urb *main; |
| u8 last; |
| }; |
| |
| struct oxu_hcd { /* one per controller */ |
| unsigned int is_otg:1; |
| |
| u8 qh_used[QHEAD_NUM]; |
| u8 qtd_used[QTD_NUM]; |
| u8 db_used[BUFFER_NUM]; |
| u8 murb_used[MURB_NUM]; |
| |
| struct oxu_onchip_mem __iomem *mem; |
| spinlock_t mem_lock; |
| |
| struct timer_list urb_timer; |
| |
| struct ehci_caps __iomem *caps; |
| struct ehci_regs __iomem *regs; |
| |
| u32 hcs_params; /* cached register copy */ |
| spinlock_t lock; |
| |
| /* async schedule support */ |
| struct ehci_qh *async; |
| struct ehci_qh *reclaim; |
| unsigned int reclaim_ready:1; |
| unsigned int scanning:1; |
| |
| /* periodic schedule support */ |
| unsigned int periodic_size; |
| __le32 *periodic; /* hw periodic table */ |
| dma_addr_t periodic_dma; |
| unsigned int i_thresh; /* uframes HC might cache */ |
| |
| union ehci_shadow *pshadow; /* mirror hw periodic table */ |
| int next_uframe; /* scan periodic, start here */ |
| unsigned int periodic_sched; /* periodic activity count */ |
| |
| /* per root hub port */ |
| unsigned long reset_done[EHCI_MAX_ROOT_PORTS]; |
| /* bit vectors (one bit per port) */ |
| unsigned long bus_suspended; /* which ports were |
| * already suspended at the |
| * start of a bus suspend |
| */ |
| unsigned long companion_ports;/* which ports are dedicated |
| * to the companion controller |
| */ |
| |
| struct timer_list watchdog; |
| unsigned long actions; |
| unsigned int stamp; |
| unsigned long next_statechange; |
| u32 command; |
| |
| /* SILICON QUIRKS */ |
| struct list_head urb_list; /* this is the head to urb |
| * queue that didn't get enough |
| * resources |
| */ |
| struct oxu_murb *murb_pool; /* murb per split big urb */ |
| unsigned int urb_len; |
| |
| u8 sbrn; /* packed release number */ |
| }; |
| |
| #define EHCI_IAA_JIFFIES (HZ/100) /* arbitrary; ~10 msec */ |
| #define EHCI_IO_JIFFIES (HZ/10) /* io watchdog > irq_thresh */ |
| #define EHCI_ASYNC_JIFFIES (HZ/20) /* async idle timeout */ |
| #define EHCI_SHRINK_JIFFIES (HZ/200) /* async qh unlink delay */ |
| |
| enum ehci_timer_action { |
| TIMER_IO_WATCHDOG, |
| TIMER_IAA_WATCHDOG, |
| TIMER_ASYNC_SHRINK, |
| TIMER_ASYNC_OFF, |
| }; |
| |
| /* |
| * Main defines |
| */ |
| |
| #define oxu_dbg(oxu, fmt, args...) \ |
| dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args) |
| #define oxu_err(oxu, fmt, args...) \ |
| dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args) |
| #define oxu_info(oxu, fmt, args...) \ |
| dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args) |
| |
| #ifdef CONFIG_DYNAMIC_DEBUG |
| #define DEBUG |
| #endif |
| |
| static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu) |
| { |
| return container_of((void *) oxu, struct usb_hcd, hcd_priv); |
| } |
| |
| static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd) |
| { |
| return (struct oxu_hcd *) (hcd->hcd_priv); |
| } |
| |
| /* |
| * Debug stuff |
| */ |
| |
| #undef OXU_URB_TRACE |
| #undef OXU_VERBOSE_DEBUG |
| |
| #ifdef OXU_VERBOSE_DEBUG |
| #define oxu_vdbg oxu_dbg |
| #else |
| #define oxu_vdbg(oxu, fmt, args...) /* Nop */ |
| #endif |
| |
| #ifdef DEBUG |
| |
| static int __attribute__((__unused__)) |
| dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) |
| { |
| return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s", |
| label, label[0] ? " " : "", status, |
| (status & STS_ASS) ? " Async" : "", |
| (status & STS_PSS) ? " Periodic" : "", |
| (status & STS_RECL) ? " Recl" : "", |
| (status & STS_HALT) ? " Halt" : "", |
| (status & STS_IAA) ? " IAA" : "", |
| (status & STS_FATAL) ? " FATAL" : "", |
| (status & STS_FLR) ? " FLR" : "", |
| (status & STS_PCD) ? " PCD" : "", |
| (status & STS_ERR) ? " ERR" : "", |
| (status & STS_INT) ? " INT" : "" |
| ); |
| } |
| |
| static int __attribute__((__unused__)) |
| dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) |
| { |
| return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s", |
| label, label[0] ? " " : "", enable, |
| (enable & STS_IAA) ? " IAA" : "", |
| (enable & STS_FATAL) ? " FATAL" : "", |
| (enable & STS_FLR) ? " FLR" : "", |
| (enable & STS_PCD) ? " PCD" : "", |
| (enable & STS_ERR) ? " ERR" : "", |
| (enable & STS_INT) ? " INT" : "" |
| ); |
| } |
| |
| static const char *const fls_strings[] = |
| { "1024", "512", "256", "??" }; |
| |
| static int dbg_command_buf(char *buf, unsigned len, |
| const char *label, u32 command) |
| { |
| return scnprintf(buf, len, |
| "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s", |
| label, label[0] ? " " : "", command, |
| (command & CMD_PARK) ? "park" : "(park)", |
| CMD_PARK_CNT(command), |
| (command >> 16) & 0x3f, |
| (command & CMD_LRESET) ? " LReset" : "", |
| (command & CMD_IAAD) ? " IAAD" : "", |
| (command & CMD_ASE) ? " Async" : "", |
| (command & CMD_PSE) ? " Periodic" : "", |
| fls_strings[(command >> 2) & 0x3], |
| (command & CMD_RESET) ? " Reset" : "", |
| (command & CMD_RUN) ? "RUN" : "HALT" |
| ); |
| } |
| |
| static int dbg_port_buf(char *buf, unsigned len, const char *label, |
| int port, u32 status) |
| { |
| char *sig; |
| |
| /* signaling state */ |
| switch (status & (3 << 10)) { |
| case 0 << 10: |
| sig = "se0"; |
| break; |
| case 1 << 10: |
| sig = "k"; /* low speed */ |
| break; |
| case 2 << 10: |
| sig = "j"; |
| break; |
| default: |
| sig = "?"; |
| break; |
| } |
| |
| return scnprintf(buf, len, |
| "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s", |
| label, label[0] ? " " : "", port, status, |
| (status & PORT_POWER) ? " POWER" : "", |
| (status & PORT_OWNER) ? " OWNER" : "", |
| sig, |
| (status & PORT_RESET) ? " RESET" : "", |
| (status & PORT_SUSPEND) ? " SUSPEND" : "", |
| (status & PORT_RESUME) ? " RESUME" : "", |
| (status & PORT_OCC) ? " OCC" : "", |
| (status & PORT_OC) ? " OC" : "", |
| (status & PORT_PEC) ? " PEC" : "", |
| (status & PORT_PE) ? " PE" : "", |
| (status & PORT_CSC) ? " CSC" : "", |
| (status & PORT_CONNECT) ? " CONNECT" : "" |
| ); |
| } |
| |
| #else |
| |
| static inline int __attribute__((__unused__)) |
| dbg_status_buf(char *buf, unsigned len, const char *label, u32 status) |
| { return 0; } |
| |
| static inline int __attribute__((__unused__)) |
| dbg_command_buf(char *buf, unsigned len, const char *label, u32 command) |
| { return 0; } |
| |
| static inline int __attribute__((__unused__)) |
| dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable) |
| { return 0; } |
| |
| static inline int __attribute__((__unused__)) |
| dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status) |
| { return 0; } |
| |
| #endif /* DEBUG */ |
| |
| /* functions have the "wrong" filename when they're output... */ |
| #define dbg_status(oxu, label, status) { \ |
| char _buf[80]; \ |
| dbg_status_buf(_buf, sizeof _buf, label, status); \ |
| oxu_dbg(oxu, "%s\n", _buf); \ |
| } |
| |
| #define dbg_cmd(oxu, label, command) { \ |
| char _buf[80]; \ |
| dbg_command_buf(_buf, sizeof _buf, label, command); \ |
| oxu_dbg(oxu, "%s\n", _buf); \ |
| } |
| |
| #define dbg_port(oxu, label, port, status) { \ |
| char _buf[80]; \ |
| dbg_port_buf(_buf, sizeof _buf, label, port, status); \ |
| oxu_dbg(oxu, "%s\n", _buf); \ |
| } |
| |
| /* |
| * Module parameters |
| */ |
| |
| /* Initial IRQ latency: faster than hw default */ |
| static int log2_irq_thresh; /* 0 to 6 */ |
| module_param(log2_irq_thresh, int, S_IRUGO); |
| MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes"); |
| |
| /* Initial park setting: slower than hw default */ |
| static unsigned park; |
| module_param(park, uint, S_IRUGO); |
| MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets"); |
| |
| /* For flakey hardware, ignore overcurrent indicators */ |
| static bool ignore_oc; |
| module_param(ignore_oc, bool, S_IRUGO); |
| MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications"); |
| |
| |
| static void ehci_work(struct oxu_hcd *oxu); |
| static int oxu_hub_control(struct usb_hcd *hcd, |
| u16 typeReq, u16 wValue, u16 wIndex, |
| char *buf, u16 wLength); |
| |
| /* |
| * Local functions |
| */ |
| |
| /* Low level read/write registers functions */ |
| static inline u32 oxu_readl(void __iomem *base, u32 reg) |
| { |
| return readl(base + reg); |
| } |
| |
| static inline void oxu_writel(void __iomem *base, u32 reg, u32 val) |
| { |
| writel(val, base + reg); |
| } |
| |
| static inline void timer_action_done(struct oxu_hcd *oxu, |
| enum ehci_timer_action action) |
| { |
| clear_bit(action, &oxu->actions); |
| } |
| |
| static inline void timer_action(struct oxu_hcd *oxu, |
| enum ehci_timer_action action) |
| { |
| if (!test_and_set_bit(action, &oxu->actions)) { |
| unsigned long t; |
| |
| switch (action) { |
| case TIMER_IAA_WATCHDOG: |
| t = EHCI_IAA_JIFFIES; |
| break; |
| case TIMER_IO_WATCHDOG: |
| t = EHCI_IO_JIFFIES; |
| break; |
| case TIMER_ASYNC_OFF: |
| t = EHCI_ASYNC_JIFFIES; |
| break; |
| case TIMER_ASYNC_SHRINK: |
| default: |
| t = EHCI_SHRINK_JIFFIES; |
| break; |
| } |
| t += jiffies; |
| /* all timings except IAA watchdog can be overridden. |
| * async queue SHRINK often precedes IAA. while it's ready |
| * to go OFF neither can matter, and afterwards the IO |
| * watchdog stops unless there's still periodic traffic. |
| */ |
| if (action != TIMER_IAA_WATCHDOG |
| && t > oxu->watchdog.expires |
| && timer_pending(&oxu->watchdog)) |
| return; |
| mod_timer(&oxu->watchdog, t); |
| } |
| } |
| |
| /* |
| * handshake - spin reading hc until handshake completes or fails |
| * @ptr: address of hc register to be read |
| * @mask: bits to look at in result of read |
| * @done: value of those bits when handshake succeeds |
| * @usec: timeout in microseconds |
| * |
| * Returns negative errno, or zero on success |
| * |
| * Success happens when the "mask" bits have the specified value (hardware |
| * handshake done). There are two failure modes: "usec" have passed (major |
| * hardware flakeout), or the register reads as all-ones (hardware removed). |
| * |
| * That last failure should_only happen in cases like physical cardbus eject |
| * before driver shutdown. But it also seems to be caused by bugs in cardbus |
| * bridge shutdown: shutting down the bridge before the devices using it. |
| */ |
| static int handshake(struct oxu_hcd *oxu, void __iomem *ptr, |
| u32 mask, u32 done, int usec) |
| { |
| u32 result; |
| |
| do { |
| result = readl(ptr); |
| if (result == ~(u32)0) /* card removed */ |
| return -ENODEV; |
| result &= mask; |
| if (result == done) |
| return 0; |
| udelay(1); |
| usec--; |
| } while (usec > 0); |
| return -ETIMEDOUT; |
| } |
| |
| /* Force HC to halt state from unknown (EHCI spec section 2.3) */ |
| static int ehci_halt(struct oxu_hcd *oxu) |
| { |
| u32 temp = readl(&oxu->regs->status); |
| |
| /* disable any irqs left enabled by previous code */ |
| writel(0, &oxu->regs->intr_enable); |
| |
| if ((temp & STS_HALT) != 0) |
| return 0; |
| |
| temp = readl(&oxu->regs->command); |
| temp &= ~CMD_RUN; |
| writel(temp, &oxu->regs->command); |
| return handshake(oxu, &oxu->regs->status, |
| STS_HALT, STS_HALT, 16 * 125); |
| } |
| |
| /* Put TDI/ARC silicon into EHCI mode */ |
| static void tdi_reset(struct oxu_hcd *oxu) |
| { |
| u32 __iomem *reg_ptr; |
| u32 tmp; |
| |
| reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68); |
| tmp = readl(reg_ptr); |
| tmp |= 0x3; |
| writel(tmp, reg_ptr); |
| } |
| |
| /* Reset a non-running (STS_HALT == 1) controller */ |
| static int ehci_reset(struct oxu_hcd *oxu) |
| { |
| int retval; |
| u32 command = readl(&oxu->regs->command); |
| |
| command |= CMD_RESET; |
| dbg_cmd(oxu, "reset", command); |
| writel(command, &oxu->regs->command); |
| oxu_to_hcd(oxu)->state = HC_STATE_HALT; |
| oxu->next_statechange = jiffies; |
| retval = handshake(oxu, &oxu->regs->command, |
| CMD_RESET, 0, 250 * 1000); |
| |
| if (retval) |
| return retval; |
| |
| tdi_reset(oxu); |
| |
| return retval; |
| } |
| |
| /* Idle the controller (from running) */ |
| static void ehci_quiesce(struct oxu_hcd *oxu) |
| { |
| u32 temp; |
| |
| #ifdef DEBUG |
| BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)); |
| #endif |
| |
| /* wait for any schedule enables/disables to take effect */ |
| temp = readl(&oxu->regs->command) << 10; |
| temp &= STS_ASS | STS_PSS; |
| if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, |
| temp, 16 * 125) != 0) { |
| oxu_to_hcd(oxu)->state = HC_STATE_HALT; |
| return; |
| } |
| |
| /* then disable anything that's still active */ |
| temp = readl(&oxu->regs->command); |
| temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE); |
| writel(temp, &oxu->regs->command); |
| |
| /* hardware can take 16 microframes to turn off ... */ |
| if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS, |
| 0, 16 * 125) != 0) { |
| oxu_to_hcd(oxu)->state = HC_STATE_HALT; |
| return; |
| } |
| } |
| |
| static int check_reset_complete(struct oxu_hcd *oxu, int index, |
| u32 __iomem *status_reg, int port_status) |
| { |
| if (!(port_status & PORT_CONNECT)) { |
| oxu->reset_done[index] = 0; |
| return port_status; |
| } |
| |
| /* if reset finished and it's still not enabled -- handoff */ |
| if (!(port_status & PORT_PE)) { |
| oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n", |
| index+1); |
| return port_status; |
| } else |
| oxu_dbg(oxu, "port %d high speed\n", index + 1); |
| |
| return port_status; |
| } |
| |
| static void ehci_hub_descriptor(struct oxu_hcd *oxu, |
| struct usb_hub_descriptor *desc) |
| { |
| int ports = HCS_N_PORTS(oxu->hcs_params); |
| u16 temp; |
| |
| desc->bDescriptorType = USB_DT_HUB; |
| desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */ |
| desc->bHubContrCurrent = 0; |
| |
| desc->bNbrPorts = ports; |
| temp = 1 + (ports / 8); |
| desc->bDescLength = 7 + 2 * temp; |
| |
| /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */ |
| memset(&desc->u.hs.DeviceRemovable[0], 0, temp); |
| memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp); |
| |
| temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */ |
| if (HCS_PPC(oxu->hcs_params)) |
| temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */ |
| else |
| temp |= HUB_CHAR_NO_LPSM; /* no power switching */ |
| desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp); |
| } |
| |
| |
| /* Allocate an OXU210HP on-chip memory data buffer |
| * |
| * An on-chip memory data buffer is required for each OXU210HP USB transfer. |
| * Each transfer descriptor has one or more on-chip memory data buffers. |
| * |
| * Data buffers are allocated from a fix sized pool of data blocks. |
| * To minimise fragmentation and give reasonable memory utlisation, |
| * data buffers are allocated with sizes the power of 2 multiples of |
| * the block size, starting on an address a multiple of the allocated size. |
| * |
| * FIXME: callers of this function require a buffer to be allocated for |
| * len=0. This is a waste of on-chip memory and should be fix. Then this |
| * function should be changed to not allocate a buffer for len=0. |
| */ |
| static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len) |
| { |
| int n_blocks; /* minium blocks needed to hold len */ |
| int a_blocks; /* blocks allocated */ |
| int i, j; |
| |
| /* Don't allocte bigger than supported */ |
| if (len > BUFFER_SIZE * BUFFER_NUM) { |
| oxu_err(oxu, "buffer too big (%d)\n", len); |
| return -ENOMEM; |
| } |
| |
| spin_lock(&oxu->mem_lock); |
| |
| /* Number of blocks needed to hold len */ |
| n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE; |
| |
| /* Round the number of blocks up to the power of 2 */ |
| for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1) |
| ; |
| |
| /* Find a suitable available data buffer */ |
| for (i = 0; i < BUFFER_NUM; |
| i += max(a_blocks, (int)oxu->db_used[i])) { |
| |
| /* Check all the required blocks are available */ |
| for (j = 0; j < a_blocks; j++) |
| if (oxu->db_used[i + j]) |
| break; |
| |
| if (j != a_blocks) |
| continue; |
| |
| /* Allocate blocks found! */ |
| qtd->buffer = (void *) &oxu->mem->db_pool[i]; |
| qtd->buffer_dma = virt_to_phys(qtd->buffer); |
| |
| qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks; |
| oxu->db_used[i] = a_blocks; |
| |
| spin_unlock(&oxu->mem_lock); |
| |
| return 0; |
| } |
| |
| /* Failed */ |
| |
| spin_unlock(&oxu->mem_lock); |
| |
| return -ENOMEM; |
| } |
| |
| static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) |
| { |
| int index; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| index = (qtd->buffer - (void *) &oxu->mem->db_pool[0]) |
| / BUFFER_SIZE; |
| oxu->db_used[index] = 0; |
| qtd->qtd_buffer_len = 0; |
| qtd->buffer_dma = 0; |
| qtd->buffer = NULL; |
| |
| spin_unlock(&oxu->mem_lock); |
| } |
| |
| static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma) |
| { |
| memset(qtd, 0, sizeof *qtd); |
| qtd->qtd_dma = dma; |
| qtd->hw_token = cpu_to_le32(QTD_STS_HALT); |
| qtd->hw_next = EHCI_LIST_END; |
| qtd->hw_alt_next = EHCI_LIST_END; |
| INIT_LIST_HEAD(&qtd->qtd_list); |
| } |
| |
| static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd) |
| { |
| int index; |
| |
| if (qtd->buffer) |
| oxu_buf_free(oxu, qtd); |
| |
| spin_lock(&oxu->mem_lock); |
| |
| index = qtd - &oxu->mem->qtd_pool[0]; |
| oxu->qtd_used[index] = 0; |
| |
| spin_unlock(&oxu->mem_lock); |
| } |
| |
| static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu) |
| { |
| int i; |
| struct ehci_qtd *qtd = NULL; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| for (i = 0; i < QTD_NUM; i++) |
| if (!oxu->qtd_used[i]) |
| break; |
| |
| if (i < QTD_NUM) { |
| qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i]; |
| memset(qtd, 0, sizeof *qtd); |
| |
| qtd->hw_token = cpu_to_le32(QTD_STS_HALT); |
| qtd->hw_next = EHCI_LIST_END; |
| qtd->hw_alt_next = EHCI_LIST_END; |
| INIT_LIST_HEAD(&qtd->qtd_list); |
| |
| qtd->qtd_dma = virt_to_phys(qtd); |
| |
| oxu->qtd_used[i] = 1; |
| } |
| |
| spin_unlock(&oxu->mem_lock); |
| |
| return qtd; |
| } |
| |
| static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| int index; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| index = qh - &oxu->mem->qh_pool[0]; |
| oxu->qh_used[index] = 0; |
| |
| spin_unlock(&oxu->mem_lock); |
| } |
| |
| static void qh_destroy(struct kref *kref) |
| { |
| struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref); |
| struct oxu_hcd *oxu = qh->oxu; |
| |
| /* clean qtds first, and know this is not linked */ |
| if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) { |
| oxu_dbg(oxu, "unused qh not empty!\n"); |
| BUG(); |
| } |
| if (qh->dummy) |
| oxu_qtd_free(oxu, qh->dummy); |
| oxu_qh_free(oxu, qh); |
| } |
| |
| static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu) |
| { |
| int i; |
| struct ehci_qh *qh = NULL; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| for (i = 0; i < QHEAD_NUM; i++) |
| if (!oxu->qh_used[i]) |
| break; |
| |
| if (i < QHEAD_NUM) { |
| qh = (struct ehci_qh *) &oxu->mem->qh_pool[i]; |
| memset(qh, 0, sizeof *qh); |
| |
| kref_init(&qh->kref); |
| qh->oxu = oxu; |
| qh->qh_dma = virt_to_phys(qh); |
| INIT_LIST_HEAD(&qh->qtd_list); |
| |
| /* dummy td enables safe urb queuing */ |
| qh->dummy = ehci_qtd_alloc(oxu); |
| if (qh->dummy == NULL) { |
| oxu_dbg(oxu, "no dummy td\n"); |
| oxu->qh_used[i] = 0; |
| qh = NULL; |
| goto unlock; |
| } |
| |
| oxu->qh_used[i] = 1; |
| } |
| unlock: |
| spin_unlock(&oxu->mem_lock); |
| |
| return qh; |
| } |
| |
| /* to share a qh (cpu threads, or hc) */ |
| static inline struct ehci_qh *qh_get(struct ehci_qh *qh) |
| { |
| kref_get(&qh->kref); |
| return qh; |
| } |
| |
| static inline void qh_put(struct ehci_qh *qh) |
| { |
| kref_put(&qh->kref, qh_destroy); |
| } |
| |
| static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb) |
| { |
| int index; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| index = murb - &oxu->murb_pool[0]; |
| oxu->murb_used[index] = 0; |
| |
| spin_unlock(&oxu->mem_lock); |
| } |
| |
| static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu) |
| |
| { |
| int i; |
| struct oxu_murb *murb = NULL; |
| |
| spin_lock(&oxu->mem_lock); |
| |
| for (i = 0; i < MURB_NUM; i++) |
| if (!oxu->murb_used[i]) |
| break; |
| |
| if (i < MURB_NUM) { |
| murb = &(oxu->murb_pool)[i]; |
| |
| oxu->murb_used[i] = 1; |
| } |
| |
| spin_unlock(&oxu->mem_lock); |
| |
| return murb; |
| } |
| |
| /* The queue heads and transfer descriptors are managed from pools tied |
| * to each of the "per device" structures. |
| * This is the initialisation and cleanup code. |
| */ |
| static void ehci_mem_cleanup(struct oxu_hcd *oxu) |
| { |
| kfree(oxu->murb_pool); |
| oxu->murb_pool = NULL; |
| |
| if (oxu->async) |
| qh_put(oxu->async); |
| oxu->async = NULL; |
| |
| del_timer(&oxu->urb_timer); |
| |
| oxu->periodic = NULL; |
| |
| /* shadow periodic table */ |
| kfree(oxu->pshadow); |
| oxu->pshadow = NULL; |
| } |
| |
| /* Remember to add cleanup code (above) if you add anything here. |
| */ |
| static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags) |
| { |
| int i; |
| |
| for (i = 0; i < oxu->periodic_size; i++) |
| oxu->mem->frame_list[i] = EHCI_LIST_END; |
| for (i = 0; i < QHEAD_NUM; i++) |
| oxu->qh_used[i] = 0; |
| for (i = 0; i < QTD_NUM; i++) |
| oxu->qtd_used[i] = 0; |
| |
| oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags); |
| if (!oxu->murb_pool) |
| goto fail; |
| |
| for (i = 0; i < MURB_NUM; i++) |
| oxu->murb_used[i] = 0; |
| |
| oxu->async = oxu_qh_alloc(oxu); |
| if (!oxu->async) |
| goto fail; |
| |
| oxu->periodic = (__le32 *) &oxu->mem->frame_list; |
| oxu->periodic_dma = virt_to_phys(oxu->periodic); |
| |
| for (i = 0; i < oxu->periodic_size; i++) |
| oxu->periodic[i] = EHCI_LIST_END; |
| |
| /* software shadow of hardware table */ |
| oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags); |
| if (oxu->pshadow != NULL) |
| return 0; |
| |
| fail: |
| oxu_dbg(oxu, "couldn't init memory\n"); |
| ehci_mem_cleanup(oxu); |
| return -ENOMEM; |
| } |
| |
| /* Fill a qtd, returning how much of the buffer we were able to queue up. |
| */ |
| static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len, |
| int token, int maxpacket) |
| { |
| int i, count; |
| u64 addr = buf; |
| |
| /* one buffer entry per 4K ... first might be short or unaligned */ |
| qtd->hw_buf[0] = cpu_to_le32((u32)addr); |
| qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32)); |
| count = 0x1000 - (buf & 0x0fff); /* rest of that page */ |
| if (likely(len < count)) /* ... iff needed */ |
| count = len; |
| else { |
| buf += 0x1000; |
| buf &= ~0x0fff; |
| |
| /* per-qtd limit: from 16K to 20K (best alignment) */ |
| for (i = 1; count < len && i < 5; i++) { |
| addr = buf; |
| qtd->hw_buf[i] = cpu_to_le32((u32)addr); |
| qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32)); |
| buf += 0x1000; |
| if ((count + 0x1000) < len) |
| count += 0x1000; |
| else |
| count = len; |
| } |
| |
| /* short packets may only terminate transfers */ |
| if (count != len) |
| count -= (count % maxpacket); |
| } |
| qtd->hw_token = cpu_to_le32((count << 16) | token); |
| qtd->length = count; |
| |
| return count; |
| } |
| |
| static inline void qh_update(struct oxu_hcd *oxu, |
| struct ehci_qh *qh, struct ehci_qtd *qtd) |
| { |
| /* writes to an active overlay are unsafe */ |
| BUG_ON(qh->qh_state != QH_STATE_IDLE); |
| |
| qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma); |
| qh->hw_alt_next = EHCI_LIST_END; |
| |
| /* Except for control endpoints, we make hardware maintain data |
| * toggle (like OHCI) ... here (re)initialize the toggle in the QH, |
| * and set the pseudo-toggle in udev. Only usb_clear_halt() will |
| * ever clear it. |
| */ |
| if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { |
| unsigned is_out, epnum; |
| |
| is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); |
| epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; |
| if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) { |
| qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE); |
| usb_settoggle(qh->dev, epnum, is_out, 1); |
| } |
| } |
| |
| /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ |
| wmb(); |
| qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING); |
| } |
| |
| /* If it weren't for a common silicon quirk (writing the dummy into the qh |
| * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault |
| * recovery (including urb dequeue) would need software changes to a QH... |
| */ |
| static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| struct ehci_qtd *qtd; |
| |
| if (list_empty(&qh->qtd_list)) |
| qtd = qh->dummy; |
| else { |
| qtd = list_entry(qh->qtd_list.next, |
| struct ehci_qtd, qtd_list); |
| /* first qtd may already be partially processed */ |
| if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current) |
| qtd = NULL; |
| } |
| |
| if (qtd) |
| qh_update(oxu, qh, qtd); |
| } |
| |
| static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb, |
| size_t length, u32 token) |
| { |
| /* count IN/OUT bytes, not SETUP (even short packets) */ |
| if (likely(QTD_PID(token) != 2)) |
| urb->actual_length += length - QTD_LENGTH(token); |
| |
| /* don't modify error codes */ |
| if (unlikely(urb->status != -EINPROGRESS)) |
| return; |
| |
| /* force cleanup after short read; not always an error */ |
| if (unlikely(IS_SHORT_READ(token))) |
| urb->status = -EREMOTEIO; |
| |
| /* serious "can't proceed" faults reported by the hardware */ |
| if (token & QTD_STS_HALT) { |
| if (token & QTD_STS_BABBLE) { |
| /* FIXME "must" disable babbling device's port too */ |
| urb->status = -EOVERFLOW; |
| } else if (token & QTD_STS_MMF) { |
| /* fs/ls interrupt xfer missed the complete-split */ |
| urb->status = -EPROTO; |
| } else if (token & QTD_STS_DBE) { |
| urb->status = (QTD_PID(token) == 1) /* IN ? */ |
| ? -ENOSR /* hc couldn't read data */ |
| : -ECOMM; /* hc couldn't write data */ |
| } else if (token & QTD_STS_XACT) { |
| /* timeout, bad crc, wrong PID, etc; retried */ |
| if (QTD_CERR(token)) |
| urb->status = -EPIPE; |
| else { |
| oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n", |
| urb->dev->devpath, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out"); |
| urb->status = -EPROTO; |
| } |
| /* CERR nonzero + no errors + halt --> stall */ |
| } else if (QTD_CERR(token)) |
| urb->status = -EPIPE; |
| else /* unknown */ |
| urb->status = -EPROTO; |
| |
| oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n", |
| usb_pipedevice(urb->pipe), |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| token, urb->status); |
| } |
| } |
| |
| static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb) |
| __releases(oxu->lock) |
| __acquires(oxu->lock) |
| { |
| if (likely(urb->hcpriv != NULL)) { |
| struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; |
| |
| /* S-mask in a QH means it's an interrupt urb */ |
| if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) { |
| |
| /* ... update hc-wide periodic stats (for usbfs) */ |
| oxu_to_hcd(oxu)->self.bandwidth_int_reqs--; |
| } |
| qh_put(qh); |
| } |
| |
| urb->hcpriv = NULL; |
| switch (urb->status) { |
| case -EINPROGRESS: /* success */ |
| urb->status = 0; |
| default: /* fault */ |
| break; |
| case -EREMOTEIO: /* fault or normal */ |
| if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) |
| urb->status = 0; |
| break; |
| case -ECONNRESET: /* canceled */ |
| case -ENOENT: |
| break; |
| } |
| |
| #ifdef OXU_URB_TRACE |
| oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n", |
| __func__, urb->dev->devpath, urb, |
| usb_pipeendpoint(urb->pipe), |
| usb_pipein(urb->pipe) ? "in" : "out", |
| urb->status, |
| urb->actual_length, urb->transfer_buffer_length); |
| #endif |
| |
| /* complete() can reenter this HCD */ |
| spin_unlock(&oxu->lock); |
| usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status); |
| spin_lock(&oxu->lock); |
| } |
| |
| static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); |
| static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh); |
| |
| static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh); |
| static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh); |
| |
| #define HALT_BIT cpu_to_le32(QTD_STS_HALT) |
| |
| /* Process and free completed qtds for a qh, returning URBs to drivers. |
| * Chases up to qh->hw_current. Returns number of completions called, |
| * indicating how much "real" work we did. |
| */ |
| static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| struct ehci_qtd *last = NULL, *end = qh->dummy; |
| struct ehci_qtd *qtd, *tmp; |
| int stopped; |
| unsigned count = 0; |
| int do_status = 0; |
| u8 state; |
| struct oxu_murb *murb = NULL; |
| |
| if (unlikely(list_empty(&qh->qtd_list))) |
| return count; |
| |
| /* completions (or tasks on other cpus) must never clobber HALT |
| * till we've gone through and cleaned everything up, even when |
| * they add urbs to this qh's queue or mark them for unlinking. |
| * |
| * NOTE: unlinking expects to be done in queue order. |
| */ |
| state = qh->qh_state; |
| qh->qh_state = QH_STATE_COMPLETING; |
| stopped = (state == QH_STATE_IDLE); |
| |
| /* remove de-activated QTDs from front of queue. |
| * after faults (including short reads), cleanup this urb |
| * then let the queue advance. |
| * if queue is stopped, handles unlinks. |
| */ |
| list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) { |
| struct urb *urb; |
| u32 token = 0; |
| |
| urb = qtd->urb; |
| |
| /* Clean up any state from previous QTD ...*/ |
| if (last) { |
| if (likely(last->urb != urb)) { |
| if (last->urb->complete == NULL) { |
| murb = (struct oxu_murb *) last->urb; |
| last->urb = murb->main; |
| if (murb->last) { |
| ehci_urb_done(oxu, last->urb); |
| count++; |
| } |
| oxu_murb_free(oxu, murb); |
| } else { |
| ehci_urb_done(oxu, last->urb); |
| count++; |
| } |
| } |
| oxu_qtd_free(oxu, last); |
| last = NULL; |
| } |
| |
| /* ignore urbs submitted during completions we reported */ |
| if (qtd == end) |
| break; |
| |
| /* hardware copies qtd out of qh overlay */ |
| rmb(); |
| token = le32_to_cpu(qtd->hw_token); |
| |
| /* always clean up qtds the hc de-activated */ |
| if ((token & QTD_STS_ACTIVE) == 0) { |
| |
| if ((token & QTD_STS_HALT) != 0) { |
| stopped = 1; |
| |
| /* magic dummy for some short reads; qh won't advance. |
| * that silicon quirk can kick in with this dummy too. |
| */ |
| } else if (IS_SHORT_READ(token) && |
| !(qtd->hw_alt_next & EHCI_LIST_END)) { |
| stopped = 1; |
| goto halt; |
| } |
| |
| /* stop scanning when we reach qtds the hc is using */ |
| } else if (likely(!stopped && |
| HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) { |
| break; |
| |
| } else { |
| stopped = 1; |
| |
| if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) |
| urb->status = -ESHUTDOWN; |
| |
| /* ignore active urbs unless some previous qtd |
| * for the urb faulted (including short read) or |
| * its urb was canceled. we may patch qh or qtds. |
| */ |
| if (likely(urb->status == -EINPROGRESS)) |
| continue; |
| |
| /* issue status after short control reads */ |
| if (unlikely(do_status != 0) |
| && QTD_PID(token) == 0 /* OUT */) { |
| do_status = 0; |
| continue; |
| } |
| |
| /* token in overlay may be most current */ |
| if (state == QH_STATE_IDLE |
| && cpu_to_le32(qtd->qtd_dma) |
| == qh->hw_current) |
| token = le32_to_cpu(qh->hw_token); |
| |
| /* force halt for unlinked or blocked qh, so we'll |
| * patch the qh later and so that completions can't |
| * activate it while we "know" it's stopped. |
| */ |
| if ((HALT_BIT & qh->hw_token) == 0) { |
| halt: |
| qh->hw_token |= HALT_BIT; |
| wmb(); |
| } |
| } |
| |
| /* Remove it from the queue */ |
| qtd_copy_status(oxu, urb->complete ? |
| urb : ((struct oxu_murb *) urb)->main, |
| qtd->length, token); |
| if ((usb_pipein(qtd->urb->pipe)) && |
| (NULL != qtd->transfer_buffer)) |
| memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length); |
| do_status = (urb->status == -EREMOTEIO) |
| && usb_pipecontrol(urb->pipe); |
| |
| if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { |
| last = list_entry(qtd->qtd_list.prev, |
| struct ehci_qtd, qtd_list); |
| last->hw_next = qtd->hw_next; |
| } |
| list_del(&qtd->qtd_list); |
| last = qtd; |
| } |
| |
| /* last urb's completion might still need calling */ |
| if (likely(last != NULL)) { |
| if (last->urb->complete == NULL) { |
| murb = (struct oxu_murb *) last->urb; |
| last->urb = murb->main; |
| if (murb->last) { |
| ehci_urb_done(oxu, last->urb); |
| count++; |
| } |
| oxu_murb_free(oxu, murb); |
| } else { |
| ehci_urb_done(oxu, last->urb); |
| count++; |
| } |
| oxu_qtd_free(oxu, last); |
| } |
| |
| /* restore original state; caller must unlink or relink */ |
| qh->qh_state = state; |
| |
| /* be sure the hardware's done with the qh before refreshing |
| * it after fault cleanup, or recovering from silicon wrongly |
| * overlaying the dummy qtd (which reduces DMA chatter). |
| */ |
| if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { |
| switch (state) { |
| case QH_STATE_IDLE: |
| qh_refresh(oxu, qh); |
| break; |
| case QH_STATE_LINKED: |
| /* should be rare for periodic transfers, |
| * except maybe high bandwidth ... |
| */ |
| if ((cpu_to_le32(QH_SMASK) |
| & qh->hw_info2) != 0) { |
| intr_deschedule(oxu, qh); |
| (void) qh_schedule(oxu, qh); |
| } else |
| unlink_async(oxu, qh); |
| break; |
| /* otherwise, unlink already started */ |
| } |
| } |
| |
| return count; |
| } |
| |
| /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */ |
| #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) |
| /* ... and packet size, for any kind of endpoint descriptor */ |
| #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) |
| |
| /* Reverse of qh_urb_transaction: free a list of TDs. |
| * used for cleanup after errors, before HC sees an URB's TDs. |
| */ |
| static void qtd_list_free(struct oxu_hcd *oxu, |
| struct urb *urb, struct list_head *head) |
| { |
| struct ehci_qtd *qtd, *temp; |
| |
| list_for_each_entry_safe(qtd, temp, head, qtd_list) { |
| list_del(&qtd->qtd_list); |
| oxu_qtd_free(oxu, qtd); |
| } |
| } |
| |
| /* Create a list of filled qtds for this URB; won't link into qh. |
| */ |
| static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu, |
| struct urb *urb, |
| struct list_head *head, |
| gfp_t flags) |
| { |
| struct ehci_qtd *qtd, *qtd_prev; |
| dma_addr_t buf; |
| int len, maxpacket; |
| int is_input; |
| u32 token; |
| void *transfer_buf = NULL; |
| int ret; |
| |
| /* |
| * URBs map to sequences of QTDs: one logical transaction |
| */ |
| qtd = ehci_qtd_alloc(oxu); |
| if (unlikely(!qtd)) |
| return NULL; |
| list_add_tail(&qtd->qtd_list, head); |
| qtd->urb = urb; |
| |
| token = QTD_STS_ACTIVE; |
| token |= (EHCI_TUNE_CERR << 10); |
| /* for split transactions, SplitXState initialized to zero */ |
| |
| len = urb->transfer_buffer_length; |
| is_input = usb_pipein(urb->pipe); |
| if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input) |
| urb->transfer_buffer = phys_to_virt(urb->transfer_dma); |
| |
| if (usb_pipecontrol(urb->pipe)) { |
| /* SETUP pid */ |
| ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest)); |
| if (ret) |
| goto cleanup; |
| |
| qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest), |
| token | (2 /* "setup" */ << 8), 8); |
| memcpy(qtd->buffer, qtd->urb->setup_packet, |
| sizeof(struct usb_ctrlrequest)); |
| |
| /* ... and always at least one more pid */ |
| token ^= QTD_TOGGLE; |
| qtd_prev = qtd; |
| qtd = ehci_qtd_alloc(oxu); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| |
| /* for zero length DATA stages, STATUS is always IN */ |
| if (len == 0) |
| token |= (1 /* "in" */ << 8); |
| } |
| |
| /* |
| * Data transfer stage: buffer setup |
| */ |
| |
| ret = oxu_buf_alloc(oxu, qtd, len); |
| if (ret) |
| goto cleanup; |
| |
| buf = qtd->buffer_dma; |
| transfer_buf = urb->transfer_buffer; |
| |
| if (!is_input) |
| memcpy(qtd->buffer, qtd->urb->transfer_buffer, len); |
| |
| if (is_input) |
| token |= (1 /* "in" */ << 8); |
| /* else it's already initted to "out" pid (0 << 8) */ |
| |
| maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); |
| |
| /* |
| * buffer gets wrapped in one or more qtds; |
| * last one may be "short" (including zero len) |
| * and may serve as a control status ack |
| */ |
| for (;;) { |
| int this_qtd_len; |
| |
| this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket); |
| qtd->transfer_buffer = transfer_buf; |
| len -= this_qtd_len; |
| buf += this_qtd_len; |
| transfer_buf += this_qtd_len; |
| if (is_input) |
| qtd->hw_alt_next = oxu->async->hw_alt_next; |
| |
| /* qh makes control packets use qtd toggle; maybe switch it */ |
| if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) |
| token ^= QTD_TOGGLE; |
| |
| if (likely(len <= 0)) |
| break; |
| |
| qtd_prev = qtd; |
| qtd = ehci_qtd_alloc(oxu); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| if (likely(len > 0)) { |
| ret = oxu_buf_alloc(oxu, qtd, len); |
| if (ret) |
| goto cleanup; |
| } |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| } |
| |
| /* unless the bulk/interrupt caller wants a chance to clean |
| * up after short reads, hc should advance qh past this urb |
| */ |
| if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 |
| || usb_pipecontrol(urb->pipe))) |
| qtd->hw_alt_next = EHCI_LIST_END; |
| |
| /* |
| * control requests may need a terminating data "status" ack; |
| * bulk ones may need a terminating short packet (zero length). |
| */ |
| if (likely(urb->transfer_buffer_length != 0)) { |
| int one_more = 0; |
| |
| if (usb_pipecontrol(urb->pipe)) { |
| one_more = 1; |
| token ^= 0x0100; /* "in" <--> "out" */ |
| token |= QTD_TOGGLE; /* force DATA1 */ |
| } else if (usb_pipebulk(urb->pipe) |
| && (urb->transfer_flags & URB_ZERO_PACKET) |
| && !(urb->transfer_buffer_length % maxpacket)) { |
| one_more = 1; |
| } |
| if (one_more) { |
| qtd_prev = qtd; |
| qtd = ehci_qtd_alloc(oxu); |
| if (unlikely(!qtd)) |
| goto cleanup; |
| qtd->urb = urb; |
| qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma); |
| list_add_tail(&qtd->qtd_list, head); |
| |
| /* never any data in such packets */ |
| qtd_fill(qtd, 0, 0, token, 0); |
| } |
| } |
| |
| /* by default, enable interrupt on urb completion */ |
| qtd->hw_token |= cpu_to_le32(QTD_IOC); |
| return head; |
| |
| cleanup: |
| qtd_list_free(oxu, urb, head); |
| return NULL; |
| } |
| |
| /* Each QH holds a qtd list; a QH is used for everything except iso. |
| * |
| * For interrupt urbs, the scheduler must set the microframe scheduling |
| * mask(s) each time the QH gets scheduled. For highspeed, that's |
| * just one microframe in the s-mask. For split interrupt transactions |
| * there are additional complications: c-mask, maybe FSTNs. |
| */ |
| static struct ehci_qh *qh_make(struct oxu_hcd *oxu, |
| struct urb *urb, gfp_t flags) |
| { |
| struct ehci_qh *qh = oxu_qh_alloc(oxu); |
| u32 info1 = 0, info2 = 0; |
| int is_input, type; |
| int maxp = 0; |
| |
| if (!qh) |
| return qh; |
| |
| /* |
| * init endpoint/device data for this QH |
| */ |
| info1 |= usb_pipeendpoint(urb->pipe) << 8; |
| info1 |= usb_pipedevice(urb->pipe) << 0; |
| |
| is_input = usb_pipein(urb->pipe); |
| type = usb_pipetype(urb->pipe); |
| maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input); |
| |
| /* Compute interrupt scheduling parameters just once, and save. |
| * - allowing for high bandwidth, how many nsec/uframe are used? |
| * - split transactions need a second CSPLIT uframe; same question |
| * - splits also need a schedule gap (for full/low speed I/O) |
| * - qh has a polling interval |
| * |
| * For control/bulk requests, the HC or TT handles these. |
| */ |
| if (type == PIPE_INTERRUPT) { |
| qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, |
| is_input, 0, |
| hb_mult(maxp) * max_packet(maxp))); |
| qh->start = NO_FRAME; |
| |
| if (urb->dev->speed == USB_SPEED_HIGH) { |
| qh->c_usecs = 0; |
| qh->gap_uf = 0; |
| |
| qh->period = urb->interval >> 3; |
| if (qh->period == 0 && urb->interval != 1) { |
| /* NOTE interval 2 or 4 uframes could work. |
| * But interval 1 scheduling is simpler, and |
| * includes high bandwidth. |
| */ |
| oxu_dbg(oxu, "intr period %d uframes, NYET!\n", |
| urb->interval); |
| goto done; |
| } |
| } else { |
| struct usb_tt *tt = urb->dev->tt; |
| int think_time; |
| |
| /* gap is f(FS/LS transfer times) */ |
| qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed, |
| is_input, 0, maxp) / (125 * 1000); |
| |
| /* FIXME this just approximates SPLIT/CSPLIT times */ |
| if (is_input) { /* SPLIT, gap, CSPLIT+DATA */ |
| qh->c_usecs = qh->usecs + HS_USECS(0); |
| qh->usecs = HS_USECS(1); |
| } else { /* SPLIT+DATA, gap, CSPLIT */ |
| qh->usecs += HS_USECS(1); |
| qh->c_usecs = HS_USECS(0); |
| } |
| |
| think_time = tt ? tt->think_time : 0; |
| qh->tt_usecs = NS_TO_US(think_time + |
| usb_calc_bus_time(urb->dev->speed, |
| is_input, 0, max_packet(maxp))); |
| qh->period = urb->interval; |
| } |
| } |
| |
| /* support for tt scheduling, and access to toggles */ |
| qh->dev = urb->dev; |
| |
| /* using TT? */ |
| switch (urb->dev->speed) { |
| case USB_SPEED_LOW: |
| info1 |= (1 << 12); /* EPS "low" */ |
| /* FALL THROUGH */ |
| |
| case USB_SPEED_FULL: |
| /* EPS 0 means "full" */ |
| if (type != PIPE_INTERRUPT) |
| info1 |= (EHCI_TUNE_RL_TT << 28); |
| if (type == PIPE_CONTROL) { |
| info1 |= (1 << 27); /* for TT */ |
| info1 |= 1 << 14; /* toggle from qtd */ |
| } |
| info1 |= maxp << 16; |
| |
| info2 |= (EHCI_TUNE_MULT_TT << 30); |
| info2 |= urb->dev->ttport << 23; |
| |
| /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ |
| |
| break; |
| |
| case USB_SPEED_HIGH: /* no TT involved */ |
| info1 |= (2 << 12); /* EPS "high" */ |
| if (type == PIPE_CONTROL) { |
| info1 |= (EHCI_TUNE_RL_HS << 28); |
| info1 |= 64 << 16; /* usb2 fixed maxpacket */ |
| info1 |= 1 << 14; /* toggle from qtd */ |
| info2 |= (EHCI_TUNE_MULT_HS << 30); |
| } else if (type == PIPE_BULK) { |
| info1 |= (EHCI_TUNE_RL_HS << 28); |
| info1 |= 512 << 16; /* usb2 fixed maxpacket */ |
| info2 |= (EHCI_TUNE_MULT_HS << 30); |
| } else { /* PIPE_INTERRUPT */ |
| info1 |= max_packet(maxp) << 16; |
| info2 |= hb_mult(maxp) << 30; |
| } |
| break; |
| default: |
| oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed); |
| done: |
| qh_put(qh); |
| return NULL; |
| } |
| |
| /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ |
| |
| /* init as live, toggle clear, advance to dummy */ |
| qh->qh_state = QH_STATE_IDLE; |
| qh->hw_info1 = cpu_to_le32(info1); |
| qh->hw_info2 = cpu_to_le32(info2); |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1); |
| qh_refresh(oxu, qh); |
| return qh; |
| } |
| |
| /* Move qh (and its qtds) onto async queue; maybe enable queue. |
| */ |
| static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| __le32 dma = QH_NEXT(qh->qh_dma); |
| struct ehci_qh *head; |
| |
| /* (re)start the async schedule? */ |
| head = oxu->async; |
| timer_action_done(oxu, TIMER_ASYNC_OFF); |
| if (!head->qh_next.qh) { |
| u32 cmd = readl(&oxu->regs->command); |
| |
| if (!(cmd & CMD_ASE)) { |
| /* in case a clear of CMD_ASE didn't take yet */ |
| (void)handshake(oxu, &oxu->regs->status, |
| STS_ASS, 0, 150); |
| cmd |= CMD_ASE | CMD_RUN; |
| writel(cmd, &oxu->regs->command); |
| oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; |
| /* posted write need not be known to HC yet ... */ |
| } |
| } |
| |
| /* clear halt and/or toggle; and maybe recover from silicon quirk */ |
| if (qh->qh_state == QH_STATE_IDLE) |
| qh_refresh(oxu, qh); |
| |
| /* splice right after start */ |
| qh->qh_next = head->qh_next; |
| qh->hw_next = head->hw_next; |
| wmb(); |
| |
| head->qh_next.qh = qh; |
| head->hw_next = dma; |
| |
| qh->qh_state = QH_STATE_LINKED; |
| /* qtd completions reported later by interrupt */ |
| } |
| |
| #define QH_ADDR_MASK cpu_to_le32(0x7f) |
| |
| /* |
| * For control/bulk/interrupt, return QH with these TDs appended. |
| * Allocates and initializes the QH if necessary. |
| * Returns null if it can't allocate a QH it needs to. |
| * If the QH has TDs (urbs) already, that's great. |
| */ |
| static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu, |
| struct urb *urb, struct list_head *qtd_list, |
| int epnum, void **ptr) |
| { |
| struct ehci_qh *qh = NULL; |
| |
| qh = (struct ehci_qh *) *ptr; |
| if (unlikely(qh == NULL)) { |
| /* can't sleep here, we have oxu->lock... */ |
| qh = qh_make(oxu, urb, GFP_ATOMIC); |
| *ptr = qh; |
| } |
| if (likely(qh != NULL)) { |
| struct ehci_qtd *qtd; |
| |
| if (unlikely(list_empty(qtd_list))) |
| qtd = NULL; |
| else |
| qtd = list_entry(qtd_list->next, struct ehci_qtd, |
| qtd_list); |
| |
| /* control qh may need patching ... */ |
| if (unlikely(epnum == 0)) { |
| |
| /* usb_reset_device() briefly reverts to address 0 */ |
| if (usb_pipedevice(urb->pipe) == 0) |
| qh->hw_info1 &= ~QH_ADDR_MASK; |
| } |
| |
| /* just one way to queue requests: swap with the dummy qtd. |
| * only hc or qh_refresh() ever modify the overlay. |
| */ |
| if (likely(qtd != NULL)) { |
| struct ehci_qtd *dummy; |
| dma_addr_t dma; |
| __le32 token; |
| |
| /* to avoid racing the HC, use the dummy td instead of |
| * the first td of our list (becomes new dummy). both |
| * tds stay deactivated until we're done, when the |
| * HC is allowed to fetch the old dummy (4.10.2). |
| */ |
| token = qtd->hw_token; |
| qtd->hw_token = HALT_BIT; |
| wmb(); |
| dummy = qh->dummy; |
| |
| dma = dummy->qtd_dma; |
| *dummy = *qtd; |
| dummy->qtd_dma = dma; |
| |
| list_del(&qtd->qtd_list); |
| list_add(&dummy->qtd_list, qtd_list); |
| list_splice(qtd_list, qh->qtd_list.prev); |
| |
| ehci_qtd_init(qtd, qtd->qtd_dma); |
| qh->dummy = qtd; |
| |
| /* hc must see the new dummy at list end */ |
| dma = qtd->qtd_dma; |
| qtd = list_entry(qh->qtd_list.prev, |
| struct ehci_qtd, qtd_list); |
| qtd->hw_next = QTD_NEXT(dma); |
| |
| /* let the hc process these next qtds */ |
| dummy->hw_token = (token & ~(0x80)); |
| wmb(); |
| dummy->hw_token = token; |
| |
| urb->hcpriv = qh_get(qh); |
| } |
| } |
| return qh; |
| } |
| |
| static int submit_async(struct oxu_hcd *oxu, struct urb *urb, |
| struct list_head *qtd_list, gfp_t mem_flags) |
| { |
| struct ehci_qtd *qtd; |
| int epnum; |
| unsigned long flags; |
| struct ehci_qh *qh = NULL; |
| int rc = 0; |
| |
| qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list); |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| #ifdef OXU_URB_TRACE |
| oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", |
| __func__, urb->dev->devpath, urb, |
| epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", |
| urb->transfer_buffer_length, |
| qtd, urb->ep->hcpriv); |
| #endif |
| |
| spin_lock_irqsave(&oxu->lock, flags); |
| if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { |
| rc = -ESHUTDOWN; |
| goto done; |
| } |
| |
| qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| if (unlikely(qh == NULL)) { |
| rc = -ENOMEM; |
| goto done; |
| } |
| |
| /* Control/bulk operations through TTs don't need scheduling, |
| * the HC and TT handle it when the TT has a buffer ready. |
| */ |
| if (likely(qh->qh_state == QH_STATE_IDLE)) |
| qh_link_async(oxu, qh_get(qh)); |
| done: |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| if (unlikely(qh == NULL)) |
| qtd_list_free(oxu, urb, qtd_list); |
| return rc; |
| } |
| |
| /* The async qh for the qtds being reclaimed are now unlinked from the HC */ |
| |
| static void end_unlink_async(struct oxu_hcd *oxu) |
| { |
| struct ehci_qh *qh = oxu->reclaim; |
| struct ehci_qh *next; |
| |
| timer_action_done(oxu, TIMER_IAA_WATCHDOG); |
| |
| qh->qh_state = QH_STATE_IDLE; |
| qh->qh_next.qh = NULL; |
| qh_put(qh); /* refcount from reclaim */ |
| |
| /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ |
| next = qh->reclaim; |
| oxu->reclaim = next; |
| oxu->reclaim_ready = 0; |
| qh->reclaim = NULL; |
| |
| qh_completions(oxu, qh); |
| |
| if (!list_empty(&qh->qtd_list) |
| && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) |
| qh_link_async(oxu, qh); |
| else { |
| qh_put(qh); /* refcount from async list */ |
| |
| /* it's not free to turn the async schedule on/off; leave it |
| * active but idle for a while once it empties. |
| */ |
| if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) |
| && oxu->async->qh_next.qh == NULL) |
| timer_action(oxu, TIMER_ASYNC_OFF); |
| } |
| |
| if (next) { |
| oxu->reclaim = NULL; |
| start_unlink_async(oxu, next); |
| } |
| } |
| |
| /* makes sure the async qh will become idle */ |
| /* caller must own oxu->lock */ |
| |
| static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| int cmd = readl(&oxu->regs->command); |
| struct ehci_qh *prev; |
| |
| #ifdef DEBUG |
| assert_spin_locked(&oxu->lock); |
| BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED |
| && qh->qh_state != QH_STATE_UNLINK_WAIT)); |
| #endif |
| |
| /* stop async schedule right now? */ |
| if (unlikely(qh == oxu->async)) { |
| /* can't get here without STS_ASS set */ |
| if (oxu_to_hcd(oxu)->state != HC_STATE_HALT |
| && !oxu->reclaim) { |
| /* ... and CMD_IAAD clear */ |
| writel(cmd & ~CMD_ASE, &oxu->regs->command); |
| wmb(); |
| /* handshake later, if we need to */ |
| timer_action_done(oxu, TIMER_ASYNC_OFF); |
| } |
| return; |
| } |
| |
| qh->qh_state = QH_STATE_UNLINK; |
| oxu->reclaim = qh = qh_get(qh); |
| |
| prev = oxu->async; |
| while (prev->qh_next.qh != qh) |
| prev = prev->qh_next.qh; |
| |
| prev->hw_next = qh->hw_next; |
| prev->qh_next = qh->qh_next; |
| wmb(); |
| |
| if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) { |
| /* if (unlikely(qh->reclaim != 0)) |
| * this will recurse, probably not much |
| */ |
| end_unlink_async(oxu); |
| return; |
| } |
| |
| oxu->reclaim_ready = 0; |
| cmd |= CMD_IAAD; |
| writel(cmd, &oxu->regs->command); |
| (void) readl(&oxu->regs->command); |
| timer_action(oxu, TIMER_IAA_WATCHDOG); |
| } |
| |
| static void scan_async(struct oxu_hcd *oxu) |
| { |
| struct ehci_qh *qh; |
| enum ehci_timer_action action = TIMER_IO_WATCHDOG; |
| |
| if (!++(oxu->stamp)) |
| oxu->stamp++; |
| timer_action_done(oxu, TIMER_ASYNC_SHRINK); |
| rescan: |
| qh = oxu->async->qh_next.qh; |
| if (likely(qh != NULL)) { |
| do { |
| /* clean any finished work for this qh */ |
| if (!list_empty(&qh->qtd_list) |
| && qh->stamp != oxu->stamp) { |
| int temp; |
| |
| /* unlinks could happen here; completion |
| * reporting drops the lock. rescan using |
| * the latest schedule, but don't rescan |
| * qhs we already finished (no looping). |
| */ |
| qh = qh_get(qh); |
| qh->stamp = oxu->stamp; |
| temp = qh_completions(oxu, qh); |
| qh_put(qh); |
| if (temp != 0) |
| goto rescan; |
| } |
| |
| /* unlink idle entries, reducing HC PCI usage as well |
| * as HCD schedule-scanning costs. delay for any qh |
| * we just scanned, there's a not-unusual case that it |
| * doesn't stay idle for long. |
| * (plus, avoids some kind of re-activation race.) |
| */ |
| if (list_empty(&qh->qtd_list)) { |
| if (qh->stamp == oxu->stamp) |
| action = TIMER_ASYNC_SHRINK; |
| else if (!oxu->reclaim |
| && qh->qh_state == QH_STATE_LINKED) |
| start_unlink_async(oxu, qh); |
| } |
| |
| qh = qh->qh_next.qh; |
| } while (qh); |
| } |
| if (action == TIMER_ASYNC_SHRINK) |
| timer_action(oxu, TIMER_ASYNC_SHRINK); |
| } |
| |
| /* |
| * periodic_next_shadow - return "next" pointer on shadow list |
| * @periodic: host pointer to qh/itd/sitd |
| * @tag: hardware tag for type of this record |
| */ |
| static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic, |
| __le32 tag) |
| { |
| switch (tag) { |
| default: |
| case Q_TYPE_QH: |
| return &periodic->qh->qh_next; |
| } |
| } |
| |
| /* caller must hold oxu->lock */ |
| static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr) |
| { |
| union ehci_shadow *prev_p = &oxu->pshadow[frame]; |
| __le32 *hw_p = &oxu->periodic[frame]; |
| union ehci_shadow here = *prev_p; |
| |
| /* find predecessor of "ptr"; hw and shadow lists are in sync */ |
| while (here.ptr && here.ptr != ptr) { |
| prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p)); |
| hw_p = here.hw_next; |
| here = *prev_p; |
| } |
| /* an interrupt entry (at list end) could have been shared */ |
| if (!here.ptr) |
| return; |
| |
| /* update shadow and hardware lists ... the old "next" pointers |
| * from ptr may still be in use, the caller updates them. |
| */ |
| *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p)); |
| *hw_p = *here.hw_next; |
| } |
| |
| /* how many of the uframe's 125 usecs are allocated? */ |
| static unsigned short periodic_usecs(struct oxu_hcd *oxu, |
| unsigned frame, unsigned uframe) |
| { |
| __le32 *hw_p = &oxu->periodic[frame]; |
| union ehci_shadow *q = &oxu->pshadow[frame]; |
| unsigned usecs = 0; |
| |
| while (q->ptr) { |
| switch (Q_NEXT_TYPE(*hw_p)) { |
| case Q_TYPE_QH: |
| default: |
| /* is it in the S-mask? */ |
| if (q->qh->hw_info2 & cpu_to_le32(1 << uframe)) |
| usecs += q->qh->usecs; |
| /* ... or C-mask? */ |
| if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe))) |
| usecs += q->qh->c_usecs; |
| hw_p = &q->qh->hw_next; |
| q = &q->qh->qh_next; |
| break; |
| } |
| } |
| #ifdef DEBUG |
| if (usecs > 100) |
| oxu_err(oxu, "uframe %d sched overrun: %d usecs\n", |
| frame * 8 + uframe, usecs); |
| #endif |
| return usecs; |
| } |
| |
| static int enable_periodic(struct oxu_hcd *oxu) |
| { |
| u32 cmd; |
| int status; |
| |
| /* did clearing PSE did take effect yet? |
| * takes effect only at frame boundaries... |
| */ |
| status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125); |
| if (status != 0) { |
| oxu_to_hcd(oxu)->state = HC_STATE_HALT; |
| usb_hc_died(oxu_to_hcd(oxu)); |
| return status; |
| } |
| |
| cmd = readl(&oxu->regs->command) | CMD_PSE; |
| writel(cmd, &oxu->regs->command); |
| /* posted write ... PSS happens later */ |
| oxu_to_hcd(oxu)->state = HC_STATE_RUNNING; |
| |
| /* make sure ehci_work scans these */ |
| oxu->next_uframe = readl(&oxu->regs->frame_index) |
| % (oxu->periodic_size << 3); |
| return 0; |
| } |
| |
| static int disable_periodic(struct oxu_hcd *oxu) |
| { |
| u32 cmd; |
| int status; |
| |
| /* did setting PSE not take effect yet? |
| * takes effect only at frame boundaries... |
| */ |
| status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125); |
| if (status != 0) { |
| oxu_to_hcd(oxu)->state = HC_STATE_HALT; |
| usb_hc_died(oxu_to_hcd(oxu)); |
| return status; |
| } |
| |
| cmd = readl(&oxu->regs->command) & ~CMD_PSE; |
| writel(cmd, &oxu->regs->command); |
| /* posted write ... */ |
| |
| oxu->next_uframe = -1; |
| return 0; |
| } |
| |
| /* periodic schedule slots have iso tds (normal or split) first, then a |
| * sparse tree for active interrupt transfers. |
| * |
| * this just links in a qh; caller guarantees uframe masks are set right. |
| * no FSTN support (yet; oxu 0.96+) |
| */ |
| static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period = qh->period; |
| |
| dev_dbg(&qh->dev->dev, |
| "link qh%d-%04x/%p start %d [%d/%d us]\n", |
| period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), |
| qh, qh->start, qh->usecs, qh->c_usecs); |
| |
| /* high bandwidth, or otherwise every microframe */ |
| if (period == 0) |
| period = 1; |
| |
| for (i = qh->start; i < oxu->periodic_size; i += period) { |
| union ehci_shadow *prev = &oxu->pshadow[i]; |
| __le32 *hw_p = &oxu->periodic[i]; |
| union ehci_shadow here = *prev; |
| __le32 type = 0; |
| |
| /* skip the iso nodes at list head */ |
| while (here.ptr) { |
| type = Q_NEXT_TYPE(*hw_p); |
| if (type == Q_TYPE_QH) |
| break; |
| prev = periodic_next_shadow(prev, type); |
| hw_p = &here.qh->hw_next; |
| here = *prev; |
| } |
| |
| /* sorting each branch by period (slow-->fast) |
| * enables sharing interior tree nodes |
| */ |
| while (here.ptr && qh != here.qh) { |
| if (qh->period > here.qh->period) |
| break; |
| prev = &here.qh->qh_next; |
| hw_p = &here.qh->hw_next; |
| here = *prev; |
| } |
| /* link in this qh, unless some earlier pass did that */ |
| if (qh != here.qh) { |
| qh->qh_next = here; |
| if (here.qh) |
| qh->hw_next = *hw_p; |
| wmb(); |
| prev->qh = qh; |
| *hw_p = QH_NEXT(qh->qh_dma); |
| } |
| } |
| qh->qh_state = QH_STATE_LINKED; |
| qh_get(qh); |
| |
| /* update per-qh bandwidth for usbfs */ |
| oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| /* maybe enable periodic schedule processing */ |
| if (!oxu->periodic_sched++) |
| return enable_periodic(oxu); |
| |
| return 0; |
| } |
| |
| static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| unsigned i; |
| unsigned period; |
| |
| /* FIXME: |
| * IF this isn't high speed |
| * and this qh is active in the current uframe |
| * (and overlay token SplitXstate is false?) |
| * THEN |
| * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore"); |
| */ |
| |
| /* high bandwidth, or otherwise part of every microframe */ |
| period = qh->period; |
| if (period == 0) |
| period = 1; |
| |
| for (i = qh->start; i < oxu->periodic_size; i += period) |
| periodic_unlink(oxu, i, qh); |
| |
| /* update per-qh bandwidth for usbfs */ |
| oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period |
| ? ((qh->usecs + qh->c_usecs) / qh->period) |
| : (qh->usecs * 8); |
| |
| dev_dbg(&qh->dev->dev, |
| "unlink qh%d-%04x/%p start %d [%d/%d us]\n", |
| qh->period, |
| le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK), |
| qh, qh->start, qh->usecs, qh->c_usecs); |
| |
| /* qh->qh_next still "live" to HC */ |
| qh->qh_state = QH_STATE_UNLINK; |
| qh->qh_next.ptr = NULL; |
| qh_put(qh); |
| |
| /* maybe turn off periodic schedule */ |
| oxu->periodic_sched--; |
| if (!oxu->periodic_sched) |
| (void) disable_periodic(oxu); |
| } |
| |
| static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| unsigned wait; |
| |
| qh_unlink_periodic(oxu, qh); |
| |
| /* simple/paranoid: always delay, expecting the HC needs to read |
| * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and |
| * expect hub_wq to clean up after any CSPLITs we won't issue. |
| * active high speed queues may need bigger delays... |
| */ |
| if (list_empty(&qh->qtd_list) |
| || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0) |
| wait = 2; |
| else |
| wait = 55; /* worst case: 3 * 1024 */ |
| |
| udelay(wait); |
| qh->qh_state = QH_STATE_IDLE; |
| qh->hw_next = EHCI_LIST_END; |
| wmb(); |
| } |
| |
| static int check_period(struct oxu_hcd *oxu, |
| unsigned frame, unsigned uframe, |
| unsigned period, unsigned usecs) |
| { |
| int claimed; |
| |
| /* complete split running into next frame? |
| * given FSTN support, we could sometimes check... |
| */ |
| if (uframe >= 8) |
| return 0; |
| |
| /* |
| * 80% periodic == 100 usec/uframe available |
| * convert "usecs we need" to "max already claimed" |
| */ |
| usecs = 100 - usecs; |
| |
| /* we "know" 2 and 4 uframe intervals were rejected; so |
| * for period 0, check _every_ microframe in the schedule. |
| */ |
| if (unlikely(period == 0)) { |
| do { |
| for (uframe = 0; uframe < 7; uframe++) { |
| claimed = periodic_usecs(oxu, frame, uframe); |
| if (claimed > usecs) |
| return 0; |
| } |
| } while ((frame += 1) < oxu->periodic_size); |
| |
| /* just check the specified uframe, at that period */ |
| } else { |
| do { |
| claimed = periodic_usecs(oxu, frame, uframe); |
| if (claimed > usecs) |
| return 0; |
| } while ((frame += period) < oxu->periodic_size); |
| } |
| |
| return 1; |
| } |
| |
| static int check_intr_schedule(struct oxu_hcd *oxu, |
| unsigned frame, unsigned uframe, |
| const struct ehci_qh *qh, __le32 *c_maskp) |
| { |
| int retval = -ENOSPC; |
| |
| if (qh->c_usecs && uframe >= 6) /* FSTN territory? */ |
| goto done; |
| |
| if (!check_period(oxu, frame, uframe, qh->period, qh->usecs)) |
| goto done; |
| if (!qh->c_usecs) { |
| retval = 0; |
| *c_maskp = 0; |
| goto done; |
| } |
| |
| done: |
| return retval; |
| } |
| |
| /* "first fit" scheduling policy used the first time through, |
| * or when the previous schedule slot can't be re-used. |
| */ |
| static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| int status; |
| unsigned uframe; |
| __le32 c_mask; |
| unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */ |
| |
| qh_refresh(oxu, qh); |
| qh->hw_next = EHCI_LIST_END; |
| frame = qh->start; |
| |
| /* reuse the previous schedule slots, if we can */ |
| if (frame < qh->period) { |
| uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK); |
| status = check_intr_schedule(oxu, frame, --uframe, |
| qh, &c_mask); |
| } else { |
| uframe = 0; |
| c_mask = 0; |
| status = -ENOSPC; |
| } |
| |
| /* else scan the schedule to find a group of slots such that all |
| * uframes have enough periodic bandwidth available. |
| */ |
| if (status) { |
| /* "normal" case, uframing flexible except with splits */ |
| if (qh->period) { |
| frame = qh->period - 1; |
| do { |
| for (uframe = 0; uframe < 8; uframe++) { |
| status = check_intr_schedule(oxu, |
| frame, uframe, qh, |
| &c_mask); |
| if (status == 0) |
| break; |
| } |
| } while (status && frame--); |
| |
| /* qh->period == 0 means every uframe */ |
| } else { |
| frame = 0; |
| status = check_intr_schedule(oxu, 0, 0, qh, &c_mask); |
| } |
| if (status) |
| goto done; |
| qh->start = frame; |
| |
| /* reset S-frame and (maybe) C-frame masks */ |
| qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK)); |
| qh->hw_info2 |= qh->period |
| ? cpu_to_le32(1 << uframe) |
| : cpu_to_le32(QH_SMASK); |
| qh->hw_info2 |= c_mask; |
| } else |
| oxu_dbg(oxu, "reused qh %p schedule\n", qh); |
| |
| /* stuff into the periodic schedule */ |
| status = qh_link_periodic(oxu, qh); |
| done: |
| return status; |
| } |
| |
| static int intr_submit(struct oxu_hcd *oxu, struct urb *urb, |
| struct list_head *qtd_list, gfp_t mem_flags) |
| { |
| unsigned epnum; |
| unsigned long flags; |
| struct ehci_qh *qh; |
| int status = 0; |
| struct list_head empty; |
| |
| /* get endpoint and transfer/schedule data */ |
| epnum = urb->ep->desc.bEndpointAddress; |
| |
| spin_lock_irqsave(&oxu->lock, flags); |
| |
| if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) { |
| status = -ESHUTDOWN; |
| goto done; |
| } |
| |
| /* get qh and force any scheduling errors */ |
| INIT_LIST_HEAD(&empty); |
| qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv); |
| if (qh == NULL) { |
| status = -ENOMEM; |
| goto done; |
| } |
| if (qh->qh_state == QH_STATE_IDLE) { |
| status = qh_schedule(oxu, qh); |
| if (status != 0) |
| goto done; |
| } |
| |
| /* then queue the urb's tds to the qh */ |
| qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv); |
| BUG_ON(qh == NULL); |
| |
| /* ... update usbfs periodic stats */ |
| oxu_to_hcd(oxu)->self.bandwidth_int_reqs++; |
| |
| done: |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| if (status) |
| qtd_list_free(oxu, urb, qtd_list); |
| |
| return status; |
| } |
| |
| static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| oxu_dbg(oxu, "iso support is missing!\n"); |
| return -ENOSYS; |
| } |
| |
| static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| oxu_dbg(oxu, "split iso support is missing!\n"); |
| return -ENOSYS; |
| } |
| |
| static void scan_periodic(struct oxu_hcd *oxu) |
| { |
| unsigned frame, clock, now_uframe, mod; |
| unsigned modified; |
| |
| mod = oxu->periodic_size << 3; |
| |
| /* |
| * When running, scan from last scan point up to "now" |
| * else clean up by scanning everything that's left. |
| * Touches as few pages as possible: cache-friendly. |
| */ |
| now_uframe = oxu->next_uframe; |
| if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) |
| clock = readl(&oxu->regs->frame_index); |
| else |
| clock = now_uframe + mod - 1; |
| clock %= mod; |
| |
| for (;;) { |
| union ehci_shadow q, *q_p; |
| __le32 type, *hw_p; |
| |
| /* don't scan past the live uframe */ |
| frame = now_uframe >> 3; |
| if (frame != (clock >> 3)) { |
| /* safe to scan the whole frame at once */ |
| now_uframe |= 0x07; |
| } |
| |
| restart: |
| /* scan each element in frame's queue for completions */ |
| q_p = &oxu->pshadow[frame]; |
| hw_p = &oxu->periodic[frame]; |
| q.ptr = q_p->ptr; |
| type = Q_NEXT_TYPE(*hw_p); |
| modified = 0; |
| |
| while (q.ptr != NULL) { |
| union ehci_shadow temp; |
| |
| switch (type) { |
| case Q_TYPE_QH: |
| /* handle any completions */ |
| temp.qh = qh_get(q.qh); |
| type = Q_NEXT_TYPE(q.qh->hw_next); |
| q = q.qh->qh_next; |
| modified = qh_completions(oxu, temp.qh); |
| if (unlikely(list_empty(&temp.qh->qtd_list))) |
| intr_deschedule(oxu, temp.qh); |
| qh_put(temp.qh); |
| break; |
| default: |
| oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n", |
| type, frame, q.ptr); |
| q.ptr = NULL; |
| } |
| |
| /* assume completion callbacks modify the queue */ |
| if (unlikely(modified)) |
| goto restart; |
| } |
| |
| /* Stop when we catch up to the HC */ |
| |
| /* FIXME: this assumes we won't get lapped when |
| * latencies climb; that should be rare, but... |
| * detect it, and just go all the way around. |
| * FLR might help detect this case, so long as latencies |
| * don't exceed periodic_size msec (default 1.024 sec). |
| */ |
| |
| /* FIXME: likewise assumes HC doesn't halt mid-scan */ |
| |
| if (now_uframe == clock) { |
| unsigned now; |
| |
| if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) |
| break; |
| oxu->next_uframe = now_uframe; |
| now = readl(&oxu->regs->frame_index) % mod; |
| if (now_uframe == now) |
| break; |
| |
| /* rescan the rest of this frame, then ... */ |
| clock = now; |
| } else { |
| now_uframe++; |
| now_uframe %= mod; |
| } |
| } |
| } |
| |
| /* On some systems, leaving remote wakeup enabled prevents system shutdown. |
| * The firmware seems to think that powering off is a wakeup event! |
| * This routine turns off remote wakeup and everything else, on all ports. |
| */ |
| static void ehci_turn_off_all_ports(struct oxu_hcd *oxu) |
| { |
| int port = HCS_N_PORTS(oxu->hcs_params); |
| |
| while (port--) |
| writel(PORT_RWC_BITS, &oxu->regs->port_status[port]); |
| } |
| |
| static void ehci_port_power(struct oxu_hcd *oxu, int is_on) |
| { |
| unsigned port; |
| |
| if (!HCS_PPC(oxu->hcs_params)) |
| return; |
| |
| oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down"); |
| for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) { |
| if (is_on) |
| oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature, |
| USB_PORT_FEAT_POWER, port--, NULL, 0); |
| else |
| oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature, |
| USB_PORT_FEAT_POWER, port--, NULL, 0); |
| } |
| |
| msleep(20); |
| } |
| |
| /* Called from some interrupts, timers, and so on. |
| * It calls driver completion functions, after dropping oxu->lock. |
| */ |
| static void ehci_work(struct oxu_hcd *oxu) |
| { |
| timer_action_done(oxu, TIMER_IO_WATCHDOG); |
| if (oxu->reclaim_ready) |
| end_unlink_async(oxu); |
| |
| /* another CPU may drop oxu->lock during a schedule scan while |
| * it reports urb completions. this flag guards against bogus |
| * attempts at re-entrant schedule scanning. |
| */ |
| if (oxu->scanning) |
| return; |
| oxu->scanning = 1; |
| scan_async(oxu); |
| if (oxu->next_uframe != -1) |
| scan_periodic(oxu); |
| oxu->scanning = 0; |
| |
| /* the IO watchdog guards against hardware or driver bugs that |
| * misplace IRQs, and should let us run completely without IRQs. |
| * such lossage has been observed on both VT6202 and VT8235. |
| */ |
| if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && |
| (oxu->async->qh_next.ptr != NULL || |
| oxu->periodic_sched != 0)) |
| timer_action(oxu, TIMER_IO_WATCHDOG); |
| } |
| |
| static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh) |
| { |
| /* if we need to use IAA and it's busy, defer */ |
| if (qh->qh_state == QH_STATE_LINKED |
| && oxu->reclaim |
| && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) { |
| struct ehci_qh *last; |
| |
| for (last = oxu->reclaim; |
| last->reclaim; |
| last = last->reclaim) |
| continue; |
| qh->qh_state = QH_STATE_UNLINK_WAIT; |
| last->reclaim = qh; |
| |
| /* bypass IAA if the hc can't care */ |
| } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim) |
| end_unlink_async(oxu); |
| |
| /* something else might have unlinked the qh by now */ |
| if (qh->qh_state == QH_STATE_LINKED) |
| start_unlink_async(oxu, qh); |
| } |
| |
| /* |
| * USB host controller methods |
| */ |
| |
| static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| u32 status, pcd_status = 0; |
| int bh; |
| |
| spin_lock(&oxu->lock); |
| |
| status = readl(&oxu->regs->status); |
| |
| /* e.g. cardbus physical eject */ |
| if (status == ~(u32) 0) { |
| oxu_dbg(oxu, "device removed\n"); |
| goto dead; |
| } |
| |
| /* Shared IRQ? */ |
| status &= INTR_MASK; |
| if (!status || unlikely(hcd->state == HC_STATE_HALT)) { |
| spin_unlock(&oxu->lock); |
| return IRQ_NONE; |
| } |
| |
| /* clear (just) interrupts */ |
| writel(status, &oxu->regs->status); |
| readl(&oxu->regs->command); /* unblock posted write */ |
| bh = 0; |
| |
| #ifdef OXU_VERBOSE_DEBUG |
| /* unrequested/ignored: Frame List Rollover */ |
| dbg_status(oxu, "irq", status); |
| #endif |
| |
| /* INT, ERR, and IAA interrupt rates can be throttled */ |
| |
| /* normal [4.15.1.2] or error [4.15.1.1] completion */ |
| if (likely((status & (STS_INT|STS_ERR)) != 0)) |
| bh = 1; |
| |
| /* complete the unlinking of some qh [4.15.2.3] */ |
| if (status & STS_IAA) { |
| oxu->reclaim_ready = 1; |
| bh = 1; |
| } |
| |
| /* remote wakeup [4.3.1] */ |
| if (status & STS_PCD) { |
| unsigned i = HCS_N_PORTS(oxu->hcs_params); |
| pcd_status = status; |
| |
| /* resume root hub? */ |
| if (!(readl(&oxu->regs->command) & CMD_RUN)) |
| usb_hcd_resume_root_hub(hcd); |
| |
| while (i--) { |
| int pstatus = readl(&oxu->regs->port_status[i]); |
| |
| if (pstatus & PORT_OWNER) |
| continue; |
| if (!(pstatus & PORT_RESUME) |
| || oxu->reset_done[i] != 0) |
| continue; |
| |
| /* start USB_RESUME_TIMEOUT resume signaling from this |
| * port, and make hub_wq collect PORT_STAT_C_SUSPEND to |
| * stop that signaling. |
| */ |
| oxu->reset_done[i] = jiffies + |
| msecs_to_jiffies(USB_RESUME_TIMEOUT); |
| oxu_dbg(oxu, "port %d remote wakeup\n", i + 1); |
| mod_timer(&hcd->rh_timer, oxu->reset_done[i]); |
| } |
| } |
| |
| /* PCI errors [4.15.2.4] */ |
| if (unlikely((status & STS_FATAL) != 0)) { |
| /* bogus "fatal" IRQs appear on some chips... why? */ |
| status = readl(&oxu->regs->status); |
| dbg_cmd(oxu, "fatal", readl(&oxu->regs->command)); |
| dbg_status(oxu, "fatal", status); |
| if (status & STS_HALT) { |
| oxu_err(oxu, "fatal error\n"); |
| dead: |
| ehci_reset(oxu); |
| writel(0, &oxu->regs->configured_flag); |
| usb_hc_died(hcd); |
| /* generic layer kills/unlinks all urbs, then |
| * uses oxu_stop to clean up the rest |
| */ |
| bh = 1; |
| } |
| } |
| |
| if (bh) |
| ehci_work(oxu); |
| spin_unlock(&oxu->lock); |
| if (pcd_status & STS_PCD) |
| usb_hcd_poll_rh_status(hcd); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t oxu_irq(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| int ret = IRQ_HANDLED; |
| |
| u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS); |
| u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET); |
| |
| /* Disable all interrupt */ |
| oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable); |
| |
| if ((oxu->is_otg && (status & OXU_USBOTGI)) || |
| (!oxu->is_otg && (status & OXU_USBSPHI))) |
| oxu210_hcd_irq(hcd); |
| else |
| ret = IRQ_NONE; |
| |
| /* Enable all interrupt back */ |
| oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable); |
| |
| return ret; |
| } |
| |
| static void oxu_watchdog(struct timer_list *t) |
| { |
| struct oxu_hcd *oxu = from_timer(oxu, t, watchdog); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&oxu->lock, flags); |
| |
| /* lost IAA irqs wedge things badly; seen with a vt8235 */ |
| if (oxu->reclaim) { |
| u32 status = readl(&oxu->regs->status); |
| if (status & STS_IAA) { |
| oxu_vdbg(oxu, "lost IAA\n"); |
| writel(STS_IAA, &oxu->regs->status); |
| oxu->reclaim_ready = 1; |
| } |
| } |
| |
| /* stop async processing after it's idled a bit */ |
| if (test_bit(TIMER_ASYNC_OFF, &oxu->actions)) |
| start_unlink_async(oxu, oxu->async); |
| |
| /* oxu could run by timer, without IRQs ... */ |
| ehci_work(oxu); |
| |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| } |
| |
| /* One-time init, only for memory state. |
| */ |
| static int oxu_hcd_init(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| u32 temp; |
| int retval; |
| u32 hcc_params; |
| |
| spin_lock_init(&oxu->lock); |
| |
| timer_setup(&oxu->watchdog, oxu_watchdog, 0); |
| |
| /* |
| * hw default: 1K periodic list heads, one per frame. |
| * periodic_size can shrink by USBCMD update if hcc_params allows. |
| */ |
| oxu->periodic_size = DEFAULT_I_TDPS; |
| retval = ehci_mem_init(oxu, GFP_KERNEL); |
| if (retval < 0) |
| return retval; |
| |
| /* controllers may cache some of the periodic schedule ... */ |
| hcc_params = readl(&oxu->caps->hcc_params); |
| if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */ |
| oxu->i_thresh = 8; |
| else /* N microframes cached */ |
| oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params); |
| |
| oxu->reclaim = NULL; |
| oxu->reclaim_ready = 0; |
| oxu->next_uframe = -1; |
| |
| /* |
| * dedicate a qh for the async ring head, since we couldn't unlink |
| * a 'real' qh without stopping the async schedule [4.8]. use it |
| * as the 'reclamation list head' too. |
| * its dummy is used in hw_alt_next of many tds, to prevent the qh |
| * from automatically advancing to the next td after short reads. |
| */ |
| oxu->async->qh_next.qh = NULL; |
| oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma); |
| oxu->async->hw_info1 = cpu_to_le32(QH_HEAD); |
| oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT); |
| oxu->async->hw_qtd_next = EHCI_LIST_END; |
| oxu->async->qh_state = QH_STATE_LINKED; |
| oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma); |
| |
| /* clear interrupt enables, set irq latency */ |
| if (log2_irq_thresh < 0 || log2_irq_thresh > 6) |
| log2_irq_thresh = 0; |
| temp = 1 << (16 + log2_irq_thresh); |
| if (HCC_CANPARK(hcc_params)) { |
| /* HW default park == 3, on hardware that supports it (like |
| * NVidia and ALI silicon), maximizes throughput on the async |
| * schedule by avoiding QH fetches between transfers. |
| * |
| * With fast usb storage devices and NForce2, "park" seems to |
| * make problems: throughput reduction (!), data errors... |
| */ |
| if (park) { |
| park = min(park, (unsigned) 3); |
| temp |= CMD_PARK; |
| temp |= park << 8; |
| } |
| oxu_dbg(oxu, "park %d\n", park); |
| } |
| if (HCC_PGM_FRAMELISTLEN(hcc_params)) { |
| /* periodic schedule size can be smaller than default */ |
| temp &= ~(3 << 2); |
| temp |= (EHCI_TUNE_FLS << 2); |
| } |
| oxu->command = temp; |
| |
| return 0; |
| } |
| |
| /* Called during probe() after chip reset completes. |
| */ |
| static int oxu_reset(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| |
| spin_lock_init(&oxu->mem_lock); |
| INIT_LIST_HEAD(&oxu->urb_list); |
| oxu->urb_len = 0; |
| |
| if (oxu->is_otg) { |
| oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET; |
| oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \ |
| HC_LENGTH(readl(&oxu->caps->hc_capbase)); |
| |
| oxu->mem = hcd->regs + OXU_SPH_MEM; |
| } else { |
| oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET; |
| oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \ |
| HC_LENGTH(readl(&oxu->caps->hc_capbase)); |
| |
| oxu->mem = hcd->regs + OXU_OTG_MEM; |
| } |
| |
| oxu->hcs_params = readl(&oxu->caps->hcs_params); |
| oxu->sbrn = 0x20; |
| |
| return oxu_hcd_init(hcd); |
| } |
| |
| static int oxu_run(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| int retval; |
| u32 temp, hcc_params; |
| |
| hcd->uses_new_polling = 1; |
| |
| /* EHCI spec section 4.1 */ |
| retval = ehci_reset(oxu); |
| if (retval != 0) { |
| ehci_mem_cleanup(oxu); |
| return retval; |
| } |
| writel(oxu->periodic_dma, &oxu->regs->frame_list); |
| writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); |
| |
| /* hcc_params controls whether oxu->regs->segment must (!!!) |
| * be used; it constrains QH/ITD/SITD and QTD locations. |
| * dma_pool consistent memory always uses segment zero. |
| * streaming mappings for I/O buffers, like pci_map_single(), |
| * can return segments above 4GB, if the device allows. |
| * |
| * NOTE: the dma mask is visible through dev->dma_mask, so |
| * drivers can pass this info along ... like NETIF_F_HIGHDMA, |
| * Scsi_Host.highmem_io, and so forth. It's readonly to all |
| * host side drivers though. |
| */ |
| hcc_params = readl(&oxu->caps->hcc_params); |
| if (HCC_64BIT_ADDR(hcc_params)) |
| writel(0, &oxu->regs->segment); |
| |
| oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE | |
| CMD_ASE | CMD_RESET); |
| oxu->command |= CMD_RUN; |
| writel(oxu->command, &oxu->regs->command); |
| dbg_cmd(oxu, "init", oxu->command); |
| |
| /* |
| * Start, enabling full USB 2.0 functionality ... usb 1.1 devices |
| * are explicitly handed to companion controller(s), so no TT is |
| * involved with the root hub. (Except where one is integrated, |
| * and there's no companion controller unless maybe for USB OTG.) |
| */ |
| hcd->state = HC_STATE_RUNNING; |
| writel(FLAG_CF, &oxu->regs->configured_flag); |
| readl(&oxu->regs->command); /* unblock posted writes */ |
| |
| temp = HC_VERSION(readl(&oxu->caps->hc_capbase)); |
| oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n", |
| ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f), |
| temp >> 8, temp & 0xff, DRIVER_VERSION, |
| ignore_oc ? ", overcurrent ignored" : ""); |
| |
| writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */ |
| |
| return 0; |
| } |
| |
| static void oxu_stop(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| |
| /* Turn off port power on all root hub ports. */ |
| ehci_port_power(oxu, 0); |
| |
| /* no more interrupts ... */ |
| del_timer_sync(&oxu->watchdog); |
| |
| spin_lock_irq(&oxu->lock); |
| if (HC_IS_RUNNING(hcd->state)) |
| ehci_quiesce(oxu); |
| |
| ehci_reset(oxu); |
| writel(0, &oxu->regs->intr_enable); |
| spin_unlock_irq(&oxu->lock); |
| |
| /* let companion controllers work when we aren't */ |
| writel(0, &oxu->regs->configured_flag); |
| |
| /* root hub is shut down separately (first, when possible) */ |
| spin_lock_irq(&oxu->lock); |
| if (oxu->async) |
| ehci_work(oxu); |
| spin_unlock_irq(&oxu->lock); |
| ehci_mem_cleanup(oxu); |
| |
| dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status)); |
| } |
| |
| /* Kick in for silicon on any bus (not just pci, etc). |
| * This forcibly disables dma and IRQs, helping kexec and other cases |
| * where the next system software may expect clean state. |
| */ |
| static void oxu_shutdown(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| |
| (void) ehci_halt(oxu); |
| ehci_turn_off_all_ports(oxu); |
| |
| /* make BIOS/etc use companion controller during reboot */ |
| writel(0, &oxu->regs->configured_flag); |
| |
| /* unblock posted writes */ |
| readl(&oxu->regs->configured_flag); |
| } |
| |
| /* Non-error returns are a promise to giveback() the urb later |
| * we drop ownership so next owner (or urb unlink) can get it |
| * |
| * urb + dev is in hcd.self.controller.urb_list |
| * we're queueing TDs onto software and hardware lists |
| * |
| * hcd-specific init for hcpriv hasn't been done yet |
| * |
| * NOTE: control, bulk, and interrupt share the same code to append TDs |
| * to a (possibly active) QH, and the same QH scanning code. |
| */ |
| static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| struct list_head qtd_list; |
| |
| INIT_LIST_HEAD(&qtd_list); |
| |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_CONTROL: |
| case PIPE_BULK: |
| default: |
| if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) |
| return -ENOMEM; |
| return submit_async(oxu, urb, &qtd_list, mem_flags); |
| |
| case PIPE_INTERRUPT: |
| if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags)) |
| return -ENOMEM; |
| return intr_submit(oxu, urb, &qtd_list, mem_flags); |
| |
| case PIPE_ISOCHRONOUS: |
| if (urb->dev->speed == USB_SPEED_HIGH) |
| return itd_submit(oxu, urb, mem_flags); |
| else |
| return sitd_submit(oxu, urb, mem_flags); |
| } |
| } |
| |
| /* This function is responsible for breaking URBs with big data size |
| * into smaller size and processing small urbs in sequence. |
| */ |
| static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, |
| gfp_t mem_flags) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| int num, rem; |
| void *transfer_buffer; |
| struct urb *murb; |
| int i, ret; |
| |
| /* If not bulk pipe just enqueue the URB */ |
| if (!usb_pipebulk(urb->pipe)) |
| return __oxu_urb_enqueue(hcd, urb, mem_flags); |
| |
| /* Otherwise we should verify the USB transfer buffer size! */ |
| transfer_buffer = urb->transfer_buffer; |
| |
| num = urb->transfer_buffer_length / 4096; |
| rem = urb->transfer_buffer_length % 4096; |
| if (rem != 0) |
| num++; |
| |
| /* If URB is smaller than 4096 bytes just enqueue it! */ |
| if (num == 1) |
| return __oxu_urb_enqueue(hcd, urb, mem_flags); |
| |
| /* Ok, we have more job to do! :) */ |
| |
| for (i = 0; i < num - 1; i++) { |
| /* Get free micro URB poll till a free urb is received */ |
| |
| do { |
| murb = (struct urb *) oxu_murb_alloc(oxu); |
| if (!murb) |
| schedule(); |
| } while (!murb); |
| |
| /* Coping the urb */ |
| memcpy(murb, urb, sizeof(struct urb)); |
| |
| murb->transfer_buffer_length = 4096; |
| murb->transfer_buffer = transfer_buffer + i * 4096; |
| |
| /* Null pointer for the encodes that this is a micro urb */ |
| murb->complete = NULL; |
| |
| ((struct oxu_murb *) murb)->main = urb; |
| ((struct oxu_murb *) murb)->last = 0; |
| |
| /* This loop is to guarantee urb to be processed when there's |
| * not enough resources at a particular time by retrying. |
| */ |
| do { |
| ret = __oxu_urb_enqueue(hcd, murb, mem_flags); |
| if (ret) |
| schedule(); |
| } while (ret); |
| } |
| |
| /* Last urb requires special handling */ |
| |
| /* Get free micro URB poll till a free urb is received */ |
| do { |
| murb = (struct urb *) oxu_murb_alloc(oxu); |
| if (!murb) |
| schedule(); |
| } while (!murb); |
| |
| /* Coping the urb */ |
| memcpy(murb, urb, sizeof(struct urb)); |
| |
| murb->transfer_buffer_length = rem > 0 ? rem : 4096; |
| murb->transfer_buffer = transfer_buffer + (num - 1) * 4096; |
| |
| /* Null pointer for the encodes that this is a micro urb */ |
| murb->complete = NULL; |
| |
| ((struct oxu_murb *) murb)->main = urb; |
| ((struct oxu_murb *) murb)->last = 1; |
| |
| do { |
| ret = __oxu_urb_enqueue(hcd, murb, mem_flags); |
| if (ret) |
| schedule(); |
| } while (ret); |
| |
| return ret; |
| } |
| |
| /* Remove from hardware lists. |
| * Completions normally happen asynchronously |
| */ |
| static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| struct ehci_qh *qh; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&oxu->lock, flags); |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_CONTROL: |
| case PIPE_BULK: |
| default: |
| qh = (struct ehci_qh *) urb->hcpriv; |
| if (!qh) |
| break; |
| unlink_async(oxu, qh); |
| break; |
| |
| case PIPE_INTERRUPT: |
| qh = (struct ehci_qh *) urb->hcpriv; |
| if (!qh) |
| break; |
| switch (qh->qh_state) { |
| case QH_STATE_LINKED: |
| intr_deschedule(oxu, qh); |
| /* FALL THROUGH */ |
| case QH_STATE_IDLE: |
| qh_completions(oxu, qh); |
| break; |
| default: |
| oxu_dbg(oxu, "bogus qh %p state %d\n", |
| qh, qh->qh_state); |
| goto done; |
| } |
| |
| /* reschedule QH iff another request is queued */ |
| if (!list_empty(&qh->qtd_list) |
| && HC_IS_RUNNING(hcd->state)) { |
| int status; |
| |
| status = qh_schedule(oxu, qh); |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| |
| if (status != 0) { |
| /* shouldn't happen often, but ... |
| * FIXME kill those tds' urbs |
| */ |
| dev_err(hcd->self.controller, |
| "can't reschedule qh %p, err %d\n", qh, |
| status); |
| } |
| return status; |
| } |
| break; |
| } |
| done: |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| return 0; |
| } |
| |
| /* Bulk qh holds the data toggle */ |
| static void oxu_endpoint_disable(struct usb_hcd *hcd, |
| struct usb_host_endpoint *ep) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| unsigned long flags; |
| struct ehci_qh *qh, *tmp; |
| |
| /* ASSERT: any requests/urbs are being unlinked */ |
| /* ASSERT: nobody can be submitting urbs for this any more */ |
| |
| rescan: |
| spin_lock_irqsave(&oxu->lock, flags); |
| qh = ep->hcpriv; |
| if (!qh) |
| goto done; |
| |
| /* endpoints can be iso streams. for now, we don't |
| * accelerate iso completions ... so spin a while. |
| */ |
| if (qh->hw_info1 == 0) { |
| oxu_vdbg(oxu, "iso delay\n"); |
| goto idle_timeout; |
| } |
| |
| if (!HC_IS_RUNNING(hcd->state)) |
| qh->qh_state = QH_STATE_IDLE; |
| switch (qh->qh_state) { |
| case QH_STATE_LINKED: |
| for (tmp = oxu->async->qh_next.qh; |
| tmp && tmp != qh; |
| tmp = tmp->qh_next.qh) |
| continue; |
| /* periodic qh self-unlinks on empty */ |
| if (!tmp) |
| goto nogood; |
| unlink_async(oxu, qh); |
| /* FALL THROUGH */ |
| case QH_STATE_UNLINK: /* wait for hw to finish? */ |
| idle_timeout: |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| schedule_timeout_uninterruptible(1); |
| goto rescan; |
| case QH_STATE_IDLE: /* fully unlinked */ |
| if (list_empty(&qh->qtd_list)) { |
| qh_put(qh); |
| break; |
| } |
| /* fall through */ |
| default: |
| nogood: |
| /* caller was supposed to have unlinked any requests; |
| * that's not our job. just leak this memory. |
| */ |
| oxu_err(oxu, "qh %p (#%02x) state %d%s\n", |
| qh, ep->desc.bEndpointAddress, qh->qh_state, |
| list_empty(&qh->qtd_list) ? "" : "(has tds)"); |
| break; |
| } |
| ep->hcpriv = NULL; |
| done: |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| } |
| |
| static int oxu_get_frame(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| |
| return (readl(&oxu->regs->frame_index) >> 3) % |
| oxu->periodic_size; |
| } |
| |
| /* Build "status change" packet (one or two bytes) from HC registers */ |
| static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| u32 temp, mask, status = 0; |
| int ports, i, retval = 1; |
| unsigned long flags; |
| |
| /* if !PM, root hub timers won't get shut down ... */ |
| if (!HC_IS_RUNNING(hcd->state)) |
| return 0; |
| |
| /* init status to no-changes */ |
| buf[0] = 0; |
| ports = HCS_N_PORTS(oxu->hcs_params); |
| if (ports > 7) { |
| buf[1] = 0; |
| retval++; |
| } |
| |
| /* Some boards (mostly VIA?) report bogus overcurrent indications, |
| * causing massive log spam unless we completely ignore them. It |
| * may be relevant that VIA VT8235 controllers, where PORT_POWER is |
| * always set, seem to clear PORT_OCC and PORT_CSC when writing to |
| * PORT_POWER; that's surprising, but maybe within-spec. |
| */ |
| if (!ignore_oc) |
| mask = PORT_CSC | PORT_PEC | PORT_OCC; |
| else |
| mask = PORT_CSC | PORT_PEC; |
| |
| /* no hub change reports (bit 0) for now (power, ...) */ |
| |
| /* port N changes (bit N)? */ |
| spin_lock_irqsave(&oxu->lock, flags); |
| for (i = 0; i < ports; i++) { |
| temp = readl(&oxu->regs->port_status[i]); |
| |
| /* |
| * Return status information even for ports with OWNER set. |
| * Otherwise hub_wq wouldn't see the disconnect event when a |
| * high-speed device is switched over to the companion |
| * controller by the user. |
| */ |
| |
| if (!(temp & PORT_CONNECT)) |
| oxu->reset_done[i] = 0; |
| if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 && |
| time_after_eq(jiffies, oxu->reset_done[i]))) { |
| if (i < 7) |
| buf[0] |= 1 << (i + 1); |
| else |
| buf[1] |= 1 << (i - 7); |
| status = STS_PCD; |
| } |
| } |
| /* FIXME autosuspend idle root hubs */ |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| return status ? retval : 0; |
| } |
| |
| /* Returns the speed of a device attached to a port on the root hub. */ |
| static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu, |
| unsigned int portsc) |
| { |
| switch ((portsc >> 26) & 3) { |
| case 0: |
| return 0; |
| case 1: |
| return USB_PORT_STAT_LOW_SPEED; |
| case 2: |
| default: |
| return USB_PORT_STAT_HIGH_SPEED; |
| } |
| } |
| |
| #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E) |
| static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq, |
| u16 wValue, u16 wIndex, char *buf, u16 wLength) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| int ports = HCS_N_PORTS(oxu->hcs_params); |
| u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1]; |
| u32 temp, status; |
| unsigned long flags; |
| int retval = 0; |
| unsigned selector; |
| |
| /* |
| * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR. |
| * HCS_INDICATOR may say we can change LEDs to off/amber/green. |
| * (track current state ourselves) ... blink for diagnostics, |
| * power, "this is the one", etc. EHCI spec supports this. |
| */ |
| |
| spin_lock_irqsave(&oxu->lock, flags); |
| switch (typeReq) { |
| case ClearHubFeature: |
| switch (wValue) { |
| case C_HUB_LOCAL_POWER: |
| case C_HUB_OVER_CURRENT: |
| /* no hub-wide feature/status flags */ |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case ClearPortFeature: |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| temp = readl(status_reg); |
| |
| /* |
| * Even if OWNER is set, so the port is owned by the |
| * companion controller, hub_wq needs to be able to clear |
| * the port-change status bits (especially |
| * USB_PORT_STAT_C_CONNECTION). |
| */ |
| |
| switch (wValue) { |
| case USB_PORT_FEAT_ENABLE: |
| writel(temp & ~PORT_PE, status_reg); |
| break; |
| case USB_PORT_FEAT_C_ENABLE: |
| writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg); |
| break; |
| case USB_PORT_FEAT_SUSPEND: |
| if (temp & PORT_RESET) |
| goto error; |
| if (temp & PORT_SUSPEND) { |
| if ((temp & PORT_PE) == 0) |
| goto error; |
| /* resume signaling for 20 msec */ |
| temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS); |
| writel(temp | PORT_RESUME, status_reg); |
| oxu->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(20); |
| } |
| break; |
| case USB_PORT_FEAT_C_SUSPEND: |
| /* we auto-clear this feature */ |
| break; |
| case USB_PORT_FEAT_POWER: |
| if (HCS_PPC(oxu->hcs_params)) |
| writel(temp & ~(PORT_RWC_BITS | PORT_POWER), |
| status_reg); |
| break; |
| case USB_PORT_FEAT_C_CONNECTION: |
| writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg); |
| break; |
| case USB_PORT_FEAT_C_OVER_CURRENT: |
| writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg); |
| break; |
| case USB_PORT_FEAT_C_RESET: |
| /* GetPortStatus clears reset */ |
| break; |
| default: |
| goto error; |
| } |
| readl(&oxu->regs->command); /* unblock posted write */ |
| break; |
| case GetHubDescriptor: |
| ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *) |
| buf); |
| break; |
| case GetHubStatus: |
| /* no hub-wide feature/status flags */ |
| memset(buf, 0, 4); |
| break; |
| case GetPortStatus: |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| status = 0; |
| temp = readl(status_reg); |
| |
| /* wPortChange bits */ |
| if (temp & PORT_CSC) |
| status |= USB_PORT_STAT_C_CONNECTION << 16; |
| if (temp & PORT_PEC) |
| status |= USB_PORT_STAT_C_ENABLE << 16; |
| if ((temp & PORT_OCC) && !ignore_oc) |
| status |= USB_PORT_STAT_C_OVERCURRENT << 16; |
| |
| /* whoever resumes must GetPortStatus to complete it!! */ |
| if (temp & PORT_RESUME) { |
| |
| /* Remote Wakeup received? */ |
| if (!oxu->reset_done[wIndex]) { |
| /* resume signaling for 20 msec */ |
| oxu->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(20); |
| /* check the port again */ |
| mod_timer(&oxu_to_hcd(oxu)->rh_timer, |
| oxu->reset_done[wIndex]); |
| } |
| |
| /* resume completed? */ |
| else if (time_after_eq(jiffies, |
| oxu->reset_done[wIndex])) { |
| status |= USB_PORT_STAT_C_SUSPEND << 16; |
| oxu->reset_done[wIndex] = 0; |
| |
| /* stop resume signaling */ |
| temp = readl(status_reg); |
| writel(temp & ~(PORT_RWC_BITS | PORT_RESUME), |
| status_reg); |
| retval = handshake(oxu, status_reg, |
| PORT_RESUME, 0, 2000 /* 2msec */); |
| if (retval != 0) { |
| oxu_err(oxu, |
| "port %d resume error %d\n", |
| wIndex + 1, retval); |
| goto error; |
| } |
| temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10)); |
| } |
| } |
| |
| /* whoever resets must GetPortStatus to complete it!! */ |
| if ((temp & PORT_RESET) |
| && time_after_eq(jiffies, |
| oxu->reset_done[wIndex])) { |
| status |= USB_PORT_STAT_C_RESET << 16; |
| oxu->reset_done[wIndex] = 0; |
| |
| /* force reset to complete */ |
| writel(temp & ~(PORT_RWC_BITS | PORT_RESET), |
| status_reg); |
| /* REVISIT: some hardware needs 550+ usec to clear |
| * this bit; seems too long to spin routinely... |
| */ |
| retval = handshake(oxu, status_reg, |
| PORT_RESET, 0, 750); |
| if (retval != 0) { |
| oxu_err(oxu, "port %d reset error %d\n", |
| wIndex + 1, retval); |
| goto error; |
| } |
| |
| /* see what we found out */ |
| temp = check_reset_complete(oxu, wIndex, status_reg, |
| readl(status_reg)); |
| } |
| |
| /* transfer dedicated ports to the companion hc */ |
| if ((temp & PORT_CONNECT) && |
| test_bit(wIndex, &oxu->companion_ports)) { |
| temp &= ~PORT_RWC_BITS; |
| temp |= PORT_OWNER; |
| writel(temp, status_reg); |
| oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1); |
| temp = readl(status_reg); |
| } |
| |
| /* |
| * Even if OWNER is set, there's no harm letting hub_wq |
| * see the wPortStatus values (they should all be 0 except |
| * for PORT_POWER anyway). |
| */ |
| |
| if (temp & PORT_CONNECT) { |
| status |= USB_PORT_STAT_CONNECTION; |
| /* status may be from integrated TT */ |
| status |= oxu_port_speed(oxu, temp); |
| } |
| if (temp & PORT_PE) |
| status |= USB_PORT_STAT_ENABLE; |
| if (temp & (PORT_SUSPEND|PORT_RESUME)) |
| status |= USB_PORT_STAT_SUSPEND; |
| if (temp & PORT_OC) |
| status |= USB_PORT_STAT_OVERCURRENT; |
| if (temp & PORT_RESET) |
| status |= USB_PORT_STAT_RESET; |
| if (temp & PORT_POWER) |
| status |= USB_PORT_STAT_POWER; |
| |
| #ifndef OXU_VERBOSE_DEBUG |
| if (status & ~0xffff) /* only if wPortChange is interesting */ |
| #endif |
| dbg_port(oxu, "GetStatus", wIndex + 1, temp); |
| put_unaligned(cpu_to_le32(status), (__le32 *) buf); |
| break; |
| case SetHubFeature: |
| switch (wValue) { |
| case C_HUB_LOCAL_POWER: |
| case C_HUB_OVER_CURRENT: |
| /* no hub-wide feature/status flags */ |
| break; |
| default: |
| goto error; |
| } |
| break; |
| case SetPortFeature: |
| selector = wIndex >> 8; |
| wIndex &= 0xff; |
| if (!wIndex || wIndex > ports) |
| goto error; |
| wIndex--; |
| temp = readl(status_reg); |
| if (temp & PORT_OWNER) |
| break; |
| |
| temp &= ~PORT_RWC_BITS; |
| switch (wValue) { |
| case USB_PORT_FEAT_SUSPEND: |
| if ((temp & PORT_PE) == 0 |
| || (temp & PORT_RESET) != 0) |
| goto error; |
| if (device_may_wakeup(&hcd->self.root_hub->dev)) |
| temp |= PORT_WAKE_BITS; |
| writel(temp | PORT_SUSPEND, status_reg); |
| break; |
| case USB_PORT_FEAT_POWER: |
| if (HCS_PPC(oxu->hcs_params)) |
| writel(temp | PORT_POWER, status_reg); |
| break; |
| case USB_PORT_FEAT_RESET: |
| if (temp & PORT_RESUME) |
| goto error; |
| /* line status bits may report this as low speed, |
| * which can be fine if this root hub has a |
| * transaction translator built in. |
| */ |
| oxu_vdbg(oxu, "port %d reset\n", wIndex + 1); |
| temp |= PORT_RESET; |
| temp &= ~PORT_PE; |
| |
| /* |
| * caller must wait, then call GetPortStatus |
| * usb 2.0 spec says 50 ms resets on root |
| */ |
| oxu->reset_done[wIndex] = jiffies |
| + msecs_to_jiffies(50); |
| writel(temp, status_reg); |
| break; |
| |
| /* For downstream facing ports (these): one hub port is put |
| * into test mode according to USB2 11.24.2.13, then the hub |
| * must be reset (which for root hub now means rmmod+modprobe, |
| * or else system reboot). See EHCI 2.3.9 and 4.14 for info |
| * about the EHCI-specific stuff. |
| */ |
| case USB_PORT_FEAT_TEST: |
| if (!selector || selector > 5) |
| goto error; |
| ehci_quiesce(oxu); |
| ehci_halt(oxu); |
| temp |= selector << 16; |
| writel(temp, status_reg); |
| break; |
| |
| default: |
| goto error; |
| } |
| readl(&oxu->regs->command); /* unblock posted writes */ |
| break; |
| |
| default: |
| error: |
| /* "stall" on error */ |
| retval = -EPIPE; |
| } |
| spin_unlock_irqrestore(&oxu->lock, flags); |
| return retval; |
| } |
| |
| #ifdef CONFIG_PM |
| |
| static int oxu_bus_suspend(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| int port; |
| int mask; |
| |
| oxu_dbg(oxu, "suspend root hub\n"); |
| |
| if (time_before(jiffies, oxu->next_statechange)) |
| msleep(5); |
| |
| port = HCS_N_PORTS(oxu->hcs_params); |
| spin_lock_irq(&oxu->lock); |
| |
| /* stop schedules, clean any completed work */ |
| if (HC_IS_RUNNING(hcd->state)) { |
| ehci_quiesce(oxu); |
| hcd->state = HC_STATE_QUIESCING; |
| } |
| oxu->command = readl(&oxu->regs->command); |
| if (oxu->reclaim) |
| oxu->reclaim_ready = 1; |
| ehci_work(oxu); |
| |
| /* Unlike other USB host controller types, EHCI doesn't have |
| * any notion of "global" or bus-wide suspend. The driver has |
| * to manually suspend all the active unsuspended ports, and |
| * then manually resume them in the bus_resume() routine. |
| */ |
| oxu->bus_suspended = 0; |
| while (port--) { |
| u32 __iomem *reg = &oxu->regs->port_status[port]; |
| u32 t1 = readl(reg) & ~PORT_RWC_BITS; |
| u32 t2 = t1; |
| |
| /* keep track of which ports we suspend */ |
| if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) && |
| !(t1 & PORT_SUSPEND)) { |
| t2 |= PORT_SUSPEND; |
| set_bit(port, &oxu->bus_suspended); |
| } |
| |
| /* enable remote wakeup on all ports */ |
| if (device_may_wakeup(&hcd->self.root_hub->dev)) |
| t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E; |
| else |
| t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E); |
| |
| if (t1 != t2) { |
| oxu_vdbg(oxu, "port %d, %08x -> %08x\n", |
| port + 1, t1, t2); |
| writel(t2, reg); |
| } |
| } |
| |
| /* turn off now-idle HC */ |
| del_timer_sync(&oxu->watchdog); |
| ehci_halt(oxu); |
| hcd->state = HC_STATE_SUSPENDED; |
| |
| /* allow remote wakeup */ |
| mask = INTR_MASK; |
| if (!device_may_wakeup(&hcd->self.root_hub->dev)) |
| mask &= ~STS_PCD; |
| writel(mask, &oxu->regs->intr_enable); |
| readl(&oxu->regs->intr_enable); |
| |
| oxu->next_statechange = jiffies + msecs_to_jiffies(10); |
| spin_unlock_irq(&oxu->lock); |
| return 0; |
| } |
| |
| /* Caller has locked the root hub, and should reset/reinit on error */ |
| static int oxu_bus_resume(struct usb_hcd *hcd) |
| { |
| struct oxu_hcd *oxu = hcd_to_oxu(hcd); |
| u32 temp; |
| int i; |
| |
| if (time_before(jiffies, oxu->next_statechange)) |
| msleep(5); |
| spin_lock_irq(&oxu->lock); |
| |
| /* Ideally and we've got a real resume here, and no port's power |
| * was lost. (For PCI, that means Vaux was maintained.) But we |
| * could instead be restoring a swsusp snapshot -- so that BIOS was |
| * the last user of the controller, not reset/pm hardware keeping |
| * state we gave to it. |
| */ |
| temp = readl(&oxu->regs->intr_enable); |
| oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss"); |
| |
| /* at least some APM implementations will try to deliver |
| * IRQs right away, so delay them until we're ready. |
| */ |
| writel(0, &oxu->regs->intr_enable); |
| |
| /* re-init operational registers */ |
| writel(0, &oxu->regs->segment); |
| writel(oxu->periodic_dma, &oxu->regs->frame_list); |
| writel((u32) oxu->async->qh_dma, &oxu->regs->async_next); |
| |
| /* restore CMD_RUN, framelist size, and irq threshold */ |
| writel(oxu->command, &oxu->regs->command); |
| |
| /* Some controller/firmware combinations need a delay during which |
| * they set up the port statuses. See Bugzilla #8190. */ |
| mdelay(8); |
| |
| /* manually resume the ports we suspended during bus_suspend() */ |
| i = HCS_N_PORTS(oxu->hcs_params); |
| while (i--) { |
| temp = readl(&oxu->regs->port_status[i]); |
| temp &= ~(PORT_RWC_BITS |
| | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E); |
| if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { |
| oxu->reset_done[i] = jiffies + msecs_to_jiffies(20); |
| temp |= PORT_RESUME; |
| } |
| writel(temp, &oxu->regs->port_status[i]); |
| } |
| i = HCS_N_PORTS(oxu->hcs_params); |
| mdelay(20); |
| while (i--) { |
| temp = readl(&oxu->regs->port_status[i]); |
| if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) { |
| temp &= ~(PORT_RWC_BITS | PORT_RESUME); |
| writel(temp, &oxu->regs->port_status[i]); |
| oxu_vdbg(oxu, "resumed port %d\n", i + 1); |
| } |
| } |
| (void) readl(&oxu->regs->command); |
| |
| /* maybe re-activate the schedule(s) */ |
| temp = 0; |
| if (oxu->async->qh_next.qh) |
| temp |= CMD_ASE; |
| if (oxu->periodic_sched) |
| temp |= CMD_PSE; |
| if (temp) { |
| oxu->command |= temp; |
| writel(oxu->command, &oxu->regs->command); |
| } |
| |
| oxu->next_statechange = jiffies + msecs_to_jiffies(5); |
| hcd->state = HC_STATE_RUNNING; |
| |
| /* Now we can safely re-enable irqs */ |
| writel(INTR_MASK, &oxu->regs->intr_enable); |
| |
| spin_unlock_irq(&oxu->lock); |
| return 0; |
| } |
| |
| #else |
| |
| static int oxu_bus_suspend(struct usb_hcd *hcd) |
| { |
| return 0; |
| } |
| |
| static int oxu_bus_resume(struct usb_hcd *hcd) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_PM */ |
| |
| static const struct hc_driver oxu_hc_driver = { |
| .description = "oxu210hp_hcd", |
| .product_desc = "oxu210hp HCD", |
| .hcd_priv_size = sizeof(struct oxu_hcd), |
| |
| /* |
| * Generic hardware linkage |
| */ |
| .irq = oxu_irq, |
| .flags = HCD_MEMORY | HCD_USB2, |
| |
| /* |
| * Basic lifecycle operations |
| */ |
| .reset = oxu_reset, |
| .start = oxu_run, |
| .stop = oxu_stop, |
| .shutdown = oxu_shutdown, |
| |
| /* |
| * Managing i/o requests and associated device resources |
| */ |
| .urb_enqueue = oxu_urb_enqueue, |
| .urb_dequeue = oxu_urb_dequeue, |
| .endpoint_disable = oxu_endpoint_disable, |
| |
| /* |
| * Scheduling support |
| */ |
| .get_frame_number = oxu_get_frame, |
| |
| /* |
| * Root hub support |
| */ |
| .hub_status_data = oxu_hub_status_data, |
| .hub_control = oxu_hub_control, |
| .bus_suspend = oxu_bus_suspend, |
| .bus_resume = oxu_bus_resume, |
| }; |
| |
| /* |
| * Module stuff |
| */ |
| |
| static void oxu_configuration(struct platform_device *pdev, void __iomem *base) |
| { |
| u32 tmp; |
| |
| /* Initialize top level registers. |
| * First write ever |
| */ |
| oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); |
| oxu_writel(base, OXU_SOFTRESET, OXU_SRESET); |
| oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D); |
| |
| tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL); |
| oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040); |
| |
| oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN | |
| OXU_COMPARATOR | OXU_ASO_OP); |
| |
| tmp = oxu_readl(base, OXU_CLKCTRL_SET); |
| oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN); |
| |
| /* Clear all top interrupt enable */ |
| oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff); |
| |
| /* Clear all top interrupt status */ |
| oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff); |
| |
| /* Enable all needed top interrupt except OTG SPH core */ |
| oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI); |
| } |
| |
| static int oxu_verify_id(struct platform_device *pdev, void __iomem *base) |
| { |
| u32 id; |
| static const char * const bo[] = { |
| "reserved", |
| "128-pin LQFP", |
| "84-pin TFBGA", |
| "reserved", |
| }; |
| |
| /* Read controller signature register to find a match */ |
| id = oxu_readl(base, OXU_DEVICEID); |
| dev_info(&pdev->dev, "device ID %x\n", id); |
| if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT)) |
| return -1; |
| |
| dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n", |
| id >> OXU_REV_SHIFT, |
| bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT], |
| (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT, |
| (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT); |
| |
| return 0; |
| } |
| |
| static const struct hc_driver oxu_hc_driver; |
| static struct usb_hcd *oxu_create(struct platform_device *pdev, |
| unsigned long memstart, unsigned long memlen, |
| void __iomem *base, int irq, int otg) |
| { |
| struct device *dev = &pdev->dev; |
| |
| struct usb_hcd *hcd; |
| struct oxu_hcd *oxu; |
| int ret; |
| |
| /* Set endian mode and host mode */ |
| oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET), |
| OXU_USBMODE, |
| OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS); |
| |
| hcd = usb_create_hcd(&oxu_hc_driver, dev, |
| otg ? "oxu210hp_otg" : "oxu210hp_sph"); |
| if (!hcd) |
| return ERR_PTR(-ENOMEM); |
| |
| hcd->rsrc_start = memstart; |
| hcd->rsrc_len = memlen; |
| hcd->regs = base; |
| hcd->irq = irq; |
| hcd->state = HC_STATE_HALT; |
| |
| oxu = hcd_to_oxu(hcd); |
| oxu->is_otg = otg; |
| |
| ret = usb_add_hcd(hcd, irq, IRQF_SHARED); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| device_wakeup_enable(hcd->self.controller); |
| return hcd; |
| } |
| |
| static int oxu_init(struct platform_device *pdev, |
| unsigned long memstart, unsigned long memlen, |
| void __iomem *base, int irq) |
| { |
| struct oxu_info *info = platform_get_drvdata(pdev); |
| struct usb_hcd *hcd; |
| int ret; |
| |
| /* First time configuration at start up */ |
| oxu_configuration(pdev, base); |
| |
| ret = oxu_verify_id(pdev, base); |
| if (ret) { |
| dev_err(&pdev->dev, "no devices found!\n"); |
| return -ENODEV; |
| } |
| |
| /* Create the OTG controller */ |
| hcd = oxu_create(pdev, memstart, memlen, base, irq, 1); |
| if (IS_ERR(hcd)) { |
| dev_err(&pdev->dev, "cannot create OTG controller!\n"); |
| ret = PTR_ERR(hcd); |
| goto error_create_otg; |
| } |
| info->hcd[0] = hcd; |
| |
| /* Create the SPH host controller */ |
| hcd = oxu_create(pdev, memstart, memlen, base, irq, 0); |
| if (IS_ERR(hcd)) { |
| dev_err(&pdev->dev, "cannot create SPH controller!\n"); |
| ret = PTR_ERR(hcd); |
| goto error_create_sph; |
| } |
| info->hcd[1] = hcd; |
| |
| oxu_writel(base, OXU_CHIPIRQEN_SET, |
| oxu_readl(base, OXU_CHIPIRQEN_SET) | 3); |
| |
| return 0; |
| |
| error_create_sph: |
| usb_remove_hcd(info->hcd[0]); |
| usb_put_hcd(info->hcd[0]); |
| |
| error_create_otg: |
| return ret; |
| } |
| |
| static int oxu_drv_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| void __iomem *base; |
| unsigned long memstart, memlen; |
| int irq, ret; |
| struct oxu_info *info; |
| |
| if (usb_disabled()) |
| return -ENODEV; |
| |
| /* |
| * Get the platform resources |
| */ |
| res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!res) { |
| dev_err(&pdev->dev, |
| "no IRQ! Check %s setup!\n", dev_name(&pdev->dev)); |
| return -ENODEV; |
| } |
| irq = res->start; |
| dev_dbg(&pdev->dev, "IRQ resource %d\n", irq); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(base)) { |
| ret = PTR_ERR(base); |
| goto error; |
| } |
| memstart = res->start; |
| memlen = resource_size(res); |
| |
| ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING); |
| if (ret) { |
| dev_err(&pdev->dev, "error setting irq type\n"); |
| ret = -EFAULT; |
| goto error; |
| } |
| |
| /* Allocate a driver data struct to hold useful info for both |
| * SPH & OTG devices |
| */ |
| info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL); |
| if (!info) { |
| ret = -EFAULT; |
| goto error; |
| } |
| platform_set_drvdata(pdev, info); |
| |
| ret = oxu_init(pdev, memstart, memlen, base, irq); |
| if (ret < 0) { |
| dev_dbg(&pdev->dev, "cannot init USB devices\n"); |
| goto error; |
| } |
| |
| dev_info(&pdev->dev, "devices enabled and running\n"); |
| platform_set_drvdata(pdev, info); |
| |
| return 0; |
| |
| error: |
| dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret); |
| return ret; |
| } |
| |
| static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd) |
| { |
| usb_remove_hcd(hcd); |
| usb_put_hcd(hcd); |
| } |
| |
| static int oxu_drv_remove(struct platform_device *pdev) |
| { |
| struct oxu_info *info = platform_get_drvdata(pdev); |
| |
| oxu_remove(pdev, info->hcd[0]); |
| oxu_remove(pdev, info->hcd[1]); |
| |
| return 0; |
| } |
| |
| static void oxu_drv_shutdown(struct platform_device *pdev) |
| { |
| oxu_drv_remove(pdev); |
| } |
| |
| #if 0 |
| /* FIXME: TODO */ |
| static int oxu_drv_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct usb_hcd *hcd = dev_get_drvdata(dev); |
| |
| return 0; |
| } |
| |
| static int oxu_drv_resume(struct device *dev) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct usb_hcd *hcd = dev_get_drvdata(dev); |
| |
| return 0; |
| } |
| #else |
| #define oxu_drv_suspend NULL |
| #define oxu_drv_resume NULL |
| #endif |
| |
| static struct platform_driver oxu_driver = { |
| .probe = oxu_drv_probe, |
| .remove = oxu_drv_remove, |
| .shutdown = oxu_drv_shutdown, |
| .suspend = oxu_drv_suspend, |
| .resume = oxu_drv_resume, |
| .driver = { |
| .name = "oxu210hp-hcd", |
| .bus = &platform_bus_type |
| } |
| }; |
| |
| module_platform_driver(oxu_driver); |
| |
| MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION); |
| MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); |
| MODULE_LICENSE("GPL"); |