| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * cpuid support routines |
| * |
| * derived from arch/x86/kvm/x86.c |
| * |
| * Copyright 2011 Red Hat, Inc. and/or its affiliates. |
| * Copyright IBM Corporation, 2008 |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kvm_host.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched/stat.h> |
| |
| #include <asm/processor.h> |
| #include <asm/user.h> |
| #include <asm/fpu/xstate.h> |
| #include <asm/sgx.h> |
| #include <asm/cpuid.h> |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "mmu.h" |
| #include "trace.h" |
| #include "pmu.h" |
| #include "xen.h" |
| |
| /* |
| * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be |
| * aligned to sizeof(unsigned long) because it's not accessed via bitops. |
| */ |
| u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly; |
| EXPORT_SYMBOL_GPL(kvm_cpu_caps); |
| |
| u32 xstate_required_size(u64 xstate_bv, bool compacted) |
| { |
| int feature_bit = 0; |
| u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; |
| |
| xstate_bv &= XFEATURE_MASK_EXTEND; |
| while (xstate_bv) { |
| if (xstate_bv & 0x1) { |
| u32 eax, ebx, ecx, edx, offset; |
| cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); |
| /* ECX[1]: 64B alignment in compacted form */ |
| if (compacted) |
| offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret; |
| else |
| offset = ebx; |
| ret = max(ret, offset + eax); |
| } |
| |
| xstate_bv >>= 1; |
| feature_bit++; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This one is tied to SSB in the user API, and not |
| * visible in /proc/cpuinfo. |
| */ |
| #define KVM_X86_FEATURE_AMD_PSFD (13*32+28) /* Predictive Store Forwarding Disable */ |
| |
| #define F feature_bit |
| |
| /* Scattered Flag - For features that are scattered by cpufeatures.h. */ |
| #define SF(name) \ |
| ({ \ |
| BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES); \ |
| (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0); \ |
| }) |
| |
| /* |
| * Magic value used by KVM when querying userspace-provided CPUID entries and |
| * doesn't care about the CPIUD index because the index of the function in |
| * question is not significant. Note, this magic value must have at least one |
| * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find() |
| * to avoid false positives when processing guest CPUID input. |
| */ |
| #define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull |
| |
| static inline struct kvm_cpuid_entry2 *cpuid_entry2_find( |
| struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index) |
| { |
| struct kvm_cpuid_entry2 *e; |
| int i; |
| |
| for (i = 0; i < nent; i++) { |
| e = &entries[i]; |
| |
| if (e->function != function) |
| continue; |
| |
| /* |
| * If the index isn't significant, use the first entry with a |
| * matching function. It's userspace's responsibilty to not |
| * provide "duplicate" entries in all cases. |
| */ |
| if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index) |
| return e; |
| |
| |
| /* |
| * Similarly, use the first matching entry if KVM is doing a |
| * lookup (as opposed to emulating CPUID) for a function that's |
| * architecturally defined as not having a significant index. |
| */ |
| if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) { |
| /* |
| * Direct lookups from KVM should not diverge from what |
| * KVM defines internally (the architectural behavior). |
| */ |
| WARN_ON_ONCE(cpuid_function_is_indexed(function)); |
| return e; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int kvm_check_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid_entry2 *entries, |
| int nent) |
| { |
| struct kvm_cpuid_entry2 *best; |
| u64 xfeatures; |
| |
| /* |
| * The existing code assumes virtual address is 48-bit or 57-bit in the |
| * canonical address checks; exit if it is ever changed. |
| */ |
| best = cpuid_entry2_find(entries, nent, 0x80000008, |
| KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| if (best) { |
| int vaddr_bits = (best->eax & 0xff00) >> 8; |
| |
| if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) |
| return -EINVAL; |
| } |
| |
| /* |
| * Exposing dynamic xfeatures to the guest requires additional |
| * enabling in the FPU, e.g. to expand the guest XSAVE state size. |
| */ |
| best = cpuid_entry2_find(entries, nent, 0xd, 0); |
| if (!best) |
| return 0; |
| |
| xfeatures = best->eax | ((u64)best->edx << 32); |
| xfeatures &= XFEATURE_MASK_USER_DYNAMIC; |
| if (!xfeatures) |
| return 0; |
| |
| return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures); |
| } |
| |
| /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */ |
| static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, |
| int nent) |
| { |
| struct kvm_cpuid_entry2 *orig; |
| int i; |
| |
| if (nent != vcpu->arch.cpuid_nent) |
| return -EINVAL; |
| |
| for (i = 0; i < nent; i++) { |
| orig = &vcpu->arch.cpuid_entries[i]; |
| if (e2[i].function != orig->function || |
| e2[i].index != orig->index || |
| e2[i].flags != orig->flags || |
| e2[i].eax != orig->eax || e2[i].ebx != orig->ebx || |
| e2[i].ecx != orig->ecx || e2[i].edx != orig->edx) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu, |
| const char *sig) |
| { |
| struct kvm_hypervisor_cpuid cpuid = {}; |
| struct kvm_cpuid_entry2 *entry; |
| u32 base; |
| |
| for_each_possible_hypervisor_cpuid_base(base) { |
| entry = kvm_find_cpuid_entry(vcpu, base); |
| |
| if (entry) { |
| u32 signature[3]; |
| |
| signature[0] = entry->ebx; |
| signature[1] = entry->ecx; |
| signature[2] = entry->edx; |
| |
| if (!memcmp(signature, sig, sizeof(signature))) { |
| cpuid.base = base; |
| cpuid.limit = entry->eax; |
| break; |
| } |
| } |
| } |
| |
| return cpuid; |
| } |
| |
| static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid_entry2 *entries, int nent) |
| { |
| u32 base = vcpu->arch.kvm_cpuid.base; |
| |
| if (!base) |
| return NULL; |
| |
| return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, |
| KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| } |
| |
| static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu) |
| { |
| return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent); |
| } |
| |
| void kvm_update_pv_runtime(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu); |
| |
| /* |
| * save the feature bitmap to avoid cpuid lookup for every PV |
| * operation |
| */ |
| if (best) |
| vcpu->arch.pv_cpuid.features = best->eax; |
| } |
| |
| /* |
| * Calculate guest's supported XCR0 taking into account guest CPUID data and |
| * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0). |
| */ |
| static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = cpuid_entry2_find(entries, nent, 0xd, 0); |
| if (!best) |
| return 0; |
| |
| return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0; |
| } |
| |
| static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries, |
| int nent) |
| { |
| struct kvm_cpuid_entry2 *best; |
| u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent); |
| |
| best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| if (best) { |
| /* Update OSXSAVE bit */ |
| if (boot_cpu_has(X86_FEATURE_XSAVE)) |
| cpuid_entry_change(best, X86_FEATURE_OSXSAVE, |
| kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)); |
| |
| cpuid_entry_change(best, X86_FEATURE_APIC, |
| vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE); |
| } |
| |
| best = cpuid_entry2_find(entries, nent, 7, 0); |
| if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) |
| cpuid_entry_change(best, X86_FEATURE_OSPKE, |
| kvm_read_cr4_bits(vcpu, X86_CR4_PKE)); |
| |
| best = cpuid_entry2_find(entries, nent, 0xD, 0); |
| if (best) |
| best->ebx = xstate_required_size(vcpu->arch.xcr0, false); |
| |
| best = cpuid_entry2_find(entries, nent, 0xD, 1); |
| if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) || |
| cpuid_entry_has(best, X86_FEATURE_XSAVEC))) |
| best->ebx = xstate_required_size(vcpu->arch.xcr0, true); |
| |
| best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent); |
| if (kvm_hlt_in_guest(vcpu->kvm) && best && |
| (best->eax & (1 << KVM_FEATURE_PV_UNHALT))) |
| best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT); |
| |
| if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) { |
| best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| if (best) |
| cpuid_entry_change(best, X86_FEATURE_MWAIT, |
| vcpu->arch.ia32_misc_enable_msr & |
| MSR_IA32_MISC_ENABLE_MWAIT); |
| } |
| |
| /* |
| * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate |
| * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's |
| * requested XCR0 value. The enclave's XFRM must be a subset of XCRO |
| * at the time of EENTER, thus adjust the allowed XFRM by the guest's |
| * supported XCR0. Similar to XCR0 handling, FP and SSE are forced to |
| * '1' even on CPUs that don't support XSAVE. |
| */ |
| best = cpuid_entry2_find(entries, nent, 0x12, 0x1); |
| if (best) { |
| best->ecx &= guest_supported_xcr0 & 0xffffffff; |
| best->edx &= guest_supported_xcr0 >> 32; |
| best->ecx |= XFEATURE_MASK_FPSSE; |
| } |
| } |
| |
| void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu) |
| { |
| __kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); |
| } |
| EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime); |
| |
| static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| |
| entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE, |
| KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX; |
| } |
| |
| static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_lapic *apic = vcpu->arch.apic; |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 1); |
| if (best && apic) { |
| if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER)) |
| apic->lapic_timer.timer_mode_mask = 3 << 17; |
| else |
| apic->lapic_timer.timer_mode_mask = 1 << 17; |
| |
| kvm_apic_set_version(vcpu); |
| } |
| |
| vcpu->arch.guest_supported_xcr0 = |
| cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent); |
| |
| /* |
| * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if |
| * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't |
| * supported by the host. |
| */ |
| vcpu->arch.guest_fpu.fpstate->user_xfeatures = vcpu->arch.guest_supported_xcr0 | |
| XFEATURE_MASK_FPSSE; |
| |
| kvm_update_pv_runtime(vcpu); |
| |
| vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); |
| vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); |
| |
| kvm_pmu_refresh(vcpu); |
| vcpu->arch.cr4_guest_rsvd_bits = |
| __cr4_reserved_bits(guest_cpuid_has, vcpu); |
| |
| kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent)); |
| |
| /* Invoke the vendor callback only after the above state is updated. */ |
| static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu); |
| |
| /* |
| * Except for the MMU, which needs to do its thing any vendor specific |
| * adjustments to the reserved GPA bits. |
| */ |
| kvm_mmu_after_set_cpuid(vcpu); |
| } |
| |
| int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_cpuid_entry2 *best; |
| |
| best = kvm_find_cpuid_entry(vcpu, 0x80000000); |
| if (!best || best->eax < 0x80000008) |
| goto not_found; |
| best = kvm_find_cpuid_entry(vcpu, 0x80000008); |
| if (best) |
| return best->eax & 0xff; |
| not_found: |
| return 36; |
| } |
| |
| /* |
| * This "raw" version returns the reserved GPA bits without any adjustments for |
| * encryption technologies that usurp bits. The raw mask should be used if and |
| * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs. |
| */ |
| u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu) |
| { |
| return rsvd_bits(cpuid_maxphyaddr(vcpu), 63); |
| } |
| |
| static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, |
| int nent) |
| { |
| int r; |
| |
| __kvm_update_cpuid_runtime(vcpu, e2, nent); |
| |
| /* |
| * KVM does not correctly handle changing guest CPUID after KVM_RUN, as |
| * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't |
| * tracked in kvm_mmu_page_role. As a result, KVM may miss guest page |
| * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with |
| * the core vCPU model on the fly. It would've been better to forbid any |
| * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately |
| * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do |
| * KVM_SET_CPUID{,2} again. To support this legacy behavior, check |
| * whether the supplied CPUID data is equal to what's already set. |
| */ |
| if (vcpu->arch.last_vmentry_cpu != -1) { |
| r = kvm_cpuid_check_equal(vcpu, e2, nent); |
| if (r) |
| return r; |
| |
| kvfree(e2); |
| return 0; |
| } |
| |
| if (kvm_cpuid_has_hyperv(e2, nent)) { |
| r = kvm_hv_vcpu_init(vcpu); |
| if (r) |
| return r; |
| } |
| |
| r = kvm_check_cpuid(vcpu, e2, nent); |
| if (r) |
| return r; |
| |
| kvfree(vcpu->arch.cpuid_entries); |
| vcpu->arch.cpuid_entries = e2; |
| vcpu->arch.cpuid_nent = nent; |
| |
| vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE); |
| vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE); |
| kvm_vcpu_after_set_cpuid(vcpu); |
| |
| return 0; |
| } |
| |
| /* when an old userspace process fills a new kernel module */ |
| int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid *cpuid, |
| struct kvm_cpuid_entry __user *entries) |
| { |
| int r, i; |
| struct kvm_cpuid_entry *e = NULL; |
| struct kvm_cpuid_entry2 *e2 = NULL; |
| |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| return -E2BIG; |
| |
| if (cpuid->nent) { |
| e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent)); |
| if (IS_ERR(e)) |
| return PTR_ERR(e); |
| |
| e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT); |
| if (!e2) { |
| r = -ENOMEM; |
| goto out_free_cpuid; |
| } |
| } |
| for (i = 0; i < cpuid->nent; i++) { |
| e2[i].function = e[i].function; |
| e2[i].eax = e[i].eax; |
| e2[i].ebx = e[i].ebx; |
| e2[i].ecx = e[i].ecx; |
| e2[i].edx = e[i].edx; |
| e2[i].index = 0; |
| e2[i].flags = 0; |
| e2[i].padding[0] = 0; |
| e2[i].padding[1] = 0; |
| e2[i].padding[2] = 0; |
| } |
| |
| r = kvm_set_cpuid(vcpu, e2, cpuid->nent); |
| if (r) |
| kvfree(e2); |
| |
| out_free_cpuid: |
| kvfree(e); |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| struct kvm_cpuid_entry2 *e2 = NULL; |
| int r; |
| |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| return -E2BIG; |
| |
| if (cpuid->nent) { |
| e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent)); |
| if (IS_ERR(e2)) |
| return PTR_ERR(e2); |
| } |
| |
| r = kvm_set_cpuid(vcpu, e2, cpuid->nent); |
| if (r) |
| kvfree(e2); |
| |
| return r; |
| } |
| |
| int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, |
| struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries) |
| { |
| int r; |
| |
| r = -E2BIG; |
| if (cpuid->nent < vcpu->arch.cpuid_nent) |
| goto out; |
| r = -EFAULT; |
| if (copy_to_user(entries, vcpu->arch.cpuid_entries, |
| vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) |
| goto out; |
| return 0; |
| |
| out: |
| cpuid->nent = vcpu->arch.cpuid_nent; |
| return r; |
| } |
| |
| /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */ |
| static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf) |
| { |
| const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32); |
| struct kvm_cpuid_entry2 entry; |
| |
| reverse_cpuid_check(leaf); |
| |
| cpuid_count(cpuid.function, cpuid.index, |
| &entry.eax, &entry.ebx, &entry.ecx, &entry.edx); |
| |
| kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg); |
| } |
| |
| static __always_inline |
| void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask) |
| { |
| /* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */ |
| BUILD_BUG_ON(leaf < NCAPINTS); |
| |
| kvm_cpu_caps[leaf] = mask; |
| |
| __kvm_cpu_cap_mask(leaf); |
| } |
| |
| static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask) |
| { |
| /* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */ |
| BUILD_BUG_ON(leaf >= NCAPINTS); |
| |
| kvm_cpu_caps[leaf] &= mask; |
| |
| __kvm_cpu_cap_mask(leaf); |
| } |
| |
| void kvm_set_cpu_caps(void) |
| { |
| #ifdef CONFIG_X86_64 |
| unsigned int f_gbpages = F(GBPAGES); |
| unsigned int f_lm = F(LM); |
| unsigned int f_xfd = F(XFD); |
| #else |
| unsigned int f_gbpages = 0; |
| unsigned int f_lm = 0; |
| unsigned int f_xfd = 0; |
| #endif |
| memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps)); |
| |
| BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) > |
| sizeof(boot_cpu_data.x86_capability)); |
| |
| memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability, |
| sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps))); |
| |
| kvm_cpu_cap_mask(CPUID_1_ECX, |
| /* |
| * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not* |
| * advertised to guests via CPUID! |
| */ |
| F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | |
| 0 /* DS-CPL, VMX, SMX, EST */ | |
| 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | |
| F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) | |
| F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | |
| F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | |
| 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | |
| F(F16C) | F(RDRAND) |
| ); |
| /* KVM emulates x2apic in software irrespective of host support. */ |
| kvm_cpu_cap_set(X86_FEATURE_X2APIC); |
| |
| kvm_cpu_cap_mask(CPUID_1_EDX, |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | |
| 0 /* Reserved, DS, ACPI */ | F(MMX) | |
| F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | |
| 0 /* HTT, TM, Reserved, PBE */ |
| ); |
| |
| kvm_cpu_cap_mask(CPUID_7_0_EBX, |
| F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | |
| F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) | |
| F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) | |
| F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | |
| F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) | |
| F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) | |
| F(AVX512VL)); |
| |
| kvm_cpu_cap_mask(CPUID_7_ECX, |
| F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) | |
| F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) | |
| F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) | |
| F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ | |
| F(SGX_LC) | F(BUS_LOCK_DETECT) |
| ); |
| /* Set LA57 based on hardware capability. */ |
| if (cpuid_ecx(7) & F(LA57)) |
| kvm_cpu_cap_set(X86_FEATURE_LA57); |
| |
| /* |
| * PKU not yet implemented for shadow paging and requires OSPKE |
| * to be set on the host. Clear it if that is not the case |
| */ |
| if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) |
| kvm_cpu_cap_clear(X86_FEATURE_PKU); |
| |
| kvm_cpu_cap_mask(CPUID_7_EDX, |
| F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) | |
| F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) | |
| F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) | |
| F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) | |
| F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) |
| ); |
| |
| /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */ |
| kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST); |
| kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES); |
| |
| if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS)) |
| kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP); |
| if (boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD); |
| |
| kvm_cpu_cap_mask(CPUID_7_1_EAX, |
| F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) | |
| F(FZRM) | F(FSRS) | F(FSRC) | |
| F(AMX_FP16) | F(AVX_IFMA) |
| ); |
| |
| kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX, |
| F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
| ); |
| |
| kvm_cpu_cap_mask(CPUID_D_1_EAX, |
| F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd |
| ); |
| |
| kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX, |
| SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA) |
| ); |
| |
| kvm_cpu_cap_mask(CPUID_8000_0001_ECX, |
| F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | |
| F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | |
| F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | |
| 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) | |
| F(TOPOEXT) | 0 /* PERFCTR_CORE */ |
| ); |
| |
| kvm_cpu_cap_mask(CPUID_8000_0001_EDX, |
| F(FPU) | F(VME) | F(DE) | F(PSE) | |
| F(TSC) | F(MSR) | F(PAE) | F(MCE) | |
| F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | |
| F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | |
| F(PAT) | F(PSE36) | 0 /* Reserved */ | |
| F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | |
| F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) | |
| 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW) |
| ); |
| |
| if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64)) |
| kvm_cpu_cap_set(X86_FEATURE_GBPAGES); |
| |
| kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX, |
| SF(CONSTANT_TSC) |
| ); |
| |
| kvm_cpu_cap_mask(CPUID_8000_0008_EBX, |
| F(CLZERO) | F(XSAVEERPTR) | |
| F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) | |
| F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | |
| __feature_bit(KVM_X86_FEATURE_AMD_PSFD) |
| ); |
| |
| /* |
| * AMD has separate bits for each SPEC_CTRL bit. |
| * arch/x86/kernel/cpu/bugs.c is kind enough to |
| * record that in cpufeatures so use them. |
| */ |
| if (boot_cpu_has(X86_FEATURE_IBPB)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB); |
| if (boot_cpu_has(X86_FEATURE_IBRS)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS); |
| if (boot_cpu_has(X86_FEATURE_STIBP)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP); |
| if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD); |
| if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) |
| kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO); |
| /* |
| * The preference is to use SPEC CTRL MSR instead of the |
| * VIRT_SPEC MSR. |
| */ |
| if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) && |
| !boot_cpu_has(X86_FEATURE_AMD_SSBD)) |
| kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); |
| |
| /* |
| * Hide all SVM features by default, SVM will set the cap bits for |
| * features it emulates and/or exposes for L1. |
| */ |
| kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0); |
| |
| kvm_cpu_cap_mask(CPUID_8000_001F_EAX, |
| 0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) | |
| F(SME_COHERENT)); |
| |
| kvm_cpu_cap_mask(CPUID_8000_0021_EAX, |
| F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ | |
| F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ |
| ); |
| |
| /* |
| * Synthesize "LFENCE is serializing" into the AMD-defined entry in |
| * KVM's supported CPUID if the feature is reported as supported by the |
| * kernel. LFENCE_RDTSC was a Linux-defined synthetic feature long |
| * before AMD joined the bandwagon, e.g. LFENCE is serializing on most |
| * CPUs that support SSE2. On CPUs that don't support AMD's leaf, |
| * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing |
| * the mask with the raw host CPUID, and reporting support in AMD's |
| * leaf can make it easier for userspace to detect the feature. |
| */ |
| if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) |
| kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC); |
| if (!static_cpu_has_bug(X86_BUG_NULL_SEG)) |
| kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE); |
| kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR); |
| |
| kvm_cpu_cap_mask(CPUID_C000_0001_EDX, |
| F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | |
| F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | |
| F(PMM) | F(PMM_EN) |
| ); |
| |
| /* |
| * Hide RDTSCP and RDPID if either feature is reported as supported but |
| * probing MSR_TSC_AUX failed. This is purely a sanity check and |
| * should never happen, but the guest will likely crash if RDTSCP or |
| * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in |
| * the past. For example, the sanity check may fire if this instance of |
| * KVM is running as L1 on top of an older, broken KVM. |
| */ |
| if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) || |
| kvm_cpu_cap_has(X86_FEATURE_RDPID)) && |
| !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) { |
| kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); |
| kvm_cpu_cap_clear(X86_FEATURE_RDPID); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_set_cpu_caps); |
| |
| struct kvm_cpuid_array { |
| struct kvm_cpuid_entry2 *entries; |
| int maxnent; |
| int nent; |
| }; |
| |
| static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array) |
| { |
| if (array->nent >= array->maxnent) |
| return NULL; |
| |
| return &array->entries[array->nent++]; |
| } |
| |
| static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array, |
| u32 function, u32 index) |
| { |
| struct kvm_cpuid_entry2 *entry = get_next_cpuid(array); |
| |
| if (!entry) |
| return NULL; |
| |
| memset(entry, 0, sizeof(*entry)); |
| entry->function = function; |
| entry->index = index; |
| switch (function & 0xC0000000) { |
| case 0x40000000: |
| /* Hypervisor leaves are always synthesized by __do_cpuid_func. */ |
| return entry; |
| |
| case 0x80000000: |
| /* |
| * 0x80000021 is sometimes synthesized by __do_cpuid_func, which |
| * would result in out-of-bounds calls to do_host_cpuid. |
| */ |
| { |
| static int max_cpuid_80000000; |
| if (!READ_ONCE(max_cpuid_80000000)) |
| WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000)); |
| if (function > READ_ONCE(max_cpuid_80000000)) |
| return entry; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| cpuid_count(entry->function, entry->index, |
| &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); |
| |
| if (cpuid_function_is_indexed(function)) |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| |
| return entry; |
| } |
| |
| static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| |
| if (array->nent >= array->maxnent) |
| return -E2BIG; |
| |
| entry = &array->entries[array->nent]; |
| entry->function = func; |
| entry->index = 0; |
| entry->flags = 0; |
| |
| switch (func) { |
| case 0: |
| entry->eax = 7; |
| ++array->nent; |
| break; |
| case 1: |
| entry->ecx = F(MOVBE); |
| ++array->nent; |
| break; |
| case 7: |
| entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| entry->eax = 0; |
| if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) |
| entry->ecx = F(RDPID); |
| ++array->nent; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| int r, i, max_idx; |
| |
| /* all calls to cpuid_count() should be made on the same cpu */ |
| get_cpu(); |
| |
| r = -E2BIG; |
| |
| entry = do_host_cpuid(array, function, 0); |
| if (!entry) |
| goto out; |
| |
| switch (function) { |
| case 0: |
| /* Limited to the highest leaf implemented in KVM. */ |
| entry->eax = min(entry->eax, 0x1fU); |
| break; |
| case 1: |
| cpuid_entry_override(entry, CPUID_1_EDX); |
| cpuid_entry_override(entry, CPUID_1_ECX); |
| break; |
| case 2: |
| /* |
| * On ancient CPUs, function 2 entries are STATEFUL. That is, |
| * CPUID(function=2, index=0) may return different results each |
| * time, with the least-significant byte in EAX enumerating the |
| * number of times software should do CPUID(2, 0). |
| * |
| * Modern CPUs, i.e. every CPU KVM has *ever* run on are less |
| * idiotic. Intel's SDM states that EAX & 0xff "will always |
| * return 01H. Software should ignore this value and not |
| * interpret it as an informational descriptor", while AMD's |
| * APM states that CPUID(2) is reserved. |
| * |
| * WARN if a frankenstein CPU that supports virtualization and |
| * a stateful CPUID.0x2 is encountered. |
| */ |
| WARN_ON_ONCE((entry->eax & 0xff) > 1); |
| break; |
| /* functions 4 and 0x8000001d have additional index. */ |
| case 4: |
| case 0x8000001d: |
| /* |
| * Read entries until the cache type in the previous entry is |
| * zero, i.e. indicates an invalid entry. |
| */ |
| for (i = 1; entry->eax & 0x1f; ++i) { |
| entry = do_host_cpuid(array, function, i); |
| if (!entry) |
| goto out; |
| } |
| break; |
| case 6: /* Thermal management */ |
| entry->eax = 0x4; /* allow ARAT */ |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| /* function 7 has additional index. */ |
| case 7: |
| entry->eax = min(entry->eax, 1u); |
| cpuid_entry_override(entry, CPUID_7_0_EBX); |
| cpuid_entry_override(entry, CPUID_7_ECX); |
| cpuid_entry_override(entry, CPUID_7_EDX); |
| |
| /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */ |
| if (entry->eax == 1) { |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| cpuid_entry_override(entry, CPUID_7_1_EAX); |
| cpuid_entry_override(entry, CPUID_7_1_EDX); |
| entry->ebx = 0; |
| entry->ecx = 0; |
| } |
| break; |
| case 0xa: { /* Architectural Performance Monitoring */ |
| union cpuid10_eax eax; |
| union cpuid10_edx edx; |
| |
| if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| eax.split.version_id = kvm_pmu_cap.version; |
| eax.split.num_counters = kvm_pmu_cap.num_counters_gp; |
| eax.split.bit_width = kvm_pmu_cap.bit_width_gp; |
| eax.split.mask_length = kvm_pmu_cap.events_mask_len; |
| edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed; |
| edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed; |
| |
| if (kvm_pmu_cap.version) |
| edx.split.anythread_deprecated = 1; |
| edx.split.reserved1 = 0; |
| edx.split.reserved2 = 0; |
| |
| entry->eax = eax.full; |
| entry->ebx = kvm_pmu_cap.events_mask; |
| entry->ecx = 0; |
| entry->edx = edx.full; |
| break; |
| } |
| case 0x1f: |
| case 0xb: |
| /* |
| * No topology; a valid topology is indicated by the presence |
| * of subleaf 1. |
| */ |
| entry->eax = entry->ebx = entry->ecx = 0; |
| break; |
| case 0xd: { |
| u64 permitted_xcr0 = kvm_caps.supported_xcr0 & xstate_get_guest_group_perm(); |
| u64 permitted_xss = kvm_caps.supported_xss; |
| |
| entry->eax &= permitted_xcr0; |
| entry->ebx = xstate_required_size(permitted_xcr0, false); |
| entry->ecx = entry->ebx; |
| entry->edx &= permitted_xcr0 >> 32; |
| if (!permitted_xcr0) |
| break; |
| |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| cpuid_entry_override(entry, CPUID_D_1_EAX); |
| if (entry->eax & (F(XSAVES)|F(XSAVEC))) |
| entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss, |
| true); |
| else { |
| WARN_ON_ONCE(permitted_xss != 0); |
| entry->ebx = 0; |
| } |
| entry->ecx &= permitted_xss; |
| entry->edx &= permitted_xss >> 32; |
| |
| for (i = 2; i < 64; ++i) { |
| bool s_state; |
| if (permitted_xcr0 & BIT_ULL(i)) |
| s_state = false; |
| else if (permitted_xss & BIT_ULL(i)) |
| s_state = true; |
| else |
| continue; |
| |
| entry = do_host_cpuid(array, function, i); |
| if (!entry) |
| goto out; |
| |
| /* |
| * The supported check above should have filtered out |
| * invalid sub-leafs. Only valid sub-leafs should |
| * reach this point, and they should have a non-zero |
| * save state size. Furthermore, check whether the |
| * processor agrees with permitted_xcr0/permitted_xss |
| * on whether this is an XCR0- or IA32_XSS-managed area. |
| */ |
| if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) { |
| --array->nent; |
| continue; |
| } |
| |
| if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) |
| entry->ecx &= ~BIT_ULL(2); |
| entry->edx = 0; |
| } |
| break; |
| } |
| case 0x12: |
| /* Intel SGX */ |
| if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| /* |
| * Index 0: Sub-features, MISCSELECT (a.k.a extended features) |
| * and max enclave sizes. The SGX sub-features and MISCSELECT |
| * are restricted by kernel and KVM capabilities (like most |
| * feature flags), while enclave size is unrestricted. |
| */ |
| cpuid_entry_override(entry, CPUID_12_EAX); |
| entry->ebx &= SGX_MISC_EXINFO; |
| |
| entry = do_host_cpuid(array, function, 1); |
| if (!entry) |
| goto out; |
| |
| /* |
| * Index 1: SECS.ATTRIBUTES. ATTRIBUTES are restricted a la |
| * feature flags. Advertise all supported flags, including |
| * privileged attributes that require explicit opt-in from |
| * userspace. ATTRIBUTES.XFRM is not adjusted as userspace is |
| * expected to derive it from supported XCR0. |
| */ |
| entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK; |
| entry->ebx &= 0; |
| break; |
| /* Intel PT */ |
| case 0x14: |
| if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { |
| if (!do_host_cpuid(array, function, i)) |
| goto out; |
| } |
| break; |
| /* Intel AMX TILE */ |
| case 0x1d: |
| if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) { |
| if (!do_host_cpuid(array, function, i)) |
| goto out; |
| } |
| break; |
| case 0x1e: /* TMUL information */ |
| if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| break; |
| case KVM_CPUID_SIGNATURE: { |
| const u32 *sigptr = (const u32 *)KVM_SIGNATURE; |
| entry->eax = KVM_CPUID_FEATURES; |
| entry->ebx = sigptr[0]; |
| entry->ecx = sigptr[1]; |
| entry->edx = sigptr[2]; |
| break; |
| } |
| case KVM_CPUID_FEATURES: |
| entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | |
| (1 << KVM_FEATURE_NOP_IO_DELAY) | |
| (1 << KVM_FEATURE_CLOCKSOURCE2) | |
| (1 << KVM_FEATURE_ASYNC_PF) | |
| (1 << KVM_FEATURE_PV_EOI) | |
| (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | |
| (1 << KVM_FEATURE_PV_UNHALT) | |
| (1 << KVM_FEATURE_PV_TLB_FLUSH) | |
| (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) | |
| (1 << KVM_FEATURE_PV_SEND_IPI) | |
| (1 << KVM_FEATURE_POLL_CONTROL) | |
| (1 << KVM_FEATURE_PV_SCHED_YIELD) | |
| (1 << KVM_FEATURE_ASYNC_PF_INT); |
| |
| if (sched_info_on()) |
| entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); |
| |
| entry->ebx = 0; |
| entry->ecx = 0; |
| entry->edx = 0; |
| break; |
| case 0x80000000: |
| entry->eax = min(entry->eax, 0x80000021); |
| /* |
| * Serializing LFENCE is reported in a multitude of ways, and |
| * NullSegClearsBase is not reported in CPUID on Zen2; help |
| * userspace by providing the CPUID leaf ourselves. |
| * |
| * However, only do it if the host has CPUID leaf 0x8000001d. |
| * QEMU thinks that it can query the host blindly for that |
| * CPUID leaf if KVM reports that it supports 0x8000001d or |
| * above. The processor merrily returns values from the |
| * highest Intel leaf which QEMU tries to use as the guest's |
| * 0x8000001d. Even worse, this can result in an infinite |
| * loop if said highest leaf has no subleaves indexed by ECX. |
| */ |
| if (entry->eax >= 0x8000001d && |
| (static_cpu_has(X86_FEATURE_LFENCE_RDTSC) |
| || !static_cpu_has_bug(X86_BUG_NULL_SEG))) |
| entry->eax = max(entry->eax, 0x80000021); |
| break; |
| case 0x80000001: |
| entry->ebx &= ~GENMASK(27, 16); |
| cpuid_entry_override(entry, CPUID_8000_0001_EDX); |
| cpuid_entry_override(entry, CPUID_8000_0001_ECX); |
| break; |
| case 0x80000006: |
| /* Drop reserved bits, pass host L2 cache and TLB info. */ |
| entry->edx &= ~GENMASK(17, 16); |
| break; |
| case 0x80000007: /* Advanced power management */ |
| cpuid_entry_override(entry, CPUID_8000_0007_EDX); |
| |
| /* mask against host */ |
| entry->edx &= boot_cpu_data.x86_power; |
| entry->eax = entry->ebx = entry->ecx = 0; |
| break; |
| case 0x80000008: { |
| unsigned g_phys_as = (entry->eax >> 16) & 0xff; |
| unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); |
| unsigned phys_as = entry->eax & 0xff; |
| |
| /* |
| * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as |
| * the guest operates in the same PA space as the host, i.e. |
| * reductions in MAXPHYADDR for memory encryption affect shadow |
| * paging, too. |
| * |
| * If TDP is enabled but an explicit guest MAXPHYADDR is not |
| * provided, use the raw bare metal MAXPHYADDR as reductions to |
| * the HPAs do not affect GPAs. |
| */ |
| if (!tdp_enabled) |
| g_phys_as = boot_cpu_data.x86_phys_bits; |
| else if (!g_phys_as) |
| g_phys_as = phys_as; |
| |
| entry->eax = g_phys_as | (virt_as << 8); |
| entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8)); |
| entry->edx = 0; |
| cpuid_entry_override(entry, CPUID_8000_0008_EBX); |
| break; |
| } |
| case 0x8000000A: |
| if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| entry->eax = 1; /* SVM revision 1 */ |
| entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper |
| ASID emulation to nested SVM */ |
| entry->ecx = 0; /* Reserved */ |
| cpuid_entry_override(entry, CPUID_8000_000A_EDX); |
| break; |
| case 0x80000019: |
| entry->ecx = entry->edx = 0; |
| break; |
| case 0x8000001a: |
| entry->eax &= GENMASK(2, 0); |
| entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| case 0x8000001e: |
| /* Do not return host topology information. */ |
| entry->eax = entry->ebx = entry->ecx = 0; |
| entry->edx = 0; /* reserved */ |
| break; |
| case 0x8000001F: |
| if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) { |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| } else { |
| cpuid_entry_override(entry, CPUID_8000_001F_EAX); |
| /* Clear NumVMPL since KVM does not support VMPL. */ |
| entry->ebx &= ~GENMASK(31, 12); |
| /* |
| * Enumerate '0' for "PA bits reduction", the adjusted |
| * MAXPHYADDR is enumerated directly (see 0x80000008). |
| */ |
| entry->ebx &= ~GENMASK(11, 6); |
| } |
| break; |
| case 0x80000020: |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| case 0x80000021: |
| entry->ebx = entry->ecx = entry->edx = 0; |
| cpuid_entry_override(entry, CPUID_8000_0021_EAX); |
| break; |
| /*Add support for Centaur's CPUID instruction*/ |
| case 0xC0000000: |
| /*Just support up to 0xC0000004 now*/ |
| entry->eax = min(entry->eax, 0xC0000004); |
| break; |
| case 0xC0000001: |
| cpuid_entry_override(entry, CPUID_C000_0001_EDX); |
| break; |
| case 3: /* Processor serial number */ |
| case 5: /* MONITOR/MWAIT */ |
| case 0xC0000002: |
| case 0xC0000003: |
| case 0xC0000004: |
| default: |
| entry->eax = entry->ebx = entry->ecx = entry->edx = 0; |
| break; |
| } |
| |
| r = 0; |
| |
| out: |
| put_cpu(); |
| |
| return r; |
| } |
| |
| static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func, |
| unsigned int type) |
| { |
| if (type == KVM_GET_EMULATED_CPUID) |
| return __do_cpuid_func_emulated(array, func); |
| |
| return __do_cpuid_func(array, func); |
| } |
| |
| #define CENTAUR_CPUID_SIGNATURE 0xC0000000 |
| |
| static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func, |
| unsigned int type) |
| { |
| u32 limit; |
| int r; |
| |
| if (func == CENTAUR_CPUID_SIGNATURE && |
| boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR) |
| return 0; |
| |
| r = do_cpuid_func(array, func, type); |
| if (r) |
| return r; |
| |
| limit = array->entries[array->nent - 1].eax; |
| for (func = func + 1; func <= limit; ++func) { |
| r = do_cpuid_func(array, func, type); |
| if (r) |
| break; |
| } |
| |
| return r; |
| } |
| |
| static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, |
| __u32 num_entries, unsigned int ioctl_type) |
| { |
| int i; |
| __u32 pad[3]; |
| |
| if (ioctl_type != KVM_GET_EMULATED_CPUID) |
| return false; |
| |
| /* |
| * We want to make sure that ->padding is being passed clean from |
| * userspace in case we want to use it for something in the future. |
| * |
| * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we |
| * have to give ourselves satisfied only with the emulated side. /me |
| * sheds a tear. |
| */ |
| for (i = 0; i < num_entries; i++) { |
| if (copy_from_user(pad, entries[i].padding, sizeof(pad))) |
| return true; |
| |
| if (pad[0] || pad[1] || pad[2]) |
| return true; |
| } |
| return false; |
| } |
| |
| int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 __user *entries, |
| unsigned int type) |
| { |
| static const u32 funcs[] = { |
| 0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE, |
| }; |
| |
| struct kvm_cpuid_array array = { |
| .nent = 0, |
| }; |
| int r, i; |
| |
| if (cpuid->nent < 1) |
| return -E2BIG; |
| if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) |
| cpuid->nent = KVM_MAX_CPUID_ENTRIES; |
| |
| if (sanity_check_entries(entries, cpuid->nent, type)) |
| return -EINVAL; |
| |
| array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL); |
| if (!array.entries) |
| return -ENOMEM; |
| |
| array.maxnent = cpuid->nent; |
| |
| for (i = 0; i < ARRAY_SIZE(funcs); i++) { |
| r = get_cpuid_func(&array, funcs[i], type); |
| if (r) |
| goto out_free; |
| } |
| cpuid->nent = array.nent; |
| |
| if (copy_to_user(entries, array.entries, |
| array.nent * sizeof(struct kvm_cpuid_entry2))) |
| r = -EFAULT; |
| |
| out_free: |
| kvfree(array.entries); |
| return r; |
| } |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu, |
| u32 function, u32 index) |
| { |
| return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, |
| function, index); |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index); |
| |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, |
| u32 function) |
| { |
| return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent, |
| function, KVM_CPUID_INDEX_NOT_SIGNIFICANT); |
| } |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); |
| |
| /* |
| * Intel CPUID semantics treats any query for an out-of-range leaf as if the |
| * highest basic leaf (i.e. CPUID.0H:EAX) were requested. AMD CPUID semantics |
| * returns all zeroes for any undefined leaf, whether or not the leaf is in |
| * range. Centaur/VIA follows Intel semantics. |
| * |
| * A leaf is considered out-of-range if its function is higher than the maximum |
| * supported leaf of its associated class or if its associated class does not |
| * exist. |
| * |
| * There are three primary classes to be considered, with their respective |
| * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive. A primary |
| * class exists if a guest CPUID entry for its <base> leaf exists. For a given |
| * class, CPUID.<base>.EAX contains the max supported leaf for the class. |
| * |
| * - Basic: 0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff |
| * - Hypervisor: 0x40000000 - 0x4fffffff |
| * - Extended: 0x80000000 - 0xbfffffff |
| * - Centaur: 0xc0000000 - 0xcfffffff |
| * |
| * The Hypervisor class is further subdivided into sub-classes that each act as |
| * their own independent class associated with a 0x100 byte range. E.g. if Qemu |
| * is advertising support for both HyperV and KVM, the resulting Hypervisor |
| * CPUID sub-classes are: |
| * |
| * - HyperV: 0x40000000 - 0x400000ff |
| * - KVM: 0x40000100 - 0x400001ff |
| */ |
| static struct kvm_cpuid_entry2 * |
| get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index) |
| { |
| struct kvm_cpuid_entry2 *basic, *class; |
| u32 function = *fn_ptr; |
| |
| basic = kvm_find_cpuid_entry(vcpu, 0); |
| if (!basic) |
| return NULL; |
| |
| if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) || |
| is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx)) |
| return NULL; |
| |
| if (function >= 0x40000000 && function <= 0x4fffffff) |
| class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00); |
| else if (function >= 0xc0000000) |
| class = kvm_find_cpuid_entry(vcpu, 0xc0000000); |
| else |
| class = kvm_find_cpuid_entry(vcpu, function & 0x80000000); |
| |
| if (class && function <= class->eax) |
| return NULL; |
| |
| /* |
| * Leaf specific adjustments are also applied when redirecting to the |
| * max basic entry, e.g. if the max basic leaf is 0xb but there is no |
| * entry for CPUID.0xb.index (see below), then the output value for EDX |
| * needs to be pulled from CPUID.0xb.1. |
| */ |
| *fn_ptr = basic->eax; |
| |
| /* |
| * The class does not exist or the requested function is out of range; |
| * the effective CPUID entry is the max basic leaf. Note, the index of |
| * the original requested leaf is observed! |
| */ |
| return kvm_find_cpuid_entry_index(vcpu, basic->eax, index); |
| } |
| |
| bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, |
| u32 *ecx, u32 *edx, bool exact_only) |
| { |
| u32 orig_function = *eax, function = *eax, index = *ecx; |
| struct kvm_cpuid_entry2 *entry; |
| bool exact, used_max_basic = false; |
| |
| entry = kvm_find_cpuid_entry_index(vcpu, function, index); |
| exact = !!entry; |
| |
| if (!entry && !exact_only) { |
| entry = get_out_of_range_cpuid_entry(vcpu, &function, index); |
| used_max_basic = !!entry; |
| } |
| |
| if (entry) { |
| *eax = entry->eax; |
| *ebx = entry->ebx; |
| *ecx = entry->ecx; |
| *edx = entry->edx; |
| if (function == 7 && index == 0) { |
| u64 data; |
| if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) && |
| (data & TSX_CTRL_CPUID_CLEAR)) |
| *ebx &= ~(F(RTM) | F(HLE)); |
| } else if (function == 0x80000007) { |
| if (kvm_hv_invtsc_suppressed(vcpu)) |
| *edx &= ~SF(CONSTANT_TSC); |
| } |
| } else { |
| *eax = *ebx = *ecx = *edx = 0; |
| /* |
| * When leaf 0BH or 1FH is defined, CL is pass-through |
| * and EDX is always the x2APIC ID, even for undefined |
| * subleaves. Index 1 will exist iff the leaf is |
| * implemented, so we pass through CL iff leaf 1 |
| * exists. EDX can be copied from any existing index. |
| */ |
| if (function == 0xb || function == 0x1f) { |
| entry = kvm_find_cpuid_entry_index(vcpu, function, 1); |
| if (entry) { |
| *ecx = index & 0xff; |
| *edx = entry->edx; |
| } |
| } |
| } |
| trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact, |
| used_max_basic); |
| return exact; |
| } |
| EXPORT_SYMBOL_GPL(kvm_cpuid); |
| |
| int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) |
| { |
| u32 eax, ebx, ecx, edx; |
| |
| if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) |
| return 1; |
| |
| eax = kvm_rax_read(vcpu); |
| ecx = kvm_rcx_read(vcpu); |
| kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); |
| kvm_rax_write(vcpu, eax); |
| kvm_rbx_write(vcpu, ebx); |
| kvm_rcx_write(vcpu, ecx); |
| kvm_rdx_write(vcpu, edx); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); |