| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T). |
| * |
| * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/) |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/mutex.h> |
| #include <asm/div64.h> |
| |
| #include <media/dvb_math.h> |
| |
| #include <media/dvb_frontend.h> |
| |
| #include "dib8000.h" |
| |
| #define LAYER_ALL -1 |
| #define LAYER_A 1 |
| #define LAYER_B 2 |
| #define LAYER_C 3 |
| |
| #define MAX_NUMBER_OF_FRONTENDS 6 |
| /* #define DIB8000_AGC_FREEZE */ |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| #define dprintk(fmt, arg...) do { \ |
| if (debug) \ |
| printk(KERN_DEBUG pr_fmt("%s: " fmt), \ |
| __func__, ##arg); \ |
| } while (0) |
| |
| struct i2c_device { |
| struct i2c_adapter *adap; |
| u8 addr; |
| u8 *i2c_write_buffer; |
| u8 *i2c_read_buffer; |
| struct mutex *i2c_buffer_lock; |
| }; |
| |
| enum param_loop_step { |
| LOOP_TUNE_1, |
| LOOP_TUNE_2 |
| }; |
| |
| enum dib8000_autosearch_step { |
| AS_START = 0, |
| AS_SEARCHING_FFT, |
| AS_SEARCHING_GUARD, |
| AS_DONE = 100, |
| }; |
| |
| enum timeout_mode { |
| SYMBOL_DEPENDENT_OFF = 0, |
| SYMBOL_DEPENDENT_ON, |
| }; |
| |
| struct dib8000_state { |
| struct dib8000_config cfg; |
| |
| struct i2c_device i2c; |
| |
| struct dibx000_i2c_master i2c_master; |
| |
| u16 wbd_ref; |
| |
| u8 current_band; |
| u32 current_bandwidth; |
| struct dibx000_agc_config *current_agc; |
| u32 timf; |
| u32 timf_default; |
| |
| u8 div_force_off:1; |
| u8 div_state:1; |
| u16 div_sync_wait; |
| |
| u8 agc_state; |
| u8 differential_constellation; |
| u8 diversity_onoff; |
| |
| s16 ber_monitored_layer; |
| u16 gpio_dir; |
| u16 gpio_val; |
| |
| u16 revision; |
| u8 isdbt_cfg_loaded; |
| enum frontend_tune_state tune_state; |
| s32 status; |
| |
| struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; |
| |
| /* for the I2C transfer */ |
| struct i2c_msg msg[2]; |
| u8 i2c_write_buffer[4]; |
| u8 i2c_read_buffer[2]; |
| struct mutex i2c_buffer_lock; |
| u8 input_mode_mpeg; |
| |
| u16 tuner_enable; |
| struct i2c_adapter dib8096p_tuner_adap; |
| u16 current_demod_bw; |
| |
| u16 seg_mask; |
| u16 seg_diff_mask; |
| u16 mode; |
| u8 layer_b_nb_seg; |
| u8 layer_c_nb_seg; |
| |
| u8 channel_parameters_set; |
| u16 autosearch_state; |
| u16 found_nfft; |
| u16 found_guard; |
| u8 subchannel; |
| u8 symbol_duration; |
| unsigned long timeout; |
| u8 longest_intlv_layer; |
| u16 output_mode; |
| |
| /* for DVBv5 stats */ |
| s64 init_ucb; |
| unsigned long per_jiffies_stats; |
| unsigned long ber_jiffies_stats; |
| unsigned long ber_jiffies_stats_layer[3]; |
| |
| #ifdef DIB8000_AGC_FREEZE |
| u16 agc1_max; |
| u16 agc1_min; |
| u16 agc2_max; |
| u16 agc2_min; |
| #endif |
| }; |
| |
| enum dib8000_power_mode { |
| DIB8000_POWER_ALL = 0, |
| DIB8000_POWER_INTERFACE_ONLY, |
| }; |
| |
| static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg) |
| { |
| u16 ret; |
| struct i2c_msg msg[2] = { |
| {.addr = i2c->addr >> 1, .flags = 0, .len = 2}, |
| {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2}, |
| }; |
| |
| if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return 0; |
| } |
| |
| msg[0].buf = i2c->i2c_write_buffer; |
| msg[0].buf[0] = reg >> 8; |
| msg[0].buf[1] = reg & 0xff; |
| msg[1].buf = i2c->i2c_read_buffer; |
| |
| if (i2c_transfer(i2c->adap, msg, 2) != 2) |
| dprintk("i2c read error on %d\n", reg); |
| |
| ret = (msg[1].buf[0] << 8) | msg[1].buf[1]; |
| mutex_unlock(i2c->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg) |
| { |
| u16 ret; |
| |
| state->i2c_write_buffer[0] = reg >> 8; |
| state->i2c_write_buffer[1] = reg & 0xff; |
| |
| memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c.addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 2; |
| state->msg[1].addr = state->i2c.addr >> 1; |
| state->msg[1].flags = I2C_M_RD; |
| state->msg[1].buf = state->i2c_read_buffer; |
| state->msg[1].len = 2; |
| |
| if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2) |
| dprintk("i2c read error on %d\n", reg); |
| |
| ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; |
| |
| return ret; |
| } |
| |
| static u16 dib8000_read_word(struct dib8000_state *state, u16 reg) |
| { |
| u16 ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return 0; |
| } |
| |
| ret = __dib8000_read_word(state, reg); |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| |
| return ret; |
| } |
| |
| static u32 dib8000_read32(struct dib8000_state *state, u16 reg) |
| { |
| u16 rw[2]; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return 0; |
| } |
| |
| rw[0] = __dib8000_read_word(state, reg + 0); |
| rw[1] = __dib8000_read_word(state, reg + 1); |
| |
| mutex_unlock(&state->i2c_buffer_lock); |
| |
| return ((rw[0] << 16) | (rw[1])); |
| } |
| |
| static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) |
| { |
| struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4}; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return -EINVAL; |
| } |
| |
| msg.buf = i2c->i2c_write_buffer; |
| msg.buf[0] = (reg >> 8) & 0xff; |
| msg.buf[1] = reg & 0xff; |
| msg.buf[2] = (val >> 8) & 0xff; |
| msg.buf[3] = val & 0xff; |
| |
| ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| mutex_unlock(i2c->i2c_buffer_lock); |
| |
| return ret; |
| } |
| |
| static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val) |
| { |
| int ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return -EINVAL; |
| } |
| |
| state->i2c_write_buffer[0] = (reg >> 8) & 0xff; |
| state->i2c_write_buffer[1] = reg & 0xff; |
| state->i2c_write_buffer[2] = (val >> 8) & 0xff; |
| state->i2c_write_buffer[3] = val & 0xff; |
| |
| memset(&state->msg[0], 0, sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c.addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 4; |
| |
| ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ? |
| -EREMOTEIO : 0); |
| mutex_unlock(&state->i2c_buffer_lock); |
| |
| return ret; |
| } |
| |
| static const s16 coeff_2k_sb_1seg_dqpsk[8] = { |
| (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c, |
| (920 << 5) | 0x09 |
| }; |
| |
| static const s16 coeff_2k_sb_1seg[8] = { |
| (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f |
| }; |
| |
| static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11, |
| (-931 << 5) | 0x0f |
| }; |
| |
| static const s16 coeff_2k_sb_3seg_0dqpsk[8] = { |
| (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e, |
| (982 << 5) | 0x0c |
| }; |
| |
| static const s16 coeff_2k_sb_3seg_1dqpsk[8] = { |
| (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12, |
| (-720 << 5) | 0x0d |
| }; |
| |
| static const s16 coeff_2k_sb_3seg[8] = { |
| (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e, |
| (-610 << 5) | 0x0a |
| }; |
| |
| static const s16 coeff_4k_sb_1seg_dqpsk[8] = { |
| (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f, |
| (-922 << 5) | 0x0d |
| }; |
| |
| static const s16 coeff_4k_sb_1seg[8] = { |
| (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d, |
| (-655 << 5) | 0x0a |
| }; |
| |
| static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14, |
| (-958 << 5) | 0x13 |
| }; |
| |
| static const s16 coeff_4k_sb_3seg_0dqpsk[8] = { |
| (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12, |
| (-568 << 5) | 0x0f |
| }; |
| |
| static const s16 coeff_4k_sb_3seg_1dqpsk[8] = { |
| (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14, |
| (-848 << 5) | 0x13 |
| }; |
| |
| static const s16 coeff_4k_sb_3seg[8] = { |
| (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12, |
| (-869 << 5) | 0x13 |
| }; |
| |
| static const s16 coeff_8k_sb_1seg_dqpsk[8] = { |
| (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13, |
| (-598 << 5) | 0x10 |
| }; |
| |
| static const s16 coeff_8k_sb_1seg[8] = { |
| (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f, |
| (585 << 5) | 0x0f |
| }; |
| |
| static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = { |
| (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18, |
| (0 << 5) | 0x14 |
| }; |
| |
| static const s16 coeff_8k_sb_3seg_0dqpsk[8] = { |
| (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15, |
| (-877 << 5) | 0x15 |
| }; |
| |
| static const s16 coeff_8k_sb_3seg_1dqpsk[8] = { |
| (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18, |
| (-921 << 5) | 0x14 |
| }; |
| |
| static const s16 coeff_8k_sb_3seg[8] = { |
| (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15, |
| (690 << 5) | 0x14 |
| }; |
| |
| static const s16 ana_fe_coeff_3seg[24] = { |
| 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017 |
| }; |
| |
| static const s16 ana_fe_coeff_1seg[24] = { |
| 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003 |
| }; |
| |
| static const s16 ana_fe_coeff_13seg[24] = { |
| 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1 |
| }; |
| |
| static u16 fft_to_mode(struct dib8000_state *state) |
| { |
| u16 mode; |
| switch (state->fe[0]->dtv_property_cache.transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| mode = 1; |
| break; |
| case TRANSMISSION_MODE_4K: |
| mode = 2; |
| break; |
| default: |
| case TRANSMISSION_MODE_AUTO: |
| case TRANSMISSION_MODE_8K: |
| mode = 3; |
| break; |
| } |
| return mode; |
| } |
| |
| static void dib8000_set_acquisition_mode(struct dib8000_state *state) |
| { |
| u16 nud = dib8000_read_word(state, 298); |
| nud |= (1 << 3) | (1 << 0); |
| dprintk("acquisition mode activated\n"); |
| dib8000_write_word(state, 298, nud); |
| } |
| static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */ |
| |
| state->output_mode = mode; |
| outreg = 0; |
| fifo_threshold = 1792; |
| smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); |
| |
| dprintk("-I- Setting output mode for demod %p to %d\n", |
| &state->fe[0], mode); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| outreg = (1 << 10); /* 0x0400 */ |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| break; |
| case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ |
| break; |
| case OUTMODE_DIVERSITY: |
| if (state->cfg.hostbus_diversity) { |
| outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| sram &= 0xfdff; |
| } else |
| sram |= 0x0c00; |
| break; |
| case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| outreg = (1 << 10) | (5 << 6); |
| break; |
| case OUTMODE_HIGH_Z: // disable |
| outreg = 0; |
| break; |
| |
| case OUTMODE_ANALOG_ADC: |
| outreg = (1 << 10) | (3 << 6); |
| dib8000_set_acquisition_mode(state); |
| break; |
| |
| default: |
| dprintk("Unhandled output_mode passed to be set for demod %p\n", |
| &state->fe[0]); |
| return -EINVAL; |
| } |
| |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5); |
| |
| dib8000_write_word(state, 299, smo_mode); |
| dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */ |
| dib8000_write_word(state, 1286, outreg); |
| dib8000_write_word(state, 1291, sram); |
| |
| return 0; |
| } |
| |
| static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0; |
| |
| dprintk("set diversity input to %i\n", onoff); |
| if (!state->differential_constellation) { |
| dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1 |
| dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2 |
| } else { |
| dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0 |
| dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0 |
| } |
| state->diversity_onoff = onoff; |
| |
| switch (onoff) { |
| case 0: /* only use the internal way - not the diversity input */ |
| dib8000_write_word(state, 270, 1); |
| dib8000_write_word(state, 271, 0); |
| break; |
| case 1: /* both ways */ |
| dib8000_write_word(state, 270, 6); |
| dib8000_write_word(state, 271, 6); |
| break; |
| case 2: /* only the diversity input */ |
| dib8000_write_word(state, 270, 0); |
| dib8000_write_word(state, 271, 1); |
| break; |
| } |
| |
| if (state->revision == 0x8002) { |
| tmp = dib8000_read_word(state, 903); |
| dib8000_write_word(state, 903, tmp & ~(1 << 3)); |
| msleep(30); |
| dib8000_write_word(state, 903, tmp | (1 << 3)); |
| } |
| return 0; |
| } |
| |
| static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode) |
| { |
| /* by default everything is going to be powered off */ |
| u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff, |
| reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, |
| reg_1280; |
| |
| if (state->revision != 0x8090) |
| reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00; |
| else |
| reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80; |
| |
| /* now, depending on the requested mode, we power on */ |
| switch (mode) { |
| /* power up everything in the demod */ |
| case DIB8000_POWER_ALL: |
| reg_774 = 0x0000; |
| reg_775 = 0x0000; |
| reg_776 = 0x0000; |
| reg_900 &= 0xfffc; |
| if (state->revision != 0x8090) |
| reg_1280 &= 0x00ff; |
| else |
| reg_1280 &= 0x707f; |
| break; |
| case DIB8000_POWER_INTERFACE_ONLY: |
| if (state->revision != 0x8090) |
| reg_1280 &= 0x00ff; |
| else |
| reg_1280 &= 0xfa7b; |
| break; |
| } |
| |
| dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774, reg_775, reg_776, reg_900, reg_1280); |
| dib8000_write_word(state, 774, reg_774); |
| dib8000_write_word(state, 775, reg_775); |
| dib8000_write_word(state, 776, reg_776); |
| dib8000_write_word(state, 900, reg_900); |
| dib8000_write_word(state, 1280, reg_1280); |
| } |
| |
| static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no) |
| { |
| int ret = 0; |
| u16 reg, reg_907 = dib8000_read_word(state, 907); |
| u16 reg_908 = dib8000_read_word(state, 908); |
| |
| switch (no) { |
| case DIBX000_SLOW_ADC_ON: |
| if (state->revision != 0x8090) { |
| reg_908 |= (1 << 1) | (1 << 0); |
| ret |= dib8000_write_word(state, 908, reg_908); |
| reg_908 &= ~(1 << 1); |
| } else { |
| reg = dib8000_read_word(state, 1925); |
| /* en_slowAdc = 1 & reset_sladc = 1 */ |
| dib8000_write_word(state, 1925, reg | |
| (1<<4) | (1<<2)); |
| |
| /* read access to make it works... strange ... */ |
| reg = dib8000_read_word(state, 1925); |
| msleep(20); |
| /* en_slowAdc = 1 & reset_sladc = 0 */ |
| dib8000_write_word(state, 1925, reg & ~(1<<4)); |
| |
| reg = dib8000_read_word(state, 921) & ~((0x3 << 14) |
| | (0x3 << 12)); |
| /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; |
| (Vin2 = Vcm) */ |
| dib8000_write_word(state, 921, reg | (1 << 14) |
| | (3 << 12)); |
| } |
| break; |
| |
| case DIBX000_SLOW_ADC_OFF: |
| if (state->revision == 0x8090) { |
| reg = dib8000_read_word(state, 1925); |
| /* reset_sladc = 1 en_slowAdc = 0 */ |
| dib8000_write_word(state, 1925, |
| (reg & ~(1<<2)) | (1<<4)); |
| } |
| reg_908 |= (1 << 1) | (1 << 0); |
| break; |
| |
| case DIBX000_ADC_ON: |
| reg_907 &= 0x0fff; |
| reg_908 &= 0x0003; |
| break; |
| |
| case DIBX000_ADC_OFF: // leave the VBG voltage on |
| reg_907 = (1 << 13) | (1 << 12); |
| reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1); |
| break; |
| |
| case DIBX000_VBG_ENABLE: |
| reg_907 &= ~(1 << 15); |
| break; |
| |
| case DIBX000_VBG_DISABLE: |
| reg_907 |= (1 << 15); |
| break; |
| |
| default: |
| break; |
| } |
| |
| ret |= dib8000_write_word(state, 907, reg_907); |
| ret |= dib8000_write_word(state, 908, reg_908); |
| |
| return ret; |
| } |
| |
| static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u32 timf; |
| |
| if (bw == 0) |
| bw = 6000; |
| |
| if (state->timf == 0) { |
| dprintk("using default timf\n"); |
| timf = state->timf_default; |
| } else { |
| dprintk("using updated timf\n"); |
| timf = state->timf; |
| } |
| |
| dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff)); |
| dib8000_write_word(state, 30, (u16) ((timf) & 0xffff)); |
| |
| return 0; |
| } |
| |
| static int dib8000_sad_calib(struct dib8000_state *state) |
| { |
| u8 sad_sel = 3; |
| |
| if (state->revision == 0x8090) { |
| dib8000_write_word(state, 922, (sad_sel << 2)); |
| dib8000_write_word(state, 923, 2048); |
| |
| dib8000_write_word(state, 922, (sad_sel << 2) | 0x1); |
| dib8000_write_word(state, 922, (sad_sel << 2)); |
| } else { |
| /* internal */ |
| dib8000_write_word(state, 923, (0 << 1) | (0 << 0)); |
| dib8000_write_word(state, 924, 776); |
| |
| /* do the calibration */ |
| dib8000_write_word(state, 923, (1 << 0)); |
| dib8000_write_word(state, 923, (0 << 0)); |
| } |
| |
| msleep(1); |
| return 0; |
| } |
| |
| static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| if (value > 4095) |
| value = 4095; |
| state->wbd_ref = value; |
| return dib8000_write_word(state, 106, value); |
| } |
| |
| static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw) |
| { |
| dprintk("ifreq: %d %x, inversion: %d\n", bw->ifreq, bw->ifreq, bw->ifreq >> 25); |
| if (state->revision != 0x8090) { |
| dib8000_write_word(state, 23, |
| (u16) (((bw->internal * 1000) >> 16) & 0xffff)); |
| dib8000_write_word(state, 24, |
| (u16) ((bw->internal * 1000) & 0xffff)); |
| } else { |
| dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff)); |
| dib8000_write_word(state, 24, |
| (u16) ((bw->internal / 2 * 1000) & 0xffff)); |
| } |
| dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff)); |
| dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff)); |
| dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003)); |
| |
| if (state->revision != 0x8090) |
| dib8000_write_word(state, 922, bw->sad_cfg); |
| } |
| |
| static void dib8000_reset_pll(struct dib8000_state *state) |
| { |
| const struct dibx000_bandwidth_config *pll = state->cfg.pll; |
| u16 clk_cfg1, reg; |
| |
| if (state->revision != 0x8090) { |
| dib8000_write_word(state, 901, |
| (pll->pll_prediv << 8) | (pll->pll_ratio << 0)); |
| |
| clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) | |
| (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | |
| (1 << 3) | (pll->pll_range << 1) | |
| (pll->pll_reset << 0); |
| |
| dib8000_write_word(state, 902, clk_cfg1); |
| clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3); |
| dib8000_write_word(state, 902, clk_cfg1); |
| |
| dprintk("clk_cfg1: 0x%04x\n", clk_cfg1); |
| |
| /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */ |
| if (state->cfg.pll->ADClkSrc == 0) |
| dib8000_write_word(state, 904, |
| (0 << 15) | (0 << 12) | (0 << 10) | |
| (pll->modulo << 8) | |
| (pll->ADClkSrc << 7) | (0 << 1)); |
| else if (state->cfg.refclksel != 0) |
| dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | |
| ((state->cfg.refclksel & 0x3) << 10) | |
| (pll->modulo << 8) | |
| (pll->ADClkSrc << 7) | (0 << 1)); |
| else |
| dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | |
| (3 << 10) | (pll->modulo << 8) | |
| (pll->ADClkSrc << 7) | (0 << 1)); |
| } else { |
| dib8000_write_word(state, 1856, (!pll->pll_reset<<13) | |
| (pll->pll_range<<12) | (pll->pll_ratio<<6) | |
| (pll->pll_prediv)); |
| |
| reg = dib8000_read_word(state, 1857); |
| dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15)); |
| |
| reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */ |
| dib8000_write_word(state, 1858, reg | 1); |
| |
| dib8000_write_word(state, 904, (pll->modulo << 8)); |
| } |
| |
| dib8000_reset_pll_common(state, pll); |
| } |
| |
| static int dib8000_update_pll(struct dvb_frontend *fe, |
| struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856); |
| u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ; |
| u32 internal, xtal; |
| |
| /* get back old values */ |
| prediv = reg_1856 & 0x3f; |
| loopdiv = (reg_1856 >> 6) & 0x3f; |
| |
| if ((pll == NULL) || (pll->pll_prediv == prediv && |
| pll->pll_ratio == loopdiv)) |
| return -EINVAL; |
| |
| dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio); |
| if (state->revision == 0x8090) { |
| reg_1856 &= 0xf000; |
| reg_1857 = dib8000_read_word(state, 1857); |
| /* disable PLL */ |
| dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15)); |
| |
| dib8000_write_word(state, 1856, reg_1856 | |
| ((pll->pll_ratio & 0x3f) << 6) | |
| (pll->pll_prediv & 0x3f)); |
| |
| /* write new system clk into P_sec_len */ |
| internal = dib8000_read32(state, 23) / 1000; |
| dprintk("Old Internal = %d\n", internal); |
| xtal = 2 * (internal / loopdiv) * prediv; |
| internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio; |
| dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal, internal/1000, internal/2000, internal/8000); |
| dprintk("New Internal = %d\n", internal); |
| |
| dib8000_write_word(state, 23, |
| (u16) (((internal / 2) >> 16) & 0xffff)); |
| dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff)); |
| /* enable PLL */ |
| dib8000_write_word(state, 1857, reg_1857 | (1 << 15)); |
| |
| while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1) |
| dprintk("Waiting for PLL to lock\n"); |
| |
| /* verify */ |
| reg_1856 = dib8000_read_word(state, 1856); |
| dprintk("PLL Updated with prediv = %d and loopdiv = %d\n", |
| reg_1856&0x3f, (reg_1856>>6)&0x3f); |
| } else { |
| if (bw != state->current_demod_bw) { |
| /** Bandwidth change => force PLL update **/ |
| dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv); |
| |
| if (state->cfg.pll->pll_prediv != oldprediv) { |
| /** Full PLL change only if prediv is changed **/ |
| |
| /** full update => bypass and reconfigure **/ |
| dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio); |
| dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */ |
| dib8000_reset_pll(state); |
| dib8000_write_word(state, 898, 0x0004); /* sad */ |
| } else |
| ratio = state->cfg.pll->pll_ratio; |
| |
| state->current_demod_bw = bw; |
| } |
| |
| if (ratio != 0) { |
| /** ratio update => only change ratio **/ |
| dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state->cfg.pll->pll_prediv, ratio); |
| dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */ |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dib8000_reset_gpio(struct dib8000_state *st) |
| { |
| /* reset the GPIOs */ |
| dib8000_write_word(st, 1029, st->cfg.gpio_dir); |
| dib8000_write_word(st, 1030, st->cfg.gpio_val); |
| |
| /* TODO 782 is P_gpio_od */ |
| |
| dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos); |
| |
| dib8000_write_word(st, 1037, st->cfg.pwm_freq_div); |
| return 0; |
| } |
| |
| static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val) |
| { |
| st->cfg.gpio_dir = dib8000_read_word(st, 1029); |
| st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */ |
| st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */ |
| dib8000_write_word(st, 1029, st->cfg.gpio_dir); |
| |
| st->cfg.gpio_val = dib8000_read_word(st, 1030); |
| st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */ |
| st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */ |
| dib8000_write_word(st, 1030, st->cfg.gpio_val); |
| |
| dprintk("gpio dir: %x: gpio val: %x\n", st->cfg.gpio_dir, st->cfg.gpio_val); |
| |
| return 0; |
| } |
| |
| static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| return dib8000_cfg_gpio(state, num, dir, val); |
| } |
| |
| static const u16 dib8000_defaults[] = { |
| /* auto search configuration - lock0 by default waiting |
| * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */ |
| 3, 7, |
| 0x0004, |
| 0x0400, |
| 0x0814, |
| |
| 12, 11, |
| 0x001b, |
| 0x7740, |
| 0x005b, |
| 0x8d80, |
| 0x01c9, |
| 0xc380, |
| 0x0000, |
| 0x0080, |
| 0x0000, |
| 0x0090, |
| 0x0001, |
| 0xd4c0, |
| |
| /*1, 32, |
| 0x6680 // P_corm_thres Lock algorithms configuration */ |
| |
| 11, 80, /* set ADC level to -16 */ |
| (1 << 13) - 825 - 117, |
| (1 << 13) - 837 - 117, |
| (1 << 13) - 811 - 117, |
| (1 << 13) - 766 - 117, |
| (1 << 13) - 737 - 117, |
| (1 << 13) - 693 - 117, |
| (1 << 13) - 648 - 117, |
| (1 << 13) - 619 - 117, |
| (1 << 13) - 575 - 117, |
| (1 << 13) - 531 - 117, |
| (1 << 13) - 501 - 117, |
| |
| 4, 108, |
| 0, |
| 0, |
| 0, |
| 0, |
| |
| 1, 175, |
| 0x0410, |
| 1, 179, |
| 8192, // P_fft_nb_to_cut |
| |
| 6, 181, |
| 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800 |
| 0x2800, |
| 0x2800, |
| 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800 |
| 0x2800, |
| 0x2800, |
| |
| 2, 193, |
| 0x0666, // P_pha3_thres |
| 0x0000, // P_cti_use_cpe, P_cti_use_prog |
| |
| 2, 205, |
| 0x200f, // P_cspu_regul, P_cspu_win_cut |
| 0x000f, // P_des_shift_work |
| |
| 5, 215, |
| 0x023d, // P_adp_regul_cnt |
| 0x00a4, // P_adp_noise_cnt |
| 0x00a4, // P_adp_regul_ext |
| 0x7ff0, // P_adp_noise_ext |
| 0x3ccc, // P_adp_fil |
| |
| 1, 230, |
| 0x0000, // P_2d_byp_ti_num |
| |
| 1, 263, |
| 0x800, //P_equal_thres_wgn |
| |
| 1, 268, |
| (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode |
| |
| 1, 270, |
| 0x0001, // P_div_lock0_wait |
| 1, 285, |
| 0x0020, //p_fec_ |
| 1, 299, |
| 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */ |
| |
| 1, 338, |
| (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1 |
| (1 << 10) | |
| (0 << 9) | /* P_ctrl_pre_freq_inh=0 */ |
| (3 << 5) | /* P_ctrl_pre_freq_step=3 */ |
| (1 << 0), /* P_pre_freq_win_len=1 */ |
| |
| 0, |
| }; |
| |
| static u16 dib8000_identify(struct i2c_device *client) |
| { |
| u16 value; |
| |
| //because of glitches sometimes |
| value = dib8000_i2c_read16(client, 896); |
| |
| if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) { |
| dprintk("wrong Vendor ID (read=0x%x)\n", value); |
| return 0; |
| } |
| |
| value = dib8000_i2c_read16(client, 897); |
| if (value != 0x8000 && value != 0x8001 && |
| value != 0x8002 && value != 0x8090) { |
| dprintk("wrong Device ID (%x)\n", value); |
| return 0; |
| } |
| |
| switch (value) { |
| case 0x8000: |
| dprintk("found DiB8000A\n"); |
| break; |
| case 0x8001: |
| dprintk("found DiB8000B\n"); |
| break; |
| case 0x8002: |
| dprintk("found DiB8000C\n"); |
| break; |
| case 0x8090: |
| dprintk("found DiB8096P\n"); |
| break; |
| } |
| return value; |
| } |
| |
| static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc); |
| |
| static void dib8000_reset_stats(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| u32 ucb; |
| |
| memset(&c->strength, 0, sizeof(c->strength)); |
| memset(&c->cnr, 0, sizeof(c->cnr)); |
| memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); |
| memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); |
| memset(&c->block_error, 0, sizeof(c->block_error)); |
| |
| c->strength.len = 1; |
| c->cnr.len = 1; |
| c->block_error.len = 1; |
| c->block_count.len = 1; |
| c->post_bit_error.len = 1; |
| c->post_bit_count.len = 1; |
| |
| c->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| c->strength.stat[0].uvalue = 0; |
| |
| c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| |
| dib8000_read_unc_blocks(fe, &ucb); |
| |
| state->init_ucb = -ucb; |
| state->ber_jiffies_stats = 0; |
| state->per_jiffies_stats = 0; |
| memset(&state->ber_jiffies_stats_layer, 0, |
| sizeof(state->ber_jiffies_stats_layer)); |
| } |
| |
| static int dib8000_reset(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| if ((state->revision = dib8000_identify(&state->i2c)) == 0) |
| return -EINVAL; |
| |
| /* sram lead in, rdy */ |
| if (state->revision != 0x8090) |
| dib8000_write_word(state, 1287, 0x0003); |
| |
| if (state->revision == 0x8000) |
| dprintk("error : dib8000 MA not supported\n"); |
| |
| dibx000_reset_i2c_master(&state->i2c_master); |
| |
| dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| |
| /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ |
| dib8000_set_adc_state(state, DIBX000_ADC_OFF); |
| |
| /* restart all parts */ |
| dib8000_write_word(state, 770, 0xffff); |
| dib8000_write_word(state, 771, 0xffff); |
| dib8000_write_word(state, 772, 0xfffc); |
| dib8000_write_word(state, 898, 0x000c); /* restart sad */ |
| if (state->revision == 0x8090) |
| dib8000_write_word(state, 1280, 0x0045); |
| else |
| dib8000_write_word(state, 1280, 0x004d); |
| dib8000_write_word(state, 1281, 0x000c); |
| |
| dib8000_write_word(state, 770, 0x0000); |
| dib8000_write_word(state, 771, 0x0000); |
| dib8000_write_word(state, 772, 0x0000); |
| dib8000_write_word(state, 898, 0x0004); // sad |
| dib8000_write_word(state, 1280, 0x0000); |
| dib8000_write_word(state, 1281, 0x0000); |
| |
| /* drives */ |
| if (state->revision != 0x8090) { |
| if (state->cfg.drives) |
| dib8000_write_word(state, 906, state->cfg.drives); |
| else { |
| dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n"); |
| /* min drive SDRAM - not optimal - adjust */ |
| dib8000_write_word(state, 906, 0x2d98); |
| } |
| } |
| |
| dib8000_reset_pll(state); |
| if (state->revision != 0x8090) |
| dib8000_write_word(state, 898, 0x0004); |
| |
| if (dib8000_reset_gpio(state) != 0) |
| dprintk("GPIO reset was not successful.\n"); |
| |
| if ((state->revision != 0x8090) && |
| (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0)) |
| dprintk("OUTPUT_MODE could not be reset.\n"); |
| |
| state->current_agc = NULL; |
| |
| // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... |
| /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */ |
| if (state->cfg.pll->ifreq == 0) |
| dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */ |
| else |
| dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */ |
| |
| { |
| u16 l = 0, r; |
| const u16 *n; |
| n = dib8000_defaults; |
| l = *n++; |
| while (l) { |
| r = *n++; |
| do { |
| dib8000_write_word(state, r, *n++); |
| r++; |
| } while (--l); |
| l = *n++; |
| } |
| } |
| |
| state->isdbt_cfg_loaded = 0; |
| |
| //div_cfg override for special configs |
| if ((state->revision != 8090) && (state->cfg.div_cfg != 0)) |
| dib8000_write_word(state, 903, state->cfg.div_cfg); |
| |
| /* unforce divstr regardless whether i2c enumeration was done or not */ |
| dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1)); |
| |
| dib8000_set_bandwidth(fe, 6000); |
| |
| dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| dib8000_sad_calib(state); |
| if (state->revision != 0x8090) |
| dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF); |
| |
| /* ber_rs_len = 3 */ |
| dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); |
| |
| dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); |
| |
| dib8000_reset_stats(fe); |
| |
| return 0; |
| } |
| |
| static void dib8000_restart_agc(struct dib8000_state *state) |
| { |
| // P_restart_iqc & P_restart_agc |
| dib8000_write_word(state, 770, 0x0a00); |
| dib8000_write_word(state, 770, 0x0000); |
| } |
| |
| static int dib8000_update_lna(struct dib8000_state *state) |
| { |
| u16 dyn_gain; |
| |
| if (state->cfg.update_lna) { |
| // read dyn_gain here (because it is demod-dependent and not tuner) |
| dyn_gain = dib8000_read_word(state, 390); |
| |
| if (state->cfg.update_lna(state->fe[0], dyn_gain)) { |
| dib8000_restart_agc(state); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int dib8000_set_agc_config(struct dib8000_state *state, u8 band) |
| { |
| struct dibx000_agc_config *agc = NULL; |
| int i; |
| u16 reg; |
| |
| if (state->current_band == band && state->current_agc != NULL) |
| return 0; |
| state->current_band = band; |
| |
| for (i = 0; i < state->cfg.agc_config_count; i++) |
| if (state->cfg.agc[i].band_caps & band) { |
| agc = &state->cfg.agc[i]; |
| break; |
| } |
| |
| if (agc == NULL) { |
| dprintk("no valid AGC configuration found for band 0x%02x\n", band); |
| return -EINVAL; |
| } |
| |
| state->current_agc = agc; |
| |
| /* AGC */ |
| dib8000_write_word(state, 76, agc->setup); |
| dib8000_write_word(state, 77, agc->inv_gain); |
| dib8000_write_word(state, 78, agc->time_stabiliz); |
| dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock); |
| |
| // Demod AGC loop configuration |
| dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp); |
| dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp); |
| |
| dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", |
| state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| |
| /* AGC continued */ |
| if (state->wbd_ref != 0) |
| dib8000_write_word(state, 106, state->wbd_ref); |
| else // use default |
| dib8000_write_word(state, 106, agc->wbd_ref); |
| |
| if (state->revision == 0x8090) { |
| reg = dib8000_read_word(state, 922) & (0x3 << 2); |
| dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2)); |
| } |
| |
| dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); |
| dib8000_write_word(state, 108, agc->agc1_max); |
| dib8000_write_word(state, 109, agc->agc1_min); |
| dib8000_write_word(state, 110, agc->agc2_max); |
| dib8000_write_word(state, 111, agc->agc2_min); |
| dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2); |
| dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| |
| dib8000_write_word(state, 75, agc->agc1_pt3); |
| if (state->revision != 0x8090) |
| dib8000_write_word(state, 923, |
| (dib8000_read_word(state, 923) & 0xffe3) | |
| (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); |
| |
| return 0; |
| } |
| |
| static void dib8000_pwm_agc_reset(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))); |
| } |
| |
| static int dib8000_agc_soft_split(struct dib8000_state *state) |
| { |
| u16 agc, split_offset; |
| |
| if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) |
| return 0; |
| |
| // n_agc_global |
| agc = dib8000_read_word(state, 390); |
| |
| if (agc > state->current_agc->split.min_thres) |
| split_offset = state->current_agc->split.min; |
| else if (agc < state->current_agc->split.max_thres) |
| split_offset = state->current_agc->split.max; |
| else |
| split_offset = state->current_agc->split.max * |
| (agc - state->current_agc->split.min_thres) / |
| (state->current_agc->split.max_thres - state->current_agc->split.min_thres); |
| |
| dprintk("AGC split_offset: %d\n", split_offset); |
| |
| // P_agc_force_split and P_agc_split_offset |
| dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset); |
| return 5000; |
| } |
| |
| static int dib8000_agc_startup(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| int ret = 0; |
| u16 reg; |
| u32 upd_demod_gain_period = 0x8000; |
| |
| switch (*tune_state) { |
| case CT_AGC_START: |
| // set power-up level: interf+analog+AGC |
| |
| if (state->revision != 0x8090) |
| dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| else { |
| dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| |
| reg = dib8000_read_word(state, 1947)&0xff00; |
| dib8000_write_word(state, 1946, |
| upd_demod_gain_period & 0xFFFF); |
| /* bit 14 = enDemodGain */ |
| dib8000_write_word(state, 1947, reg | (1<<14) | |
| ((upd_demod_gain_period >> 16) & 0xFF)); |
| |
| /* enable adc i & q */ |
| reg = dib8000_read_word(state, 1920); |
| dib8000_write_word(state, 1920, (reg | 0x3) & |
| (~(1 << 7))); |
| } |
| |
| if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) { |
| *tune_state = CT_AGC_STOP; |
| state->status = FE_STATUS_TUNE_FAILED; |
| break; |
| } |
| |
| ret = 70; |
| *tune_state = CT_AGC_STEP_0; |
| break; |
| |
| case CT_AGC_STEP_0: |
| //AGC initialization |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(fe, 1); |
| |
| dib8000_restart_agc(state); |
| |
| // wait AGC rough lock time |
| ret = 50; |
| *tune_state = CT_AGC_STEP_1; |
| break; |
| |
| case CT_AGC_STEP_1: |
| // wait AGC accurate lock time |
| ret = 70; |
| |
| if (dib8000_update_lna(state)) |
| // wait only AGC rough lock time |
| ret = 50; |
| else |
| *tune_state = CT_AGC_STEP_2; |
| break; |
| |
| case CT_AGC_STEP_2: |
| dib8000_agc_soft_split(state); |
| |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(fe, 0); |
| |
| *tune_state = CT_AGC_STOP; |
| break; |
| default: |
| ret = dib8000_agc_soft_split(state); |
| break; |
| } |
| return ret; |
| |
| } |
| |
| static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive) |
| { |
| u16 reg; |
| |
| drive &= 0x7; |
| |
| /* drive host bus 2, 3, 4 */ |
| reg = dib8000_read_word(state, 1798) & |
| ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive<<12) | (drive<<6) | drive; |
| dib8000_write_word(state, 1798, reg); |
| |
| /* drive host bus 5,6 */ |
| reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); |
| reg |= (drive<<8) | (drive<<2); |
| dib8000_write_word(state, 1799, reg); |
| |
| /* drive host bus 7, 8, 9 */ |
| reg = dib8000_read_word(state, 1800) & |
| ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive<<12) | (drive<<6) | drive; |
| dib8000_write_word(state, 1800, reg); |
| |
| /* drive host bus 10, 11 */ |
| reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); |
| reg |= (drive<<8) | (drive<<2); |
| dib8000_write_word(state, 1801, reg); |
| |
| /* drive host bus 12, 13, 14 */ |
| reg = dib8000_read_word(state, 1802) & |
| ~(0x7 | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive<<12) | (drive<<6) | drive; |
| dib8000_write_word(state, 1802, reg); |
| } |
| |
| static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout, |
| u32 insertExtSynchro, u32 syncSize) |
| { |
| u32 quantif = 3; |
| u32 nom = (insertExtSynchro * P_Kin+syncSize); |
| u32 denom = P_Kout; |
| u32 syncFreq = ((nom << quantif) / denom); |
| |
| if ((syncFreq & ((1 << quantif) - 1)) != 0) |
| syncFreq = (syncFreq >> quantif) + 1; |
| else |
| syncFreq = (syncFreq >> quantif); |
| |
| if (syncFreq != 0) |
| syncFreq = syncFreq - 1; |
| |
| return syncFreq; |
| } |
| |
| static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin, |
| u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, |
| u32 syncWord, u32 syncSize) |
| { |
| dprintk("Configure DibStream Tx\n"); |
| |
| dib8000_write_word(state, 1615, 1); |
| dib8000_write_word(state, 1603, P_Kin); |
| dib8000_write_word(state, 1605, P_Kout); |
| dib8000_write_word(state, 1606, insertExtSynchro); |
| dib8000_write_word(state, 1608, synchroMode); |
| dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff); |
| dib8000_write_word(state, 1610, syncWord & 0xffff); |
| dib8000_write_word(state, 1612, syncSize); |
| dib8000_write_word(state, 1615, 0); |
| } |
| |
| static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin, |
| u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, |
| u32 syncWord, u32 syncSize, u32 dataOutRate) |
| { |
| u32 syncFreq; |
| |
| dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode); |
| |
| if ((P_Kin != 0) && (P_Kout != 0)) { |
| syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout, |
| insertExtSynchro, syncSize); |
| dib8000_write_word(state, 1542, syncFreq); |
| } |
| |
| dib8000_write_word(state, 1554, 1); |
| dib8000_write_word(state, 1536, P_Kin); |
| dib8000_write_word(state, 1537, P_Kout); |
| dib8000_write_word(state, 1539, synchroMode); |
| dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff); |
| dib8000_write_word(state, 1541, syncWord & 0xffff); |
| dib8000_write_word(state, 1543, syncSize); |
| dib8000_write_word(state, 1544, dataOutRate); |
| dib8000_write_word(state, 1554, 0); |
| } |
| |
| static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff) |
| { |
| u16 reg_1287; |
| |
| reg_1287 = dib8000_read_word(state, 1287); |
| |
| switch (onoff) { |
| case 1: |
| reg_1287 &= ~(1 << 8); |
| break; |
| case 0: |
| reg_1287 |= (1 << 8); |
| break; |
| } |
| |
| dib8000_write_word(state, 1287, reg_1287); |
| } |
| |
| static void dib8096p_configMpegMux(struct dib8000_state *state, |
| u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) |
| { |
| u16 reg_1287; |
| |
| dprintk("Enable Mpeg mux\n"); |
| |
| dib8096p_enMpegMux(state, 0); |
| |
| /* If the input mode is MPEG do not divide the serial clock */ |
| if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) |
| enSerialClkDiv2 = 0; |
| |
| reg_1287 = ((pulseWidth & 0x1f) << 3) | |
| ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1); |
| dib8000_write_word(state, 1287, reg_1287); |
| |
| dib8096p_enMpegMux(state, 1); |
| } |
| |
| static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode) |
| { |
| u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7); |
| |
| switch (mode) { |
| case MPEG_ON_DIBTX: |
| dprintk("SET MPEG ON DIBSTREAM TX\n"); |
| dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); |
| reg_1288 |= (1 << 9); break; |
| case DIV_ON_DIBTX: |
| dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); |
| dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); |
| reg_1288 |= (1 << 8); break; |
| case ADC_ON_DIBTX: |
| dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); |
| dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); |
| reg_1288 |= (1 << 7); break; |
| default: |
| break; |
| } |
| dib8000_write_word(state, 1288, reg_1288); |
| } |
| |
| static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode) |
| { |
| u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4); |
| |
| switch (mode) { |
| case DEMOUT_ON_HOSTBUS: |
| dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); |
| dib8096p_enMpegMux(state, 0); |
| reg_1288 |= (1 << 6); |
| break; |
| case DIBTX_ON_HOSTBUS: |
| dprintk("SET DIBSTREAM TX ON HOST BUS\n"); |
| dib8096p_enMpegMux(state, 0); |
| reg_1288 |= (1 << 5); |
| break; |
| case MPEG_ON_HOSTBUS: |
| dprintk("SET MPEG MUX ON HOST BUS\n"); |
| reg_1288 |= (1 << 4); |
| break; |
| default: |
| break; |
| } |
| dib8000_write_word(state, 1288, reg_1288); |
| } |
| |
| static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 reg_1287; |
| |
| switch (onoff) { |
| case 0: /* only use the internal way - not the diversity input */ |
| dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", |
| __func__); |
| /* outputRate = 8 */ |
| dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); |
| |
| /* Do not divide the serial clock of MPEG MUX in |
| SERIAL MODE in case input mode MPEG is used */ |
| reg_1287 = dib8000_read_word(state, 1287); |
| /* enSerialClkDiv2 == 1 ? */ |
| if ((reg_1287 & 0x1) == 1) { |
| /* force enSerialClkDiv2 = 0 */ |
| reg_1287 &= ~0x1; |
| dib8000_write_word(state, 1287, reg_1287); |
| } |
| state->input_mode_mpeg = 1; |
| break; |
| case 1: /* both ways */ |
| case 2: /* only the diversity input */ |
| dprintk("%s ON : Enable diversity INPUT\n", __func__); |
| dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); |
| state->input_mode_mpeg = 0; |
| break; |
| } |
| |
| dib8000_set_diversity_in(state->fe[0], onoff); |
| return 0; |
| } |
| |
| static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 outreg, smo_mode, fifo_threshold; |
| u8 prefer_mpeg_mux_use = 1; |
| int ret = 0; |
| |
| state->output_mode = mode; |
| dib8096p_host_bus_drive(state, 1); |
| |
| fifo_threshold = 1792; |
| smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1); |
| outreg = dib8000_read_word(state, 1286) & |
| ~((1 << 10) | (0x7 << 6) | (1 << 1)); |
| |
| switch (mode) { |
| case OUTMODE_HIGH_Z: |
| outreg = 0; |
| break; |
| |
| case OUTMODE_MPEG2_SERIAL: |
| if (prefer_mpeg_mux_use) { |
| dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n"); |
| dib8096p_configMpegMux(state, 3, 1, 1); |
| dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| } else {/* Use Smooth block */ |
| dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n"); |
| dib8096p_setHostBusMux(state, |
| DEMOUT_ON_HOSTBUS); |
| outreg |= (2 << 6) | (0 << 1); |
| } |
| break; |
| |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| if (prefer_mpeg_mux_use) { |
| dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); |
| dib8096p_configMpegMux(state, 2, 0, 0); |
| dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| } else { /* Use Smooth block */ |
| dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n"); |
| dib8096p_setHostBusMux(state, |
| DEMOUT_ON_HOSTBUS); |
| outreg |= (0 << 6); |
| } |
| break; |
| |
| case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ |
| dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n"); |
| dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (1 << 6); |
| break; |
| |
| case OUTMODE_MPEG2_FIFO: |
| /* Using Smooth block because not supported |
| by new Mpeg Mux bloc */ |
| dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n"); |
| dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (5 << 6); |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| break; |
| |
| case OUTMODE_DIVERSITY: |
| dprintk("dib8096P setting output mode MODE_DIVERSITY\n"); |
| dib8096p_setDibTxMux(state, DIV_ON_DIBTX); |
| dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| break; |
| |
| case OUTMODE_ANALOG_ADC: |
| dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n"); |
| dib8096p_setDibTxMux(state, ADC_ON_DIBTX); |
| dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| break; |
| } |
| |
| if (mode != OUTMODE_HIGH_Z) |
| outreg |= (1<<10); |
| |
| dprintk("output_mpeg2_in_188_bytes = %d\n", |
| state->cfg.output_mpeg2_in_188_bytes); |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5); |
| |
| ret |= dib8000_write_word(state, 299, smo_mode); |
| /* synchronous fread */ |
| ret |= dib8000_write_word(state, 299 + 1, fifo_threshold); |
| ret |= dib8000_write_word(state, 1286, outreg); |
| |
| return ret; |
| } |
| |
| static int map_addr_to_serpar_number(struct i2c_msg *msg) |
| { |
| if (msg->buf[0] <= 15) |
| msg->buf[0] -= 1; |
| else if (msg->buf[0] == 17) |
| msg->buf[0] = 15; |
| else if (msg->buf[0] == 16) |
| msg->buf[0] = 17; |
| else if (msg->buf[0] == 19) |
| msg->buf[0] = 16; |
| else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) |
| msg->buf[0] -= 3; |
| else if (msg->buf[0] == 28) |
| msg->buf[0] = 23; |
| else if (msg->buf[0] == 99) |
| msg->buf[0] = 99; |
| else |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num) |
| { |
| struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| u8 n_overflow = 1; |
| u16 i = 1000; |
| u16 serpar_num = msg[0].buf[0]; |
| |
| while (n_overflow == 1 && i) { |
| n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; |
| i--; |
| if (i == 0) |
| dprintk("Tuner ITF: write busy (overflow)\n"); |
| } |
| dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); |
| dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); |
| |
| return num; |
| } |
| |
| static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num) |
| { |
| struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| u8 n_overflow = 1, n_empty = 1; |
| u16 i = 1000; |
| u16 serpar_num = msg[0].buf[0]; |
| u16 read_word; |
| |
| while (n_overflow == 1 && i) { |
| n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1; |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: read busy (overflow)\n"); |
| } |
| dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f)); |
| |
| i = 1000; |
| while (n_empty == 1 && i) { |
| n_empty = dib8000_read_word(state, 1984)&0x1; |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: read busy (empty)\n"); |
| } |
| |
| read_word = dib8000_read_word(state, 1987); |
| msg[1].buf[0] = (read_word >> 8) & 0xff; |
| msg[1].buf[1] = (read_word) & 0xff; |
| |
| return num; |
| } |
| |
| static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num) |
| { |
| if (map_addr_to_serpar_number(&msg[0]) == 0) { |
| if (num == 1) /* write */ |
| return dib8096p_tuner_write_serpar(i2c_adap, msg, 1); |
| else /* read */ |
| return dib8096p_tuner_read_serpar(i2c_adap, msg, 2); |
| } |
| return num; |
| } |
| |
| static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num, u16 apb_address) |
| { |
| struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| u16 word; |
| |
| if (num == 1) { /* write */ |
| dib8000_write_word(state, apb_address, |
| ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); |
| } else { |
| word = dib8000_read_word(state, apb_address); |
| msg[1].buf[0] = (word >> 8) & 0xff; |
| msg[1].buf[1] = (word) & 0xff; |
| } |
| return num; |
| } |
| |
| static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num) |
| { |
| struct dib8000_state *state = i2c_get_adapdata(i2c_adap); |
| u16 apb_address = 0, word; |
| int i = 0; |
| |
| switch (msg[0].buf[0]) { |
| case 0x12: |
| apb_address = 1920; |
| break; |
| case 0x14: |
| apb_address = 1921; |
| break; |
| case 0x24: |
| apb_address = 1922; |
| break; |
| case 0x1a: |
| apb_address = 1923; |
| break; |
| case 0x22: |
| apb_address = 1924; |
| break; |
| case 0x33: |
| apb_address = 1926; |
| break; |
| case 0x34: |
| apb_address = 1927; |
| break; |
| case 0x35: |
| apb_address = 1928; |
| break; |
| case 0x36: |
| apb_address = 1929; |
| break; |
| case 0x37: |
| apb_address = 1930; |
| break; |
| case 0x38: |
| apb_address = 1931; |
| break; |
| case 0x39: |
| apb_address = 1932; |
| break; |
| case 0x2a: |
| apb_address = 1935; |
| break; |
| case 0x2b: |
| apb_address = 1936; |
| break; |
| case 0x2c: |
| apb_address = 1937; |
| break; |
| case 0x2d: |
| apb_address = 1938; |
| break; |
| case 0x2e: |
| apb_address = 1939; |
| break; |
| case 0x2f: |
| apb_address = 1940; |
| break; |
| case 0x30: |
| apb_address = 1941; |
| break; |
| case 0x31: |
| apb_address = 1942; |
| break; |
| case 0x32: |
| apb_address = 1943; |
| break; |
| case 0x3e: |
| apb_address = 1944; |
| break; |
| case 0x3f: |
| apb_address = 1945; |
| break; |
| case 0x40: |
| apb_address = 1948; |
| break; |
| case 0x25: |
| apb_address = 936; |
| break; |
| case 0x26: |
| apb_address = 937; |
| break; |
| case 0x27: |
| apb_address = 938; |
| break; |
| case 0x28: |
| apb_address = 939; |
| break; |
| case 0x1d: |
| /* get sad sel request */ |
| i = ((dib8000_read_word(state, 921) >> 12)&0x3); |
| word = dib8000_read_word(state, 924+i); |
| msg[1].buf[0] = (word >> 8) & 0xff; |
| msg[1].buf[1] = (word) & 0xff; |
| return num; |
| case 0x1f: |
| if (num == 1) { /* write */ |
| word = (u16) ((msg[0].buf[1] << 8) | |
| msg[0].buf[2]); |
| /* in the VGAMODE Sel are located on bit 0/1 */ |
| word &= 0x3; |
| word = (dib8000_read_word(state, 921) & |
| ~(3<<12)) | (word<<12); |
| /* Set the proper input */ |
| dib8000_write_word(state, 921, word); |
| return num; |
| } |
| } |
| |
| if (apb_address != 0) /* R/W access via APB */ |
| return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address); |
| else /* R/W access via SERPAR */ |
| return dib8096p_tuner_rw_serpar(i2c_adap, msg, num); |
| |
| return 0; |
| } |
| |
| static u32 dib8096p_i2c_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C; |
| } |
| |
| static const struct i2c_algorithm dib8096p_tuner_xfer_algo = { |
| .master_xfer = dib8096p_tuner_xfer, |
| .functionality = dib8096p_i2c_func, |
| }; |
| |
| static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *st = fe->demodulator_priv; |
| return &st->dib8096p_tuner_adap; |
| } |
| |
| static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 en_cur_state; |
| |
| dprintk("sleep dib8096p: %d\n", onoff); |
| |
| en_cur_state = dib8000_read_word(state, 1922); |
| |
| /* LNAs and MIX are ON and therefore it is a valid configuration */ |
| if (en_cur_state > 0xff) |
| state->tuner_enable = en_cur_state ; |
| |
| if (onoff) |
| en_cur_state &= 0x00ff; |
| else { |
| if (state->tuner_enable != 0) |
| en_cur_state = state->tuner_enable; |
| } |
| |
| dib8000_write_word(state, 1922, en_cur_state); |
| |
| return 0; |
| } |
| |
| static const s32 lut_1000ln_mant[] = |
| { |
| 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600 |
| }; |
| |
| static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u32 ix = 0, tmp_val = 0, exp = 0, mant = 0; |
| s32 val; |
| |
| val = dib8000_read32(state, 384); |
| if (mode) { |
| tmp_val = val; |
| while (tmp_val >>= 1) |
| exp++; |
| mant = (val * 1000 / (1<<exp)); |
| ix = (u8)((mant-1000)/100); /* index of the LUT */ |
| val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); |
| val = (val*256)/1000; |
| } |
| return val; |
| } |
| |
| static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| int val = 0; |
| |
| switch (IQ) { |
| case 1: |
| val = dib8000_read_word(state, 403); |
| break; |
| case 0: |
| val = dib8000_read_word(state, 404); |
| break; |
| } |
| if (val & 0x200) |
| val -= 1024; |
| |
| return val; |
| } |
| |
| static void dib8000_update_timf(struct dib8000_state *state) |
| { |
| u32 timf = state->timf = dib8000_read32(state, 435); |
| |
| dib8000_write_word(state, 29, (u16) (timf >> 16)); |
| dib8000_write_word(state, 30, (u16) (timf & 0xffff)); |
| dprintk("Updated timing frequency: %d (default: %d)\n", state->timf, state->timf_default); |
| } |
| |
| static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| switch (op) { |
| case DEMOD_TIMF_SET: |
| state->timf = timf; |
| break; |
| case DEMOD_TIMF_UPDATE: |
| dib8000_update_timf(state); |
| break; |
| case DEMOD_TIMF_GET: |
| break; |
| } |
| dib8000_set_bandwidth(state->fe[0], 6000); |
| |
| return state->timf; |
| } |
| |
| static const u16 adc_target_16dB[11] = { |
| 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574 |
| }; |
| |
| static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 }; |
| |
| static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation) |
| { |
| u8 cr, constellation, time_intlv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| |
| switch (c->layer[layer_index].modulation) { |
| case DQPSK: |
| constellation = 0; |
| break; |
| case QPSK: |
| constellation = 1; |
| break; |
| case QAM_16: |
| constellation = 2; |
| break; |
| case QAM_64: |
| default: |
| constellation = 3; |
| break; |
| } |
| |
| switch (c->layer[layer_index].fec) { |
| case FEC_1_2: |
| cr = 1; |
| break; |
| case FEC_2_3: |
| cr = 2; |
| break; |
| case FEC_3_4: |
| cr = 3; |
| break; |
| case FEC_5_6: |
| cr = 5; |
| break; |
| case FEC_7_8: |
| default: |
| cr = 7; |
| break; |
| } |
| |
| time_intlv = fls(c->layer[layer_index].interleaving); |
| if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1)) |
| time_intlv = 0; |
| |
| dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv); |
| if (c->layer[layer_index].segment_count > 0) { |
| switch (max_constellation) { |
| case DQPSK: |
| case QPSK: |
| if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64) |
| max_constellation = c->layer[layer_index].modulation; |
| break; |
| case QAM_16: |
| if (c->layer[layer_index].modulation == QAM_64) |
| max_constellation = c->layer[layer_index].modulation; |
| break; |
| } |
| } |
| |
| return max_constellation; |
| } |
| |
| static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */ |
| static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */ |
| static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */ |
| static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation) |
| { |
| u16 i, ana_gain = 0; |
| const u16 *adp; |
| |
| /* channel estimation fine configuration */ |
| switch (max_constellation) { |
| case QAM_64: |
| ana_gain = 0x7; |
| adp = &adp_Q64[0]; |
| break; |
| case QAM_16: |
| ana_gain = 0x7; |
| adp = &adp_Q16[0]; |
| break; |
| default: |
| ana_gain = 0; |
| adp = &adp_Qdefault[0]; |
| break; |
| } |
| |
| for (i = 0; i < 4; i++) |
| dib8000_write_word(state, 215 + i, adp[i]); |
| |
| return ana_gain; |
| } |
| |
| static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain) |
| { |
| u16 i; |
| |
| dib8000_write_word(state, 116, ana_gain); |
| |
| /* update ADC target depending on ana_gain */ |
| if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */ |
| for (i = 0; i < 10; i++) |
| dib8000_write_word(state, 80 + i, adc_target_16dB[i]); |
| } else { /* set -22dB ADC target for ana_gain=0 */ |
| for (i = 0; i < 10; i++) |
| dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355); |
| } |
| } |
| |
| static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe) |
| { |
| u16 mode = 0; |
| |
| if (state->isdbt_cfg_loaded == 0) |
| for (mode = 0; mode < 24; mode++) |
| dib8000_write_word(state, 117 + mode, ana_fe[mode]); |
| } |
| |
| static const u16 lut_prbs_2k[13] = { |
| 0x423, 0x009, 0x5C7, |
| 0x7A6, 0x3D8, 0x527, |
| 0x7FF, 0x79B, 0x3D6, |
| 0x3A2, 0x53B, 0x2F4, |
| 0x213 |
| }; |
| |
| static const u16 lut_prbs_4k[13] = { |
| 0x208, 0x0C3, 0x7B9, |
| 0x423, 0x5C7, 0x3D8, |
| 0x7FF, 0x3D6, 0x53B, |
| 0x213, 0x029, 0x0D0, |
| 0x48E |
| }; |
| |
| static const u16 lut_prbs_8k[13] = { |
| 0x740, 0x069, 0x7DD, |
| 0x208, 0x7B9, 0x5C7, |
| 0x7FF, 0x53B, 0x029, |
| 0x48E, 0x4C4, 0x367, |
| 0x684 |
| }; |
| |
| static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel) |
| { |
| int sub_channel_prbs_group = 0; |
| int prbs_group; |
| |
| sub_channel_prbs_group = subchannel / 3; |
| if (sub_channel_prbs_group >= ARRAY_SIZE(lut_prbs_2k)) |
| return 0; |
| |
| switch (state->fe[0]->dtv_property_cache.transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| prbs_group = lut_prbs_2k[sub_channel_prbs_group]; |
| break; |
| case TRANSMISSION_MODE_4K: |
| prbs_group = lut_prbs_4k[sub_channel_prbs_group]; |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| prbs_group = lut_prbs_8k[sub_channel_prbs_group]; |
| } |
| |
| dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", |
| sub_channel_prbs_group, subchannel, prbs_group); |
| |
| return prbs_group; |
| } |
| |
| static void dib8000_set_13seg_channel(struct dib8000_state *state) |
| { |
| u16 i; |
| u16 coff_pow = 0x2800; |
| |
| state->seg_mask = 0x1fff; /* All 13 segments enabled */ |
| |
| /* ---- COFF ---- Carloff, the most robust --- */ |
| if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */ |
| dib8000_write_word(state, 180, (16 << 6) | 9); |
| dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2); |
| coff_pow = 0x2800; |
| for (i = 0; i < 6; i++) |
| dib8000_write_word(state, 181+i, coff_pow); |
| |
| /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */ |
| /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */ |
| dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1); |
| |
| /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */ |
| dib8000_write_word(state, 340, (8 << 6) | (6 << 0)); |
| /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */ |
| dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); |
| |
| dib8000_write_word(state, 228, 0); /* default value */ |
| dib8000_write_word(state, 265, 31); /* default value */ |
| dib8000_write_word(state, 205, 0x200f); /* init value */ |
| } |
| |
| /* |
| * make the cpil_coff_lock more robust but slower p_coff_winlen |
| * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) |
| */ |
| |
| if (state->cfg.pll->ifreq == 0) |
| dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */ |
| |
| dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg); |
| } |
| |
| static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs) |
| { |
| u16 reg_1; |
| |
| reg_1 = dib8000_read_word(state, 1); |
| dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */ |
| } |
| |
| static void dib8000_small_fine_tune(struct dib8000_state *state) |
| { |
| u16 i; |
| const s16 *ncoeff; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| |
| dib8000_write_word(state, 352, state->seg_diff_mask); |
| dib8000_write_word(state, 353, state->seg_mask); |
| |
| /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */ |
| dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5); |
| |
| if (c->isdbt_sb_mode) { |
| /* ---- SMALL ---- */ |
| switch (c->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| ncoeff = coeff_2k_sb_1seg_dqpsk; |
| else /* QPSK or QAM */ |
| ncoeff = coeff_2k_sb_1seg; |
| } else { /* 3-segments */ |
| if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_2k_sb_3seg_0dqpsk; |
| } else { /* QPSK or QAM on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_2k_sb_3seg_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_2k_sb_3seg; |
| } |
| } |
| break; |
| case TRANSMISSION_MODE_4K: |
| if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| ncoeff = coeff_4k_sb_1seg_dqpsk; |
| else /* QPSK or QAM */ |
| ncoeff = coeff_4k_sb_1seg; |
| } else { /* 3-segments */ |
| if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_4k_sb_3seg_0dqpsk; |
| } else { /* QPSK or QAM on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_4k_sb_3seg_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_4k_sb_3seg; |
| } |
| } |
| break; |
| case TRANSMISSION_MODE_AUTO: |
| case TRANSMISSION_MODE_8K: |
| default: |
| if (c->isdbt_partial_reception == 0) { /* 1-seg */ |
| if (c->layer[0].modulation == DQPSK) /* DQPSK */ |
| ncoeff = coeff_8k_sb_1seg_dqpsk; |
| else /* QPSK or QAM */ |
| ncoeff = coeff_8k_sb_1seg; |
| } else { /* 3-segments */ |
| if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_8k_sb_3seg_0dqpsk; |
| } else { /* QPSK or QAM on central segment */ |
| if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */ |
| ncoeff = coeff_8k_sb_3seg_1dqpsk; |
| else /* QPSK or QAM on external segments */ |
| ncoeff = coeff_8k_sb_3seg; |
| } |
| } |
| break; |
| } |
| |
| for (i = 0; i < 8; i++) |
| dib8000_write_word(state, 343 + i, ncoeff[i]); |
| } |
| } |
| |
| static const u16 coff_thres_1seg[3] = {300, 150, 80}; |
| static const u16 coff_thres_3seg[3] = {350, 300, 250}; |
| static void dib8000_set_sb_channel(struct dib8000_state *state) |
| { |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| const u16 *coff; |
| u16 i; |
| |
| if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) { |
| dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */ |
| dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */ |
| } else { |
| dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */ |
| dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */ |
| } |
| |
| if (c->isdbt_partial_reception == 1) /* 3-segments */ |
| state->seg_mask = 0x00E0; |
| else /* 1-segment */ |
| state->seg_mask = 0x0040; |
| |
| dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); |
| |
| /* ---- COFF ---- Carloff, the most robust --- */ |
| /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */ |
| dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3); |
| |
| dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */ |
| dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */ |
| |
| /* Sound Broadcasting mode 1 seg */ |
| if (c->isdbt_partial_reception == 0) { |
| /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */ |
| if (state->mode == 3) |
| dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14)); |
| else |
| dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14)); |
| |
| /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */ |
| dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4); |
| coff = &coff_thres_1seg[0]; |
| } else { /* Sound Broadcasting mode 3 seg */ |
| dib8000_write_word(state, 180, 0x1fcf | (1 << 14)); |
| /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */ |
| dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4); |
| coff = &coff_thres_3seg[0]; |
| } |
| |
| dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */ |
| dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */ |
| |
| if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K) |
| dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */ |
| |
| /* Write COFF thres */ |
| for (i = 0 ; i < 3; i++) { |
| dib8000_write_word(state, 181+i, coff[i]); |
| dib8000_write_word(state, 184+i, coff[i]); |
| } |
| |
| /* |
| * make the cpil_coff_lock more robust but slower p_coff_winlen |
| * 6bits; p_coff_thres_lock 6bits (for coff lock if needed) |
| */ |
| |
| dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */ |
| |
| if (c->isdbt_partial_reception == 0) |
| dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */ |
| else |
| dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ |
| } |
| |
| static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching) |
| { |
| u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0; |
| u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ; |
| u16 max_constellation = DQPSK; |
| int init_prbs; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| |
| if (autosearching) |
| c->isdbt_partial_reception = 1; |
| |
| /* P_mode */ |
| dib8000_write_word(state, 10, (seq << 4)); |
| |
| /* init mode */ |
| state->mode = fft_to_mode(state); |
| |
| /* set guard */ |
| tmp = dib8000_read_word(state, 1); |
| dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3)); |
| |
| dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4)); |
| |
| /* signal optimization parameter */ |
| if (c->isdbt_partial_reception) { |
| state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0]; |
| for (i = 1; i < 3; i++) |
| nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; |
| for (i = 0; i < nbseg_diff; i++) |
| state->seg_diff_mask |= 1 << permu_seg[i+1]; |
| } else { |
| for (i = 0; i < 3; i++) |
| nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count; |
| for (i = 0; i < nbseg_diff; i++) |
| state->seg_diff_mask |= 1 << permu_seg[i]; |
| } |
| |
| if (state->seg_diff_mask) |
| dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200); |
| else |
| dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */ |
| |
| for (i = 0; i < 3; i++) |
| max_constellation = dib8000_set_layer(state, i, max_constellation); |
| if (autosearching == 0) { |
| state->layer_b_nb_seg = c->layer[1].segment_count; |
| state->layer_c_nb_seg = c->layer[2].segment_count; |
| } |
| |
| /* WRITE: Mode & Diff mask */ |
| dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask); |
| |
| state->differential_constellation = (state->seg_diff_mask != 0); |
| |
| /* channel estimation fine configuration */ |
| ana_gain = dib8000_adp_fine_tune(state, max_constellation); |
| |
| /* update ana_gain depending on max constellation */ |
| dib8000_update_ana_gain(state, ana_gain); |
| |
| /* ---- ANA_FE ---- */ |
| if (c->isdbt_partial_reception) /* 3-segments */ |
| dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg); |
| else |
| dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */ |
| |
| /* TSB or ISDBT ? apply it now */ |
| if (c->isdbt_sb_mode) { |
| dib8000_set_sb_channel(state); |
| init_prbs = dib8000_get_init_prbs(state, |
| c->isdbt_sb_subchannel); |
| } else { |
| dib8000_set_13seg_channel(state); |
| init_prbs = 0xfff; |
| } |
| |
| /* SMALL */ |
| dib8000_small_fine_tune(state); |
| |
| dib8000_set_subchannel_prbs(state, init_prbs); |
| |
| /* ---- CHAN_BLK ---- */ |
| for (i = 0; i < 13; i++) { |
| if ((((~state->seg_diff_mask) >> i) & 1) == 1) { |
| p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0)); |
| p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0)); |
| } |
| } |
| dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */ |
| dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */ |
| /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */ |
| |
| dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */ |
| dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */ |
| dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */ |
| |
| if (!autosearching) |
| dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */ |
| else |
| dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */ |
| |
| dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */ |
| dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */ |
| |
| dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */ |
| |
| /* ---- TMCC ---- */ |
| for (i = 0; i < 3; i++) |
| tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ; |
| |
| /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */ |
| /* Threshold is set at 1/4 of max power. */ |
| tmcc_pow *= (1 << (9-2)); |
| dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */ |
| dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */ |
| dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */ |
| /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */ |
| |
| /* ---- PHA3 ---- */ |
| if (state->isdbt_cfg_loaded == 0) |
| dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */ |
| |
| state->isdbt_cfg_loaded = 0; |
| } |
| |
| static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal, |
| u32 wait0_ms, u32 wait1_ms, u32 wait2_ms) |
| { |
| u32 value = 0; /* P_search_end0 wait time */ |
| u16 reg = 11; /* P_search_end0 start addr */ |
| |
| for (reg = 11; reg < 16; reg += 2) { |
| if (reg == 11) { |
| if (state->revision == 0x8090) |
| value = internal * wait1_ms; |
| else |
| value = internal * wait0_ms; |
| } else if (reg == 13) |
| value = internal * wait1_ms; |
| else if (reg == 15) |
| value = internal * wait2_ms; |
| dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff)); |
| dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff)); |
| } |
| return value; |
| } |
| |
| static int dib8000_autosearch_start(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| u8 slist = 0; |
| u32 value, internal = state->cfg.pll->internal; |
| |
| if (state->revision == 0x8090) |
| internal = dib8000_read32(state, 23) / 1000; |
| |
| if ((state->revision >= 0x8002) && |
| (state->autosearch_state == AS_SEARCHING_FFT)) { |
| dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */ |
| dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */ |
| |
| dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */ |
| dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */ |
| dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */ |
| dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */ |
| dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */ |
| dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */ |
| |
| if (state->revision == 0x8090) |
| value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| else |
| value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| |
| dib8000_write_word(state, 17, 0); |
| dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */ |
| dib8000_write_word(state, 19, 0); |
| dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */ |
| dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */ |
| dib8000_write_word(state, 22, value & 0xffff); |
| |
| if (state->revision == 0x8090) |
| dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */ |
| else |
| dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */ |
| dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */ |
| |
| /* P_search_param_select = (1 | 1<<4 | 1 << 8) */ |
| dib8000_write_word(state, 356, 0); |
| dib8000_write_word(state, 357, 0x111); |
| |
| dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */ |
| dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */ |
| dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */ |
| } else if ((state->revision >= 0x8002) && |
| (state->autosearch_state == AS_SEARCHING_GUARD)) { |
| c->transmission_mode = TRANSMISSION_MODE_8K; |
| c->guard_interval = GUARD_INTERVAL_1_8; |
| c->inversion = 0; |
| c->layer[0].modulation = QAM_64; |
| c->layer[0].fec = FEC_2_3; |
| c->layer[0].interleaving = 0; |
| c->layer[0].segment_count = 13; |
| |
| slist = 16; |
| c->transmission_mode = state->found_nfft; |
| |
| dib8000_set_isdbt_common_channel(state, slist, 1); |
| |
| /* set lock_mask values */ |
| dib8000_write_word(state, 6, 0x4); |
| if (state->revision == 0x8090) |
| dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */ |
| else |
| dib8000_write_word(state, 7, 0x8); |
| dib8000_write_word(state, 8, 0x1000); |
| |
| /* set lock_mask wait time values */ |
| if (state->revision == 0x8090) |
| dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| else |
| dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| |
| dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */ |
| |
| /* P_search_param_select = 0xf; look for the 4 different guard intervals */ |
| dib8000_write_word(state, 356, 0); |
| dib8000_write_word(state, 357, 0xf); |
| |
| value = dib8000_read_word(state, 0); |
| dib8000_write_word(state, 0, (u16)((1 << 15) | value)); |
| dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ |
| dib8000_write_word(state, 0, (u16)value); |
| } else { |
| c->inversion = 0; |
| c->layer[0].modulation = QAM_64; |
| c->layer[0].fec = FEC_2_3; |
| c->layer[0].interleaving = 0; |
| c->layer[0].segment_count = 13; |
| if (!c->isdbt_sb_mode) |
| c->layer[0].segment_count = 13; |
| |
| /* choose the right list, in sb, always do everything */ |
| if (c->isdbt_sb_mode) { |
| slist = 7; |
| dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); |
| } else { |
| if (c->guard_interval == GUARD_INTERVAL_AUTO) { |
| if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| c->transmission_mode = TRANSMISSION_MODE_8K; |
| c->guard_interval = GUARD_INTERVAL_1_8; |
| slist = 7; |
| dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */ |
| } else { |
| c->guard_interval = GUARD_INTERVAL_1_8; |
| slist = 3; |
| } |
| } else { |
| if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| c->transmission_mode = TRANSMISSION_MODE_8K; |
| slist = 2; |
| dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */ |
| } else |
| slist = 0; |
| } |
| } |
| dprintk("Using list for autosearch : %d\n", slist); |
| |
| dib8000_set_isdbt_common_channel(state, slist, 1); |
| |
| /* set lock_mask values */ |
| dib8000_write_word(state, 6, 0x4); |
| if (state->revision == 0x8090) |
| dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10)); |
| else |
| dib8000_write_word(state, 7, 0x8); |
| dib8000_write_word(state, 8, 0x1000); |
| |
| /* set lock_mask wait time values */ |
| if (state->revision == 0x8090) |
| dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| else |
| dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */ |
| |
| value = dib8000_read_word(state, 0); |
| dib8000_write_word(state, 0, (u16)((1 << 15) | value)); |
| dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */ |
| dib8000_write_word(state, 0, (u16)value); |
| } |
| return 0; |
| } |
| |
| static int dib8000_autosearch_irq(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 irq_pending = dib8000_read_word(state, 1284); |
| |
| if ((state->revision >= 0x8002) && |
| (state->autosearch_state == AS_SEARCHING_FFT)) { |
| if (irq_pending & 0x1) { |
| dprintk("dib8000_autosearch_irq: max correlation result available\n"); |
| return 3; |
| } |
| } else { |
| if (irq_pending & 0x1) { /* failed */ |
| dprintk("dib8000_autosearch_irq failed\n"); |
| return 1; |
| } |
| |
| if (irq_pending & 0x2) { /* succeeded */ |
| dprintk("dib8000_autosearch_irq succeeded\n"); |
| return 2; |
| } |
| } |
| |
| return 0; // still pending |
| } |
| |
| static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff) |
| { |
| u16 tmp; |
| |
| tmp = dib8000_read_word(state, 771); |
| if (onoff) /* start P_restart_chd : channel_decoder */ |
| dib8000_write_word(state, 771, tmp & 0xfffd); |
| else /* stop P_restart_chd : channel_decoder */ |
| dib8000_write_word(state, 771, tmp | (1<<1)); |
| } |
| |
| static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz) |
| { |
| s16 unit_khz_dds_val; |
| u32 abs_offset_khz = abs(offset_khz); |
| u32 dds = state->cfg.pll->ifreq & 0x1ffffff; |
| u8 invert = !!(state->cfg.pll->ifreq & (1 << 25)); |
| u8 ratio; |
| |
| if (state->revision == 0x8090) { |
| ratio = 4; |
| unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000); |
| if (offset_khz < 0) |
| dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val); |
| else |
| dds = (abs_offset_khz * unit_khz_dds_val); |
| |
| if (invert) |
| dds = (1<<26) - dds; |
| } else { |
| ratio = 2; |
| unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal); |
| |
| if (offset_khz < 0) |
| unit_khz_dds_val *= -1; |
| |
| /* IF tuner */ |
| if (invert) |
| dds -= abs_offset_khz * unit_khz_dds_val; |
| else |
| dds += abs_offset_khz * unit_khz_dds_val; |
| } |
| |
| dprintk("setting a DDS frequency offset of %c%dkHz\n", invert ? '-' : ' ', dds / unit_khz_dds_val); |
| |
| if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) { |
| /* Max dds offset is the half of the demod freq */ |
| dib8000_write_word(state, 26, invert); |
| dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff); |
| dib8000_write_word(state, 28, (u16)(dds & 0xffff)); |
| } |
| } |
| |
| static void dib8000_set_frequency_offset(struct dib8000_state *state) |
| { |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| int i; |
| u32 current_rf; |
| int total_dds_offset_khz; |
| |
| if (state->fe[0]->ops.tuner_ops.get_frequency) |
| state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], ¤t_rf); |
| else |
| current_rf = c->frequency; |
| current_rf /= 1000; |
| total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000; |
| |
| if (c->isdbt_sb_mode) { |
| state->subchannel = c->isdbt_sb_subchannel; |
| |
| i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */ |
| dib8000_write_word(state, 26, c->inversion ^ i); |
| |
| if (state->cfg.pll->ifreq == 0) { /* low if tuner */ |
| if ((c->inversion ^ i) == 0) |
| dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1); |
| } else { |
| if ((c->inversion ^ i) == 0) |
| total_dds_offset_khz *= -1; |
| } |
| } |
| |
| dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz); |
| |
| /* apply dds offset now */ |
| dib8000_set_dds(state, total_dds_offset_khz); |
| } |
| |
| static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 }; |
| |
| static u32 dib8000_get_symbol_duration(struct dib8000_state *state) |
| { |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| u16 i; |
| |
| switch (c->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| i = 0; |
| break; |
| case TRANSMISSION_MODE_4K: |
| i = 2; |
| break; |
| default: |
| case TRANSMISSION_MODE_AUTO: |
| case TRANSMISSION_MODE_8K: |
| i = 1; |
| break; |
| } |
| |
| return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1; |
| } |
| |
| static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step) |
| { |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| u16 reg_32 = 0, reg_37 = 0; |
| |
| switch (loop_step) { |
| case LOOP_TUNE_1: |
| if (c->isdbt_sb_mode) { |
| if (c->isdbt_partial_reception == 0) { |
| reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */ |
| reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */ |
| } else { /* Sound Broadcasting mode 3 seg */ |
| reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */ |
| reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */ |
| } |
| } else { /* 13-seg start conf offset loop parameters */ |
| reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */ |
| reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */ |
| } |
| break; |
| case LOOP_TUNE_2: |
| if (c->isdbt_sb_mode) { |
| if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */ |
| reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/ |
| reg_37 = (12-state->mode) | ((5 + state->mode) << 5); |
| } else { /* Sound Broadcasting mode 3 seg */ |
| reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */ |
| reg_37 = (11-state->mode) | ((5 + state->mode) << 5); |
| } |
| } else { /* 13 seg */ |
| reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */ |
| reg_37 = ((5+state->mode) << 5) | (10 - state->mode); |
| } |
| break; |
| } |
| dib8000_write_word(state, 32, reg_32); |
| dib8000_write_word(state, 37, reg_37); |
| } |
| |
| static void dib8000_demod_restart(struct dib8000_state *state) |
| { |
| dib8000_write_word(state, 770, 0x4000); |
| dib8000_write_word(state, 770, 0x0000); |
| return; |
| } |
| |
| static void dib8000_set_sync_wait(struct dib8000_state *state) |
| { |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| u16 sync_wait = 64; |
| |
| /* P_dvsy_sync_wait - reuse mode */ |
| switch (c->transmission_mode) { |
| case TRANSMISSION_MODE_8K: |
| sync_wait = 256; |
| break; |
| case TRANSMISSION_MODE_4K: |
| sync_wait = 128; |
| break; |
| default: |
| case TRANSMISSION_MODE_2K: |
| sync_wait = 64; |
| break; |
| } |
| |
| if (state->cfg.diversity_delay == 0) |
| sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */ |
| else |
| sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */ |
| |
| dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4)); |
| } |
| |
| static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode) |
| { |
| if (mode == SYMBOL_DEPENDENT_ON) |
| delay *= state->symbol_duration; |
| |
| return jiffies + usecs_to_jiffies(delay * 100); |
| } |
| |
| static s32 dib8000_get_status(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| return state->status; |
| } |
| |
| static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| return state->tune_state; |
| } |
| |
| static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| state->tune_state = tune_state; |
| return 0; |
| } |
| |
| static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| state->status = FE_STATUS_TUNE_PENDING; |
| state->tune_state = CT_DEMOD_START; |
| return 0; |
| } |
| |
| static u16 dib8000_read_lock(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| if (state->revision == 0x8090) |
| return dib8000_read_word(state, 570); |
| return dib8000_read_word(state, 568); |
| } |
| |
| static int dib8090p_init_sdram(struct dib8000_state *state) |
| { |
| u16 reg = 0; |
| dprintk("init sdram\n"); |
| |
| reg = dib8000_read_word(state, 274) & 0xfff0; |
| dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */ |
| |
| dib8000_write_word(state, 1803, (7 << 2)); |
| |
| reg = dib8000_read_word(state, 1280); |
| dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */ |
| dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */ |
| |
| return 0; |
| } |
| |
| /** |
| * is_manual_mode - Check if TMCC should be used for parameters settings |
| * @c: struct dvb_frontend_properties |
| * |
| * By default, TMCC table should be used for parameter settings on most |
| * usercases. However, sometimes it is desirable to lock the demod to |
| * use the manual parameters. |
| * |
| * On manual mode, the current dib8000_tune state machine is very restrict: |
| * It requires that both per-layer and per-transponder parameters to be |
| * properly specified, otherwise the device won't lock. |
| * |
| * Check if all those conditions are properly satisfied before allowing |
| * the device to use the manual frequency lock mode. |
| */ |
| static int is_manual_mode(struct dtv_frontend_properties *c) |
| { |
| int i, n_segs = 0; |
| |
| /* Use auto mode on DVB-T compat mode */ |
| if (c->delivery_system != SYS_ISDBT) |
| return 0; |
| |
| /* |
| * Transmission mode is only detected on auto mode, currently |
| */ |
| if (c->transmission_mode == TRANSMISSION_MODE_AUTO) { |
| dprintk("transmission mode auto\n"); |
| return 0; |
| } |
| |
| /* |
| * Guard interval is only detected on auto mode, currently |
| */ |
| if (c->guard_interval == GUARD_INTERVAL_AUTO) { |
| dprintk("guard interval auto\n"); |
| return 0; |
| } |
| |
| /* |
| * If no layer is enabled, assume auto mode, as at least one |
| * layer should be enabled |
| */ |
| if (!c->isdbt_layer_enabled) { |
| dprintk("no layer modulation specified\n"); |
| return 0; |
| } |
| |
| /* |
| * Check if the per-layer parameters aren't auto and |
| * disable a layer if segment count is 0 or invalid. |
| */ |
| for (i = 0; i < 3; i++) { |
| if (!(c->isdbt_layer_enabled & 1 << i)) |
| continue; |
| |
| if ((c->layer[i].segment_count > 13) || |
| (c->layer[i].segment_count == 0)) { |
| c->isdbt_layer_enabled &= ~(1 << i); |
| continue; |
| } |
| |
| n_segs += c->layer[i].segment_count; |
| |
| if ((c->layer[i].modulation == QAM_AUTO) || |
| (c->layer[i].fec == FEC_AUTO)) { |
| dprintk("layer %c has either modulation or FEC auto\n", |
| 'A' + i); |
| return 0; |
| } |
| } |
| |
| /* |
| * Userspace specified a wrong number of segments. |
| * fallback to auto mode. |
| */ |
| if (n_segs == 0 || n_segs > 13) { |
| dprintk("number of segments is invalid\n"); |
| return 0; |
| } |
| |
| /* Everything looks ok for manual mode */ |
| return 1; |
| } |
| |
| static int dib8000_tune(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| enum frontend_tune_state *tune_state = &state->tune_state; |
| |
| u16 locks, deeper_interleaver = 0, i; |
| int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */ |
| |
| unsigned long *timeout = &state->timeout; |
| unsigned long now = jiffies; |
| u16 init_prbs; |
| #ifdef DIB8000_AGC_FREEZE |
| u16 agc1, agc2; |
| #endif |
| |
| u32 corm[4] = {0, 0, 0, 0}; |
| u8 find_index, max_value; |
| |
| #if 0 |
| if (*tune_state < CT_DEMOD_STOP) |
| dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n", |
| state->channel_parameters_set, *tune_state, state->autosearch_state, now); |
| #endif |
| |
| switch (*tune_state) { |
| case CT_DEMOD_START: /* 30 */ |
| dib8000_reset_stats(fe); |
| |
| if (state->revision == 0x8090) |
| dib8090p_init_sdram(state); |
| state->status = FE_STATUS_TUNE_PENDING; |
| state->channel_parameters_set = is_manual_mode(c); |
| |
| dprintk("Tuning channel on %s search mode\n", |
| state->channel_parameters_set ? "manual" : "auto"); |
| |
| dib8000_viterbi_state(state, 0); /* force chan dec in restart */ |
| |
| /* Layer monitor */ |
| dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60); |
| |
| dib8000_set_frequency_offset(state); |
| dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000); |
| |
| if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */ |
| #ifdef DIB8000_AGC_FREEZE |
| if (state->revision != 0x8090) { |
| state->agc1_max = dib8000_read_word(state, 108); |
| state->agc1_min = dib8000_read_word(state, 109); |
| state->agc2_max = dib8000_read_word(state, 110); |
| state->agc2_min = dib8000_read_word(state, 111); |
| agc1 = dib8000_read_word(state, 388); |
| agc2 = dib8000_read_word(state, 389); |
| dib8000_write_word(state, 108, agc1); |
| dib8000_write_word(state, 109, agc1); |
| dib8000_write_word(state, 110, agc2); |
| dib8000_write_word(state, 111, agc2); |
| } |
| #endif |
| state->autosearch_state = AS_SEARCHING_FFT; |
| state->found_nfft = TRANSMISSION_MODE_AUTO; |
| state->found_guard = GUARD_INTERVAL_AUTO; |
| *tune_state = CT_DEMOD_SEARCH_NEXT; |
| } else { /* we already know the channel struct so TUNE only ! */ |
| state->autosearch_state = AS_DONE; |
| *tune_state = CT_DEMOD_STEP_3; |
| } |
| state->symbol_duration = dib8000_get_symbol_duration(state); |
| break; |
| |
| case CT_DEMOD_SEARCH_NEXT: /* 51 */ |
| dib8000_autosearch_start(fe); |
| if (state->revision == 0x8090) |
| ret = 50; |
| else |
| ret = 15; |
| *tune_state = CT_DEMOD_STEP_1; |
| break; |
| |
| case CT_DEMOD_STEP_1: /* 31 */ |
| switch (dib8000_autosearch_irq(fe)) { |
| case 1: /* fail */ |
| state->status = FE_STATUS_TUNE_FAILED; |
| state->autosearch_state = AS_DONE; |
| *tune_state = CT_DEMOD_STOP; /* else we are done here */ |
| break; |
| case 2: /* Success */ |
| state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */ |
| *tune_state = CT_DEMOD_STEP_3; |
| if (state->autosearch_state == AS_SEARCHING_GUARD) |
| *tune_state = CT_DEMOD_STEP_2; |
| else |
| state->autosearch_state = AS_DONE; |
| break; |
| case 3: /* Autosearch FFT max correlation endded */ |
| *tune_state = CT_DEMOD_STEP_2; |
| break; |
| } |
| break; |
| |
| case CT_DEMOD_STEP_2: |
| switch (state->autosearch_state) { |
| case AS_SEARCHING_FFT: |
| /* searching for the correct FFT */ |
| if (state->revision == 0x8090) { |
| corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); |
| corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); |
| corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601)); |
| } else { |
| corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595)); |
| corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597)); |
| corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599)); |
| } |
| /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */ |
| |
| max_value = 0; |
| for (find_index = 1 ; find_index < 3 ; find_index++) { |
| if (corm[max_value] < corm[find_index]) |
| max_value = find_index ; |
| } |
| |
| switch (max_value) { |
| case 0: |
| state->found_nfft = TRANSMISSION_MODE_2K; |
| break; |
| case 1: |
| state->found_nfft = TRANSMISSION_MODE_4K; |
| break; |
| case 2: |
| default: |
| state->found_nfft = TRANSMISSION_MODE_8K; |
| break; |
| } |
| /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */ |
| |
| *tune_state = CT_DEMOD_SEARCH_NEXT; |
| state->autosearch_state = AS_SEARCHING_GUARD; |
| if (state->revision == 0x8090) |
| ret = 50; |
| else |
| ret = 10; |
| break; |
| case AS_SEARCHING_GUARD: |
| /* searching for the correct guard interval */ |
| if (state->revision == 0x8090) |
| state->found_guard = dib8000_read_word(state, 572) & 0x3; |
| else |
| state->found_guard = dib8000_read_word(state, 570) & 0x3; |
| /* dprintk("guard interval found=%i\n", state->found_guard); */ |
| |
| *tune_state = CT_DEMOD_STEP_3; |
| break; |
| default: |
| /* the demod should never be in this state */ |
| state->status = FE_STATUS_TUNE_FAILED; |
| state->autosearch_state = AS_DONE; |
| *tune_state = CT_DEMOD_STOP; /* else we are done here */ |
| break; |
| } |
| break; |
| |
| case CT_DEMOD_STEP_3: /* 33 */ |
| dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1); |
| dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */ |
| *tune_state = CT_DEMOD_STEP_4; |
| break; |
| |
| case CT_DEMOD_STEP_4: /* (34) */ |
| dib8000_demod_restart(state); |
| |
| dib8000_set_sync_wait(state); |
| dib8000_set_diversity_in(state->fe[0], state->diversity_onoff); |
| |
| locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */ |
| /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */ |
| *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON); |
| *tune_state = CT_DEMOD_STEP_5; |
| break; |
| |
| case CT_DEMOD_STEP_5: /* (35) */ |
| locks = dib8000_read_lock(fe); |
| if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */ |
| dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */ |
| if (!state->differential_constellation) { |
| /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */ |
| *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON); |
| *tune_state = CT_DEMOD_STEP_7; |
| } else { |
| *tune_state = CT_DEMOD_STEP_8; |
| } |
| } else if (time_after(now, *timeout)) { |
| *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ |
| } |
| break; |
| |
| case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */ |
| if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) { |
| /* if there is a diversity fe in input and this fe is has not already failed : wait here until this this fe has succedeed or failed */ |
| if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */ |
| *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */ |
| else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failed also, break the current one */ |
| *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ |
| dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| state->status = FE_STATUS_TUNE_FAILED; |
| } |
| } else { |
| dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */ |
| state->status = FE_STATUS_TUNE_FAILED; |
| } |
| break; |
| |
| case CT_DEMOD_STEP_7: /* 37 */ |
| locks = dib8000_read_lock(fe); |
| if (locks & (1<<10)) { /* lmod4_lock */ |
| ret = 14; /* wait for 14 symbols */ |
| *tune_state = CT_DEMOD_STEP_8; |
| } else if (time_after(now, *timeout)) |
| *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */ |
| break; |
| |
| case CT_DEMOD_STEP_8: /* 38 */ |
| dib8000_viterbi_state(state, 1); /* start viterbi chandec */ |
| dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2); |
| |
| /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/ |
| if (c->isdbt_sb_mode |
| && c->isdbt_sb_subchannel < 14 |
| && !state->differential_constellation) { |
| state->subchannel = 0; |
| *tune_state = CT_DEMOD_STEP_11; |
| } else { |
| *tune_state = CT_DEMOD_STEP_9; |
| state->status = FE_STATUS_LOCKED; |
| } |
| break; |
| |
| case CT_DEMOD_STEP_9: /* 39 */ |
| if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */ |
| /* defines timeout for mpeg lock depending on interleaver length of longest layer */ |
| for (i = 0; i < 3; i++) { |
| if (c->layer[i].interleaving >= deeper_interleaver) { |
| dprintk("layer%i: time interleaver = %d\n", i, c->layer[i].interleaving); |
| if (c->layer[i].segment_count > 0) { /* valid layer */ |
| deeper_interleaver = c->layer[0].interleaving; |
| state->longest_intlv_layer = i; |
| } |
| } |
| } |
| |
| if (deeper_interleaver == 0) |
| locks = 2; /* locks is the tmp local variable name */ |
| else if (deeper_interleaver == 3) |
| locks = 8; |
| else |
| locks = 2 * deeper_interleaver; |
| |
| if (state->diversity_onoff != 0) /* because of diversity sync */ |
| locks *= 2; |
| |
| *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */ |
| dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n", |
| deeper_interleaver, state->longest_intlv_layer, locks, *timeout); |
| |
| *tune_state = CT_DEMOD_STEP_10; |
| } else |
| *tune_state = CT_DEMOD_STOP; |
| break; |
| |
| case CT_DEMOD_STEP_10: /* 40 */ |
| locks = dib8000_read_lock(fe); |
| if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */ |
| dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n", |
| c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); |
| if (c->isdbt_sb_mode |
| && c->isdbt_sb_subchannel < 14 |
| && !state->differential_constellation) |
| /* signal to the upper layer, that there was a channel found and the parameters can be read */ |
| state->status = FE_STATUS_DEMOD_SUCCESS; |
| else |
| state->status = FE_STATUS_DATA_LOCKED; |
| *tune_state = CT_DEMOD_STOP; |
| } else if (time_after(now, *timeout)) { |
| if (c->isdbt_sb_mode |
| && c->isdbt_sb_subchannel < 14 |
| && !state->differential_constellation) { /* continue to try init prbs autosearch */ |
| state->subchannel += 3; |
| *tune_state = CT_DEMOD_STEP_11; |
| } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */ |
| if (locks & (0x7 << 5)) { |
| dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n", |
| jiffies_to_msecs(now - *timeout), |
| c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled", |
| c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled"); |
| |
| state->status = FE_STATUS_DATA_LOCKED; |
| } else |
| state->status = FE_STATUS_TUNE_FAILED; |
| *tune_state = CT_DEMOD_STOP; |
| } |
| } |
| break; |
| |
| case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */ |
| init_prbs = dib8000_get_init_prbs(state, state->subchannel); |
| |
| if (init_prbs) { |
| dib8000_set_subchannel_prbs(state, init_prbs); |
| *tune_state = CT_DEMOD_STEP_9; |
| } else { |
| *tune_state = CT_DEMOD_STOP; |
| state->status = FE_STATUS_TUNE_FAILED; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* tuning is finished - cleanup the demod */ |
| switch (*tune_state) { |
| case CT_DEMOD_STOP: /* (42) */ |
| #ifdef DIB8000_AGC_FREEZE |
| if ((state->revision != 0x8090) && (state->agc1_max != 0)) { |
| dib8000_write_word(state, 108, state->agc1_max); |
| dib8000_write_word(state, 109, state->agc1_min); |
| dib8000_write_word(state, 110, state->agc2_max); |
| dib8000_write_word(state, 111, state->agc2_min); |
| state->agc1_max = 0; |
| state->agc1_min = 0; |
| state->agc2_max = 0; |
| state->agc2_min = 0; |
| } |
| #endif |
| ret = 0; |
| break; |
| default: |
| break; |
| } |
| |
| if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3)) |
| return ret * state->symbol_duration; |
| if ((ret > 0) && (ret < state->symbol_duration)) |
| return state->symbol_duration; /* at least one symbol */ |
| return ret; |
| } |
| |
| static int dib8000_wakeup(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| int ret; |
| |
| dib8000_set_power_mode(state, DIB8000_POWER_ALL); |
| dib8000_set_adc_state(state, DIBX000_ADC_ON); |
| if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) |
| dprintk("could not start Slow ADC\n"); |
| |
| if (state->revision == 0x8090) |
| dib8000_sad_calib(state); |
| |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int dib8000_sleep(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| int ret; |
| |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (state->revision != 0x8090) |
| dib8000_set_output_mode(fe, OUTMODE_HIGH_Z); |
| dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY); |
| return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF); |
| } |
| |
| static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat); |
| |
| static int dib8000_get_frontend(struct dvb_frontend *fe, |
| struct dtv_frontend_properties *c) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 i, val = 0; |
| enum fe_status stat = 0; |
| u8 index_frontend, sub_index_frontend; |
| |
| c->bandwidth_hz = 6000000; |
| |
| /* |
| * If called to early, get_frontend makes dib8000_tune to either |
| * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail. |
| * So, let's just return if frontend 0 has not locked. |
| */ |
| dib8000_read_status(fe, &stat); |
| if (!(stat & FE_HAS_SYNC)) |
| return 0; |
| |
| dprintk("dib8000_get_frontend: TMCC lock\n"); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); |
| if (stat&FE_HAS_SYNC) { |
| dprintk("TMCC lock on the slave%i\n", index_frontend); |
| /* synchronize the cache with the other frontends */ |
| state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); |
| for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) { |
| if (sub_index_frontend != index_frontend) { |
| state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; |
| state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; |
| state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; |
| state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; |
| state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; |
| for (i = 0; i < 3; i++) { |
| state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; |
| state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; |
| state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; |
| state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; |
| } |
| } |
| } |
| return 0; |
| } |
| } |
| |
| c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1; |
| |
| if (state->revision == 0x8090) |
| val = dib8000_read_word(state, 572); |
| else |
| val = dib8000_read_word(state, 570); |
| c->inversion = (val & 0x40) >> 6; |
| switch ((val & 0x30) >> 4) { |
| case 1: |
| c->transmission_mode = TRANSMISSION_MODE_2K; |
| dprintk("dib8000_get_frontend: transmission mode 2K\n"); |
| break; |
| case 2: |
| c->transmission_mode = TRANSMISSION_MODE_4K; |
| dprintk("dib8000_get_frontend: transmission mode 4K\n"); |
| break; |
| case 3: |
| default: |
| c->transmission_mode = TRANSMISSION_MODE_8K; |
| dprintk("dib8000_get_frontend: transmission mode 8K\n"); |
| break; |
| } |
| |
| switch (val & 0x3) { |
| case 0: |
| c->guard_interval = GUARD_INTERVAL_1_32; |
| dprintk("dib8000_get_frontend: Guard Interval = 1/32\n"); |
| break; |
| case 1: |
| c->guard_interval = GUARD_INTERVAL_1_16; |
| dprintk("dib8000_get_frontend: Guard Interval = 1/16\n"); |
| break; |
| case 2: |
| dprintk("dib8000_get_frontend: Guard Interval = 1/8\n"); |
| c->guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 3: |
| dprintk("dib8000_get_frontend: Guard Interval = 1/4\n"); |
| c->guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| } |
| |
| val = dib8000_read_word(state, 505); |
| c->isdbt_partial_reception = val & 1; |
| dprintk("dib8000_get_frontend: partial_reception = %d\n", c->isdbt_partial_reception); |
| |
| for (i = 0; i < 3; i++) { |
| int show; |
| |
| val = dib8000_read_word(state, 493 + i) & 0x0f; |
| c->layer[i].segment_count = val; |
| |
| if (val == 0 || val > 13) |
| show = 0; |
| else |
| show = 1; |
| |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d segments = %d\n", |
| i, c->layer[i].segment_count); |
| |
| val = dib8000_read_word(state, 499 + i) & 0x3; |
| /* Interleaving can be 0, 1, 2 or 4 */ |
| if (val == 3) |
| val = 4; |
| c->layer[i].interleaving = val; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n", |
| i, c->layer[i].interleaving); |
| |
| val = dib8000_read_word(state, 481 + i); |
| switch (val & 0x7) { |
| case 1: |
| c->layer[i].fec = FEC_1_2; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i); |
| break; |
| case 2: |
| c->layer[i].fec = FEC_2_3; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i); |
| break; |
| case 3: |
| c->layer[i].fec = FEC_3_4; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i); |
| break; |
| case 5: |
| c->layer[i].fec = FEC_5_6; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i); |
| break; |
| default: |
| c->layer[i].fec = FEC_7_8; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i); |
| break; |
| } |
| |
| val = dib8000_read_word(state, 487 + i); |
| switch (val & 0x3) { |
| case 0: |
| c->layer[i].modulation = DQPSK; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i); |
| break; |
| case 1: |
| c->layer[i].modulation = QPSK; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d QPSK\n", i); |
| break; |
| case 2: |
| c->layer[i].modulation = QAM_16; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d QAM16\n", i); |
| break; |
| case 3: |
| default: |
| c->layer[i].modulation = QAM_64; |
| if (show) |
| dprintk("dib8000_get_frontend: Layer %d QAM64\n", i); |
| break; |
| } |
| } |
| |
| /* synchronize the cache with the other frontends */ |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode; |
| state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; |
| state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; |
| state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; |
| state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception; |
| for (i = 0; i < 3; i++) { |
| state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count; |
| state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving; |
| state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec; |
| state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation; |
| } |
| } |
| return 0; |
| } |
| |
| static int dib8000_set_frontend(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| int l, i, active, time, time_slave = 0; |
| u8 exit_condition, index_frontend; |
| unsigned long delay, callback_time; |
| |
| if (c->frequency == 0) { |
| dprintk("dib8000: must at least specify frequency\n"); |
| return 0; |
| } |
| |
| if (c->bandwidth_hz == 0) { |
| dprintk("dib8000: no bandwidth specified, set to default\n"); |
| c->bandwidth_hz = 6000000; |
| } |
| |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| /* synchronization of the cache */ |
| state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT; |
| memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); |
| |
| /* set output mode and diversity input */ |
| if (state->revision != 0x8090) { |
| dib8000_set_diversity_in(state->fe[index_frontend], 1); |
| if (index_frontend != 0) |
| dib8000_set_output_mode(state->fe[index_frontend], |
| OUTMODE_DIVERSITY); |
| else |
| dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); |
| } else { |
| dib8096p_set_diversity_in(state->fe[index_frontend], 1); |
| if (index_frontend != 0) |
| dib8096p_set_output_mode(state->fe[index_frontend], |
| OUTMODE_DIVERSITY); |
| else |
| dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z); |
| } |
| |
| /* tune the tuner */ |
| if (state->fe[index_frontend]->ops.tuner_ops.set_params) |
| state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]); |
| |
| dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START); |
| } |
| |
| /* turn off the diversity of the last chip */ |
| if (state->revision != 0x8090) |
| dib8000_set_diversity_in(state->fe[index_frontend - 1], 0); |
| else |
| dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0); |
| |
| /* start up the AGC */ |
| do { |
| time = dib8000_agc_startup(state->fe[0]); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| time_slave = dib8000_agc_startup(state->fe[index_frontend]); |
| if (time == 0) |
| time = time_slave; |
| else if ((time_slave != 0) && (time_slave > time)) |
| time = time_slave; |
| } |
| if (time == 0) |
| break; |
| |
| /* |
| * Despite dib8000_agc_startup returns time at a 0.1 ms range, |
| * the actual sleep time depends on CONFIG_HZ. The worse case |
| * is when CONFIG_HZ=100. In such case, the minimum granularity |
| * is 10ms. On some real field tests, the tuner sometimes don't |
| * lock when this timer is lower than 10ms. So, enforce a 10ms |
| * granularity. |
| */ |
| time = 10 * (time + 99)/100; |
| usleep_range(time * 1000, (time + 1) * 1000); |
| exit_condition = 1; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) { |
| exit_condition = 0; |
| break; |
| } |
| } |
| } while (exit_condition == 0); |
| |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); |
| |
| active = 1; |
| do { |
| callback_time = 0; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| delay = dib8000_tune(state->fe[index_frontend]); |
| if (delay != 0) { |
| delay = jiffies + usecs_to_jiffies(100 * delay); |
| if (!callback_time || delay < callback_time) |
| callback_time = delay; |
| } |
| |
| /* we are in autosearch */ |
| if (state->channel_parameters_set == 0) { /* searching */ |
| if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) { |
| dprintk("autosearch succeeded on fe%i\n", index_frontend); |
| dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */ |
| state->channel_parameters_set = 1; |
| |
| for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) { |
| if (l != index_frontend) { /* and for all frontend except the successful one */ |
| dprintk("Restarting frontend %d\n", l); |
| dib8000_tune_restart_from_demod(state->fe[l]); |
| |
| state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode; |
| state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion; |
| state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode; |
| state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval; |
| state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception; |
| for (i = 0; i < 3; i++) { |
| state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count; |
| state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving; |
| state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec; |
| state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation; |
| } |
| |
| } |
| } |
| } |
| } |
| } |
| /* tuning is done when the master frontend is done (failed or success) */ |
| if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED || |
| dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED || |
| dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) { |
| active = 0; |
| /* we need to wait for all frontends to be finished */ |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP) |
| active = 1; |
| } |
| if (active == 0) |
| dprintk("tuning done with status %d\n", dib8000_get_status(state->fe[0])); |
| } |
| |
| if ((active == 1) && (callback_time == 0)) { |
| dprintk("strange callback time something went wrong\n"); |
| active = 0; |
| } |
| |
| while ((active == 1) && (time_before(jiffies, callback_time))) |
| msleep(100); |
| } while (active); |
| |
| /* set output mode */ |
| if (state->revision != 0x8090) |
| dib8000_set_output_mode(state->fe[0], state->cfg.output_mode); |
| else { |
| dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode); |
| if (state->cfg.enMpegOutput == 0) { |
| dib8096p_setDibTxMux(state, MPEG_ON_DIBTX); |
| dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat); |
| |
| static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u16 lock_slave = 0, lock; |
| u8 index_frontend; |
| |
| lock = dib8000_read_lock(fe); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| lock_slave |= dib8000_read_lock(state->fe[index_frontend]); |
| |
| *stat = 0; |
| |
| if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1)) |
| *stat |= FE_HAS_SIGNAL; |
| |
| if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */ |
| *stat |= FE_HAS_CARRIER; |
| |
| if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */ |
| *stat |= FE_HAS_SYNC; |
| |
| if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */ |
| *stat |= FE_HAS_LOCK; |
| |
| if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) { |
| lock = dib8000_read_word(state, 554); /* Viterbi Layer A */ |
| if (lock & 0x01) |
| *stat |= FE_HAS_VITERBI; |
| |
| lock = dib8000_read_word(state, 555); /* Viterbi Layer B */ |
| if (lock & 0x01) |
| *stat |= FE_HAS_VITERBI; |
| |
| lock = dib8000_read_word(state, 556); /* Viterbi Layer C */ |
| if (lock & 0x01) |
| *stat |= FE_HAS_VITERBI; |
| } |
| dib8000_get_stats(fe, *stat); |
| |
| return 0; |
| } |
| |
| static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| /* 13 segments */ |
| if (state->revision == 0x8090) |
| *ber = (dib8000_read_word(state, 562) << 16) | |
| dib8000_read_word(state, 563); |
| else |
| *ber = (dib8000_read_word(state, 560) << 16) | |
| dib8000_read_word(state, 561); |
| return 0; |
| } |
| |
| static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| /* packet error on 13 seg */ |
| if (state->revision == 0x8090) |
| *unc = dib8000_read_word(state, 567); |
| else |
| *unc = dib8000_read_word(state, 565); |
| return 0; |
| } |
| |
| static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| u16 val; |
| |
| *strength = 0; |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); |
| if (val > 65535 - *strength) |
| *strength = 65535; |
| else |
| *strength += val; |
| } |
| |
| val = 65535 - dib8000_read_word(state, 390); |
| if (val > 65535 - *strength) |
| *strength = 65535; |
| else |
| *strength += val; |
| return 0; |
| } |
| |
| static u32 dib8000_get_snr(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u32 n, s, exp; |
| u16 val; |
| |
| if (state->revision != 0x8090) |
| val = dib8000_read_word(state, 542); |
| else |
| val = dib8000_read_word(state, 544); |
| n = (val >> 6) & 0xff; |
| exp = (val & 0x3f); |
| if ((exp & 0x20) != 0) |
| exp -= 0x40; |
| n <<= exp+16; |
| |
| if (state->revision != 0x8090) |
| val = dib8000_read_word(state, 543); |
| else |
| val = dib8000_read_word(state, 545); |
| s = (val >> 6) & 0xff; |
| exp = (val & 0x3f); |
| if ((exp & 0x20) != 0) |
| exp -= 0x40; |
| s <<= exp+16; |
| |
| if (n > 0) { |
| u32 t = (s/n) << 16; |
| return t + ((s << 16) - n*t) / n; |
| } |
| return 0xffffffff; |
| } |
| |
| static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| u32 snr_master; |
| |
| snr_master = dib8000_get_snr(fe); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| snr_master += dib8000_get_snr(state->fe[index_frontend]); |
| |
| if ((snr_master >> 16) != 0) { |
| snr_master = 10*intlog10(snr_master>>16); |
| *snr = snr_master / ((1 << 24) / 10); |
| } |
| else |
| *snr = 0; |
| |
| return 0; |
| } |
| |
| struct per_layer_regs { |
| u16 lock, ber, per; |
| }; |
| |
| static const struct per_layer_regs per_layer_regs[] = { |
| { 554, 560, 562 }, |
| { 555, 576, 578 }, |
| { 556, 581, 583 }, |
| }; |
| |
| struct linear_segments { |
| unsigned x; |
| signed y; |
| }; |
| |
| /* |
| * Table to estimate signal strength in dBm. |
| * This table was empirically determinated by measuring the signal |
| * strength generated by a DTA-2111 RF generator directly connected into |
| * a dib8076 device (a PixelView PV-D231U stick), using a good quality |
| * 3 meters RC6 cable and good RC6 connectors. |
| * The real value can actually be different on other devices, depending |
| * on several factors, like if LNA is enabled or not, if diversity is |
| * enabled, type of connectors, etc. |
| * Yet, it is better to use this measure in dB than a random non-linear |
| * percentage value, especially for antenna adjustments. |
| * On my tests, the precision of the measure using this table is about |
| * 0.5 dB, with sounds reasonable enough. |
| */ |
| static struct linear_segments strength_to_db_table[] = { |
| { 55953, 108500 }, /* -22.5 dBm */ |
| { 55394, 108000 }, |
| { 53834, 107000 }, |
| { 52863, 106000 }, |
| { 52239, 105000 }, |
| { 52012, 104000 }, |
| { 51803, 103000 }, |
| { 51566, 102000 }, |
| { 51356, 101000 }, |
| { 51112, 100000 }, |
| { 50869, 99000 }, |
| { 50600, 98000 }, |
| { 50363, 97000 }, |
| { 50117, 96000 }, /* -35 dBm */ |
| { 49889, 95000 }, |
| { 49680, 94000 }, |
| { 49493, 93000 }, |
| { 49302, 92000 }, |
| { 48929, 91000 }, |
| { 48416, 90000 }, |
| { 48035, 89000 }, |
| { 47593, 88000 }, |
| { 47282, 87000 }, |
| { 46953, 86000 }, |
| { 46698, 85000 }, |
| { 45617, 84000 }, |
| { 44773, 83000 }, |
| { 43845, 82000 }, |
| { 43020, 81000 }, |
| { 42010, 80000 }, /* -51 dBm */ |
| { 0, 0 }, |
| }; |
| |
| static u32 interpolate_value(u32 value, struct linear_segments *segments, |
| unsigned len) |
| { |
| u64 tmp64; |
| u32 dx; |
| s32 dy; |
| int i, ret; |
| |
| if (value >= segments[0].x) |
| return segments[0].y; |
| if (value < segments[len-1].x) |
| return segments[len-1].y; |
| |
| for (i = 1; i < len - 1; i++) { |
| /* If value is identical, no need to interpolate */ |
| if (value == segments[i].x) |
| return segments[i].y; |
| if (value > segments[i].x) |
| break; |
| } |
| |
| /* Linear interpolation between the two (x,y) points */ |
| dy = segments[i - 1].y - segments[i].y; |
| dx = segments[i - 1].x - segments[i].x; |
| |
| tmp64 = value - segments[i].x; |
| tmp64 *= dy; |
| do_div(tmp64, dx); |
| ret = segments[i].y + tmp64; |
| |
| return ret; |
| } |
| |
| static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| int ini_layer, end_layer, i; |
| u64 time_us, tmp64; |
| u32 tmp, denom; |
| int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs; |
| int interleaving = 0, fft_div; |
| |
| if (layer >= 0) { |
| ini_layer = layer; |
| end_layer = layer + 1; |
| } else { |
| ini_layer = 0; |
| end_layer = 3; |
| } |
| |
| switch (c->guard_interval) { |
| case GUARD_INTERVAL_1_4: |
| guard = 4; |
| break; |
| case GUARD_INTERVAL_1_8: |
| guard = 8; |
| break; |
| case GUARD_INTERVAL_1_16: |
| guard = 16; |
| break; |
| default: |
| case GUARD_INTERVAL_1_32: |
| guard = 32; |
| break; |
| } |
| |
| switch (c->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| fft_div = 4; |
| break; |
| case TRANSMISSION_MODE_4K: |
| fft_div = 2; |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| fft_div = 1; |
| break; |
| } |
| |
| denom = 0; |
| for (i = ini_layer; i < end_layer; i++) { |
| nsegs = c->layer[i].segment_count; |
| if (nsegs == 0 || nsegs > 13) |
| continue; |
| |
| switch (c->layer[i].modulation) { |
| case DQPSK: |
| case QPSK: |
| bits_per_symbol = 2; |
| break; |
| case QAM_16: |
| bits_per_symbol = 4; |
| break; |
| default: |
| case QAM_64: |
| bits_per_symbol = 6; |
| break; |
| } |
| |
| switch (c->layer[i].fec) { |
| case FEC_1_2: |
| rate_num = 1; |
| rate_denum = 2; |
| break; |
| case FEC_2_3: |
| rate_num = 2; |
| rate_denum = 3; |
| break; |
| case FEC_3_4: |
| rate_num = 3; |
| rate_denum = 4; |
| break; |
| case FEC_5_6: |
| rate_num = 5; |
| rate_denum = 6; |
| break; |
| default: |
| case FEC_7_8: |
| rate_num = 7; |
| rate_denum = 8; |
| break; |
| } |
| |
| interleaving = c->layer[i].interleaving; |
| |
| denom += bits_per_symbol * rate_num * fft_div * nsegs * 384; |
| } |
| |
| /* If all goes wrong, wait for 1s for the next stats */ |
| if (!denom) |
| return 0; |
| |
| /* Estimate the period for the total bit rate */ |
| time_us = rate_denum * (1008 * 1562500L); |
| tmp64 = time_us; |
| do_div(tmp64, guard); |
| time_us = time_us + tmp64; |
| time_us += denom / 2; |
| do_div(time_us, denom); |
| |
| tmp = 1008 * 96 * interleaving; |
| time_us += tmp + tmp / guard; |
| |
| return time_us; |
| } |
| |
| static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache; |
| int i; |
| int show_per_stats = 0; |
| u32 time_us = 0, snr, val; |
| u64 blocks; |
| s32 db; |
| u16 strength; |
| |
| /* Get Signal strength */ |
| dib8000_read_signal_strength(fe, &strength); |
| val = strength; |
| db = interpolate_value(val, |
| strength_to_db_table, |
| ARRAY_SIZE(strength_to_db_table)) - 131000; |
| c->strength.stat[0].svalue = db; |
| |
| /* UCB/BER/CNR measures require lock */ |
| if (!(stat & FE_HAS_LOCK)) { |
| c->cnr.len = 1; |
| c->block_count.len = 1; |
| c->block_error.len = 1; |
| c->post_bit_error.len = 1; |
| c->post_bit_count.len = 1; |
| c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| return 0; |
| } |
| |
| /* Check if time for stats was elapsed */ |
| if (time_after(jiffies, state->per_jiffies_stats)) { |
| state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); |
| |
| /* Get SNR */ |
| snr = dib8000_get_snr(fe); |
| for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) { |
| if (state->fe[i]) |
| snr += dib8000_get_snr(state->fe[i]); |
| } |
| snr = snr >> 16; |
| |
| if (snr) { |
| snr = 10 * intlog10(snr); |
| snr = (1000L * snr) >> 24; |
| } else { |
| snr = 0; |
| } |
| c->cnr.stat[0].svalue = snr; |
| c->cnr.stat[0].scale = FE_SCALE_DECIBEL; |
| |
| /* Get UCB measures */ |
| dib8000_read_unc_blocks(fe, &val); |
| if (val < state->init_ucb) |
| state->init_ucb += 0x100000000LL; |
| |
| c->block_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[0].uvalue = val + state->init_ucb; |
| |
| /* Estimate the number of packets based on bitrate */ |
| if (!time_us) |
| time_us = dib8000_get_time_us(fe, -1); |
| |
| if (time_us) { |
| blocks = 1250000ULL * 1000000ULL; |
| do_div(blocks, time_us * 8 * 204); |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[0].uvalue += blocks; |
| } |
| |
| show_per_stats = 1; |
| } |
| |
| /* Get post-BER measures */ |
| if (time_after(jiffies, state->ber_jiffies_stats)) { |
| time_us = dib8000_get_time_us(fe, -1); |
| state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); |
| |
| dprintk("Next all layers stats available in %u us.\n", time_us); |
| |
| dib8000_read_ber(fe, &val); |
| c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_error.stat[0].uvalue += val; |
| |
| c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_count.stat[0].uvalue += 100000000; |
| } |
| |
| if (state->revision < 0x8002) |
| return 0; |
| |
| c->block_error.len = 4; |
| c->post_bit_error.len = 4; |
| c->post_bit_count.len = 4; |
| |
| for (i = 0; i < 3; i++) { |
| unsigned nsegs = c->layer[i].segment_count; |
| |
| if (nsegs == 0 || nsegs > 13) |
| continue; |
| |
| time_us = 0; |
| |
| if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) { |
| time_us = dib8000_get_time_us(fe, i); |
| |
| state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000); |
| dprintk("Next layer %c stats will be available in %u us\n", |
| 'A' + i, time_us); |
| |
| val = dib8000_read_word(state, per_layer_regs[i].ber); |
| c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->post_bit_error.stat[1 + i].uvalue += val; |
| |
| c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->post_bit_count.stat[1 + i].uvalue += 100000000; |
| } |
| |
| if (show_per_stats) { |
| val = dib8000_read_word(state, per_layer_regs[i].per); |
| |
| c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[1 + i].uvalue += val; |
| |
| if (!time_us) |
| time_us = dib8000_get_time_us(fe, i); |
| if (time_us) { |
| blocks = 1250000ULL * 1000000ULL; |
| do_div(blocks, time_us * 8 * 204); |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[0].uvalue += blocks; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| u8 index_frontend = 1; |
| |
| while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) |
| index_frontend++; |
| if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { |
| dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); |
| state->fe[index_frontend] = fe_slave; |
| return 0; |
| } |
| |
| dprintk("too many slave frontend\n"); |
| return -ENOMEM; |
| } |
| |
| static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) |
| { |
| struct dib8000_state *state = fe->demodulator_priv; |
| |
| if (slave_index >= MAX_NUMBER_OF_FRONTENDS) |
| return NULL; |
| return state->fe[slave_index]; |
| } |
| |
| static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, |
| u8 default_addr, u8 first_addr, u8 is_dib8096p) |
| { |
| int k = 0, ret = 0; |
| u8 new_addr = 0; |
| struct i2c_device client = {.adap = host }; |
| |
| client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); |
| if (!client.i2c_write_buffer) { |
| dprintk("%s: not enough memory\n", __func__); |
| return -ENOMEM; |
| } |
| client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); |
| if (!client.i2c_read_buffer) { |
| dprintk("%s: not enough memory\n", __func__); |
| ret = -ENOMEM; |
| goto error_memory_read; |
| } |
| client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL); |
| if (!client.i2c_buffer_lock) { |
| dprintk("%s: not enough memory\n", __func__); |
| ret = -ENOMEM; |
| goto error_memory_lock; |
| } |
| mutex_init(client.i2c_buffer_lock); |
| |
| for (k = no_of_demods - 1; k >= 0; k--) { |
| /* designated i2c address */ |
| new_addr = first_addr + (k << 1); |
| |
| client.addr = new_addr; |
| if (!is_dib8096p) |
| dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */ |
| if (dib8000_identify(&client) == 0) { |
| /* sram lead in, rdy */ |
| if (!is_dib8096p) |
| dib8000_i2c_write16(&client, 1287, 0x0003); |
| client.addr = default_addr; |
| if (dib8000_identify(&client) == 0) { |
| dprintk("#%d: not identified\n", k); |
| ret = -EINVAL; |
| goto error; |
| } |
| } |
| |
| /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6)); |
| |
| /* set new i2c address and force divstart */ |
| dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2); |
| client.addr = new_addr; |
| dib8000_identify(&client); |
| |
| dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| new_addr = first_addr | (k << 1); |
| client.addr = new_addr; |
| |
| // unforce divstr |
| dib8000_i2c_write16(&client, 1285, new_addr << 2); |
| |
| /* deactivate div - it was just for i2c-enumeration */ |
| dib8000_i2c_write16(&client, 1286, 0); |
| } |
| |
| error: |
| kfree(client.i2c_buffer_lock); |
| error_memory_lock: |
| kfree(client.i2c_read_buffer); |
| error_memory_read: |
| kfree(client.i2c_write_buffer); |
| |
| return ret; |
| } |
| |
| static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| tune->step_size = 0; |
| tune->max_drift = 0; |
| return 0; |
| } |
| |
| static void dib8000_release(struct dvb_frontend *fe) |
| { |
| struct dib8000_state *st = fe->demodulator_priv; |
| u8 index_frontend; |
| |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) |
| dvb_frontend_detach(st->fe[index_frontend]); |
| |
| dibx000_exit_i2c_master(&st->i2c_master); |
| i2c_del_adapter(&st->dib8096p_tuner_adap); |
| kfree(st->fe[0]); |
| kfree(st); |
| } |
| |
| static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) |
| { |
| struct dib8000_state *st = fe->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| } |
| |
| static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) |
| { |
| struct dib8000_state *st = fe->demodulator_priv; |
| u16 val = dib8000_read_word(st, 299) & 0xffef; |
| val |= (onoff & 0x1) << 4; |
| |
| dprintk("pid filter enabled %d\n", onoff); |
| return dib8000_write_word(st, 299, val); |
| } |
| |
| static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) |
| { |
| struct dib8000_state *st = fe->demodulator_priv; |
| dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); |
| return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0); |
| } |
| |
| static const struct dvb_frontend_ops dib8000_ops = { |
| .delsys = { SYS_ISDBT }, |
| .info = { |
| .name = "DiBcom 8000 ISDB-T", |
| .frequency_min_hz = 44250 * kHz, |
| .frequency_max_hz = 867250 * kHz, |
| .frequency_stepsize_hz = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib8000_release, |
| |
| .init = dib8000_wakeup, |
| .sleep = dib8000_sleep, |
| |
| .set_frontend = dib8000_set_frontend, |
| .get_tune_settings = dib8000_fe_get_tune_settings, |
| .get_frontend = dib8000_get_frontend, |
| |
| .read_status = dib8000_read_status, |
| .read_ber = dib8000_read_ber, |
| .read_signal_strength = dib8000_read_signal_strength, |
| .read_snr = dib8000_read_snr, |
| .read_ucblocks = dib8000_read_unc_blocks, |
| }; |
| |
| static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg) |
| { |
| struct dvb_frontend *fe; |
| struct dib8000_state *state; |
| |
| dprintk("dib8000_init\n"); |
| |
| state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL); |
| if (state == NULL) |
| return NULL; |
| fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); |
| if (fe == NULL) |
| goto error; |
| |
| memcpy(&state->cfg, cfg, sizeof(struct dib8000_config)); |
| state->i2c.adap = i2c_adap; |
| state->i2c.addr = i2c_addr; |
| state->i2c.i2c_write_buffer = state->i2c_write_buffer; |
| state->i2c.i2c_read_buffer = state->i2c_read_buffer; |
| mutex_init(&state->i2c_buffer_lock); |
| state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock; |
| state->gpio_val = cfg->gpio_val; |
| state->gpio_dir = cfg->gpio_dir; |
| |
| /* Ensure the output mode remains at the previous default if it's |
| * not specifically set by the caller. |
| */ |
| if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) |
| state->cfg.output_mode = OUTMODE_MPEG2_FIFO; |
| |
| state->fe[0] = fe; |
| fe->demodulator_priv = state; |
| memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops)); |
| |
| state->timf_default = cfg->pll->timf; |
| |
| if (dib8000_identify(&state->i2c) == 0) { |
| kfree(fe); |
| goto error; |
| } |
| |
| dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr); |
| |
| /* init 8096p tuner adapter */ |
| strscpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface", |
| sizeof(state->dib8096p_tuner_adap.name)); |
| state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo; |
| state->dib8096p_tuner_adap.algo_data = NULL; |
| state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent; |
| i2c_set_adapdata(&state->dib8096p_tuner_adap, state); |
| i2c_add_adapter(&state->dib8096p_tuner_adap); |
| |
| dib8000_reset(fe); |
| |
| dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */ |
| state->current_demod_bw = 6000; |
| |
| return fe; |
| |
| error: |
| kfree(state); |
| return NULL; |
| } |
| |
| void *dib8000_attach(struct dib8000_ops *ops) |
| { |
| if (!ops) |
| return NULL; |
| |
| ops->pwm_agc_reset = dib8000_pwm_agc_reset; |
| ops->get_dc_power = dib8090p_get_dc_power; |
| ops->set_gpio = dib8000_set_gpio; |
| ops->get_slave_frontend = dib8000_get_slave_frontend; |
| ops->set_tune_state = dib8000_set_tune_state; |
| ops->pid_filter_ctrl = dib8000_pid_filter_ctrl; |
| ops->get_adc_power = dib8000_get_adc_power; |
| ops->update_pll = dib8000_update_pll; |
| ops->tuner_sleep = dib8096p_tuner_sleep; |
| ops->get_tune_state = dib8000_get_tune_state; |
| ops->get_i2c_tuner = dib8096p_get_i2c_tuner; |
| ops->set_slave_frontend = dib8000_set_slave_frontend; |
| ops->pid_filter = dib8000_pid_filter; |
| ops->ctrl_timf = dib8000_ctrl_timf; |
| ops->init = dib8000_init; |
| ops->get_i2c_master = dib8000_get_i2c_master; |
| ops->i2c_enumeration = dib8000_i2c_enumeration; |
| ops->set_wbd_ref = dib8000_set_wbd_ref; |
| |
| return ops; |
| } |
| EXPORT_SYMBOL(dib8000_attach); |
| |
| MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator"); |
| MODULE_LICENSE("GPL"); |