| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <crypto/hash.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/highmem.h> |
| #include <linux/time.h> |
| #include <linux/init.h> |
| #include <linux/string.h> |
| #include <linux/backing-dev.h> |
| #include <linux/writeback.h> |
| #include <linux/compat.h> |
| #include <linux/xattr.h> |
| #include <linux/posix_acl.h> |
| #include <linux/falloc.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/btrfs.h> |
| #include <linux/blkdev.h> |
| #include <linux/posix_acl_xattr.h> |
| #include <linux/uio.h> |
| #include <linux/magic.h> |
| #include <linux/iversion.h> |
| #include <linux/swap.h> |
| #include <linux/migrate.h> |
| #include <linux/sched/mm.h> |
| #include <linux/iomap.h> |
| #include <asm/unaligned.h> |
| #include "misc.h" |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "print-tree.h" |
| #include "ordered-data.h" |
| #include "xattr.h" |
| #include "tree-log.h" |
| #include "volumes.h" |
| #include "compression.h" |
| #include "locking.h" |
| #include "free-space-cache.h" |
| #include "inode-map.h" |
| #include "props.h" |
| #include "qgroup.h" |
| #include "delalloc-space.h" |
| #include "block-group.h" |
| #include "space-info.h" |
| |
| struct btrfs_iget_args { |
| u64 ino; |
| struct btrfs_root *root; |
| }; |
| |
| struct btrfs_dio_data { |
| u64 reserve; |
| loff_t length; |
| ssize_t submitted; |
| struct extent_changeset *data_reserved; |
| bool sync; |
| }; |
| |
| static const struct inode_operations btrfs_dir_inode_operations; |
| static const struct inode_operations btrfs_symlink_inode_operations; |
| static const struct inode_operations btrfs_special_inode_operations; |
| static const struct inode_operations btrfs_file_inode_operations; |
| static const struct address_space_operations btrfs_aops; |
| static const struct file_operations btrfs_dir_file_operations; |
| |
| static struct kmem_cache *btrfs_inode_cachep; |
| struct kmem_cache *btrfs_trans_handle_cachep; |
| struct kmem_cache *btrfs_path_cachep; |
| struct kmem_cache *btrfs_free_space_cachep; |
| struct kmem_cache *btrfs_free_space_bitmap_cachep; |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr); |
| static int btrfs_truncate(struct inode *inode, bool skip_writeback); |
| static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); |
| static noinline int cow_file_range(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, int unlock); |
| static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, |
| u64 len, u64 orig_start, u64 block_start, |
| u64 block_len, u64 orig_block_len, |
| u64 ram_bytes, int compress_type, |
| int type); |
| |
| static void __endio_write_update_ordered(struct btrfs_inode *inode, |
| const u64 offset, const u64 bytes, |
| const bool uptodate); |
| |
| /* |
| * Cleanup all submitted ordered extents in specified range to handle errors |
| * from the btrfs_run_delalloc_range() callback. |
| * |
| * NOTE: caller must ensure that when an error happens, it can not call |
| * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING |
| * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata |
| * to be released, which we want to happen only when finishing the ordered |
| * extent (btrfs_finish_ordered_io()). |
| */ |
| static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 offset, u64 bytes) |
| { |
| unsigned long index = offset >> PAGE_SHIFT; |
| unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; |
| u64 page_start = page_offset(locked_page); |
| u64 page_end = page_start + PAGE_SIZE - 1; |
| |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(inode->vfs_inode.i_mapping, index); |
| index++; |
| if (!page) |
| continue; |
| ClearPagePrivate2(page); |
| put_page(page); |
| } |
| |
| /* |
| * In case this page belongs to the delalloc range being instantiated |
| * then skip it, since the first page of a range is going to be |
| * properly cleaned up by the caller of run_delalloc_range |
| */ |
| if (page_start >= offset && page_end <= (offset + bytes - 1)) { |
| offset += PAGE_SIZE; |
| bytes -= PAGE_SIZE; |
| } |
| |
| return __endio_write_update_ordered(inode, offset, bytes, false); |
| } |
| |
| static int btrfs_dirty_inode(struct inode *inode); |
| |
| static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, |
| struct inode *inode, struct inode *dir, |
| const struct qstr *qstr) |
| { |
| int err; |
| |
| err = btrfs_init_acl(trans, inode, dir); |
| if (!err) |
| err = btrfs_xattr_security_init(trans, inode, dir, qstr); |
| return err; |
| } |
| |
| /* |
| * this does all the hard work for inserting an inline extent into |
| * the btree. The caller should have done a btrfs_drop_extents so that |
| * no overlapping inline items exist in the btree |
| */ |
| static int insert_inline_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, int extent_inserted, |
| struct btrfs_root *root, struct inode *inode, |
| u64 start, size_t size, size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages) |
| { |
| struct extent_buffer *leaf; |
| struct page *page = NULL; |
| char *kaddr; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| int ret; |
| size_t cur_size = size; |
| unsigned long offset; |
| |
| ASSERT((compressed_size > 0 && compressed_pages) || |
| (compressed_size == 0 && !compressed_pages)); |
| |
| if (compressed_size && compressed_pages) |
| cur_size = compressed_size; |
| |
| inode_add_bytes(inode, size); |
| |
| if (!extent_inserted) { |
| struct btrfs_key key; |
| size_t datasize; |
| |
| key.objectid = btrfs_ino(BTRFS_I(inode)); |
| key.offset = start; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| |
| datasize = btrfs_file_extent_calc_inline_size(cur_size); |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (ret) |
| goto fail; |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, size); |
| ptr = btrfs_file_extent_inline_start(ei); |
| |
| if (compress_type != BTRFS_COMPRESS_NONE) { |
| struct page *cpage; |
| int i = 0; |
| while (compressed_size > 0) { |
| cpage = compressed_pages[i]; |
| cur_size = min_t(unsigned long, compressed_size, |
| PAGE_SIZE); |
| |
| kaddr = kmap_atomic(cpage); |
| write_extent_buffer(leaf, kaddr, ptr, cur_size); |
| kunmap_atomic(kaddr); |
| |
| i++; |
| ptr += cur_size; |
| compressed_size -= cur_size; |
| } |
| btrfs_set_file_extent_compression(leaf, ei, |
| compress_type); |
| } else { |
| page = find_get_page(inode->i_mapping, |
| start >> PAGE_SHIFT); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| kaddr = kmap_atomic(page); |
| offset = offset_in_page(start); |
| write_extent_buffer(leaf, kaddr + offset, ptr, size); |
| kunmap_atomic(kaddr); |
| put_page(page); |
| } |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| /* |
| * We align size to sectorsize for inline extents just for simplicity |
| * sake. |
| */ |
| size = ALIGN(size, root->fs_info->sectorsize); |
| ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); |
| if (ret) |
| goto fail; |
| |
| /* |
| * we're an inline extent, so nobody can |
| * extend the file past i_size without locking |
| * a page we already have locked. |
| * |
| * We must do any isize and inode updates |
| * before we unlock the pages. Otherwise we |
| * could end up racing with unlink. |
| */ |
| BTRFS_I(inode)->disk_i_size = inode->i_size; |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| fail: |
| return ret; |
| } |
| |
| |
| /* |
| * conditionally insert an inline extent into the file. This |
| * does the checks required to make sure the data is small enough |
| * to fit as an inline extent. |
| */ |
| static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, |
| u64 end, size_t compressed_size, |
| int compress_type, |
| struct page **compressed_pages) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| u64 isize = i_size_read(&inode->vfs_inode); |
| u64 actual_end = min(end + 1, isize); |
| u64 inline_len = actual_end - start; |
| u64 aligned_end = ALIGN(end, fs_info->sectorsize); |
| u64 data_len = inline_len; |
| int ret; |
| struct btrfs_path *path; |
| int extent_inserted = 0; |
| u32 extent_item_size; |
| |
| if (compressed_size) |
| data_len = compressed_size; |
| |
| if (start > 0 || |
| actual_end > fs_info->sectorsize || |
| data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || |
| (!compressed_size && |
| (actual_end & (fs_info->sectorsize - 1)) == 0) || |
| end + 1 < isize || |
| data_len > fs_info->max_inline) { |
| return 1; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| trans->block_rsv = &inode->block_rsv; |
| |
| if (compressed_size && compressed_pages) |
| extent_item_size = btrfs_file_extent_calc_inline_size( |
| compressed_size); |
| else |
| extent_item_size = btrfs_file_extent_calc_inline_size( |
| inline_len); |
| |
| ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end, |
| NULL, 1, 1, extent_item_size, |
| &extent_inserted); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| if (isize > actual_end) |
| inline_len = min_t(u64, isize, actual_end); |
| ret = insert_inline_extent(trans, path, extent_inserted, |
| root, &inode->vfs_inode, start, |
| inline_len, compressed_size, |
| compress_type, compressed_pages); |
| if (ret && ret != -ENOSPC) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } else if (ret == -ENOSPC) { |
| ret = 1; |
| goto out; |
| } |
| |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); |
| btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); |
| out: |
| /* |
| * Don't forget to free the reserved space, as for inlined extent |
| * it won't count as data extent, free them directly here. |
| * And at reserve time, it's always aligned to page size, so |
| * just free one page here. |
| */ |
| btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); |
| btrfs_free_path(path); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| struct async_extent { |
| u64 start; |
| u64 ram_size; |
| u64 compressed_size; |
| struct page **pages; |
| unsigned long nr_pages; |
| int compress_type; |
| struct list_head list; |
| }; |
| |
| struct async_chunk { |
| struct inode *inode; |
| struct page *locked_page; |
| u64 start; |
| u64 end; |
| unsigned int write_flags; |
| struct list_head extents; |
| struct cgroup_subsys_state *blkcg_css; |
| struct btrfs_work work; |
| atomic_t *pending; |
| }; |
| |
| struct async_cow { |
| /* Number of chunks in flight; must be first in the structure */ |
| atomic_t num_chunks; |
| struct async_chunk chunks[]; |
| }; |
| |
| static noinline int add_async_extent(struct async_chunk *cow, |
| u64 start, u64 ram_size, |
| u64 compressed_size, |
| struct page **pages, |
| unsigned long nr_pages, |
| int compress_type) |
| { |
| struct async_extent *async_extent; |
| |
| async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); |
| BUG_ON(!async_extent); /* -ENOMEM */ |
| async_extent->start = start; |
| async_extent->ram_size = ram_size; |
| async_extent->compressed_size = compressed_size; |
| async_extent->pages = pages; |
| async_extent->nr_pages = nr_pages; |
| async_extent->compress_type = compress_type; |
| list_add_tail(&async_extent->list, &cow->extents); |
| return 0; |
| } |
| |
| /* |
| * Check if the inode has flags compatible with compression |
| */ |
| static inline bool inode_can_compress(struct btrfs_inode *inode) |
| { |
| if (inode->flags & BTRFS_INODE_NODATACOW || |
| inode->flags & BTRFS_INODE_NODATASUM) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Check if the inode needs to be submitted to compression, based on mount |
| * options, defragmentation, properties or heuristics. |
| */ |
| static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, |
| u64 end) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| |
| if (!inode_can_compress(inode)) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: unexpected compression for ino %llu\n", |
| btrfs_ino(inode)); |
| return 0; |
| } |
| /* force compress */ |
| if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) |
| return 1; |
| /* defrag ioctl */ |
| if (inode->defrag_compress) |
| return 1; |
| /* bad compression ratios */ |
| if (inode->flags & BTRFS_INODE_NOCOMPRESS) |
| return 0; |
| if (btrfs_test_opt(fs_info, COMPRESS) || |
| inode->flags & BTRFS_INODE_COMPRESS || |
| inode->prop_compress) |
| return btrfs_compress_heuristic(&inode->vfs_inode, start, end); |
| return 0; |
| } |
| |
| static inline void inode_should_defrag(struct btrfs_inode *inode, |
| u64 start, u64 end, u64 num_bytes, u64 small_write) |
| { |
| /* If this is a small write inside eof, kick off a defrag */ |
| if (num_bytes < small_write && |
| (start > 0 || end + 1 < inode->disk_i_size)) |
| btrfs_add_inode_defrag(NULL, inode); |
| } |
| |
| /* |
| * we create compressed extents in two phases. The first |
| * phase compresses a range of pages that have already been |
| * locked (both pages and state bits are locked). |
| * |
| * This is done inside an ordered work queue, and the compression |
| * is spread across many cpus. The actual IO submission is step |
| * two, and the ordered work queue takes care of making sure that |
| * happens in the same order things were put onto the queue by |
| * writepages and friends. |
| * |
| * If this code finds it can't get good compression, it puts an |
| * entry onto the work queue to write the uncompressed bytes. This |
| * makes sure that both compressed inodes and uncompressed inodes |
| * are written in the same order that the flusher thread sent them |
| * down. |
| */ |
| static noinline int compress_file_range(struct async_chunk *async_chunk) |
| { |
| struct inode *inode = async_chunk->inode; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| u64 blocksize = fs_info->sectorsize; |
| u64 start = async_chunk->start; |
| u64 end = async_chunk->end; |
| u64 actual_end; |
| u64 i_size; |
| int ret = 0; |
| struct page **pages = NULL; |
| unsigned long nr_pages; |
| unsigned long total_compressed = 0; |
| unsigned long total_in = 0; |
| int i; |
| int will_compress; |
| int compress_type = fs_info->compress_type; |
| int compressed_extents = 0; |
| int redirty = 0; |
| |
| inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, |
| SZ_16K); |
| |
| /* |
| * We need to save i_size before now because it could change in between |
| * us evaluating the size and assigning it. This is because we lock and |
| * unlock the page in truncate and fallocate, and then modify the i_size |
| * later on. |
| * |
| * The barriers are to emulate READ_ONCE, remove that once i_size_read |
| * does that for us. |
| */ |
| barrier(); |
| i_size = i_size_read(inode); |
| barrier(); |
| actual_end = min_t(u64, i_size, end + 1); |
| again: |
| will_compress = 0; |
| nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; |
| BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); |
| nr_pages = min_t(unsigned long, nr_pages, |
| BTRFS_MAX_COMPRESSED / PAGE_SIZE); |
| |
| /* |
| * we don't want to send crud past the end of i_size through |
| * compression, that's just a waste of CPU time. So, if the |
| * end of the file is before the start of our current |
| * requested range of bytes, we bail out to the uncompressed |
| * cleanup code that can deal with all of this. |
| * |
| * It isn't really the fastest way to fix things, but this is a |
| * very uncommon corner. |
| */ |
| if (actual_end <= start) |
| goto cleanup_and_bail_uncompressed; |
| |
| total_compressed = actual_end - start; |
| |
| /* |
| * skip compression for a small file range(<=blocksize) that |
| * isn't an inline extent, since it doesn't save disk space at all. |
| */ |
| if (total_compressed <= blocksize && |
| (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) |
| goto cleanup_and_bail_uncompressed; |
| |
| total_compressed = min_t(unsigned long, total_compressed, |
| BTRFS_MAX_UNCOMPRESSED); |
| total_in = 0; |
| ret = 0; |
| |
| /* |
| * we do compression for mount -o compress and when the |
| * inode has not been flagged as nocompress. This flag can |
| * change at any time if we discover bad compression ratios. |
| */ |
| if (inode_need_compress(BTRFS_I(inode), start, end)) { |
| WARN_ON(pages); |
| pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); |
| if (!pages) { |
| /* just bail out to the uncompressed code */ |
| nr_pages = 0; |
| goto cont; |
| } |
| |
| if (BTRFS_I(inode)->defrag_compress) |
| compress_type = BTRFS_I(inode)->defrag_compress; |
| else if (BTRFS_I(inode)->prop_compress) |
| compress_type = BTRFS_I(inode)->prop_compress; |
| |
| /* |
| * we need to call clear_page_dirty_for_io on each |
| * page in the range. Otherwise applications with the file |
| * mmap'd can wander in and change the page contents while |
| * we are compressing them. |
| * |
| * If the compression fails for any reason, we set the pages |
| * dirty again later on. |
| * |
| * Note that the remaining part is redirtied, the start pointer |
| * has moved, the end is the original one. |
| */ |
| if (!redirty) { |
| extent_range_clear_dirty_for_io(inode, start, end); |
| redirty = 1; |
| } |
| |
| /* Compression level is applied here and only here */ |
| ret = btrfs_compress_pages( |
| compress_type | (fs_info->compress_level << 4), |
| inode->i_mapping, start, |
| pages, |
| &nr_pages, |
| &total_in, |
| &total_compressed); |
| |
| if (!ret) { |
| unsigned long offset = offset_in_page(total_compressed); |
| struct page *page = pages[nr_pages - 1]; |
| char *kaddr; |
| |
| /* zero the tail end of the last page, we might be |
| * sending it down to disk |
| */ |
| if (offset) { |
| kaddr = kmap_atomic(page); |
| memset(kaddr + offset, 0, |
| PAGE_SIZE - offset); |
| kunmap_atomic(kaddr); |
| } |
| will_compress = 1; |
| } |
| } |
| cont: |
| if (start == 0) { |
| /* lets try to make an inline extent */ |
| if (ret || total_in < actual_end) { |
| /* we didn't compress the entire range, try |
| * to make an uncompressed inline extent. |
| */ |
| ret = cow_file_range_inline(BTRFS_I(inode), start, end, |
| 0, BTRFS_COMPRESS_NONE, |
| NULL); |
| } else { |
| /* try making a compressed inline extent */ |
| ret = cow_file_range_inline(BTRFS_I(inode), start, end, |
| total_compressed, |
| compress_type, pages); |
| } |
| if (ret <= 0) { |
| unsigned long clear_flags = EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING; |
| unsigned long page_error_op; |
| |
| page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; |
| |
| /* |
| * inline extent creation worked or returned error, |
| * we don't need to create any more async work items. |
| * Unlock and free up our temp pages. |
| * |
| * We use DO_ACCOUNTING here because we need the |
| * delalloc_release_metadata to be done _after_ we drop |
| * our outstanding extent for clearing delalloc for this |
| * range. |
| */ |
| extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, |
| NULL, |
| clear_flags, |
| PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| page_error_op | |
| PAGE_END_WRITEBACK); |
| |
| /* |
| * Ensure we only free the compressed pages if we have |
| * them allocated, as we can still reach here with |
| * inode_need_compress() == false. |
| */ |
| if (pages) { |
| for (i = 0; i < nr_pages; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| } |
| return 0; |
| } |
| } |
| |
| if (will_compress) { |
| /* |
| * we aren't doing an inline extent round the compressed size |
| * up to a block size boundary so the allocator does sane |
| * things |
| */ |
| total_compressed = ALIGN(total_compressed, blocksize); |
| |
| /* |
| * one last check to make sure the compression is really a |
| * win, compare the page count read with the blocks on disk, |
| * compression must free at least one sector size |
| */ |
| total_in = ALIGN(total_in, PAGE_SIZE); |
| if (total_compressed + blocksize <= total_in) { |
| compressed_extents++; |
| |
| /* |
| * The async work queues will take care of doing actual |
| * allocation on disk for these compressed pages, and |
| * will submit them to the elevator. |
| */ |
| add_async_extent(async_chunk, start, total_in, |
| total_compressed, pages, nr_pages, |
| compress_type); |
| |
| if (start + total_in < end) { |
| start += total_in; |
| pages = NULL; |
| cond_resched(); |
| goto again; |
| } |
| return compressed_extents; |
| } |
| } |
| if (pages) { |
| /* |
| * the compression code ran but failed to make things smaller, |
| * free any pages it allocated and our page pointer array |
| */ |
| for (i = 0; i < nr_pages; i++) { |
| WARN_ON(pages[i]->mapping); |
| put_page(pages[i]); |
| } |
| kfree(pages); |
| pages = NULL; |
| total_compressed = 0; |
| nr_pages = 0; |
| |
| /* flag the file so we don't compress in the future */ |
| if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && |
| !(BTRFS_I(inode)->prop_compress)) { |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; |
| } |
| } |
| cleanup_and_bail_uncompressed: |
| /* |
| * No compression, but we still need to write the pages in the file |
| * we've been given so far. redirty the locked page if it corresponds |
| * to our extent and set things up for the async work queue to run |
| * cow_file_range to do the normal delalloc dance. |
| */ |
| if (async_chunk->locked_page && |
| (page_offset(async_chunk->locked_page) >= start && |
| page_offset(async_chunk->locked_page)) <= end) { |
| __set_page_dirty_nobuffers(async_chunk->locked_page); |
| /* unlocked later on in the async handlers */ |
| } |
| |
| if (redirty) |
| extent_range_redirty_for_io(inode, start, end); |
| add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, |
| BTRFS_COMPRESS_NONE); |
| compressed_extents++; |
| |
| return compressed_extents; |
| } |
| |
| static void free_async_extent_pages(struct async_extent *async_extent) |
| { |
| int i; |
| |
| if (!async_extent->pages) |
| return; |
| |
| for (i = 0; i < async_extent->nr_pages; i++) { |
| WARN_ON(async_extent->pages[i]->mapping); |
| put_page(async_extent->pages[i]); |
| } |
| kfree(async_extent->pages); |
| async_extent->nr_pages = 0; |
| async_extent->pages = NULL; |
| } |
| |
| /* |
| * phase two of compressed writeback. This is the ordered portion |
| * of the code, which only gets called in the order the work was |
| * queued. We walk all the async extents created by compress_file_range |
| * and send them down to the disk. |
| */ |
| static noinline void submit_compressed_extents(struct async_chunk *async_chunk) |
| { |
| struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct async_extent *async_extent; |
| u64 alloc_hint = 0; |
| struct btrfs_key ins; |
| struct extent_map *em; |
| struct btrfs_root *root = inode->root; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| int ret = 0; |
| |
| again: |
| while (!list_empty(&async_chunk->extents)) { |
| async_extent = list_entry(async_chunk->extents.next, |
| struct async_extent, list); |
| list_del(&async_extent->list); |
| |
| retry: |
| lock_extent(io_tree, async_extent->start, |
| async_extent->start + async_extent->ram_size - 1); |
| /* did the compression code fall back to uncompressed IO? */ |
| if (!async_extent->pages) { |
| int page_started = 0; |
| unsigned long nr_written = 0; |
| |
| /* allocate blocks */ |
| ret = cow_file_range(inode, async_chunk->locked_page, |
| async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| &page_started, &nr_written, 0); |
| |
| /* JDM XXX */ |
| |
| /* |
| * if page_started, cow_file_range inserted an |
| * inline extent and took care of all the unlocking |
| * and IO for us. Otherwise, we need to submit |
| * all those pages down to the drive. |
| */ |
| if (!page_started && !ret) |
| extent_write_locked_range(&inode->vfs_inode, |
| async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| WB_SYNC_ALL); |
| else if (ret && async_chunk->locked_page) |
| unlock_page(async_chunk->locked_page); |
| kfree(async_extent); |
| cond_resched(); |
| continue; |
| } |
| |
| ret = btrfs_reserve_extent(root, async_extent->ram_size, |
| async_extent->compressed_size, |
| async_extent->compressed_size, |
| 0, alloc_hint, &ins, 1, 1); |
| if (ret) { |
| free_async_extent_pages(async_extent); |
| |
| if (ret == -ENOSPC) { |
| unlock_extent(io_tree, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1); |
| |
| /* |
| * we need to redirty the pages if we decide to |
| * fallback to uncompressed IO, otherwise we |
| * will not submit these pages down to lower |
| * layers. |
| */ |
| extent_range_redirty_for_io(&inode->vfs_inode, |
| async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1); |
| |
| goto retry; |
| } |
| goto out_free; |
| } |
| /* |
| * here we're doing allocation and writeback of the |
| * compressed pages |
| */ |
| em = create_io_em(inode, async_extent->start, |
| async_extent->ram_size, /* len */ |
| async_extent->start, /* orig_start */ |
| ins.objectid, /* block_start */ |
| ins.offset, /* block_len */ |
| ins.offset, /* orig_block_len */ |
| async_extent->ram_size, /* ram_bytes */ |
| async_extent->compress_type, |
| BTRFS_ORDERED_COMPRESSED); |
| if (IS_ERR(em)) |
| /* ret value is not necessary due to void function */ |
| goto out_free_reserve; |
| free_extent_map(em); |
| |
| ret = btrfs_add_ordered_extent_compress(inode, |
| async_extent->start, |
| ins.objectid, |
| async_extent->ram_size, |
| ins.offset, |
| BTRFS_ORDERED_COMPRESSED, |
| async_extent->compress_type); |
| if (ret) { |
| btrfs_drop_extent_cache(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, 0); |
| goto out_free_reserve; |
| } |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| |
| /* |
| * clear dirty, set writeback and unlock the pages. |
| */ |
| extent_clear_unlock_delalloc(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC, |
| PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK); |
| if (btrfs_submit_compressed_write(inode, async_extent->start, |
| async_extent->ram_size, |
| ins.objectid, |
| ins.offset, async_extent->pages, |
| async_extent->nr_pages, |
| async_chunk->write_flags, |
| async_chunk->blkcg_css)) { |
| struct page *p = async_extent->pages[0]; |
| const u64 start = async_extent->start; |
| const u64 end = start + async_extent->ram_size - 1; |
| |
| p->mapping = inode->vfs_inode.i_mapping; |
| btrfs_writepage_endio_finish_ordered(p, start, end, 0); |
| |
| p->mapping = NULL; |
| extent_clear_unlock_delalloc(inode, start, end, NULL, 0, |
| PAGE_END_WRITEBACK | |
| PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| } |
| alloc_hint = ins.objectid + ins.offset; |
| kfree(async_extent); |
| cond_resched(); |
| } |
| return; |
| out_free_reserve: |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); |
| out_free: |
| extent_clear_unlock_delalloc(inode, async_extent->start, |
| async_extent->start + |
| async_extent->ram_size - 1, |
| NULL, EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | |
| EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, |
| PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | |
| PAGE_SET_ERROR); |
| free_async_extent_pages(async_extent); |
| kfree(async_extent); |
| goto again; |
| } |
| |
| static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, |
| u64 num_bytes) |
| { |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| u64 alloc_hint = 0; |
| |
| read_lock(&em_tree->lock); |
| em = search_extent_mapping(em_tree, start, num_bytes); |
| if (em) { |
| /* |
| * if block start isn't an actual block number then find the |
| * first block in this inode and use that as a hint. If that |
| * block is also bogus then just don't worry about it. |
| */ |
| if (em->block_start >= EXTENT_MAP_LAST_BYTE) { |
| free_extent_map(em); |
| em = search_extent_mapping(em_tree, 0, 0); |
| if (em && em->block_start < EXTENT_MAP_LAST_BYTE) |
| alloc_hint = em->block_start; |
| if (em) |
| free_extent_map(em); |
| } else { |
| alloc_hint = em->block_start; |
| free_extent_map(em); |
| } |
| } |
| read_unlock(&em_tree->lock); |
| |
| return alloc_hint; |
| } |
| |
| /* |
| * when extent_io.c finds a delayed allocation range in the file, |
| * the call backs end up in this code. The basic idea is to |
| * allocate extents on disk for the range, and create ordered data structs |
| * in ram to track those extents. |
| * |
| * locked_page is the page that writepage had locked already. We use |
| * it to make sure we don't do extra locks or unlocks. |
| * |
| * *page_started is set to one if we unlock locked_page and do everything |
| * required to start IO on it. It may be clean and already done with |
| * IO when we return. |
| */ |
| static noinline int cow_file_range(struct btrfs_inode *inode, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written, int unlock) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| u64 alloc_hint = 0; |
| u64 num_bytes; |
| unsigned long ram_size; |
| u64 cur_alloc_size = 0; |
| u64 min_alloc_size; |
| u64 blocksize = fs_info->sectorsize; |
| struct btrfs_key ins; |
| struct extent_map *em; |
| unsigned clear_bits; |
| unsigned long page_ops; |
| bool extent_reserved = false; |
| int ret = 0; |
| |
| if (btrfs_is_free_space_inode(inode)) { |
| WARN_ON_ONCE(1); |
| ret = -EINVAL; |
| goto out_unlock; |
| } |
| |
| num_bytes = ALIGN(end - start + 1, blocksize); |
| num_bytes = max(blocksize, num_bytes); |
| ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); |
| |
| inode_should_defrag(inode, start, end, num_bytes, SZ_64K); |
| |
| if (start == 0) { |
| /* lets try to make an inline extent */ |
| ret = cow_file_range_inline(inode, start, end, 0, |
| BTRFS_COMPRESS_NONE, NULL); |
| if (ret == 0) { |
| /* |
| * We use DO_ACCOUNTING here because we need the |
| * delalloc_release_metadata to be run _after_ we drop |
| * our outstanding extent for clearing delalloc for this |
| * range. |
| */ |
| extent_clear_unlock_delalloc(inode, start, end, NULL, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| *nr_written = *nr_written + |
| (end - start + PAGE_SIZE) / PAGE_SIZE; |
| *page_started = 1; |
| goto out; |
| } else if (ret < 0) { |
| goto out_unlock; |
| } |
| } |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); |
| btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); |
| |
| /* |
| * Relocation relies on the relocated extents to have exactly the same |
| * size as the original extents. Normally writeback for relocation data |
| * extents follows a NOCOW path because relocation preallocates the |
| * extents. However, due to an operation such as scrub turning a block |
| * group to RO mode, it may fallback to COW mode, so we must make sure |
| * an extent allocated during COW has exactly the requested size and can |
| * not be split into smaller extents, otherwise relocation breaks and |
| * fails during the stage where it updates the bytenr of file extent |
| * items. |
| */ |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| min_alloc_size = num_bytes; |
| else |
| min_alloc_size = fs_info->sectorsize; |
| |
| while (num_bytes > 0) { |
| cur_alloc_size = num_bytes; |
| ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, |
| min_alloc_size, 0, alloc_hint, |
| &ins, 1, 1); |
| if (ret < 0) |
| goto out_unlock; |
| cur_alloc_size = ins.offset; |
| extent_reserved = true; |
| |
| ram_size = ins.offset; |
| em = create_io_em(inode, start, ins.offset, /* len */ |
| start, /* orig_start */ |
| ins.objectid, /* block_start */ |
| ins.offset, /* block_len */ |
| ins.offset, /* orig_block_len */ |
| ram_size, /* ram_bytes */ |
| BTRFS_COMPRESS_NONE, /* compress_type */ |
| BTRFS_ORDERED_REGULAR /* type */); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out_reserve; |
| } |
| free_extent_map(em); |
| |
| ret = btrfs_add_ordered_extent(inode, start, ins.objectid, |
| ram_size, cur_alloc_size, 0); |
| if (ret) |
| goto out_drop_extent_cache; |
| |
| if (root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID) { |
| ret = btrfs_reloc_clone_csums(inode, start, |
| cur_alloc_size); |
| /* |
| * Only drop cache here, and process as normal. |
| * |
| * We must not allow extent_clear_unlock_delalloc() |
| * at out_unlock label to free meta of this ordered |
| * extent, as its meta should be freed by |
| * btrfs_finish_ordered_io(). |
| * |
| * So we must continue until @start is increased to |
| * skip current ordered extent. |
| */ |
| if (ret) |
| btrfs_drop_extent_cache(inode, start, |
| start + ram_size - 1, 0); |
| } |
| |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| |
| /* we're not doing compressed IO, don't unlock the first |
| * page (which the caller expects to stay locked), don't |
| * clear any dirty bits and don't set any writeback bits |
| * |
| * Do set the Private2 bit so we know this page was properly |
| * setup for writepage |
| */ |
| page_ops = unlock ? PAGE_UNLOCK : 0; |
| page_ops |= PAGE_SET_PRIVATE2; |
| |
| extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, |
| locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC, |
| page_ops); |
| if (num_bytes < cur_alloc_size) |
| num_bytes = 0; |
| else |
| num_bytes -= cur_alloc_size; |
| alloc_hint = ins.objectid + ins.offset; |
| start += cur_alloc_size; |
| extent_reserved = false; |
| |
| /* |
| * btrfs_reloc_clone_csums() error, since start is increased |
| * extent_clear_unlock_delalloc() at out_unlock label won't |
| * free metadata of current ordered extent, we're OK to exit. |
| */ |
| if (ret) |
| goto out_unlock; |
| } |
| out: |
| return ret; |
| |
| out_drop_extent_cache: |
| btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); |
| out_reserve: |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); |
| out_unlock: |
| clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | |
| EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; |
| page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK; |
| /* |
| * If we reserved an extent for our delalloc range (or a subrange) and |
| * failed to create the respective ordered extent, then it means that |
| * when we reserved the extent we decremented the extent's size from |
| * the data space_info's bytes_may_use counter and incremented the |
| * space_info's bytes_reserved counter by the same amount. We must make |
| * sure extent_clear_unlock_delalloc() does not try to decrement again |
| * the data space_info's bytes_may_use counter, therefore we do not pass |
| * it the flag EXTENT_CLEAR_DATA_RESV. |
| */ |
| if (extent_reserved) { |
| extent_clear_unlock_delalloc(inode, start, |
| start + cur_alloc_size - 1, |
| locked_page, |
| clear_bits, |
| page_ops); |
| start += cur_alloc_size; |
| if (start >= end) |
| goto out; |
| } |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| clear_bits | EXTENT_CLEAR_DATA_RESV, |
| page_ops); |
| goto out; |
| } |
| |
| /* |
| * work queue call back to started compression on a file and pages |
| */ |
| static noinline void async_cow_start(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk; |
| int compressed_extents; |
| |
| async_chunk = container_of(work, struct async_chunk, work); |
| |
| compressed_extents = compress_file_range(async_chunk); |
| if (compressed_extents == 0) { |
| btrfs_add_delayed_iput(async_chunk->inode); |
| async_chunk->inode = NULL; |
| } |
| } |
| |
| /* |
| * work queue call back to submit previously compressed pages |
| */ |
| static noinline void async_cow_submit(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk = container_of(work, struct async_chunk, |
| work); |
| struct btrfs_fs_info *fs_info = btrfs_work_owner(work); |
| unsigned long nr_pages; |
| |
| nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> |
| PAGE_SHIFT; |
| |
| /* |
| * ->inode could be NULL if async_chunk_start has failed to compress, |
| * in which case we don't have anything to submit, yet we need to |
| * always adjust ->async_delalloc_pages as its paired with the init |
| * happening in cow_file_range_async |
| */ |
| if (async_chunk->inode) |
| submit_compressed_extents(async_chunk); |
| |
| /* atomic_sub_return implies a barrier */ |
| if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < |
| 5 * SZ_1M) |
| cond_wake_up_nomb(&fs_info->async_submit_wait); |
| } |
| |
| static noinline void async_cow_free(struct btrfs_work *work) |
| { |
| struct async_chunk *async_chunk; |
| |
| async_chunk = container_of(work, struct async_chunk, work); |
| if (async_chunk->inode) |
| btrfs_add_delayed_iput(async_chunk->inode); |
| if (async_chunk->blkcg_css) |
| css_put(async_chunk->blkcg_css); |
| /* |
| * Since the pointer to 'pending' is at the beginning of the array of |
| * async_chunk's, freeing it ensures the whole array has been freed. |
| */ |
| if (atomic_dec_and_test(async_chunk->pending)) |
| kvfree(async_chunk->pending); |
| } |
| |
| static int cow_file_range_async(struct btrfs_inode *inode, |
| struct writeback_control *wbc, |
| struct page *locked_page, |
| u64 start, u64 end, int *page_started, |
| unsigned long *nr_written) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); |
| struct async_cow *ctx; |
| struct async_chunk *async_chunk; |
| unsigned long nr_pages; |
| u64 cur_end; |
| u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); |
| int i; |
| bool should_compress; |
| unsigned nofs_flag; |
| const unsigned int write_flags = wbc_to_write_flags(wbc); |
| |
| unlock_extent(&inode->io_tree, start, end); |
| |
| if (inode->flags & BTRFS_INODE_NOCOMPRESS && |
| !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { |
| num_chunks = 1; |
| should_compress = false; |
| } else { |
| should_compress = true; |
| } |
| |
| nofs_flag = memalloc_nofs_save(); |
| ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); |
| memalloc_nofs_restore(nofs_flag); |
| |
| if (!ctx) { |
| unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING; |
| unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | |
| PAGE_SET_ERROR; |
| |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| clear_bits, page_ops); |
| return -ENOMEM; |
| } |
| |
| async_chunk = ctx->chunks; |
| atomic_set(&ctx->num_chunks, num_chunks); |
| |
| for (i = 0; i < num_chunks; i++) { |
| if (should_compress) |
| cur_end = min(end, start + SZ_512K - 1); |
| else |
| cur_end = end; |
| |
| /* |
| * igrab is called higher up in the call chain, take only the |
| * lightweight reference for the callback lifetime |
| */ |
| ihold(&inode->vfs_inode); |
| async_chunk[i].pending = &ctx->num_chunks; |
| async_chunk[i].inode = &inode->vfs_inode; |
| async_chunk[i].start = start; |
| async_chunk[i].end = cur_end; |
| async_chunk[i].write_flags = write_flags; |
| INIT_LIST_HEAD(&async_chunk[i].extents); |
| |
| /* |
| * The locked_page comes all the way from writepage and its |
| * the original page we were actually given. As we spread |
| * this large delalloc region across multiple async_chunk |
| * structs, only the first struct needs a pointer to locked_page |
| * |
| * This way we don't need racey decisions about who is supposed |
| * to unlock it. |
| */ |
| if (locked_page) { |
| /* |
| * Depending on the compressibility, the pages might or |
| * might not go through async. We want all of them to |
| * be accounted against wbc once. Let's do it here |
| * before the paths diverge. wbc accounting is used |
| * only for foreign writeback detection and doesn't |
| * need full accuracy. Just account the whole thing |
| * against the first page. |
| */ |
| wbc_account_cgroup_owner(wbc, locked_page, |
| cur_end - start); |
| async_chunk[i].locked_page = locked_page; |
| locked_page = NULL; |
| } else { |
| async_chunk[i].locked_page = NULL; |
| } |
| |
| if (blkcg_css != blkcg_root_css) { |
| css_get(blkcg_css); |
| async_chunk[i].blkcg_css = blkcg_css; |
| } else { |
| async_chunk[i].blkcg_css = NULL; |
| } |
| |
| btrfs_init_work(&async_chunk[i].work, async_cow_start, |
| async_cow_submit, async_cow_free); |
| |
| nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); |
| atomic_add(nr_pages, &fs_info->async_delalloc_pages); |
| |
| btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); |
| |
| *nr_written += nr_pages; |
| start = cur_end + 1; |
| } |
| *page_started = 1; |
| return 0; |
| } |
| |
| static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u64 num_bytes) |
| { |
| int ret; |
| struct btrfs_ordered_sum *sums; |
| LIST_HEAD(list); |
| |
| ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, |
| bytenr + num_bytes - 1, &list, 0); |
| if (ret == 0 && list_empty(&list)) |
| return 0; |
| |
| while (!list_empty(&list)) { |
| sums = list_entry(list.next, struct btrfs_ordered_sum, list); |
| list_del(&sums->list); |
| kfree(sums); |
| } |
| if (ret < 0) |
| return ret; |
| return 1; |
| } |
| |
| static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, |
| const u64 start, const u64 end, |
| int *page_started, unsigned long *nr_written) |
| { |
| const bool is_space_ino = btrfs_is_free_space_inode(inode); |
| const bool is_reloc_ino = (inode->root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID); |
| const u64 range_bytes = end + 1 - start; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| u64 range_start = start; |
| u64 count; |
| |
| /* |
| * If EXTENT_NORESERVE is set it means that when the buffered write was |
| * made we had not enough available data space and therefore we did not |
| * reserve data space for it, since we though we could do NOCOW for the |
| * respective file range (either there is prealloc extent or the inode |
| * has the NOCOW bit set). |
| * |
| * However when we need to fallback to COW mode (because for example the |
| * block group for the corresponding extent was turned to RO mode by a |
| * scrub or relocation) we need to do the following: |
| * |
| * 1) We increment the bytes_may_use counter of the data space info. |
| * If COW succeeds, it allocates a new data extent and after doing |
| * that it decrements the space info's bytes_may_use counter and |
| * increments its bytes_reserved counter by the same amount (we do |
| * this at btrfs_add_reserved_bytes()). So we need to increment the |
| * bytes_may_use counter to compensate (when space is reserved at |
| * buffered write time, the bytes_may_use counter is incremented); |
| * |
| * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so |
| * that if the COW path fails for any reason, it decrements (through |
| * extent_clear_unlock_delalloc()) the bytes_may_use counter of the |
| * data space info, which we incremented in the step above. |
| * |
| * If we need to fallback to cow and the inode corresponds to a free |
| * space cache inode or an inode of the data relocation tree, we must |
| * also increment bytes_may_use of the data space_info for the same |
| * reason. Space caches and relocated data extents always get a prealloc |
| * extent for them, however scrub or balance may have set the block |
| * group that contains that extent to RO mode and therefore force COW |
| * when starting writeback. |
| */ |
| count = count_range_bits(io_tree, &range_start, end, range_bytes, |
| EXTENT_NORESERVE, 0); |
| if (count > 0 || is_space_ino || is_reloc_ino) { |
| u64 bytes = count; |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_space_info *sinfo = fs_info->data_sinfo; |
| |
| if (is_space_ino || is_reloc_ino) |
| bytes = range_bytes; |
| |
| spin_lock(&sinfo->lock); |
| btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); |
| spin_unlock(&sinfo->lock); |
| |
| if (count > 0) |
| clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, |
| 0, 0, NULL); |
| } |
| |
| return cow_file_range(inode, locked_page, start, end, page_started, |
| nr_written, 1); |
| } |
| |
| /* |
| * when nowcow writeback call back. This checks for snapshots or COW copies |
| * of the extents that exist in the file, and COWs the file as required. |
| * |
| * If no cow copies or snapshots exist, we write directly to the existing |
| * blocks on disk |
| */ |
| static noinline int run_delalloc_nocow(struct btrfs_inode *inode, |
| struct page *locked_page, |
| const u64 start, const u64 end, |
| int *page_started, int force, |
| unsigned long *nr_written) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_path *path; |
| u64 cow_start = (u64)-1; |
| u64 cur_offset = start; |
| int ret; |
| bool check_prev = true; |
| const bool freespace_inode = btrfs_is_free_space_inode(inode); |
| u64 ino = btrfs_ino(inode); |
| bool nocow = false; |
| u64 disk_bytenr = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| extent_clear_unlock_delalloc(inode, start, end, locked_page, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| return -ENOMEM; |
| } |
| |
| while (1) { |
| struct btrfs_key found_key; |
| struct btrfs_file_extent_item *fi; |
| struct extent_buffer *leaf; |
| u64 extent_end; |
| u64 extent_offset; |
| u64 num_bytes = 0; |
| u64 disk_num_bytes; |
| u64 ram_bytes; |
| int extent_type; |
| |
| nocow = false; |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, ino, |
| cur_offset, 0); |
| if (ret < 0) |
| goto error; |
| |
| /* |
| * If there is no extent for our range when doing the initial |
| * search, then go back to the previous slot as it will be the |
| * one containing the search offset |
| */ |
| if (ret > 0 && path->slots[0] > 0 && check_prev) { |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, |
| path->slots[0] - 1); |
| if (found_key.objectid == ino && |
| found_key.type == BTRFS_EXTENT_DATA_KEY) |
| path->slots[0]--; |
| } |
| check_prev = false; |
| next_slot: |
| /* Go to next leaf if we have exhausted the current one */ |
| leaf = path->nodes[0]; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) { |
| if (cow_start != (u64)-1) |
| cur_offset = cow_start; |
| goto error; |
| } |
| if (ret > 0) |
| break; |
| leaf = path->nodes[0]; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| /* Didn't find anything for our INO */ |
| if (found_key.objectid > ino) |
| break; |
| /* |
| * Keep searching until we find an EXTENT_ITEM or there are no |
| * more extents for this inode |
| */ |
| if (WARN_ON_ONCE(found_key.objectid < ino) || |
| found_key.type < BTRFS_EXTENT_DATA_KEY) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| /* Found key is not EXTENT_DATA_KEY or starts after req range */ |
| if (found_key.type > BTRFS_EXTENT_DATA_KEY || |
| found_key.offset > end) |
| break; |
| |
| /* |
| * If the found extent starts after requested offset, then |
| * adjust extent_end to be right before this extent begins |
| */ |
| if (found_key.offset > cur_offset) { |
| extent_end = found_key.offset; |
| extent_type = 0; |
| goto out_check; |
| } |
| |
| /* |
| * Found extent which begins before our range and potentially |
| * intersect it |
| */ |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| |
| ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| extent_offset = btrfs_file_extent_offset(leaf, fi); |
| extent_end = found_key.offset + |
| btrfs_file_extent_num_bytes(leaf, fi); |
| disk_num_bytes = |
| btrfs_file_extent_disk_num_bytes(leaf, fi); |
| /* |
| * If the extent we got ends before our current offset, |
| * skip to the next extent. |
| */ |
| if (extent_end <= cur_offset) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| /* Skip holes */ |
| if (disk_bytenr == 0) |
| goto out_check; |
| /* Skip compressed/encrypted/encoded extents */ |
| if (btrfs_file_extent_compression(leaf, fi) || |
| btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| goto out_check; |
| /* |
| * If extent is created before the last volume's snapshot |
| * this implies the extent is shared, hence we can't do |
| * nocow. This is the same check as in |
| * btrfs_cross_ref_exist but without calling |
| * btrfs_search_slot. |
| */ |
| if (!freespace_inode && |
| btrfs_file_extent_generation(leaf, fi) <= |
| btrfs_root_last_snapshot(&root->root_item)) |
| goto out_check; |
| if (extent_type == BTRFS_FILE_EXTENT_REG && !force) |
| goto out_check; |
| /* If extent is RO, we must COW it */ |
| if (btrfs_extent_readonly(fs_info, disk_bytenr)) |
| goto out_check; |
| ret = btrfs_cross_ref_exist(root, ino, |
| found_key.offset - |
| extent_offset, disk_bytenr, false); |
| if (ret) { |
| /* |
| * ret could be -EIO if the above fails to read |
| * metadata. |
| */ |
| if (ret < 0) { |
| if (cow_start != (u64)-1) |
| cur_offset = cow_start; |
| goto error; |
| } |
| |
| WARN_ON_ONCE(freespace_inode); |
| goto out_check; |
| } |
| disk_bytenr += extent_offset; |
| disk_bytenr += cur_offset - found_key.offset; |
| num_bytes = min(end + 1, extent_end) - cur_offset; |
| /* |
| * If there are pending snapshots for this root, we |
| * fall into common COW way |
| */ |
| if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) |
| goto out_check; |
| /* |
| * force cow if csum exists in the range. |
| * this ensure that csum for a given extent are |
| * either valid or do not exist. |
| */ |
| ret = csum_exist_in_range(fs_info, disk_bytenr, |
| num_bytes); |
| if (ret) { |
| /* |
| * ret could be -EIO if the above fails to read |
| * metadata. |
| */ |
| if (ret < 0) { |
| if (cow_start != (u64)-1) |
| cur_offset = cow_start; |
| goto error; |
| } |
| WARN_ON_ONCE(freespace_inode); |
| goto out_check; |
| } |
| if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) |
| goto out_check; |
| nocow = true; |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| extent_end = found_key.offset + ram_bytes; |
| extent_end = ALIGN(extent_end, fs_info->sectorsize); |
| /* Skip extents outside of our requested range */ |
| if (extent_end <= start) { |
| path->slots[0]++; |
| goto next_slot; |
| } |
| } else { |
| /* If this triggers then we have a memory corruption */ |
| BUG(); |
| } |
| out_check: |
| /* |
| * If nocow is false then record the beginning of the range |
| * that needs to be COWed |
| */ |
| if (!nocow) { |
| if (cow_start == (u64)-1) |
| cow_start = cur_offset; |
| cur_offset = extent_end; |
| if (cur_offset > end) |
| break; |
| path->slots[0]++; |
| goto next_slot; |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * COW range from cow_start to found_key.offset - 1. As the key |
| * will contain the beginning of the first extent that can be |
| * NOCOW, following one which needs to be COW'ed |
| */ |
| if (cow_start != (u64)-1) { |
| ret = fallback_to_cow(inode, locked_page, |
| cow_start, found_key.offset - 1, |
| page_started, nr_written); |
| if (ret) |
| goto error; |
| cow_start = (u64)-1; |
| } |
| |
| if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 orig_start = found_key.offset - extent_offset; |
| struct extent_map *em; |
| |
| em = create_io_em(inode, cur_offset, num_bytes, |
| orig_start, |
| disk_bytenr, /* block_start */ |
| num_bytes, /* block_len */ |
| disk_num_bytes, /* orig_block_len */ |
| ram_bytes, BTRFS_COMPRESS_NONE, |
| BTRFS_ORDERED_PREALLOC); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto error; |
| } |
| free_extent_map(em); |
| ret = btrfs_add_ordered_extent(inode, cur_offset, |
| disk_bytenr, num_bytes, |
| num_bytes, |
| BTRFS_ORDERED_PREALLOC); |
| if (ret) { |
| btrfs_drop_extent_cache(inode, cur_offset, |
| cur_offset + num_bytes - 1, |
| 0); |
| goto error; |
| } |
| } else { |
| ret = btrfs_add_ordered_extent(inode, cur_offset, |
| disk_bytenr, num_bytes, |
| num_bytes, |
| BTRFS_ORDERED_NOCOW); |
| if (ret) |
| goto error; |
| } |
| |
| if (nocow) |
| btrfs_dec_nocow_writers(fs_info, disk_bytenr); |
| nocow = false; |
| |
| if (root->root_key.objectid == |
| BTRFS_DATA_RELOC_TREE_OBJECTID) |
| /* |
| * Error handled later, as we must prevent |
| * extent_clear_unlock_delalloc() in error handler |
| * from freeing metadata of created ordered extent. |
| */ |
| ret = btrfs_reloc_clone_csums(inode, cur_offset, |
| num_bytes); |
| |
| extent_clear_unlock_delalloc(inode, cur_offset, |
| cur_offset + num_bytes - 1, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC | |
| EXTENT_CLEAR_DATA_RESV, |
| PAGE_UNLOCK | PAGE_SET_PRIVATE2); |
| |
| cur_offset = extent_end; |
| |
| /* |
| * btrfs_reloc_clone_csums() error, now we're OK to call error |
| * handler, as metadata for created ordered extent will only |
| * be freed by btrfs_finish_ordered_io(). |
| */ |
| if (ret) |
| goto error; |
| if (cur_offset > end) |
| break; |
| } |
| btrfs_release_path(path); |
| |
| if (cur_offset <= end && cow_start == (u64)-1) |
| cow_start = cur_offset; |
| |
| if (cow_start != (u64)-1) { |
| cur_offset = end; |
| ret = fallback_to_cow(inode, locked_page, cow_start, end, |
| page_started, nr_written); |
| if (ret) |
| goto error; |
| } |
| |
| error: |
| if (nocow) |
| btrfs_dec_nocow_writers(fs_info, disk_bytenr); |
| |
| if (ret && cur_offset < end) |
| extent_clear_unlock_delalloc(inode, cur_offset, end, |
| locked_page, EXTENT_LOCKED | |
| EXTENT_DELALLOC | EXTENT_DEFRAG | |
| EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | |
| PAGE_CLEAR_DIRTY | |
| PAGE_SET_WRITEBACK | |
| PAGE_END_WRITEBACK); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) |
| { |
| |
| if (!(inode->flags & BTRFS_INODE_NODATACOW) && |
| !(inode->flags & BTRFS_INODE_PREALLOC)) |
| return 0; |
| |
| /* |
| * @defrag_bytes is a hint value, no spinlock held here, |
| * if is not zero, it means the file is defragging. |
| * Force cow if given extent needs to be defragged. |
| */ |
| if (inode->defrag_bytes && |
| test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Function to process delayed allocation (create CoW) for ranges which are |
| * being touched for the first time. |
| */ |
| int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, |
| u64 start, u64 end, int *page_started, unsigned long *nr_written, |
| struct writeback_control *wbc) |
| { |
| int ret; |
| int force_cow = need_force_cow(inode, start, end); |
| |
| if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { |
| ret = run_delalloc_nocow(inode, locked_page, start, end, |
| page_started, 1, nr_written); |
| } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { |
| ret = run_delalloc_nocow(inode, locked_page, start, end, |
| page_started, 0, nr_written); |
| } else if (!inode_can_compress(inode) || |
| !inode_need_compress(inode, start, end)) { |
| ret = cow_file_range(inode, locked_page, start, end, |
| page_started, nr_written, 1); |
| } else { |
| set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); |
| ret = cow_file_range_async(inode, wbc, locked_page, start, end, |
| page_started, nr_written); |
| } |
| if (ret) |
| btrfs_cleanup_ordered_extents(inode, locked_page, start, |
| end - start + 1); |
| return ret; |
| } |
| |
| void btrfs_split_delalloc_extent(struct inode *inode, |
| struct extent_state *orig, u64 split) |
| { |
| u64 size; |
| |
| /* not delalloc, ignore it */ |
| if (!(orig->state & EXTENT_DELALLOC)) |
| return; |
| |
| size = orig->end - orig->start + 1; |
| if (size > BTRFS_MAX_EXTENT_SIZE) { |
| u32 num_extents; |
| u64 new_size; |
| |
| /* |
| * See the explanation in btrfs_merge_delalloc_extent, the same |
| * applies here, just in reverse. |
| */ |
| new_size = orig->end - split + 1; |
| num_extents = count_max_extents(new_size); |
| new_size = split - orig->start; |
| num_extents += count_max_extents(new_size); |
| if (count_max_extents(size) >= num_extents) |
| return; |
| } |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| /* |
| * Handle merged delayed allocation extents so we can keep track of new extents |
| * that are just merged onto old extents, such as when we are doing sequential |
| * writes, so we can properly account for the metadata space we'll need. |
| */ |
| void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, |
| struct extent_state *other) |
| { |
| u64 new_size, old_size; |
| u32 num_extents; |
| |
| /* not delalloc, ignore it */ |
| if (!(other->state & EXTENT_DELALLOC)) |
| return; |
| |
| if (new->start > other->start) |
| new_size = new->end - other->start + 1; |
| else |
| new_size = other->end - new->start + 1; |
| |
| /* we're not bigger than the max, unreserve the space and go */ |
| if (new_size <= BTRFS_MAX_EXTENT_SIZE) { |
| spin_lock(&BTRFS_I(inode)->lock); |
| btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| return; |
| } |
| |
| /* |
| * We have to add up either side to figure out how many extents were |
| * accounted for before we merged into one big extent. If the number of |
| * extents we accounted for is <= the amount we need for the new range |
| * then we can return, otherwise drop. Think of it like this |
| * |
| * [ 4k][MAX_SIZE] |
| * |
| * So we've grown the extent by a MAX_SIZE extent, this would mean we |
| * need 2 outstanding extents, on one side we have 1 and the other side |
| * we have 1 so they are == and we can return. But in this case |
| * |
| * [MAX_SIZE+4k][MAX_SIZE+4k] |
| * |
| * Each range on their own accounts for 2 extents, but merged together |
| * they are only 3 extents worth of accounting, so we need to drop in |
| * this case. |
| */ |
| old_size = other->end - other->start + 1; |
| num_extents = count_max_extents(old_size); |
| old_size = new->end - new->start + 1; |
| num_extents += count_max_extents(old_size); |
| if (count_max_extents(new_size) >= num_extents) |
| return; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| static void btrfs_add_delalloc_inodes(struct btrfs_root *root, |
| struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| |
| spin_lock(&root->delalloc_lock); |
| if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { |
| list_add_tail(&BTRFS_I(inode)->delalloc_inodes, |
| &root->delalloc_inodes); |
| set_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags); |
| root->nr_delalloc_inodes++; |
| if (root->nr_delalloc_inodes == 1) { |
| spin_lock(&fs_info->delalloc_root_lock); |
| BUG_ON(!list_empty(&root->delalloc_root)); |
| list_add_tail(&root->delalloc_root, |
| &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| } |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| |
| void __btrfs_del_delalloc_inode(struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (!list_empty(&inode->delalloc_inodes)) { |
| list_del_init(&inode->delalloc_inodes); |
| clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &inode->runtime_flags); |
| root->nr_delalloc_inodes--; |
| if (!root->nr_delalloc_inodes) { |
| ASSERT(list_empty(&root->delalloc_inodes)); |
| spin_lock(&fs_info->delalloc_root_lock); |
| BUG_ON(list_empty(&root->delalloc_root)); |
| list_del_init(&root->delalloc_root); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| } |
| } |
| |
| static void btrfs_del_delalloc_inode(struct btrfs_root *root, |
| struct btrfs_inode *inode) |
| { |
| spin_lock(&root->delalloc_lock); |
| __btrfs_del_delalloc_inode(root, inode); |
| spin_unlock(&root->delalloc_lock); |
| } |
| |
| /* |
| * Properly track delayed allocation bytes in the inode and to maintain the |
| * list of inodes that have pending delalloc work to be done. |
| */ |
| void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, |
| unsigned *bits) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| |
| if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) |
| WARN_ON(1); |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| u64 len = state->end + 1 - state->start; |
| u32 num_extents = count_max_extents(len); |
| bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| |
| /* For sanity tests */ |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| percpu_counter_add_batch(&fs_info->delalloc_bytes, len, |
| fs_info->delalloc_batch); |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->delalloc_bytes += len; |
| if (*bits & EXTENT_DEFRAG) |
| BTRFS_I(inode)->defrag_bytes += len; |
| if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &BTRFS_I(inode)->runtime_flags)) |
| btrfs_add_delalloc_inodes(root, inode); |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| |
| if (!(state->state & EXTENT_DELALLOC_NEW) && |
| (*bits & EXTENT_DELALLOC_NEW)) { |
| spin_lock(&BTRFS_I(inode)->lock); |
| BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - |
| state->start; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| } |
| } |
| |
| /* |
| * Once a range is no longer delalloc this function ensures that proper |
| * accounting happens. |
| */ |
| void btrfs_clear_delalloc_extent(struct inode *vfs_inode, |
| struct extent_state *state, unsigned *bits) |
| { |
| struct btrfs_inode *inode = BTRFS_I(vfs_inode); |
| struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); |
| u64 len = state->end + 1 - state->start; |
| u32 num_extents = count_max_extents(len); |
| |
| if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { |
| spin_lock(&inode->lock); |
| inode->defrag_bytes -= len; |
| spin_unlock(&inode->lock); |
| } |
| |
| /* |
| * set_bit and clear bit hooks normally require _irqsave/restore |
| * but in this case, we are only testing for the DELALLOC |
| * bit, which is only set or cleared with irqs on |
| */ |
| if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { |
| struct btrfs_root *root = inode->root; |
| bool do_list = !btrfs_is_free_space_inode(inode); |
| |
| spin_lock(&inode->lock); |
| btrfs_mod_outstanding_extents(inode, -num_extents); |
| spin_unlock(&inode->lock); |
| |
| /* |
| * We don't reserve metadata space for space cache inodes so we |
| * don't need to call delalloc_release_metadata if there is an |
| * error. |
| */ |
| if (*bits & EXTENT_CLEAR_META_RESV && |
| root != fs_info->tree_root) |
| btrfs_delalloc_release_metadata(inode, len, false); |
| |
| /* For sanity tests. */ |
| if (btrfs_is_testing(fs_info)) |
| return; |
| |
| if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && |
| do_list && !(state->state & EXTENT_NORESERVE) && |
| (*bits & EXTENT_CLEAR_DATA_RESV)) |
| btrfs_free_reserved_data_space_noquota(fs_info, len); |
| |
| percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, |
| fs_info->delalloc_batch); |
| spin_lock(&inode->lock); |
| inode->delalloc_bytes -= len; |
| if (do_list && inode->delalloc_bytes == 0 && |
| test_bit(BTRFS_INODE_IN_DELALLOC_LIST, |
| &inode->runtime_flags)) |
| btrfs_del_delalloc_inode(root, inode); |
| spin_unlock(&inode->lock); |
| } |
| |
| if ((state->state & EXTENT_DELALLOC_NEW) && |
| (*bits & EXTENT_DELALLOC_NEW)) { |
| spin_lock(&inode->lock); |
| ASSERT(inode->new_delalloc_bytes >= len); |
| inode->new_delalloc_bytes -= len; |
| spin_unlock(&inode->lock); |
| } |
| } |
| |
| /* |
| * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit |
| * in a chunk's stripe. This function ensures that bios do not span a |
| * stripe/chunk |
| * |
| * @page - The page we are about to add to the bio |
| * @size - size we want to add to the bio |
| * @bio - bio we want to ensure is smaller than a stripe |
| * @bio_flags - flags of the bio |
| * |
| * return 1 if page cannot be added to the bio |
| * return 0 if page can be added to the bio |
| * return error otherwise |
| */ |
| int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, |
| unsigned long bio_flags) |
| { |
| struct inode *inode = page->mapping->host; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| u64 logical = (u64)bio->bi_iter.bi_sector << 9; |
| u64 length = 0; |
| u64 map_length; |
| int ret; |
| struct btrfs_io_geometry geom; |
| |
| if (bio_flags & EXTENT_BIO_COMPRESSED) |
| return 0; |
| |
| length = bio->bi_iter.bi_size; |
| map_length = length; |
| ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, |
| &geom); |
| if (ret < 0) |
| return ret; |
| |
| if (geom.len < length + size) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * in order to insert checksums into the metadata in large chunks, |
| * we wait until bio submission time. All the pages in the bio are |
| * checksummed and sums are attached onto the ordered extent record. |
| * |
| * At IO completion time the cums attached on the ordered extent record |
| * are inserted into the btree |
| */ |
| static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, |
| u64 bio_offset) |
| { |
| struct inode *inode = private_data; |
| |
| return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); |
| } |
| |
| /* |
| * extent_io.c submission hook. This does the right thing for csum calculation |
| * on write, or reading the csums from the tree before a read. |
| * |
| * Rules about async/sync submit, |
| * a) read: sync submit |
| * |
| * b) write without checksum: sync submit |
| * |
| * c) write with checksum: |
| * c-1) if bio is issued by fsync: sync submit |
| * (sync_writers != 0) |
| * |
| * c-2) if root is reloc root: sync submit |
| * (only in case of buffered IO) |
| * |
| * c-3) otherwise: async submit |
| */ |
| blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, |
| int mirror_num, unsigned long bio_flags) |
| |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; |
| blk_status_t ret = 0; |
| int skip_sum; |
| int async = !atomic_read(&BTRFS_I(inode)->sync_writers); |
| |
| skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; |
| |
| if (btrfs_is_free_space_inode(BTRFS_I(inode))) |
| metadata = BTRFS_WQ_ENDIO_FREE_SPACE; |
| |
| if (bio_op(bio) != REQ_OP_WRITE) { |
| ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); |
| if (ret) |
| goto out; |
| |
| if (bio_flags & EXTENT_BIO_COMPRESSED) { |
| ret = btrfs_submit_compressed_read(inode, bio, |
| mirror_num, |
| bio_flags); |
| goto out; |
| } else if (!skip_sum) { |
| ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); |
| if (ret) |
| goto out; |
| } |
| goto mapit; |
| } else if (async && !skip_sum) { |
| /* csum items have already been cloned */ |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) |
| goto mapit; |
| /* we're doing a write, do the async checksumming */ |
| ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, |
| 0, inode, btrfs_submit_bio_start); |
| goto out; |
| } else if (!skip_sum) { |
| ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); |
| if (ret) |
| goto out; |
| } |
| |
| mapit: |
| ret = btrfs_map_bio(fs_info, bio, mirror_num); |
| |
| out: |
| if (ret) { |
| bio->bi_status = ret; |
| bio_endio(bio); |
| } |
| return ret; |
| } |
| |
| /* |
| * given a list of ordered sums record them in the inode. This happens |
| * at IO completion time based on sums calculated at bio submission time. |
| */ |
| static int add_pending_csums(struct btrfs_trans_handle *trans, |
| struct list_head *list) |
| { |
| struct btrfs_ordered_sum *sum; |
| int ret; |
| |
| list_for_each_entry(sum, list, list) { |
| trans->adding_csums = true; |
| ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); |
| trans->adding_csums = false; |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, |
| const u64 start, |
| const u64 len, |
| struct extent_state **cached_state) |
| { |
| u64 search_start = start; |
| const u64 end = start + len - 1; |
| |
| while (search_start < end) { |
| const u64 search_len = end - search_start + 1; |
| struct extent_map *em; |
| u64 em_len; |
| int ret = 0; |
| |
| em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| if (em->block_start != EXTENT_MAP_HOLE) |
| goto next; |
| |
| em_len = em->len; |
| if (em->start < search_start) |
| em_len -= search_start - em->start; |
| if (em_len > search_len) |
| em_len = search_len; |
| |
| ret = set_extent_bit(&inode->io_tree, search_start, |
| search_start + em_len - 1, |
| EXTENT_DELALLOC_NEW, |
| NULL, cached_state, GFP_NOFS); |
| next: |
| search_start = extent_map_end(em); |
| free_extent_map(em); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, |
| unsigned int extra_bits, |
| struct extent_state **cached_state) |
| { |
| WARN_ON(PAGE_ALIGNED(end)); |
| |
| if (start >= i_size_read(&inode->vfs_inode) && |
| !(inode->flags & BTRFS_INODE_PREALLOC)) { |
| /* |
| * There can't be any extents following eof in this case so just |
| * set the delalloc new bit for the range directly. |
| */ |
| extra_bits |= EXTENT_DELALLOC_NEW; |
| } else { |
| int ret; |
| |
| ret = btrfs_find_new_delalloc_bytes(inode, start, |
| end + 1 - start, |
| cached_state); |
| if (ret) |
| return ret; |
| } |
| |
| return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, |
| cached_state); |
| } |
| |
| /* see btrfs_writepage_start_hook for details on why this is required */ |
| struct btrfs_writepage_fixup { |
| struct page *page; |
| struct inode *inode; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_writepage_fixup_worker(struct btrfs_work *work) |
| { |
| struct btrfs_writepage_fixup *fixup; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| struct page *page; |
| struct btrfs_inode *inode; |
| u64 page_start; |
| u64 page_end; |
| int ret = 0; |
| bool free_delalloc_space = true; |
| |
| fixup = container_of(work, struct btrfs_writepage_fixup, work); |
| page = fixup->page; |
| inode = BTRFS_I(fixup->inode); |
| page_start = page_offset(page); |
| page_end = page_offset(page) + PAGE_SIZE - 1; |
| |
| /* |
| * This is similar to page_mkwrite, we need to reserve the space before |
| * we take the page lock. |
| */ |
| ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, |
| PAGE_SIZE); |
| again: |
| lock_page(page); |
| |
| /* |
| * Before we queued this fixup, we took a reference on the page. |
| * page->mapping may go NULL, but it shouldn't be moved to a different |
| * address space. |
| */ |
| if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { |
| /* |
| * Unfortunately this is a little tricky, either |
| * |
| * 1) We got here and our page had already been dealt with and |
| * we reserved our space, thus ret == 0, so we need to just |
| * drop our space reservation and bail. This can happen the |
| * first time we come into the fixup worker, or could happen |
| * while waiting for the ordered extent. |
| * 2) Our page was already dealt with, but we happened to get an |
| * ENOSPC above from the btrfs_delalloc_reserve_space. In |
| * this case we obviously don't have anything to release, but |
| * because the page was already dealt with we don't want to |
| * mark the page with an error, so make sure we're resetting |
| * ret to 0. This is why we have this check _before_ the ret |
| * check, because we do not want to have a surprise ENOSPC |
| * when the page was already properly dealt with. |
| */ |
| if (!ret) { |
| btrfs_delalloc_release_extents(inode, PAGE_SIZE); |
| btrfs_delalloc_release_space(inode, data_reserved, |
| page_start, PAGE_SIZE, |
| true); |
| } |
| ret = 0; |
| goto out_page; |
| } |
| |
| /* |
| * We can't mess with the page state unless it is locked, so now that |
| * it is locked bail if we failed to make our space reservation. |
| */ |
| if (ret) |
| goto out_page; |
| |
| lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); |
| |
| /* already ordered? We're done */ |
| if (PagePrivate2(page)) |
| goto out_reserved; |
| |
| ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); |
| if (ordered) { |
| unlock_extent_cached(&inode->io_tree, page_start, page_end, |
| &cached_state); |
| unlock_page(page); |
| btrfs_start_ordered_extent(ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, |
| &cached_state); |
| if (ret) |
| goto out_reserved; |
| |
| /* |
| * Everything went as planned, we're now the owner of a dirty page with |
| * delayed allocation bits set and space reserved for our COW |
| * destination. |
| * |
| * The page was dirty when we started, nothing should have cleaned it. |
| */ |
| BUG_ON(!PageDirty(page)); |
| free_delalloc_space = false; |
| out_reserved: |
| btrfs_delalloc_release_extents(inode, PAGE_SIZE); |
| if (free_delalloc_space) |
| btrfs_delalloc_release_space(inode, data_reserved, page_start, |
| PAGE_SIZE, true); |
| unlock_extent_cached(&inode->io_tree, page_start, page_end, |
| &cached_state); |
| out_page: |
| if (ret) { |
| /* |
| * We hit ENOSPC or other errors. Update the mapping and page |
| * to reflect the errors and clean the page. |
| */ |
| mapping_set_error(page->mapping, ret); |
| end_extent_writepage(page, ret, page_start, page_end); |
| clear_page_dirty_for_io(page); |
| SetPageError(page); |
| } |
| ClearPageChecked(page); |
| unlock_page(page); |
| put_page(page); |
| kfree(fixup); |
| extent_changeset_free(data_reserved); |
| /* |
| * As a precaution, do a delayed iput in case it would be the last iput |
| * that could need flushing space. Recursing back to fixup worker would |
| * deadlock. |
| */ |
| btrfs_add_delayed_iput(&inode->vfs_inode); |
| } |
| |
| /* |
| * There are a few paths in the higher layers of the kernel that directly |
| * set the page dirty bit without asking the filesystem if it is a |
| * good idea. This causes problems because we want to make sure COW |
| * properly happens and the data=ordered rules are followed. |
| * |
| * In our case any range that doesn't have the ORDERED bit set |
| * hasn't been properly setup for IO. We kick off an async process |
| * to fix it up. The async helper will wait for ordered extents, set |
| * the delalloc bit and make it safe to write the page. |
| */ |
| int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) |
| { |
| struct inode *inode = page->mapping->host; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_writepage_fixup *fixup; |
| |
| /* this page is properly in the ordered list */ |
| if (TestClearPagePrivate2(page)) |
| return 0; |
| |
| /* |
| * PageChecked is set below when we create a fixup worker for this page, |
| * don't try to create another one if we're already PageChecked() |
| * |
| * The extent_io writepage code will redirty the page if we send back |
| * EAGAIN. |
| */ |
| if (PageChecked(page)) |
| return -EAGAIN; |
| |
| fixup = kzalloc(sizeof(*fixup), GFP_NOFS); |
| if (!fixup) |
| return -EAGAIN; |
| |
| /* |
| * We are already holding a reference to this inode from |
| * write_cache_pages. We need to hold it because the space reservation |
| * takes place outside of the page lock, and we can't trust |
| * page->mapping outside of the page lock. |
| */ |
| ihold(inode); |
| SetPageChecked(page); |
| get_page(page); |
| btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); |
| fixup->page = page; |
| fixup->inode = inode; |
| btrfs_queue_work(fs_info->fixup_workers, &fixup->work); |
| |
| return -EAGAIN; |
| } |
| |
| static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, u64 file_pos, |
| struct btrfs_file_extent_item *stack_fi, |
| u64 qgroup_reserved) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key ins; |
| u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); |
| u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); |
| u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); |
| u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); |
| int extent_inserted = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * we may be replacing one extent in the tree with another. |
| * The new extent is pinned in the extent map, and we don't want |
| * to drop it from the cache until it is completely in the btree. |
| * |
| * So, tell btrfs_drop_extents to leave this extent in the cache. |
| * the caller is expected to unpin it and allow it to be merged |
| * with the others. |
| */ |
| ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, |
| file_pos + num_bytes, NULL, 0, |
| 1, sizeof(*stack_fi), &extent_inserted); |
| if (ret) |
| goto out; |
| |
| if (!extent_inserted) { |
| ins.objectid = btrfs_ino(inode); |
| ins.offset = file_pos; |
| ins.type = BTRFS_EXTENT_DATA_KEY; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_item(trans, root, path, &ins, |
| sizeof(*stack_fi)); |
| if (ret) |
| goto out; |
| } |
| leaf = path->nodes[0]; |
| btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); |
| write_extent_buffer(leaf, stack_fi, |
| btrfs_item_ptr_offset(leaf, path->slots[0]), |
| sizeof(struct btrfs_file_extent_item)); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_release_path(path); |
| |
| inode_add_bytes(&inode->vfs_inode, num_bytes); |
| |
| ins.objectid = disk_bytenr; |
| ins.offset = disk_num_bytes; |
| ins.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), |
| file_pos, qgroup_reserved, &ins); |
| out: |
| btrfs_free_path(path); |
| |
| return ret; |
| } |
| |
| static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, |
| u64 start, u64 len) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = btrfs_lookup_block_group(fs_info, start); |
| ASSERT(cache); |
| |
| spin_lock(&cache->lock); |
| cache->delalloc_bytes -= len; |
| spin_unlock(&cache->lock); |
| |
| btrfs_put_block_group(cache); |
| } |
| |
| static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_ordered_extent *oe) |
| { |
| struct btrfs_file_extent_item stack_fi; |
| u64 logical_len; |
| |
| memset(&stack_fi, 0, sizeof(stack_fi)); |
| btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); |
| btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); |
| btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, |
| oe->disk_num_bytes); |
| if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) |
| logical_len = oe->truncated_len; |
| else |
| logical_len = oe->num_bytes; |
| btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); |
| btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); |
| btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); |
| /* Encryption and other encoding is reserved and all 0 */ |
| |
| return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), |
| oe->file_offset, &stack_fi, |
| oe->qgroup_rsv); |
| } |
| |
| /* |
| * As ordered data IO finishes, this gets called so we can finish |
| * an ordered extent if the range of bytes in the file it covers are |
| * fully written. |
| */ |
| static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) |
| { |
| struct inode *inode = ordered_extent->inode; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans = NULL; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_state *cached_state = NULL; |
| u64 start, end; |
| int compress_type = 0; |
| int ret = 0; |
| u64 logical_len = ordered_extent->num_bytes; |
| bool freespace_inode; |
| bool truncated = false; |
| bool range_locked = false; |
| bool clear_new_delalloc_bytes = false; |
| bool clear_reserved_extent = true; |
| unsigned int clear_bits; |
| |
| start = ordered_extent->file_offset; |
| end = start + ordered_extent->num_bytes - 1; |
| |
| if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) |
| clear_new_delalloc_bytes = true; |
| |
| freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); |
| |
| if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| btrfs_free_io_failure_record(BTRFS_I(inode), start, end); |
| |
| if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { |
| truncated = true; |
| logical_len = ordered_extent->truncated_len; |
| /* Truncated the entire extent, don't bother adding */ |
| if (!logical_len) |
| goto out; |
| } |
| |
| if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { |
| BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ |
| |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| if (freespace_inode) |
| trans = btrfs_join_transaction_spacecache(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| trans->block_rsv = &BTRFS_I(inode)->block_rsv; |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| range_locked = true; |
| lock_extent_bits(io_tree, start, end, &cached_state); |
| |
| if (freespace_inode) |
| trans = btrfs_join_transaction_spacecache(root); |
| else |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto out; |
| } |
| |
| trans->block_rsv = &BTRFS_I(inode)->block_rsv; |
| |
| if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) |
| compress_type = ordered_extent->compress_type; |
| if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { |
| BUG_ON(compress_type); |
| ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), |
| ordered_extent->file_offset, |
| ordered_extent->file_offset + |
| logical_len); |
| } else { |
| BUG_ON(root == fs_info->tree_root); |
| ret = insert_ordered_extent_file_extent(trans, ordered_extent); |
| if (!ret) { |
| clear_reserved_extent = false; |
| btrfs_release_delalloc_bytes(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes); |
| } |
| } |
| unpin_extent_cache(&BTRFS_I(inode)->extent_tree, |
| ordered_extent->file_offset, |
| ordered_extent->num_bytes, trans->transid); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = add_pending_csums(trans, &ordered_extent->list); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| ret = btrfs_update_inode_fallback(trans, root, inode); |
| if (ret) { /* -ENOMEM or corruption */ |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| ret = 0; |
| out: |
| clear_bits = EXTENT_DEFRAG; |
| if (range_locked) |
| clear_bits |= EXTENT_LOCKED; |
| if (clear_new_delalloc_bytes) |
| clear_bits |= EXTENT_DELALLOC_NEW; |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, |
| (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, |
| &cached_state); |
| |
| if (trans) |
| btrfs_end_transaction(trans); |
| |
| if (ret || truncated) { |
| u64 unwritten_start = start; |
| |
| /* |
| * If we failed to finish this ordered extent for any reason we |
| * need to make sure BTRFS_ORDERED_IOERR is set on the ordered |
| * extent, and mark the inode with the error if it wasn't |
| * already set. Any error during writeback would have already |
| * set the mapping error, so we need to set it if we're the ones |
| * marking this ordered extent as failed. |
| */ |
| if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, |
| &ordered_extent->flags)) |
| mapping_set_error(ordered_extent->inode->i_mapping, -EIO); |
| |
| if (truncated) |
| unwritten_start += logical_len; |
| clear_extent_uptodate(io_tree, unwritten_start, end, NULL); |
| |
| /* Drop the cache for the part of the extent we didn't write. */ |
| btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); |
| |
| /* |
| * If the ordered extent had an IOERR or something else went |
| * wrong we need to return the space for this ordered extent |
| * back to the allocator. We only free the extent in the |
| * truncated case if we didn't write out the extent at all. |
| * |
| * If we made it past insert_reserved_file_extent before we |
| * errored out then we don't need to do this as the accounting |
| * has already been done. |
| */ |
| if ((ret || !logical_len) && |
| clear_reserved_extent && |
| !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && |
| !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { |
| /* |
| * Discard the range before returning it back to the |
| * free space pool |
| */ |
| if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) |
| btrfs_discard_extent(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes, |
| NULL); |
| btrfs_free_reserved_extent(fs_info, |
| ordered_extent->disk_bytenr, |
| ordered_extent->disk_num_bytes, 1); |
| } |
| } |
| |
| /* |
| * This needs to be done to make sure anybody waiting knows we are done |
| * updating everything for this ordered extent. |
| */ |
| btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent); |
| |
| /* once for us */ |
| btrfs_put_ordered_extent(ordered_extent); |
| /* once for the tree */ |
| btrfs_put_ordered_extent(ordered_extent); |
| |
| return ret; |
| } |
| |
| static void finish_ordered_fn(struct btrfs_work *work) |
| { |
| struct btrfs_ordered_extent *ordered_extent; |
| ordered_extent = container_of(work, struct btrfs_ordered_extent, work); |
| btrfs_finish_ordered_io(ordered_extent); |
| } |
| |
| void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, |
| u64 end, int uptodate) |
| { |
| struct btrfs_inode *inode = BTRFS_I(page->mapping->host); |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_ordered_extent *ordered_extent = NULL; |
| struct btrfs_workqueue *wq; |
| |
| trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); |
| |
| ClearPagePrivate2(page); |
| if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, |
| end - start + 1, uptodate)) |
| return; |
| |
| if (btrfs_is_free_space_inode(inode)) |
| wq = fs_info->endio_freespace_worker; |
| else |
| wq = fs_info->endio_write_workers; |
| |
| btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); |
| btrfs_queue_work(wq, &ordered_extent->work); |
| } |
| |
| static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, |
| int icsum, struct page *page, int pgoff, u64 start, |
| size_t len) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); |
| char *kaddr; |
| u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| u8 *csum_expected; |
| u8 csum[BTRFS_CSUM_SIZE]; |
| |
| csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; |
| |
| kaddr = kmap_atomic(page); |
| shash->tfm = fs_info->csum_shash; |
| |
| crypto_shash_digest(shash, kaddr + pgoff, len, csum); |
| |
| if (memcmp(csum, csum_expected, csum_size)) |
| goto zeroit; |
| |
| kunmap_atomic(kaddr); |
| return 0; |
| zeroit: |
| btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, |
| io_bio->mirror_num); |
| if (io_bio->device) |
| btrfs_dev_stat_inc_and_print(io_bio->device, |
| BTRFS_DEV_STAT_CORRUPTION_ERRS); |
| memset(kaddr + pgoff, 1, len); |
| flush_dcache_page(page); |
| kunmap_atomic(kaddr); |
| return -EIO; |
| } |
| |
| /* |
| * when reads are done, we need to check csums to verify the data is correct |
| * if there's a match, we allow the bio to finish. If not, the code in |
| * extent_io.c will try to find good copies for us. |
| */ |
| int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset, |
| struct page *page, u64 start, u64 end, int mirror) |
| { |
| size_t offset = start - page_offset(page); |
| struct inode *inode = page->mapping->host; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (PageChecked(page)) { |
| ClearPageChecked(page); |
| return 0; |
| } |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) |
| return 0; |
| |
| if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && |
| test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { |
| clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); |
| return 0; |
| } |
| |
| phy_offset >>= inode->i_sb->s_blocksize_bits; |
| return check_data_csum(inode, io_bio, phy_offset, page, offset, start, |
| (size_t)(end - start + 1)); |
| } |
| |
| /* |
| * btrfs_add_delayed_iput - perform a delayed iput on @inode |
| * |
| * @inode: The inode we want to perform iput on |
| * |
| * This function uses the generic vfs_inode::i_count to track whether we should |
| * just decrement it (in case it's > 1) or if this is the last iput then link |
| * the inode to the delayed iput machinery. Delayed iputs are processed at |
| * transaction commit time/superblock commit/cleaner kthread. |
| */ |
| void btrfs_add_delayed_iput(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_inode *binode = BTRFS_I(inode); |
| |
| if (atomic_add_unless(&inode->i_count, -1, 1)) |
| return; |
| |
| atomic_inc(&fs_info->nr_delayed_iputs); |
| spin_lock(&fs_info->delayed_iput_lock); |
| ASSERT(list_empty(&binode->delayed_iput)); |
| list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) |
| wake_up_process(fs_info->cleaner_kthread); |
| } |
| |
| static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *inode) |
| { |
| list_del_init(&inode->delayed_iput); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| iput(&inode->vfs_inode); |
| if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) |
| wake_up(&fs_info->delayed_iputs_wait); |
| spin_lock(&fs_info->delayed_iput_lock); |
| } |
| |
| static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, |
| struct btrfs_inode *inode) |
| { |
| if (!list_empty(&inode->delayed_iput)) { |
| spin_lock(&fs_info->delayed_iput_lock); |
| if (!list_empty(&inode->delayed_iput)) |
| run_delayed_iput_locked(fs_info, inode); |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| } |
| |
| void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) |
| { |
| |
| spin_lock(&fs_info->delayed_iput_lock); |
| while (!list_empty(&fs_info->delayed_iputs)) { |
| struct btrfs_inode *inode; |
| |
| inode = list_first_entry(&fs_info->delayed_iputs, |
| struct btrfs_inode, delayed_iput); |
| run_delayed_iput_locked(fs_info, inode); |
| cond_resched_lock(&fs_info->delayed_iput_lock); |
| } |
| spin_unlock(&fs_info->delayed_iput_lock); |
| } |
| |
| /** |
| * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running |
| * @fs_info - the fs_info for this fs |
| * @return - EINTR if we were killed, 0 if nothing's pending |
| * |
| * This will wait on any delayed iputs that are currently running with KILLABLE |
| * set. Once they are all done running we will return, unless we are killed in |
| * which case we return EINTR. This helps in user operations like fallocate etc |
| * that might get blocked on the iputs. |
| */ |
| int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) |
| { |
| int ret = wait_event_killable(fs_info->delayed_iputs_wait, |
| atomic_read(&fs_info->nr_delayed_iputs) == 0); |
| if (ret) |
| return -EINTR; |
| return 0; |
| } |
| |
| /* |
| * This creates an orphan entry for the given inode in case something goes wrong |
| * in the middle of an unlink. |
| */ |
| int btrfs_orphan_add(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| int ret; |
| |
| ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); |
| if (ret && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We have done the delete so we can go ahead and remove the orphan item for |
| * this particular inode. |
| */ |
| static int btrfs_orphan_del(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode) |
| { |
| return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); |
| } |
| |
| /* |
| * this cleans up any orphans that may be left on the list from the last use |
| * of this root. |
| */ |
| int btrfs_orphan_cleanup(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key, found_key; |
| struct btrfs_trans_handle *trans; |
| struct inode *inode; |
| u64 last_objectid = 0; |
| int ret = 0, nr_unlink = 0; |
| |
| if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| path->reada = READA_BACK; |
| |
| key.objectid = BTRFS_ORPHAN_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| while (1) { |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* |
| * if ret == 0 means we found what we were searching for, which |
| * is weird, but possible, so only screw with path if we didn't |
| * find the key and see if we have stuff that matches |
| */ |
| if (ret > 0) { |
| ret = 0; |
| if (path->slots[0] == 0) |
| break; |
| path->slots[0]--; |
| } |
| |
| /* pull out the item */ |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| /* make sure the item matches what we want */ |
| if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) |
| break; |
| if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) |
| break; |
| |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| /* |
| * this is where we are basically btrfs_lookup, without the |
| * crossing root thing. we store the inode number in the |
| * offset of the orphan item. |
| */ |
| |
| if (found_key.offset == last_objectid) { |
| btrfs_err(fs_info, |
| "Error removing orphan entry, stopping orphan cleanup"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| last_objectid = found_key.offset; |
| |
| found_key.objectid = found_key.offset; |
| found_key.type = BTRFS_INODE_ITEM_KEY; |
| found_key.offset = 0; |
| inode = btrfs_iget(fs_info->sb, last_objectid, root); |
| ret = PTR_ERR_OR_ZERO(inode); |
| if (ret && ret != -ENOENT) |
| goto out; |
| |
| if (ret == -ENOENT && root == fs_info->tree_root) { |
| struct btrfs_root *dead_root; |
| int is_dead_root = 0; |
| |
| /* |
| * this is an orphan in the tree root. Currently these |
| * could come from 2 sources: |
| * a) a snapshot deletion in progress |
| * b) a free space cache inode |
| * We need to distinguish those two, as the snapshot |
| * orphan must not get deleted. |
| * find_dead_roots already ran before us, so if this |
| * is a snapshot deletion, we should find the root |
| * in the fs_roots radix tree. |
| */ |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| (unsigned long)found_key.objectid); |
| if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) |
| is_dead_root = 1; |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| if (is_dead_root) { |
| /* prevent this orphan from being found again */ |
| key.offset = found_key.objectid - 1; |
| continue; |
| } |
| |
| } |
| |
| /* |
| * If we have an inode with links, there are a couple of |
| * possibilities. Old kernels (before v3.12) used to create an |
| * orphan item for truncate indicating that there were possibly |
| * extent items past i_size that needed to be deleted. In v3.12, |
| * truncate was changed to update i_size in sync with the extent |
| * items, but the (useless) orphan item was still created. Since |
| * v4.18, we don't create the orphan item for truncate at all. |
| * |
| * So, this item could mean that we need to do a truncate, but |
| * only if this filesystem was last used on a pre-v3.12 kernel |
| * and was not cleanly unmounted. The odds of that are quite |
| * slim, and it's a pain to do the truncate now, so just delete |
| * the orphan item. |
| * |
| * It's also possible that this orphan item was supposed to be |
| * deleted but wasn't. The inode number may have been reused, |
| * but either way, we can delete the orphan item. |
| */ |
| if (ret == -ENOENT || inode->i_nlink) { |
| if (!ret) |
| iput(inode); |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| btrfs_debug(fs_info, "auto deleting %Lu", |
| found_key.objectid); |
| ret = btrfs_del_orphan_item(trans, root, |
| found_key.objectid); |
| btrfs_end_transaction(trans); |
| if (ret) |
| goto out; |
| continue; |
| } |
| |
| nr_unlink++; |
| |
| /* this will do delete_inode and everything for us */ |
| iput(inode); |
| } |
| /* release the path since we're done with it */ |
| btrfs_release_path(path); |
| |
| root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; |
| |
| if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { |
| trans = btrfs_join_transaction(root); |
| if (!IS_ERR(trans)) |
| btrfs_end_transaction(trans); |
| } |
| |
| if (nr_unlink) |
| btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); |
| |
| out: |
| if (ret) |
| btrfs_err(fs_info, "could not do orphan cleanup %d", ret); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * very simple check to peek ahead in the leaf looking for xattrs. If we |
| * don't find any xattrs, we know there can't be any acls. |
| * |
| * slot is the slot the inode is in, objectid is the objectid of the inode |
| */ |
| static noinline int acls_after_inode_item(struct extent_buffer *leaf, |
| int slot, u64 objectid, |
| int *first_xattr_slot) |
| { |
| u32 nritems = btrfs_header_nritems(leaf); |
| struct btrfs_key found_key; |
| static u64 xattr_access = 0; |
| static u64 xattr_default = 0; |
| int scanned = 0; |
| |
| if (!xattr_access) { |
| xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, |
| strlen(XATTR_NAME_POSIX_ACL_ACCESS)); |
| xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, |
| strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); |
| } |
| |
| slot++; |
| *first_xattr_slot = -1; |
| while (slot < nritems) { |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| /* we found a different objectid, there must not be acls */ |
| if (found_key.objectid != objectid) |
| return 0; |
| |
| /* we found an xattr, assume we've got an acl */ |
| if (found_key.type == BTRFS_XATTR_ITEM_KEY) { |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| if (found_key.offset == xattr_access || |
| found_key.offset == xattr_default) |
| return 1; |
| } |
| |
| /* |
| * we found a key greater than an xattr key, there can't |
| * be any acls later on |
| */ |
| if (found_key.type > BTRFS_XATTR_ITEM_KEY) |
| return 0; |
| |
| slot++; |
| scanned++; |
| |
| /* |
| * it goes inode, inode backrefs, xattrs, extents, |
| * so if there are a ton of hard links to an inode there can |
| * be a lot of backrefs. Don't waste time searching too hard, |
| * this is just an optimization |
| */ |
| if (scanned >= 8) |
| break; |
| } |
| /* we hit the end of the leaf before we found an xattr or |
| * something larger than an xattr. We have to assume the inode |
| * has acls |
| */ |
| if (*first_xattr_slot == -1) |
| *first_xattr_slot = slot; |
| return 1; |
| } |
| |
| /* |
| * read an inode from the btree into the in-memory inode |
| */ |
| static int btrfs_read_locked_inode(struct inode *inode, |
| struct btrfs_path *in_path) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_path *path = in_path; |
| struct extent_buffer *leaf; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key location; |
| unsigned long ptr; |
| int maybe_acls; |
| u32 rdev; |
| int ret; |
| bool filled = false; |
| int first_xattr_slot; |
| |
| ret = btrfs_fill_inode(inode, &rdev); |
| if (!ret) |
| filled = true; |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| } |
| |
| memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); |
| |
| ret = btrfs_lookup_inode(NULL, root, path, &location, 0); |
| if (ret) { |
| if (path != in_path) |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| leaf = path->nodes[0]; |
| |
| if (filled) |
| goto cache_index; |
| |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| inode->i_mode = btrfs_inode_mode(leaf, inode_item); |
| set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); |
| i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); |
| i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); |
| btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); |
| btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, |
| round_up(i_size_read(inode), fs_info->sectorsize)); |
| |
| inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); |
| inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); |
| |
| inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); |
| inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); |
| |
| inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); |
| inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); |
| |
| BTRFS_I(inode)->i_otime.tv_sec = |
| btrfs_timespec_sec(leaf, &inode_item->otime); |
| BTRFS_I(inode)->i_otime.tv_nsec = |
| btrfs_timespec_nsec(leaf, &inode_item->otime); |
| |
| inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); |
| BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); |
| BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); |
| |
| inode_set_iversion_queried(inode, |
| btrfs_inode_sequence(leaf, inode_item)); |
| inode->i_generation = BTRFS_I(inode)->generation; |
| inode->i_rdev = 0; |
| rdev = btrfs_inode_rdev(leaf, inode_item); |
| |
| BTRFS_I(inode)->index_cnt = (u64)-1; |
| BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); |
| |
| cache_index: |
| /* |
| * If we were modified in the current generation and evicted from memory |
| * and then re-read we need to do a full sync since we don't have any |
| * idea about which extents were modified before we were evicted from |
| * cache. |
| * |
| * This is required for both inode re-read from disk and delayed inode |
| * in delayed_nodes_tree. |
| */ |
| if (BTRFS_I(inode)->last_trans == fs_info->generation) |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| /* |
| * We don't persist the id of the transaction where an unlink operation |
| * against the inode was last made. So here we assume the inode might |
| * have been evicted, and therefore the exact value of last_unlink_trans |
| * lost, and set it to last_trans to avoid metadata inconsistencies |
| * between the inode and its parent if the inode is fsync'ed and the log |
| * replayed. For example, in the scenario: |
| * |
| * touch mydir/foo |
| * ln mydir/foo mydir/bar |
| * sync |
| * unlink mydir/bar |
| * echo 2 > /proc/sys/vm/drop_caches # evicts inode |
| * xfs_io -c fsync mydir/foo |
| * <power failure> |
| * mount fs, triggers fsync log replay |
| * |
| * We must make sure that when we fsync our inode foo we also log its |
| * parent inode, otherwise after log replay the parent still has the |
| * dentry with the "bar" name but our inode foo has a link count of 1 |
| * and doesn't have an inode ref with the name "bar" anymore. |
| * |
| * Setting last_unlink_trans to last_trans is a pessimistic approach, |
| * but it guarantees correctness at the expense of occasional full |
| * transaction commits on fsync if our inode is a directory, or if our |
| * inode is not a directory, logging its parent unnecessarily. |
| */ |
| BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; |
| |
| /* |
| * Same logic as for last_unlink_trans. We don't persist the generation |
| * of the last transaction where this inode was used for a reflink |
| * operation, so after eviction and reloading the inode we must be |
| * pessimistic and assume the last transaction that modified the inode. |
| */ |
| BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; |
| |
| path->slots[0]++; |
| if (inode->i_nlink != 1 || |
| path->slots[0] >= btrfs_header_nritems(leaf)) |
| goto cache_acl; |
| |
| btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); |
| if (location.objectid != btrfs_ino(BTRFS_I(inode))) |
| goto cache_acl; |
| |
| ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| if (location.type == BTRFS_INODE_REF_KEY) { |
| struct btrfs_inode_ref *ref; |
| |
| ref = (struct btrfs_inode_ref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); |
| } else if (location.type == BTRFS_INODE_EXTREF_KEY) { |
| struct btrfs_inode_extref *extref; |
| |
| extref = (struct btrfs_inode_extref *)ptr; |
| BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, |
| extref); |
| } |
| cache_acl: |
| /* |
| * try to precache a NULL acl entry for files that don't have |
| * any xattrs or acls |
| */ |
| maybe_acls = acls_after_inode_item(leaf, path->slots[0], |
| btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); |
| if (first_xattr_slot != -1) { |
| path->slots[0] = first_xattr_slot; |
| ret = btrfs_load_inode_props(inode, path); |
| if (ret) |
| btrfs_err(fs_info, |
| "error loading props for ino %llu (root %llu): %d", |
| btrfs_ino(BTRFS_I(inode)), |
| root->root_key.objectid, ret); |
| } |
| if (path != in_path) |
| btrfs_free_path(path); |
| |
| if (!maybe_acls) |
| cache_no_acl(inode); |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFREG: |
| inode->i_mapping->a_ops = &btrfs_aops; |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| break; |
| case S_IFDIR: |
| inode->i_fop = &btrfs_dir_file_operations; |
| inode->i_op = &btrfs_dir_inode_operations; |
| break; |
| case S_IFLNK: |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &btrfs_aops; |
| break; |
| default: |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| break; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| return 0; |
| } |
| |
| /* |
| * given a leaf and an inode, copy the inode fields into the leaf |
| */ |
| static void fill_inode_item(struct btrfs_trans_handle *trans, |
| struct extent_buffer *leaf, |
| struct btrfs_inode_item *item, |
| struct inode *inode) |
| { |
| struct btrfs_map_token token; |
| |
| btrfs_init_map_token(&token, leaf); |
| |
| btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); |
| btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); |
| btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); |
| btrfs_set_token_inode_mode(&token, item, inode->i_mode); |
| btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); |
| |
| btrfs_set_token_timespec_sec(&token, &item->atime, |
| inode->i_atime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->atime, |
| inode->i_atime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->mtime, |
| inode->i_mtime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->mtime, |
| inode->i_mtime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->ctime, |
| inode->i_ctime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->ctime, |
| inode->i_ctime.tv_nsec); |
| |
| btrfs_set_token_timespec_sec(&token, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_sec); |
| btrfs_set_token_timespec_nsec(&token, &item->otime, |
| BTRFS_I(inode)->i_otime.tv_nsec); |
| |
| btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); |
| btrfs_set_token_inode_generation(&token, item, |
| BTRFS_I(inode)->generation); |
| btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); |
| btrfs_set_token_inode_transid(&token, item, trans->transid); |
| btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); |
| btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); |
| btrfs_set_token_inode_block_group(&token, item, 0); |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct inode *inode) |
| { |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->leave_spinning = 1; |
| ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, |
| 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto failed; |
| } |
| |
| leaf = path->nodes[0]; |
| inode_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_inode_item); |
| |
| fill_inode_item(trans, leaf, inode_item, inode); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); |
| ret = 0; |
| failed: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * copy everything in the in-memory inode into the btree. |
| */ |
| noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret; |
| |
| /* |
| * If the inode is a free space inode, we can deadlock during commit |
| * if we put it into the delayed code. |
| * |
| * The data relocation inode should also be directly updated |
| * without delay |
| */ |
| if (!btrfs_is_free_space_inode(BTRFS_I(inode)) |
| && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID |
| && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { |
| btrfs_update_root_times(trans, root); |
| |
| ret = btrfs_delayed_update_inode(trans, root, inode); |
| if (!ret) |
| btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); |
| return ret; |
| } |
| |
| return btrfs_update_inode_item(trans, root, inode); |
| } |
| |
| noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode) |
| { |
| int ret; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret == -ENOSPC) |
| return btrfs_update_inode_item(trans, root, inode); |
| return ret; |
| } |
| |
| /* |
| * unlink helper that gets used here in inode.c and in the tree logging |
| * recovery code. It remove a link in a directory with a given name, and |
| * also drops the back refs in the inode to the directory |
| */ |
| static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *dir, |
| struct btrfs_inode *inode, |
| const char *name, int name_len) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| int ret = 0; |
| struct btrfs_dir_item *di; |
| u64 index; |
| u64 ino = btrfs_ino(inode); |
| u64 dir_ino = btrfs_ino(dir); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| path->leave_spinning = 1; |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, |
| name, name_len, -1); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto err; |
| } |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) |
| goto err; |
| btrfs_release_path(path); |
| |
| /* |
| * If we don't have dir index, we have to get it by looking up |
| * the inode ref, since we get the inode ref, remove it directly, |
| * it is unnecessary to do delayed deletion. |
| * |
| * But if we have dir index, needn't search inode ref to get it. |
| * Since the inode ref is close to the inode item, it is better |
| * that we delay to delete it, and just do this deletion when |
| * we update the inode item. |
| */ |
| if (inode->dir_index) { |
| ret = btrfs_delayed_delete_inode_ref(inode); |
| if (!ret) { |
| index = inode->dir_index; |
| goto skip_backref; |
| } |
| } |
| |
| ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, |
| dir_ino, &index); |
| if (ret) { |
| btrfs_info(fs_info, |
| "failed to delete reference to %.*s, inode %llu parent %llu", |
| name_len, name, ino, dir_ino); |
| btrfs_abort_transaction(trans, ret); |
| goto err; |
| } |
| skip_backref: |
| ret = btrfs_delete_delayed_dir_index(trans, dir, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto err; |
| } |
| |
| ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, |
| dir_ino); |
| if (ret != 0 && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| goto err; |
| } |
| |
| ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, |
| index); |
| if (ret == -ENOENT) |
| ret = 0; |
| else if (ret) |
| btrfs_abort_transaction(trans, ret); |
| |
| /* |
| * If we have a pending delayed iput we could end up with the final iput |
| * being run in btrfs-cleaner context. If we have enough of these built |
| * up we can end up burning a lot of time in btrfs-cleaner without any |
| * way to throttle the unlinks. Since we're currently holding a ref on |
| * the inode we can run the delayed iput here without any issues as the |
| * final iput won't be done until after we drop the ref we're currently |
| * holding. |
| */ |
| btrfs_run_delayed_iput(fs_info, inode); |
| err: |
| btrfs_free_path(path); |
| if (ret) |
| goto out; |
| |
| btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); |
| inode_inc_iversion(&inode->vfs_inode); |
| inode_inc_iversion(&dir->vfs_inode); |
| inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = |
| dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); |
| ret = btrfs_update_inode(trans, root, &dir->vfs_inode); |
| out: |
| return ret; |
| } |
| |
| int btrfs_unlink_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct btrfs_inode *dir, struct btrfs_inode *inode, |
| const char *name, int name_len) |
| { |
| int ret; |
| ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); |
| if (!ret) { |
| drop_nlink(&inode->vfs_inode); |
| ret = btrfs_update_inode(trans, root, &inode->vfs_inode); |
| } |
| return ret; |
| } |
| |
| /* |
| * helper to start transaction for unlink and rmdir. |
| * |
| * unlink and rmdir are special in btrfs, they do not always free space, so |
| * if we cannot make our reservations the normal way try and see if there is |
| * plenty of slack room in the global reserve to migrate, otherwise we cannot |
| * allow the unlink to occur. |
| */ |
| static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| |
| /* |
| * 1 for the possible orphan item |
| * 1 for the dir item |
| * 1 for the dir index |
| * 1 for the inode ref |
| * 1 for the inode |
| */ |
| return btrfs_start_transaction_fallback_global_rsv(root, 5); |
| } |
| |
| static int btrfs_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_trans_handle *trans; |
| struct inode *inode = d_inode(dentry); |
| int ret; |
| |
| trans = __unlink_start_trans(dir); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), |
| 0); |
| |
| ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), |
| BTRFS_I(d_inode(dentry)), dentry->d_name.name, |
| dentry->d_name.len); |
| if (ret) |
| goto out; |
| |
| if (inode->i_nlink == 0) { |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(root->fs_info); |
| return ret; |
| } |
| |
| static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, |
| struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| const char *name = dentry->d_name.name; |
| int name_len = dentry->d_name.len; |
| u64 index; |
| int ret; |
| u64 objectid; |
| u64 dir_ino = btrfs_ino(BTRFS_I(dir)); |
| |
| if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { |
| objectid = inode->root->root_key.objectid; |
| } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { |
| objectid = inode->location.objectid; |
| } else { |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_dir_item(trans, root, path, dir_ino, |
| name, name_len, -1); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_dir_item_key_to_cpu(leaf, di, &key); |
| WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); |
| ret = btrfs_delete_one_dir_name(trans, root, path, di); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * This is a placeholder inode for a subvolume we didn't have a |
| * reference to at the time of the snapshot creation. In the meantime |
| * we could have renamed the real subvol link into our snapshot, so |
| * depending on btrfs_del_root_ref to return -ENOENT here is incorret. |
| * Instead simply lookup the dir_index_item for this entry so we can |
| * remove it. Otherwise we know we have a ref to the root and we can |
| * call btrfs_del_root_ref, and it _shouldn't_ fail. |
| */ |
| if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { |
| di = btrfs_search_dir_index_item(root, path, dir_ino, |
| name, name_len); |
| if (IS_ERR_OR_NULL(di)) { |
| if (!di) |
| ret = -ENOENT; |
| else |
| ret = PTR_ERR(di); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| index = key.offset; |
| btrfs_release_path(path); |
| } else { |
| ret = btrfs_del_root_ref(trans, objectid, |
| root->root_key.objectid, dir_ino, |
| &index, name, name_len); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); |
| inode_inc_iversion(dir); |
| dir->i_mtime = dir->i_ctime = current_time(dir); |
| ret = btrfs_update_inode_fallback(trans, root, dir); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Helper to check if the subvolume references other subvolumes or if it's |
| * default. |
| */ |
| static noinline int may_destroy_subvol(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| u64 dir_id; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Make sure this root isn't set as the default subvol */ |
| dir_id = btrfs_super_root_dir(fs_info->super_copy); |
| di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, |
| dir_id, "default", 7, 0); |
| if (di && !IS_ERR(di)) { |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); |
| if (key.objectid == root->root_key.objectid) { |
| ret = -EPERM; |
| btrfs_err(fs_info, |
| "deleting default subvolume %llu is not allowed", |
| key.objectid); |
| goto out; |
| } |
| btrfs_release_path(path); |
| } |
| |
| key.objectid = root->root_key.objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| BUG_ON(ret == 0); |
| |
| ret = 0; |
| if (path->slots[0] > 0) { |
| path->slots[0]--; |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| if (key.objectid == root->root_key.objectid && |
| key.type == BTRFS_ROOT_REF_KEY) |
| ret = -ENOTEMPTY; |
| } |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* Delete all dentries for inodes belonging to the root */ |
| static void btrfs_prune_dentries(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct rb_node *node; |
| struct rb_node *prev; |
| struct btrfs_inode *entry; |
| struct inode *inode; |
| u64 objectid = 0; |
| |
| if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| WARN_ON(btrfs_root_refs(&root->root_item) != 0); |
| |
| spin_lock(&root->inode_lock); |
| again: |
| node = root->inode_tree.rb_node; |
| prev = NULL; |
| while (node) { |
| prev = node; |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| |
| if (objectid < btrfs_ino(entry)) |
| node = node->rb_left; |
| else if (objectid > btrfs_ino(entry)) |
| node = node->rb_right; |
| else |
| break; |
| } |
| if (!node) { |
| while (prev) { |
| entry = rb_entry(prev, struct btrfs_inode, rb_node); |
| if (objectid <= btrfs_ino(entry)) { |
| node = prev; |
| break; |
| } |
| prev = rb_next(prev); |
| } |
| } |
| while (node) { |
| entry = rb_entry(node, struct btrfs_inode, rb_node); |
| objectid = btrfs_ino(entry) + 1; |
| inode = igrab(&entry->vfs_inode); |
| if (inode) { |
| spin_unlock(&root->inode_lock); |
| if (atomic_read(&inode->i_count) > 1) |
| d_prune_aliases(inode); |
| /* |
| * btrfs_drop_inode will have it removed from the inode |
| * cache when its usage count hits zero. |
| */ |
| iput(inode); |
| cond_resched(); |
| spin_lock(&root->inode_lock); |
| goto again; |
| } |
| |
| if (cond_resched_lock(&root->inode_lock)) |
| goto again; |
| |
| node = rb_next(node); |
| } |
| spin_unlock(&root->inode_lock); |
| } |
| |
| int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_root *dest = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_block_rsv block_rsv; |
| u64 root_flags; |
| int ret; |
| int err; |
| |
| /* |
| * Don't allow to delete a subvolume with send in progress. This is |
| * inside the inode lock so the error handling that has to drop the bit |
| * again is not run concurrently. |
| */ |
| spin_lock(&dest->root_item_lock); |
| if (dest->send_in_progress) { |
| spin_unlock(&dest->root_item_lock); |
| btrfs_warn(fs_info, |
| "attempt to delete subvolume %llu during send", |
| dest->root_key.objectid); |
| return -EPERM; |
| } |
| root_flags = btrfs_root_flags(&dest->root_item); |
| btrfs_set_root_flags(&dest->root_item, |
| root_flags | BTRFS_ROOT_SUBVOL_DEAD); |
| spin_unlock(&dest->root_item_lock); |
| |
| down_write(&fs_info->subvol_sem); |
| |
| err = may_destroy_subvol(dest); |
| if (err) |
| goto out_up_write; |
| |
| btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); |
| /* |
| * One for dir inode, |
| * two for dir entries, |
| * two for root ref/backref. |
| */ |
| err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); |
| if (err) |
| goto out_up_write; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| goto out_release; |
| } |
| trans->block_rsv = &block_rsv; |
| trans->bytes_reserved = block_rsv.size; |
| |
| btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); |
| |
| ret = btrfs_unlink_subvol(trans, dir, dentry); |
| if (ret) { |
| err = ret; |
| btrfs_abort_transaction(trans, ret); |
| goto out_end_trans; |
| } |
| |
| btrfs_record_root_in_trans(trans, dest); |
| |
| memset(&dest->root_item.drop_progress, 0, |
| sizeof(dest->root_item.drop_progress)); |
| dest->root_item.drop_level = 0; |
| btrfs_set_root_refs(&dest->root_item, 0); |
| |
| if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { |
| ret = btrfs_insert_orphan_item(trans, |
| fs_info->tree_root, |
| dest->root_key.objectid); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } |
| } |
| |
| ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, |
| BTRFS_UUID_KEY_SUBVOL, |
| dest->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } |
| if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { |
| ret = btrfs_uuid_tree_remove(trans, |
| dest->root_item.received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| dest->root_key.objectid); |
| if (ret && ret != -ENOENT) { |
| btrfs_abort_transaction(trans, ret); |
| err = ret; |
| goto out_end_trans; |
| } |
| } |
| |
| free_anon_bdev(dest->anon_dev); |
| dest->anon_dev = 0; |
| out_end_trans: |
| trans->block_rsv = NULL; |
| trans->bytes_reserved = 0; |
| ret = btrfs_end_transaction(trans); |
| if (ret && !err) |
| err = ret; |
| inode->i_flags |= S_DEAD; |
| out_release: |
| btrfs_subvolume_release_metadata(root, &block_rsv); |
| out_up_write: |
| up_write(&fs_info->subvol_sem); |
| if (err) { |
| spin_lock(&dest->root_item_lock); |
| root_flags = btrfs_root_flags(&dest->root_item); |
| btrfs_set_root_flags(&dest->root_item, |
| root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); |
| spin_unlock(&dest->root_item_lock); |
| } else { |
| d_invalidate(dentry); |
| btrfs_prune_dentries(dest); |
| ASSERT(dest->send_in_progress == 0); |
| |
| /* the last ref */ |
| if (dest->ino_cache_inode) { |
| iput(dest->ino_cache_inode); |
| dest->ino_cache_inode = NULL; |
| } |
| } |
| |
| return err; |
| } |
| |
| static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| struct inode *inode = d_inode(dentry); |
| int err = 0; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_trans_handle *trans; |
| u64 last_unlink_trans; |
| |
| if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) |
| return btrfs_delete_subvolume(dir, dentry); |
| |
| trans = __unlink_start_trans(dir); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| err = btrfs_unlink_subvol(trans, dir, dentry); |
| goto out; |
| } |
| |
| err = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (err) |
| goto out; |
| |
| last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; |
| |
| /* now the directory is empty */ |
| err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), |
| BTRFS_I(d_inode(dentry)), dentry->d_name.name, |
| dentry->d_name.len); |
| if (!err) { |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| /* |
| * Propagate the last_unlink_trans value of the deleted dir to |
| * its parent directory. This is to prevent an unrecoverable |
| * log tree in the case we do something like this: |
| * 1) create dir foo |
| * 2) create snapshot under dir foo |
| * 3) delete the snapshot |
| * 4) rmdir foo |
| * 5) mkdir foo |
| * 6) fsync foo or some file inside foo |
| */ |
| if (last_unlink_trans >= trans->transid) |
| BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; |
| } |
| out: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(root->fs_info); |
| |
| return err; |
| } |
| |
| /* |
| * Return this if we need to call truncate_block for the last bit of the |
| * truncate. |
| */ |
| #define NEED_TRUNCATE_BLOCK 1 |
| |
| /* |
| * this can truncate away extent items, csum items and directory items. |
| * It starts at a high offset and removes keys until it can't find |
| * any higher than new_size |
| * |
| * csum items that cross the new i_size are truncated to the new size |
| * as well. |
| * |
| * min_type is the minimum key type to truncate down to. If set to 0, this |
| * will kill all the items on this inode, including the INODE_ITEM_KEY. |
| */ |
| int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *inode, |
| u64 new_size, u32 min_type) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 extent_start = 0; |
| u64 extent_num_bytes = 0; |
| u64 extent_offset = 0; |
| u64 item_end = 0; |
| u64 last_size = new_size; |
| u32 found_type = (u8)-1; |
| int found_extent; |
| int del_item; |
| int pending_del_nr = 0; |
| int pending_del_slot = 0; |
| int extent_type = -1; |
| int ret; |
| u64 ino = btrfs_ino(BTRFS_I(inode)); |
| u64 bytes_deleted = 0; |
| bool be_nice = false; |
| bool should_throttle = false; |
| const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); |
| struct extent_state *cached_state = NULL; |
| |
| BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); |
| |
| /* |
| * For non-free space inodes and non-shareable roots, we want to back |
| * off from time to time. This means all inodes in subvolume roots, |
| * reloc roots, and data reloc roots. |
| */ |
| if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && |
| test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| be_nice = true; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = READA_BACK; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, |
| &cached_state); |
| |
| /* |
| * We want to drop from the next block forward in case this |
| * new size is not block aligned since we will be keeping the |
| * last block of the extent just the way it is. |
| */ |
| btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, |
| fs_info->sectorsize), |
| (u64)-1, 0); |
| } |
| |
| /* |
| * This function is also used to drop the items in the log tree before |
| * we relog the inode, so if root != BTRFS_I(inode)->root, it means |
| * it is used to drop the logged items. So we shouldn't kill the delayed |
| * items. |
| */ |
| if (min_type == 0 && root == BTRFS_I(inode)->root) |
| btrfs_kill_delayed_inode_items(BTRFS_I(inode)); |
| |
| key.objectid = ino; |
| key.offset = (u64)-1; |
| key.type = (u8)-1; |
| |
| search_again: |
| /* |
| * with a 16K leaf size and 128MB extents, you can actually queue |
| * up a huge file in a single leaf. Most of the time that |
| * bytes_deleted is > 0, it will be huge by the time we get here |
| */ |
| if (be_nice && bytes_deleted > SZ_32M && |
| btrfs_should_end_transaction(trans)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = 0; |
| /* there are no items in the tree for us to truncate, we're |
| * done |
| */ |
| if (path->slots[0] == 0) |
| goto out; |
| path->slots[0]--; |
| } |
| |
| while (1) { |
| u64 clear_start = 0, clear_len = 0; |
| |
| fi = NULL; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| found_type = found_key.type; |
| |
| if (found_key.objectid != ino) |
| break; |
| |
| if (found_type < min_type) |
| break; |
| |
| item_end = found_key.offset; |
| if (found_type == BTRFS_EXTENT_DATA_KEY) { |
| fi = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| extent_type = btrfs_file_extent_type(leaf, fi); |
| if (extent_type != BTRFS_FILE_EXTENT_INLINE) { |
| item_end += |
| btrfs_file_extent_num_bytes(leaf, fi); |
| |
| trace_btrfs_truncate_show_fi_regular( |
| BTRFS_I(inode), leaf, fi, |
| found_key.offset); |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| item_end += btrfs_file_extent_ram_bytes(leaf, |
| fi); |
| |
| trace_btrfs_truncate_show_fi_inline( |
| BTRFS_I(inode), leaf, fi, path->slots[0], |
| found_key.offset); |
| } |
| item_end--; |
| } |
| if (found_type > min_type) { |
| del_item = 1; |
| } else { |
| if (item_end < new_size) |
| break; |
| if (found_key.offset >= new_size) |
| del_item = 1; |
| else |
| del_item = 0; |
| } |
| found_extent = 0; |
| /* FIXME, shrink the extent if the ref count is only 1 */ |
| if (found_type != BTRFS_EXTENT_DATA_KEY) |
| goto delete; |
| |
| if (extent_type != BTRFS_FILE_EXTENT_INLINE) { |
| u64 num_dec; |
| |
| clear_start = found_key.offset; |
| extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); |
| if (!del_item) { |
| u64 orig_num_bytes = |
| btrfs_file_extent_num_bytes(leaf, fi); |
| extent_num_bytes = ALIGN(new_size - |
| found_key.offset, |
| fs_info->sectorsize); |
| clear_start = ALIGN(new_size, fs_info->sectorsize); |
| btrfs_set_file_extent_num_bytes(leaf, fi, |
| extent_num_bytes); |
| num_dec = (orig_num_bytes - |
| extent_num_bytes); |
| if (test_bit(BTRFS_ROOT_SHAREABLE, |
| &root->state) && |
| extent_start != 0) |
| inode_sub_bytes(inode, num_dec); |
| btrfs_mark_buffer_dirty(leaf); |
| } else { |
| extent_num_bytes = |
| btrfs_file_extent_disk_num_bytes(leaf, |
| fi); |
| extent_offset = found_key.offset - |
| btrfs_file_extent_offset(leaf, fi); |
| |
| /* FIXME blocksize != 4096 */ |
| num_dec = btrfs_file_extent_num_bytes(leaf, fi); |
| if (extent_start != 0) { |
| found_extent = 1; |
| if (test_bit(BTRFS_ROOT_SHAREABLE, |
| &root->state)) |
| inode_sub_bytes(inode, num_dec); |
| } |
| } |
| clear_len = num_dec; |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| /* |
| * we can't truncate inline items that have had |
| * special encodings |
| */ |
| if (!del_item && |
| btrfs_file_extent_encryption(leaf, fi) == 0 && |
| btrfs_file_extent_other_encoding(leaf, fi) == 0 && |
| btrfs_file_extent_compression(leaf, fi) == 0) { |
| u32 size = (u32)(new_size - found_key.offset); |
| |
| btrfs_set_file_extent_ram_bytes(leaf, fi, size); |
| size = btrfs_file_extent_calc_inline_size(size); |
| btrfs_truncate_item(path, size, 1); |
| } else if (!del_item) { |
| /* |
| * We have to bail so the last_size is set to |
| * just before this extent. |
| */ |
| ret = NEED_TRUNCATE_BLOCK; |
| break; |
| } else { |
| /* |
| * Inline extents are special, we just treat |
| * them as a full sector worth in the file |
| * extent tree just for simplicity sake. |
| */ |
| clear_len = fs_info->sectorsize; |
| } |
| |
| if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| inode_sub_bytes(inode, item_end + 1 - new_size); |
| } |
| delete: |
| /* |
| * We use btrfs_truncate_inode_items() to clean up log trees for |
| * multiple fsyncs, and in this case we don't want to clear the |
| * file extent range because it's just the log. |
| */ |
| if (root == BTRFS_I(inode)->root) { |
| ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), |
| clear_start, clear_len); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| } |
| |
| if (del_item) |
| last_size = found_key.offset; |
| else |
| last_size = new_size; |
| if (del_item) { |
| if (!pending_del_nr) { |
| /* no pending yet, add ourselves */ |
| pending_del_slot = path->slots[0]; |
| pending_del_nr = 1; |
| } else if (pending_del_nr && |
| path->slots[0] + 1 == pending_del_slot) { |
| /* hop on the pending chunk */ |
| pending_del_nr++; |
| pending_del_slot = path->slots[0]; |
| } else { |
| BUG(); |
| } |
| } else { |
| break; |
| } |
| should_throttle = false; |
| |
| if (found_extent && |
| root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| struct btrfs_ref ref = { 0 }; |
| |
| bytes_deleted += extent_num_bytes; |
| |
| btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, |
| extent_start, extent_num_bytes, 0); |
| ref.real_root = root->root_key.objectid; |
| btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), |
| ino, extent_offset); |
| ret = btrfs_free_extent(trans, &ref); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| if (be_nice) { |
| if (btrfs_should_throttle_delayed_refs(trans)) |
| should_throttle = true; |
| } |
| } |
| |
| if (found_type == BTRFS_INODE_ITEM_KEY) |
| break; |
| |
| if (path->slots[0] == 0 || |
| path->slots[0] != pending_del_slot || |
| should_throttle) { |
| if (pending_del_nr) { |
| ret = btrfs_del_items(trans, root, path, |
| pending_del_slot, |
| pending_del_nr); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| break; |
| } |
| pending_del_nr = 0; |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * We can generate a lot of delayed refs, so we need to |
| * throttle every once and a while and make sure we're |
| * adding enough space to keep up with the work we are |
| * generating. Since we hold a transaction here we |
| * can't flush, and we don't want to FLUSH_LIMIT because |
| * we could have generated too many delayed refs to |
| * actually allocate, so just bail if we're short and |
| * let the normal reservation dance happen higher up. |
| */ |
| if (should_throttle) { |
| ret = btrfs_delayed_refs_rsv_refill(fs_info, |
| BTRFS_RESERVE_NO_FLUSH); |
| if (ret) { |
| ret = -EAGAIN; |
| break; |
| } |
| } |
| goto search_again; |
| } else { |
| path->slots[0]--; |
| } |
| } |
| out: |
| if (ret >= 0 && pending_del_nr) { |
| int err; |
| |
| err = btrfs_del_items(trans, root, path, pending_del_slot, |
| pending_del_nr); |
| if (err) { |
| btrfs_abort_transaction(trans, err); |
| ret = err; |
| } |
| } |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| ASSERT(last_size >= new_size); |
| if (!ret && last_size > new_size) |
| last_size = new_size; |
| btrfs_inode_safe_disk_i_size_write(inode, last_size); |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, |
| (u64)-1, &cached_state); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * btrfs_truncate_block - read, zero a chunk and write a block |
| * @inode - inode that we're zeroing |
| * @from - the offset to start zeroing |
| * @len - the length to zero, 0 to zero the entire range respective to the |
| * offset |
| * @front - zero up to the offset instead of from the offset on |
| * |
| * This will find the block for the "from" offset and cow the block and zero the |
| * part we want to zero. This is used with truncate and hole punching. |
| */ |
| int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, |
| int front) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct address_space *mapping = inode->i_mapping; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| char *kaddr; |
| bool only_release_metadata = false; |
| u32 blocksize = fs_info->sectorsize; |
| pgoff_t index = from >> PAGE_SHIFT; |
| unsigned offset = from & (blocksize - 1); |
| struct page *page; |
| gfp_t mask = btrfs_alloc_write_mask(mapping); |
| size_t write_bytes = blocksize; |
| int ret = 0; |
| u64 block_start; |
| u64 block_end; |
| |
| if (IS_ALIGNED(offset, blocksize) && |
| (!len || IS_ALIGNED(len, blocksize))) |
| goto out; |
| |
| block_start = round_down(from, blocksize); |
| block_end = block_start + blocksize - 1; |
| |
| ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, |
| block_start, blocksize); |
| if (ret < 0) { |
| if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start, |
| &write_bytes) > 0) { |
| /* For nocow case, no need to reserve data space */ |
| only_release_metadata = true; |
| } else { |
| goto out; |
| } |
| } |
| ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize); |
| if (ret < 0) { |
| if (!only_release_metadata) |
| btrfs_free_reserved_data_space(BTRFS_I(inode), |
| data_reserved, block_start, blocksize); |
| goto out; |
| } |
| again: |
| page = find_or_create_page(mapping, index, mask); |
| if (!page) { |
| btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, |
| block_start, blocksize, true); |
| btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| if (!PageUptodate(page)) { |
| ret = btrfs_readpage(NULL, page); |
| lock_page(page); |
| if (page->mapping != mapping) { |
| unlock_page(page); |
| put_page(page); |
| goto again; |
| } |
| if (!PageUptodate(page)) { |
| ret = -EIO; |
| goto out_unlock; |
| } |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent_bits(io_tree, block_start, block_end, &cached_state); |
| set_page_extent_mapped(page); |
| |
| ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start); |
| if (ordered) { |
| unlock_extent_cached(io_tree, block_start, block_end, |
| &cached_state); |
| unlock_page(page); |
| put_page(page); |
| btrfs_start_ordered_extent(ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, |
| 0, 0, &cached_state); |
| |
| ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0, |
| &cached_state); |
| if (ret) { |
| unlock_extent_cached(io_tree, block_start, block_end, |
| &cached_state); |
| goto out_unlock; |
| } |
| |
| if (offset != blocksize) { |
| if (!len) |
| len = blocksize - offset; |
| kaddr = kmap(page); |
| if (front) |
| memset(kaddr + (block_start - page_offset(page)), |
| 0, offset); |
| else |
| memset(kaddr + (block_start - page_offset(page)) + offset, |
| 0, len); |
| flush_dcache_page(page); |
| kunmap(page); |
| } |
| ClearPageChecked(page); |
| set_page_dirty(page); |
| unlock_extent_cached(io_tree, block_start, block_end, &cached_state); |
| |
| if (only_release_metadata) |
| set_extent_bit(&BTRFS_I(inode)->io_tree, block_start, |
| block_end, EXTENT_NORESERVE, NULL, NULL, |
| GFP_NOFS); |
| |
| out_unlock: |
| if (ret) { |
| if (only_release_metadata) |
| btrfs_delalloc_release_metadata(BTRFS_I(inode), |
| blocksize, true); |
| else |
| btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, |
| block_start, blocksize, true); |
| } |
| btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); |
| unlock_page(page); |
| put_page(page); |
| out: |
| if (only_release_metadata) |
| btrfs_check_nocow_unlock(BTRFS_I(inode)); |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, |
| u64 offset, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| /* |
| * Still need to make sure the inode looks like it's been updated so |
| * that any holes get logged if we fsync. |
| */ |
| if (btrfs_fs_incompat(fs_info, NO_HOLES)) { |
| BTRFS_I(inode)->last_trans = fs_info->generation; |
| BTRFS_I(inode)->last_sub_trans = root->log_transid; |
| BTRFS_I(inode)->last_log_commit = root->last_log_commit; |
| return 0; |
| } |
| |
| /* |
| * 1 - for the one we're dropping |
| * 1 - for the one we're adding |
| * 1 - for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 3); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), |
| offset, 0, 0, len, 0, len, 0, 0, 0); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| else |
| btrfs_update_inode(trans, root, inode); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| /* |
| * This function puts in dummy file extents for the area we're creating a hole |
| * for. So if we are truncating this file to a larger size we need to insert |
| * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for |
| * the range between oldsize and size |
| */ |
| int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map *em = NULL; |
| struct extent_state *cached_state = NULL; |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); |
| u64 block_end = ALIGN(size, fs_info->sectorsize); |
| u64 last_byte; |
| u64 cur_offset; |
| u64 hole_size; |
| int err = 0; |
| |
| /* |
| * If our size started in the middle of a block we need to zero out the |
| * rest of the block before we expand the i_size, otherwise we could |
| * expose stale data. |
| */ |
| err = btrfs_truncate_block(inode, oldsize, 0, 0); |
| if (err) |
| return err; |
| |
| if (size <= hole_start) |
| return 0; |
| |
| btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, |
| block_end - 1, &cached_state); |
| cur_offset = hole_start; |
| while (1) { |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, |
| block_end - cur_offset); |
| if (IS_ERR(em)) { |
| err = PTR_ERR(em); |
| em = NULL; |
| break; |
| } |
| last_byte = min(extent_map_end(em), block_end); |
| last_byte = ALIGN(last_byte, fs_info->sectorsize); |
| hole_size = last_byte - cur_offset; |
| |
| if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { |
| struct extent_map *hole_em; |
| |
| err = maybe_insert_hole(root, inode, cur_offset, |
| hole_size); |
| if (err) |
| break; |
| |
| err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), |
| cur_offset, hole_size); |
| if (err) |
| break; |
| |
| btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, |
| cur_offset + hole_size - 1, 0); |
| hole_em = alloc_extent_map(); |
| if (!hole_em) { |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| goto next; |
| } |
| hole_em->start = cur_offset; |
| hole_em->len = hole_size; |
| hole_em->orig_start = cur_offset; |
| |
| hole_em->block_start = EXTENT_MAP_HOLE; |
| hole_em->block_len = 0; |
| hole_em->orig_block_len = 0; |
| hole_em->ram_bytes = hole_size; |
| hole_em->compress_type = BTRFS_COMPRESS_NONE; |
| hole_em->generation = fs_info->generation; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| err = add_extent_mapping(em_tree, hole_em, 1); |
| write_unlock(&em_tree->lock); |
| if (err != -EEXIST) |
| break; |
| btrfs_drop_extent_cache(BTRFS_I(inode), |
| cur_offset, |
| cur_offset + |
| hole_size - 1, 0); |
| } |
| free_extent_map(hole_em); |
| } else { |
| err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), |
| cur_offset, hole_size); |
| if (err) |
| break; |
| } |
| next: |
| free_extent_map(em); |
| em = NULL; |
| cur_offset = last_byte; |
| if (cur_offset >= block_end) |
| break; |
| } |
| free_extent_map(em); |
| unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); |
| return err; |
| } |
| |
| static int btrfs_setsize(struct inode *inode, struct iattr *attr) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| loff_t oldsize = i_size_read(inode); |
| loff_t newsize = attr->ia_size; |
| int mask = attr->ia_valid; |
| int ret; |
| |
| /* |
| * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a |
| * special case where we need to update the times despite not having |
| * these flags set. For all other operations the VFS set these flags |
| * explicitly if it wants a timestamp update. |
| */ |
| if (newsize != oldsize) { |
| inode_inc_iversion(inode); |
| if (!(mask & (ATTR_CTIME | ATTR_MTIME))) |
| inode->i_ctime = inode->i_mtime = |
| current_time(inode); |
| } |
| |
| if (newsize > oldsize) { |
| /* |
| * Don't do an expanding truncate while snapshotting is ongoing. |
| * This is to ensure the snapshot captures a fully consistent |
| * state of this file - if the snapshot captures this expanding |
| * truncation, it must capture all writes that happened before |
| * this truncation. |
| */ |
| btrfs_drew_write_lock(&root->snapshot_lock); |
| ret = btrfs_cont_expand(inode, oldsize, newsize); |
| if (ret) { |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| return ret; |
| } |
| |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| return PTR_ERR(trans); |
| } |
| |
| i_size_write(inode, newsize); |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| pagecache_isize_extended(inode, oldsize, newsize); |
| ret = btrfs_update_inode(trans, root, inode); |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| btrfs_end_transaction(trans); |
| } else { |
| |
| /* |
| * We're truncating a file that used to have good data down to |
| * zero. Make sure any new writes to the file get on disk |
| * on close. |
| */ |
| if (newsize == 0) |
| set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, |
| &BTRFS_I(inode)->runtime_flags); |
| |
| truncate_setsize(inode, newsize); |
| |
| inode_dio_wait(inode); |
| |
| ret = btrfs_truncate(inode, newsize == oldsize); |
| if (ret && inode->i_nlink) { |
| int err; |
| |
| /* |
| * Truncate failed, so fix up the in-memory size. We |
| * adjusted disk_i_size down as we removed extents, so |
| * wait for disk_i_size to be stable and then update the |
| * in-memory size to match. |
| */ |
| err = btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| if (err) |
| return err; |
| i_size_write(inode, BTRFS_I(inode)->disk_i_size); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) |
| { |
| struct inode *inode = d_inode(dentry); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| int err; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| err = setattr_prepare(dentry, attr); |
| if (err) |
| return err; |
| |
| if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { |
| err = btrfs_setsize(inode, attr); |
| if (err) |
| return err; |
| } |
| |
| if (attr->ia_valid) { |
| setattr_copy(inode, attr); |
| inode_inc_iversion(inode); |
| err = btrfs_dirty_inode(inode); |
| |
| if (!err && attr->ia_valid & ATTR_MODE) |
| err = posix_acl_chmod(inode, inode->i_mode); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * While truncating the inode pages during eviction, we get the VFS calling |
| * btrfs_invalidatepage() against each page of the inode. This is slow because |
| * the calls to btrfs_invalidatepage() result in a huge amount of calls to |
| * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting |
| * extent_state structures over and over, wasting lots of time. |
| * |
| * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all |
| * those expensive operations on a per page basis and do only the ordered io |
| * finishing, while we release here the extent_map and extent_state structures, |
| * without the excessive merging and splitting. |
| */ |
| static void evict_inode_truncate_pages(struct inode *inode) |
| { |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; |
| struct rb_node *node; |
| |
| ASSERT(inode->i_state & I_FREEING); |
| truncate_inode_pages_final(&inode->i_data); |
| |
| write_lock(&map_tree->lock); |
| while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { |
| struct extent_map *em; |
| |
| node = rb_first_cached(&map_tree->map); |
| em = rb_entry(node, struct extent_map, rb_node); |
| clear_bit(EXTENT_FLAG_PINNED, &em->flags); |
| clear_bit(EXTENT_FLAG_LOGGING, &em->flags); |
| remove_extent_mapping(map_tree, em); |
| free_extent_map(em); |
| if (need_resched()) { |
| write_unlock(&map_tree->lock); |
| cond_resched(); |
| write_lock(&map_tree->lock); |
| } |
| } |
| write_unlock(&map_tree->lock); |
| |
| /* |
| * Keep looping until we have no more ranges in the io tree. |
| * We can have ongoing bios started by readahead that have |
| * their endio callback (extent_io.c:end_bio_extent_readpage) |
| * still in progress (unlocked the pages in the bio but did not yet |
| * unlocked the ranges in the io tree). Therefore this means some |
| * ranges can still be locked and eviction started because before |
| * submitting those bios, which are executed by a separate task (work |
| * queue kthread), inode references (inode->i_count) were not taken |
| * (which would be dropped in the end io callback of each bio). |
| * Therefore here we effectively end up waiting for those bios and |
| * anyone else holding locked ranges without having bumped the inode's |
| * reference count - if we don't do it, when they access the inode's |
| * io_tree to unlock a range it may be too late, leading to an |
| * use-after-free issue. |
| */ |
| spin_lock(&io_tree->lock); |
| while (!RB_EMPTY_ROOT(&io_tree->state)) { |
| struct extent_state *state; |
| struct extent_state *cached_state = NULL; |
| u64 start; |
| u64 end; |
| unsigned state_flags; |
| |
| node = rb_first(&io_tree->state); |
| state = rb_entry(node, struct extent_state, rb_node); |
| start = state->start; |
| end = state->end; |
| state_flags = state->state; |
| spin_unlock(&io_tree->lock); |
| |
| lock_extent_bits(io_tree, start, end, &cached_state); |
| |
| /* |
| * If still has DELALLOC flag, the extent didn't reach disk, |
| * and its reserved space won't be freed by delayed_ref. |
| * So we need to free its reserved space here. |
| * (Refer to comment in btrfs_invalidatepage, case 2) |
| * |
| * Note, end is the bytenr of last byte, so we need + 1 here. |
| */ |
| if (state_flags & EXTENT_DELALLOC) |
| btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, |
| end - start + 1); |
| |
| clear_extent_bit(io_tree, start, end, |
| EXTENT_LOCKED | EXTENT_DELALLOC | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, |
| &cached_state); |
| |
| cond_resched(); |
| spin_lock(&io_tree->lock); |
| } |
| spin_unlock(&io_tree->lock); |
| } |
| |
| static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, |
| struct btrfs_block_rsv *rsv) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| struct btrfs_trans_handle *trans; |
| u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); |
| int ret; |
| |
| /* |
| * Eviction should be taking place at some place safe because of our |
| * delayed iputs. However the normal flushing code will run delayed |
| * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. |
| * |
| * We reserve the delayed_refs_extra here again because we can't use |
| * btrfs_start_transaction(root, 0) for the same deadlocky reason as |
| * above. We reserve our extra bit here because we generate a ton of |
| * delayed refs activity by truncating. |
| * |
| * If we cannot make our reservation we'll attempt to steal from the |
| * global reserve, because we really want to be able to free up space. |
| */ |
| ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, |
| BTRFS_RESERVE_FLUSH_EVICT); |
| if (ret) { |
| /* |
| * Try to steal from the global reserve if there is space for |
| * it. |
| */ |
| if (btrfs_check_space_for_delayed_refs(fs_info) || |
| btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { |
| btrfs_warn(fs_info, |
| "could not allocate space for delete; will truncate on mount"); |
| return ERR_PTR(-ENOSPC); |
| } |
| delayed_refs_extra = 0; |
| } |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return trans; |
| |
| if (delayed_refs_extra) { |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| trans->bytes_reserved = delayed_refs_extra; |
| btrfs_block_rsv_migrate(rsv, trans->block_rsv, |
| delayed_refs_extra, 1); |
| } |
| return trans; |
| } |
| |
| void btrfs_evict_inode(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *rsv; |
| int ret; |
| |
| trace_btrfs_inode_evict(inode); |
| |
| if (!root) { |
| clear_inode(inode); |
| return; |
| } |
| |
| evict_inode_truncate_pages(inode); |
| |
| if (inode->i_nlink && |
| ((btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || |
| btrfs_is_free_space_inode(BTRFS_I(inode)))) |
| goto no_delete; |
| |
| if (is_bad_inode(inode)) |
| goto no_delete; |
| |
| btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); |
| |
| if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) |
| goto no_delete; |
| |
| if (inode->i_nlink > 0) { |
| BUG_ON(btrfs_root_refs(&root->root_item) != 0 && |
| root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); |
| goto no_delete; |
| } |
| |
| ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); |
| if (ret) |
| goto no_delete; |
| |
| rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) |
| goto no_delete; |
| rsv->size = btrfs_calc_metadata_size(fs_info, 1); |
| rsv->failfast = 1; |
| |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| |
| while (1) { |
| trans = evict_refill_and_join(root, rsv); |
| if (IS_ERR(trans)) |
| goto free_rsv; |
| |
| trans->block_rsv = rsv; |
| |
| ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| if (ret && ret != -ENOSPC && ret != -EAGAIN) |
| goto free_rsv; |
| else if (!ret) |
| break; |
| } |
| |
| /* |
| * Errors here aren't a big deal, it just means we leave orphan items in |
| * the tree. They will be cleaned up on the next mount. If the inode |
| * number gets reused, cleanup deletes the orphan item without doing |
| * anything, and unlink reuses the existing orphan item. |
| * |
| * If it turns out that we are dropping too many of these, we might want |
| * to add a mechanism for retrying these after a commit. |
| */ |
| trans = evict_refill_and_join(root, rsv); |
| if (!IS_ERR(trans)) { |
| trans->block_rsv = rsv; |
| btrfs_orphan_del(trans, BTRFS_I(inode)); |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| btrfs_end_transaction(trans); |
| } |
| |
| if (!(root == fs_info->tree_root || |
| root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) |
| btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); |
| |
| free_rsv: |
| btrfs_free_block_rsv(fs_info, rsv); |
| no_delete: |
| /* |
| * If we didn't successfully delete, the orphan item will still be in |
| * the tree and we'll retry on the next mount. Again, we might also want |
| * to retry these periodically in the future. |
| */ |
| btrfs_remove_delayed_node(BTRFS_I(inode)); |
| clear_inode(inode); |
| } |
| |
| /* |
| * Return the key found in the dir entry in the location pointer, fill @type |
| * with BTRFS_FT_*, and return 0. |
| * |
| * If no dir entries were found, returns -ENOENT. |
| * If found a corrupted location in dir entry, returns -EUCLEAN. |
| */ |
| static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, |
| struct btrfs_key *location, u8 *type) |
| { |
| const char *name = dentry->d_name.name; |
| int namelen = dentry->d_name.len; |
| struct btrfs_dir_item *di; |
| struct btrfs_path *path; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), |
| name, namelen, 0); |
| if (IS_ERR_OR_NULL(di)) { |
| ret = di ? PTR_ERR(di) : -ENOENT; |
| goto out; |
| } |
| |
| btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); |
| if (location->type != BTRFS_INODE_ITEM_KEY && |
| location->type != BTRFS_ROOT_ITEM_KEY) { |
| ret = -EUCLEAN; |
| btrfs_warn(root->fs_info, |
| "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", |
| __func__, name, btrfs_ino(BTRFS_I(dir)), |
| location->objectid, location->type, location->offset); |
| } |
| if (!ret) |
| *type = btrfs_dir_type(path->nodes[0], di); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * when we hit a tree root in a directory, the btrfs part of the inode |
| * needs to be changed to reflect the root directory of the tree root. This |
| * is kind of like crossing a mount point. |
| */ |
| static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, |
| struct inode *dir, |
| struct dentry *dentry, |
| struct btrfs_key *location, |
| struct btrfs_root **sub_root) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *new_root; |
| struct btrfs_root_ref *ref; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret; |
| int err = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| err = -ENOENT; |
| key.objectid = BTRFS_I(dir)->root->root_key.objectid; |
| key.type = BTRFS_ROOT_REF_KEY; |
| key.offset = location->objectid; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret) { |
| if (ret < 0) |
| err = ret; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); |
| if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || |
| btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) |
| goto out; |
| |
| ret = memcmp_extent_buffer(leaf, dentry->d_name.name, |
| (unsigned long)(ref + 1), |
| dentry->d_name.len); |
| if (ret) |
| goto out; |
| |
| btrfs_release_path(path); |
| |
| new_root = btrfs_get_fs_root(fs_info, location->objectid, true); |
| if (IS_ERR(new_root)) { |
| err = PTR_ERR(new_root); |
| goto out; |
| } |
| |
| *sub_root = new_root; |
| location->objectid = btrfs_root_dirid(&new_root->root_item); |
| location->type = BTRFS_INODE_ITEM_KEY; |
| location->offset = 0; |
| err = 0; |
| out: |
| btrfs_free_path(path); |
| return err; |
| } |
| |
| static void inode_tree_add(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_inode *entry; |
| struct rb_node **p; |
| struct rb_node *parent; |
| struct rb_node *new = &BTRFS_I(inode)->rb_node; |
| u64 ino = btrfs_ino(BTRFS_I(inode)); |
| |
| if (inode_unhashed(inode)) |
| return; |
| parent = NULL; |
| spin_lock(&root->inode_lock); |
| p = &root->inode_tree.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_inode, rb_node); |
| |
| if (ino < btrfs_ino(entry)) |
| p = &parent->rb_left; |
| else if (ino > btrfs_ino(entry)) |
| p = &parent->rb_right; |
| else { |
| WARN_ON(!(entry->vfs_inode.i_state & |
| (I_WILL_FREE | I_FREEING))); |
| rb_replace_node(parent, new, &root->inode_tree); |
| RB_CLEAR_NODE(parent); |
| spin_unlock(&root->inode_lock); |
| return; |
| } |
| } |
| rb_link_node(new, parent, p); |
| rb_insert_color(new, &root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| } |
| |
| static void inode_tree_del(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| int empty = 0; |
| |
| spin_lock(&root->inode_lock); |
| if (!RB_EMPTY_NODE(&inode->rb_node)) { |
| rb_erase(&inode->rb_node, &root->inode_tree); |
| RB_CLEAR_NODE(&inode->rb_node); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| } |
| spin_unlock(&root->inode_lock); |
| |
| if (empty && btrfs_root_refs(&root->root_item) == 0) { |
| spin_lock(&root->inode_lock); |
| empty = RB_EMPTY_ROOT(&root->inode_tree); |
| spin_unlock(&root->inode_lock); |
| if (empty) |
| btrfs_add_dead_root(root); |
| } |
| } |
| |
| |
| static int btrfs_init_locked_inode(struct inode *inode, void *p) |
| { |
| struct btrfs_iget_args *args = p; |
| |
| inode->i_ino = args->ino; |
| BTRFS_I(inode)->location.objectid = args->ino; |
| BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; |
| BTRFS_I(inode)->location.offset = 0; |
| BTRFS_I(inode)->root = btrfs_grab_root(args->root); |
| BUG_ON(args->root && !BTRFS_I(inode)->root); |
| return 0; |
| } |
| |
| static int btrfs_find_actor(struct inode *inode, void *opaque) |
| { |
| struct btrfs_iget_args *args = opaque; |
| |
| return args->ino == BTRFS_I(inode)->location.objectid && |
| args->root == BTRFS_I(inode)->root; |
| } |
| |
| static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, |
| struct btrfs_root *root) |
| { |
| struct inode *inode; |
| struct btrfs_iget_args args; |
| unsigned long hashval = btrfs_inode_hash(ino, root); |
| |
| args.ino = ino; |
| args.root = root; |
| |
| inode = iget5_locked(s, hashval, btrfs_find_actor, |
| btrfs_init_locked_inode, |
| (void *)&args); |
| return inode; |
| } |
| |
| /* |
| * Get an inode object given its inode number and corresponding root. |
| * Path can be preallocated to prevent recursing back to iget through |
| * allocator. NULL is also valid but may require an additional allocation |
| * later. |
| */ |
| struct inode *btrfs_iget_path(struct super_block *s, u64 ino, |
| struct btrfs_root *root, struct btrfs_path *path) |
| { |
| struct inode *inode; |
| |
| inode = btrfs_iget_locked(s, ino, root); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| if (inode->i_state & I_NEW) { |
| int ret; |
| |
| ret = btrfs_read_locked_inode(inode, path); |
| if (!ret) { |
| inode_tree_add(inode); |
| unlock_new_inode(inode); |
| } else { |
| iget_failed(inode); |
| /* |
| * ret > 0 can come from btrfs_search_slot called by |
| * btrfs_read_locked_inode, this means the inode item |
| * was not found. |
| */ |
| if (ret > 0) |
| ret = -ENOENT; |
| inode = ERR_PTR(ret); |
| } |
| } |
| |
| return inode; |
| } |
| |
| struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) |
| { |
| return btrfs_iget_path(s, ino, root, NULL); |
| } |
| |
| static struct inode *new_simple_dir(struct super_block *s, |
| struct btrfs_key *key, |
| struct btrfs_root *root) |
| { |
| struct inode *inode = new_inode(s); |
| |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| BTRFS_I(inode)->root = btrfs_grab_root(root); |
| memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); |
| set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| |
| inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; |
| /* |
| * We only need lookup, the rest is read-only and there's no inode |
| * associated with the dentry |
| */ |
| inode->i_op = &simple_dir_inode_operations; |
| inode->i_opflags &= ~IOP_XATTR; |
| inode->i_fop = &simple_dir_operations; |
| inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; |
| inode->i_mtime = current_time(inode); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| return inode; |
| } |
| |
| static inline u8 btrfs_inode_type(struct inode *inode) |
| { |
| /* |
| * Compile-time asserts that generic FT_* types still match |
| * BTRFS_FT_* types |
| */ |
| BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); |
| BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); |
| BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); |
| BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); |
| BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); |
| BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); |
| BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); |
| BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); |
| |
| return fs_umode_to_ftype(inode->i_mode); |
| } |
| |
| struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct inode *inode; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_root *sub_root = root; |
| struct btrfs_key location; |
| u8 di_type = 0; |
| int ret = 0; |
| |
| if (dentry->d_name.len > BTRFS_NAME_LEN) |
| return ERR_PTR(-ENAMETOOLONG); |
| |
| ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| if (location.type == BTRFS_INODE_ITEM_KEY) { |
| inode = btrfs_iget(dir->i_sb, location.objectid, root); |
| if (IS_ERR(inode)) |
| return inode; |
| |
| /* Do extra check against inode mode with di_type */ |
| if (btrfs_inode_type(inode) != di_type) { |
| btrfs_crit(fs_info, |
| "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", |
| inode->i_mode, btrfs_inode_type(inode), |
| di_type); |
| iput(inode); |
| return ERR_PTR(-EUCLEAN); |
| } |
| return inode; |
| } |
| |
| ret = fixup_tree_root_location(fs_info, dir, dentry, |
| &location, &sub_root); |
| if (ret < 0) { |
| if (ret != -ENOENT) |
| inode = ERR_PTR(ret); |
| else |
| inode = new_simple_dir(dir->i_sb, &location, sub_root); |
| } else { |
| inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); |
| } |
| if (root != sub_root) |
| btrfs_put_root(sub_root); |
| |
| if (!IS_ERR(inode) && root != sub_root) { |
| down_read(&fs_info->cleanup_work_sem); |
| if (!sb_rdonly(inode->i_sb)) |
| ret = btrfs_orphan_cleanup(sub_root); |
| up_read(&fs_info->cleanup_work_sem); |
| if (ret) { |
| iput(inode); |
| inode = ERR_PTR(ret); |
| } |
| } |
| |
| return inode; |
| } |
| |
| static int btrfs_dentry_delete(const struct dentry *dentry) |
| { |
| struct btrfs_root *root; |
| struct inode *inode = d_inode(dentry); |
| |
| if (!inode && !IS_ROOT(dentry)) |
| inode = d_inode(dentry->d_parent); |
| |
| if (inode) { |
| root = BTRFS_I(inode)->root; |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| |
| if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, |
| unsigned int flags) |
| { |
| struct inode *inode = btrfs_lookup_dentry(dir, dentry); |
| |
| if (inode == ERR_PTR(-ENOENT)) |
| inode = NULL; |
| return d_splice_alias(inode, dentry); |
| } |
| |
| /* |
| * All this infrastructure exists because dir_emit can fault, and we are holding |
| * the tree lock when doing readdir. For now just allocate a buffer and copy |
| * our information into that, and then dir_emit from the buffer. This is |
| * similar to what NFS does, only we don't keep the buffer around in pagecache |
| * because I'm afraid I'll mess that up. Long term we need to make filldir do |
| * copy_to_user_inatomic so we don't have to worry about page faulting under the |
| * tree lock. |
| */ |
| static int btrfs_opendir(struct inode *inode, struct file *file) |
| { |
| struct btrfs_file_private *private; |
| |
| private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); |
| if (!private) |
| return -ENOMEM; |
| private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!private->filldir_buf) { |
| kfree(private); |
| return -ENOMEM; |
| } |
| file->private_data = private; |
| return 0; |
| } |
| |
| struct dir_entry { |
| u64 ino; |
| u64 offset; |
| unsigned type; |
| int name_len; |
| }; |
| |
| static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) |
| { |
| while (entries--) { |
| struct dir_entry *entry = addr; |
| char *name = (char *)(entry + 1); |
| |
| ctx->pos = get_unaligned(&entry->offset); |
| if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), |
| get_unaligned(&entry->ino), |
| get_unaligned(&entry->type))) |
| return 1; |
| addr += sizeof(struct dir_entry) + |
| get_unaligned(&entry->name_len); |
| ctx->pos++; |
| } |
| return 0; |
| } |
| |
| static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_file_private *private = file->private_data; |
| struct btrfs_dir_item *di; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| void *addr; |
| struct list_head ins_list; |
| struct list_head del_list; |
| int ret; |
| struct extent_buffer *leaf; |
| int slot; |
| char *name_ptr; |
| int name_len; |
| int entries = 0; |
| int total_len = 0; |
| bool put = false; |
| struct btrfs_key location; |
| |
| if (!dir_emit_dots(file, ctx)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| addr = private->filldir_buf; |
| path->reada = READA_FORWARD; |
| |
| INIT_LIST_HEAD(&ins_list); |
| INIT_LIST_HEAD(&del_list); |
| put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); |
| |
| again: |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = ctx->pos; |
| key.objectid = btrfs_ino(BTRFS_I(inode)); |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto err; |
| |
| while (1) { |
| struct dir_entry *entry; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto err; |
| else if (ret > 0) |
| break; |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid != key.objectid) |
| break; |
| if (found_key.type != BTRFS_DIR_INDEX_KEY) |
| break; |
| if (found_key.offset < ctx->pos) |
| goto next; |
| if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) |
| goto next; |
| di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); |
| name_len = btrfs_dir_name_len(leaf, di); |
| if ((total_len + sizeof(struct dir_entry) + name_len) >= |
| PAGE_SIZE) { |
| btrfs_release_path(path); |
| ret = btrfs_filldir(private->filldir_buf, entries, ctx); |
| if (ret) |
| goto nopos; |
| addr = private->filldir_buf; |
| entries = 0; |
| total_len = 0; |
| goto again; |
| } |
| |
| entry = addr; |
| put_unaligned(name_len, &entry->name_len); |
| name_ptr = (char *)(entry + 1); |
| read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), |
| name_len); |
| put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), |
| &entry->type); |
| btrfs_dir_item_key_to_cpu(leaf, di, &location); |
| put_unaligned(location.objectid, &entry->ino); |
| put_unaligned(found_key.offset, &entry->offset); |
| entries++; |
| addr += sizeof(struct dir_entry) + name_len; |
| total_len += sizeof(struct dir_entry) + name_len; |
| next: |
| path->slots[0]++; |
| } |
| btrfs_release_path(path); |
| |
| ret = btrfs_filldir(private->filldir_buf, entries, ctx); |
| if (ret) |
| goto nopos; |
| |
| ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); |
| if (ret) |
| goto nopos; |
| |
| /* |
| * Stop new entries from being returned after we return the last |
| * entry. |
| * |
| * New directory entries are assigned a strictly increasing |
| * offset. This means that new entries created during readdir |
| * are *guaranteed* to be seen in the future by that readdir. |
| * This has broken buggy programs which operate on names as |
| * they're returned by readdir. Until we re-use freed offsets |
| * we have this hack to stop new entries from being returned |
| * under the assumption that they'll never reach this huge |
| * offset. |
| * |
| * This is being careful not to overflow 32bit loff_t unless the |
| * last entry requires it because doing so has broken 32bit apps |
| * in the past. |
| */ |
| if (ctx->pos >= INT_MAX) |
| ctx->pos = LLONG_MAX; |
| else |
| ctx->pos = INT_MAX; |
| nopos: |
| ret = 0; |
| err: |
| if (put) |
| btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * This is somewhat expensive, updating the tree every time the |
| * inode changes. But, it is most likely to find the inode in cache. |
| * FIXME, needs more benchmarking...there are no reasons other than performance |
| * to keep or drop this code. |
| */ |
| static int btrfs_dirty_inode(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) |
| return 0; |
| |
| trans = btrfs_join_transaction(root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { |
| /* whoops, lets try again with the full transaction */ |
| btrfs_end_transaction(trans); |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| } |
| btrfs_end_transaction(trans); |
| if (BTRFS_I(inode)->delayed_node) |
| btrfs_balance_delayed_items(fs_info); |
| |
| return ret; |
| } |
| |
| /* |
| * This is a copy of file_update_time. We need this so we can return error on |
| * ENOSPC for updating the inode in the case of file write and mmap writes. |
| */ |
| static int btrfs_update_time(struct inode *inode, struct timespec64 *now, |
| int flags) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| bool dirty = flags & ~S_VERSION; |
| |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| |
| if (flags & S_VERSION) |
| dirty |= inode_maybe_inc_iversion(inode, dirty); |
| if (flags & S_CTIME) |
| inode->i_ctime = *now; |
| if (flags & S_MTIME) |
| inode->i_mtime = *now; |
| if (flags & S_ATIME) |
| inode->i_atime = *now; |
| return dirty ? btrfs_dirty_inode(inode) : 0; |
| } |
| |
| /* |
| * find the highest existing sequence number in a directory |
| * and then set the in-memory index_cnt variable to reflect |
| * free sequence numbers |
| */ |
| static int btrfs_set_inode_index_count(struct btrfs_inode *inode) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_key key, found_key; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| int ret; |
| |
| key.objectid = btrfs_ino(inode); |
| key.type = BTRFS_DIR_INDEX_KEY; |
| key.offset = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| /* FIXME: we should be able to handle this */ |
| if (ret == 0) |
| goto out; |
| ret = 0; |
| |
| /* |
| * MAGIC NUMBER EXPLANATION: |
| * since we search a directory based on f_pos we have to start at 2 |
| * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody |
| * else has to start at 2 |
| */ |
| if (path->slots[0] == 0) { |
| inode->index_cnt = 2; |
| goto out; |
| } |
| |
| path->slots[0]--; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| if (found_key.objectid != btrfs_ino(inode) || |
| found_key.type != BTRFS_DIR_INDEX_KEY) { |
| inode->index_cnt = 2; |
| goto out; |
| } |
| |
| inode->index_cnt = found_key.offset + 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * helper to find a free sequence number in a given directory. This current |
| * code is very simple, later versions will do smarter things in the btree |
| */ |
| int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) |
| { |
| int ret = 0; |
| |
| if (dir->index_cnt == (u64)-1) { |
| ret = btrfs_inode_delayed_dir_index_count(dir); |
| if (ret) { |
| ret = btrfs_set_inode_index_count(dir); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| *index = dir->index_cnt; |
| dir->index_cnt++; |
| |
| return ret; |
| } |
| |
| static int btrfs_insert_inode_locked(struct inode *inode) |
| { |
| struct btrfs_iget_args args; |
| |
| args.ino = BTRFS_I(inode)->location.objectid; |
| args.root = BTRFS_I(inode)->root; |
| |
| return insert_inode_locked4(inode, |
| btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), |
| btrfs_find_actor, &args); |
| } |
| |
| /* |
| * Inherit flags from the parent inode. |
| * |
| * Currently only the compression flags and the cow flags are inherited. |
| */ |
| static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) |
| { |
| unsigned int flags; |
| |
| if (!dir) |
| return; |
| |
| flags = BTRFS_I(dir)->flags; |
| |
| if (flags & BTRFS_INODE_NOCOMPRESS) { |
| BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; |
| } else if (flags & BTRFS_INODE_COMPRESS) { |
| BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; |
| BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; |
| } |
| |
| if (flags & BTRFS_INODE_NODATACOW) { |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; |
| if (S_ISREG(inode->i_mode)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; |
| } |
| |
| btrfs_sync_inode_flags_to_i_flags(inode); |
| } |
| |
| static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, |
| const char *name, int name_len, |
| u64 ref_objectid, u64 objectid, |
| umode_t mode, u64 *index) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode *inode; |
| struct btrfs_inode_item *inode_item; |
| struct btrfs_key *location; |
| struct btrfs_path *path; |
| struct btrfs_inode_ref *ref; |
| struct btrfs_key key[2]; |
| u32 sizes[2]; |
| int nitems = name ? 2 : 1; |
| unsigned long ptr; |
| unsigned int nofs_flag; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| |
| nofs_flag = memalloc_nofs_save(); |
| inode = new_inode(fs_info->sb); |
| memalloc_nofs_restore(nofs_flag); |
| if (!inode) { |
| btrfs_free_path(path); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * O_TMPFILE, set link count to 0, so that after this point, |
| * we fill in an inode item with the correct link count. |
| */ |
| if (!name) |
| set_nlink(inode, 0); |
| |
| /* |
| * we have to initialize this early, so we can reclaim the inode |
| * number if we fail afterwards in this function. |
| */ |
| inode->i_ino = objectid; |
| |
| if (dir && name) { |
| trace_btrfs_inode_request(dir); |
| |
| ret = btrfs_set_inode_index(BTRFS_I(dir), index); |
| if (ret) { |
| btrfs_free_path(path); |
| iput(inode); |
| return ERR_PTR(ret); |
| } |
| } else if (dir) { |
| *index = 0; |
| } |
| /* |
| * index_cnt is ignored for everything but a dir, |
| * btrfs_set_inode_index_count has an explanation for the magic |
| * number |
| */ |
| BTRFS_I(inode)->index_cnt = 2; |
| BTRFS_I(inode)->dir_index = *index; |
| BTRFS_I(inode)->root = btrfs_grab_root(root); |
| BTRFS_I(inode)->generation = trans->transid; |
| inode->i_generation = BTRFS_I(inode)->generation; |
| |
| /* |
| * We could have gotten an inode number from somebody who was fsynced |
| * and then removed in this same transaction, so let's just set full |
| * sync since it will be a full sync anyway and this will blow away the |
| * old info in the log. |
| */ |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); |
| |
| key[0].objectid = objectid; |
| key[0].type = BTRFS_INODE_ITEM_KEY; |
| key[0].offset = 0; |
| |
| sizes[0] = sizeof(struct btrfs_inode_item); |
| |
| if (name) { |
| /* |
| * Start new inodes with an inode_ref. This is slightly more |
| * efficient for small numbers of hard links since they will |
| * be packed into one item. Extended refs will kick in if we |
| * add more hard links than can fit in the ref item. |
| */ |
| key[1].objectid = objectid; |
| key[1].type = BTRFS_INODE_REF_KEY; |
| key[1].offset = ref_objectid; |
| |
| sizes[1] = name_len + sizeof(*ref); |
| } |
| |
| location = &BTRFS_I(inode)->location; |
| location->objectid = objectid; |
| location->offset = 0; |
| location->type = BTRFS_INODE_ITEM_KEY; |
| |
| ret = btrfs_insert_inode_locked(inode); |
| if (ret < 0) { |
| iput(inode); |
| goto fail; |
| } |
| |
| path->leave_spinning = 1; |
| ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); |
| if (ret != 0) |
| goto fail_unlock; |
| |
| inode_init_owner(inode, dir, mode); |
| inode_set_bytes(inode, 0); |
| |
| inode->i_mtime = current_time(inode); |
| inode->i_atime = inode->i_mtime; |
| inode->i_ctime = inode->i_mtime; |
| BTRFS_I(inode)->i_otime = inode->i_mtime; |
| |
| inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| struct btrfs_inode_item); |
| memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, |
| sizeof(*inode_item)); |
| fill_inode_item(trans, path->nodes[0], inode_item, inode); |
| |
| if (name) { |
| ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, |
| struct btrfs_inode_ref); |
| btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); |
| btrfs_set_inode_ref_index(path->nodes[0], ref, *index); |
| ptr = (unsigned long)(ref + 1); |
| write_extent_buffer(path->nodes[0], name, ptr, name_len); |
| } |
| |
| btrfs_mark_buffer_dirty(path->nodes[0]); |
| btrfs_free_path(path); |
| |
| btrfs_inherit_iflags(inode, dir); |
| |
| if (S_ISREG(mode)) { |
| if (btrfs_test_opt(fs_info, NODATASUM)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; |
| if (btrfs_test_opt(fs_info, NODATACOW)) |
| BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | |
| BTRFS_INODE_NODATASUM; |
| } |
| |
| inode_tree_add(inode); |
| |
| trace_btrfs_inode_new(inode); |
| btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); |
| |
| btrfs_update_root_times(trans, root); |
| |
| ret = btrfs_inode_inherit_props(trans, inode, dir); |
| if (ret) |
| btrfs_err(fs_info, |
| "error inheriting props for ino %llu (root %llu): %d", |
| btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); |
| |
| return inode; |
| |
| fail_unlock: |
| discard_new_inode(inode); |
| fail: |
| if (dir && name) |
| BTRFS_I(dir)->index_cnt--; |
| btrfs_free_path(path); |
| return ERR_PTR(ret); |
| } |
| |
| /* |
| * utility function to add 'inode' into 'parent_inode' with |
| * a give name and a given sequence number. |
| * if 'add_backref' is true, also insert a backref from the |
| * inode to the parent directory. |
| */ |
| int btrfs_add_link(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *parent_inode, struct btrfs_inode *inode, |
| const char *name, int name_len, int add_backref, u64 index) |
| { |
| int ret = 0; |
| struct btrfs_key key; |
| struct btrfs_root *root = parent_inode->root; |
| u64 ino = btrfs_ino(inode); |
| u64 parent_ino = btrfs_ino(parent_inode); |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| memcpy(&key, &inode->root->root_key, sizeof(key)); |
| } else { |
| key.objectid = ino; |
| key.type = BTRFS_INODE_ITEM_KEY; |
| key.offset = 0; |
| } |
| |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| ret = btrfs_add_root_ref(trans, key.objectid, |
| root->root_key.objectid, parent_ino, |
| index, name, name_len); |
| } else if (add_backref) { |
| ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, |
| parent_ino, index); |
| } |
| |
| /* Nothing to clean up yet */ |
| if (ret) |
| return ret; |
| |
| ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, |
| btrfs_inode_type(&inode->vfs_inode), index); |
| if (ret == -EEXIST || ret == -EOVERFLOW) |
| goto fail_dir_item; |
| else if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + |
| name_len * 2); |
| inode_inc_iversion(&parent_inode->vfs_inode); |
| /* |
| * If we are replaying a log tree, we do not want to update the mtime |
| * and ctime of the parent directory with the current time, since the |
| * log replay procedure is responsible for setting them to their correct |
| * values (the ones it had when the fsync was done). |
| */ |
| if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { |
| struct timespec64 now = current_time(&parent_inode->vfs_inode); |
| |
| parent_inode->vfs_inode.i_mtime = now; |
| parent_inode->vfs_inode.i_ctime = now; |
| } |
| ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| |
| fail_dir_item: |
| if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| u64 local_index; |
| int err; |
| err = btrfs_del_root_ref(trans, key.objectid, |
| root->root_key.objectid, parent_ino, |
| &local_index, name, name_len); |
| if (err) |
| btrfs_abort_transaction(trans, err); |
| } else if (add_backref) { |
| u64 local_index; |
| int err; |
| |
| err = btrfs_del_inode_ref(trans, root, name, name_len, |
| ino, parent_ino, &local_index); |
| if (err) |
| btrfs_abort_transaction(trans, err); |
| } |
| |
| /* Return the original error code */ |
| return ret; |
| } |
| |
| static int btrfs_add_nondir(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *dir, struct dentry *dentry, |
| struct btrfs_inode *inode, int backref, u64 index) |
| { |
| int err = btrfs_add_link(trans, dir, inode, |
| dentry->d_name.name, dentry->d_name.len, |
| backref, index); |
| if (err > 0) |
| err = -EEXIST; |
| return err; |
| } |
| |
| static int btrfs_mknod(struct inode *dir, struct dentry *dentry, |
| umode_t mode, dev_t rdev) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| int err; |
| u64 objectid; |
| u64 index = 0; |
| |
| /* |
| * 2 for inode item and ref |
| * 2 for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, |
| mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| inode = NULL; |
| goto out_unlock; |
| } |
| |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, rdev); |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock; |
| |
| err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), |
| 0, index); |
| if (err) |
| goto out_unlock; |
| |
| btrfs_update_inode(trans, root, inode); |
| d_instantiate_new(dentry, inode); |
| |
| out_unlock: |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| if (err && inode) { |
| inode_dec_link_count(inode); |
| discard_new_inode(inode); |
| } |
| return err; |
| } |
| |
| static int btrfs_create(struct inode *dir, struct dentry *dentry, |
| umode_t mode, bool excl) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| int err; |
| u64 objectid; |
| u64 index = 0; |
| |
| /* |
| * 2 for inode item and ref |
| * 2 for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, |
| mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| inode = NULL; |
| goto out_unlock; |
| } |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock; |
| |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto out_unlock; |
| |
| err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), |
| 0, index); |
| if (err) |
| goto out_unlock; |
| |
| d_instantiate_new(dentry, inode); |
| |
| out_unlock: |
| btrfs_end_transaction(trans); |
| if (err && inode) { |
| inode_dec_link_count(inode); |
| discard_new_inode(inode); |
| } |
| btrfs_btree_balance_dirty(fs_info); |
| return err; |
| } |
| |
| static int btrfs_link(struct dentry *old_dentry, struct inode *dir, |
| struct dentry *dentry) |
| { |
| struct btrfs_trans_handle *trans = NULL; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = d_inode(old_dentry); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| u64 index; |
| int err; |
| int drop_inode = 0; |
| |
| /* do not allow sys_link's with other subvols of the same device */ |
| if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) |
| return -EXDEV; |
| |
| if (inode->i_nlink >= BTRFS_LINK_MAX) |
| return -EMLINK; |
| |
| err = btrfs_set_inode_index(BTRFS_I(dir), &index); |
| if (err) |
| goto fail; |
| |
| /* |
| * 2 items for inode and inode ref |
| * 2 items for dir items |
| * 1 item for parent inode |
| * 1 item for orphan item deletion if O_TMPFILE |
| */ |
| trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); |
| if (IS_ERR(trans)) { |
| err = PTR_ERR(trans); |
| trans = NULL; |
| goto fail; |
| } |
| |
| /* There are several dir indexes for this inode, clear the cache. */ |
| BTRFS_I(inode)->dir_index = 0ULL; |
| inc_nlink(inode); |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| ihold(inode); |
| set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); |
| |
| err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), |
| 1, index); |
| |
| if (err) { |
| drop_inode = 1; |
| } else { |
| struct dentry *parent = dentry->d_parent; |
| |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto fail; |
| if (inode->i_nlink == 1) { |
| /* |
| * If new hard link count is 1, it's a file created |
| * with open(2) O_TMPFILE flag. |
| */ |
| err = btrfs_orphan_del(trans, BTRFS_I(inode)); |
| if (err) |
| goto fail; |
| } |
| d_instantiate(dentry, inode); |
| btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); |
| } |
| |
| fail: |
| if (trans) |
| btrfs_end_transaction(trans); |
| if (drop_inode) { |
| inode_dec_link_count(inode); |
| iput(inode); |
| } |
| btrfs_btree_balance_dirty(fs_info); |
| return err; |
| } |
| |
| static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct inode *inode = NULL; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| int err = 0; |
| u64 objectid = 0; |
| u64 index = 0; |
| |
| /* |
| * 2 items for inode and ref |
| * 2 items for dir items |
| * 1 for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_fail; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, |
| S_IFDIR | mode, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| inode = NULL; |
| goto out_fail; |
| } |
| |
| /* these must be set before we unlock the inode */ |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_fail; |
| |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| err = btrfs_update_inode(trans, root, inode); |
| if (err) |
| goto out_fail; |
| |
| err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), |
| dentry->d_name.name, |
| dentry->d_name.len, 0, index); |
| if (err) |
| goto out_fail; |
| |
| d_instantiate_new(dentry, inode); |
| |
| out_fail: |
| btrfs_end_transaction(trans); |
| if (err && inode) { |
| inode_dec_link_count(inode); |
| discard_new_inode(inode); |
| } |
| btrfs_btree_balance_dirty(fs_info); |
| return err; |
| } |
| |
| static noinline int uncompress_inline(struct btrfs_path *path, |
| struct page *page, |
| size_t pg_offset, u64 extent_offset, |
| struct btrfs_file_extent_item *item) |
| { |
| int ret; |
| struct extent_buffer *leaf = path->nodes[0]; |
| char *tmp; |
| size_t max_size; |
| unsigned long inline_size; |
| unsigned long ptr; |
| int compress_type; |
| |
| WARN_ON(pg_offset != 0); |
| compress_type = btrfs_file_extent_compression(leaf, item); |
| max_size = btrfs_file_extent_ram_bytes(leaf, item); |
| inline_size = btrfs_file_extent_inline_item_len(leaf, |
| btrfs_item_nr(path->slots[0])); |
| tmp = kmalloc(inline_size, GFP_NOFS); |
| if (!tmp) |
| return -ENOMEM; |
| ptr = btrfs_file_extent_inline_start(item); |
| |
| read_extent_buffer(leaf, tmp, ptr, inline_size); |
| |
| max_size = min_t(unsigned long, PAGE_SIZE, max_size); |
| ret = btrfs_decompress(compress_type, tmp, page, |
| extent_offset, inline_size, max_size); |
| |
| /* |
| * decompression code contains a memset to fill in any space between the end |
| * of the uncompressed data and the end of max_size in case the decompressed |
| * data ends up shorter than ram_bytes. That doesn't cover the hole between |
| * the end of an inline extent and the beginning of the next block, so we |
| * cover that region here. |
| */ |
| |
| if (max_size + pg_offset < PAGE_SIZE) { |
| char *map = kmap(page); |
| memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); |
| kunmap(page); |
| } |
| kfree(tmp); |
| return ret; |
| } |
| |
| /** |
| * btrfs_get_extent - Lookup the first extent overlapping a range in a file. |
| * @inode: file to search in |
| * @page: page to read extent data into if the extent is inline |
| * @pg_offset: offset into @page to copy to |
| * @start: file offset |
| * @len: length of range starting at @start |
| * |
| * This returns the first &struct extent_map which overlaps with the given |
| * range, reading it from the B-tree and caching it if necessary. Note that |
| * there may be more extents which overlap the given range after the returned |
| * extent_map. |
| * |
| * If @page is not NULL and the extent is inline, this also reads the extent |
| * data directly into the page and marks the extent up to date in the io_tree. |
| * |
| * Return: ERR_PTR on error, non-NULL extent_map on success. |
| */ |
| struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, |
| struct page *page, size_t pg_offset, |
| u64 start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| int ret = 0; |
| u64 extent_start = 0; |
| u64 extent_end = 0; |
| u64 objectid = btrfs_ino(inode); |
| int extent_type = -1; |
| struct btrfs_path *path = NULL; |
| struct btrfs_root *root = inode->root; |
| struct btrfs_file_extent_item *item; |
| struct extent_buffer *leaf; |
| struct btrfs_key found_key; |
| struct extent_map *em = NULL; |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_io_tree *io_tree = &inode->io_tree; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| read_unlock(&em_tree->lock); |
| |
| if (em) { |
| if (em->start > start || em->start + em->len <= start) |
| free_extent_map(em); |
| else if (em->block_start == EXTENT_MAP_INLINE && page) |
| free_extent_map(em); |
| else |
| goto out; |
| } |
| em = alloc_extent_map(); |
| if (!em) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| em->start = EXTENT_MAP_HOLE; |
| em->orig_start = EXTENT_MAP_HOLE; |
| em->len = (u64)-1; |
| em->block_len = (u64)-1; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* Chances are we'll be called again, so go ahead and do readahead */ |
| path->reada = READA_FORWARD; |
| |
| /* |
| * Unless we're going to uncompress the inline extent, no sleep would |
| * happen. |
| */ |
| path->leave_spinning = 1; |
| |
| path->recurse = btrfs_is_free_space_inode(inode); |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); |
| if (ret < 0) { |
| goto out; |
| } else if (ret > 0) { |
| if (path->slots[0] == 0) |
| goto not_found; |
| path->slots[0]--; |
| ret = 0; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != objectid || |
| found_key.type != BTRFS_EXTENT_DATA_KEY) { |
| /* |
| * If we backup past the first extent we want to move forward |
| * and see if there is an extent in front of us, otherwise we'll |
| * say there is a hole for our whole search range which can |
| * cause problems. |
| */ |
| extent_end = start; |
| goto next; |
| } |
| |
| extent_type = btrfs_file_extent_type(leaf, item); |
| extent_start = found_key.offset; |
| extent_end = btrfs_file_extent_end(path); |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| /* Only regular file could have regular/prealloc extent */ |
| if (!S_ISREG(inode->vfs_inode.i_mode)) { |
| ret = -EUCLEAN; |
| btrfs_crit(fs_info, |
| "regular/prealloc extent found for non-regular inode %llu", |
| btrfs_ino(inode)); |
| goto out; |
| } |
| trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, |
| extent_start); |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, |
| path->slots[0], |
| extent_start); |
| } |
| next: |
| if (start >= extent_end) { |
| path->slots[0]++; |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) |
| goto not_found; |
| |
| leaf = path->nodes[0]; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| if (found_key.objectid != objectid || |
| found_key.type != BTRFS_EXTENT_DATA_KEY) |
| goto not_found; |
| if (start + len <= found_key.offset) |
| goto not_found; |
| if (start > found_key.offset) |
| goto next; |
| |
| /* New extent overlaps with existing one */ |
| em->start = start; |
| em->orig_start = start; |
| em->len = found_key.offset - start; |
| em->block_start = EXTENT_MAP_HOLE; |
| goto insert; |
| } |
| |
| btrfs_extent_item_to_extent_map(inode, path, item, !page, em); |
| |
| if (extent_type == BTRFS_FILE_EXTENT_REG || |
| extent_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| goto insert; |
| } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { |
| unsigned long ptr; |
| char *map; |
| size_t size; |
| size_t extent_offset; |
| size_t copy_size; |
| |
| if (!page) |
| goto out; |
| |
| size = btrfs_file_extent_ram_bytes(leaf, item); |
| extent_offset = page_offset(page) + pg_offset - extent_start; |
| copy_size = min_t(u64, PAGE_SIZE - pg_offset, |
| size - extent_offset); |
| em->start = extent_start + extent_offset; |
| em->len = ALIGN(copy_size, fs_info->sectorsize); |
| em->orig_block_len = em->len; |
| em->orig_start = em->start; |
| ptr = btrfs_file_extent_inline_start(item) + extent_offset; |
| |
| btrfs_set_path_blocking(path); |
| if (!PageUptodate(page)) { |
| if (btrfs_file_extent_compression(leaf, item) != |
| BTRFS_COMPRESS_NONE) { |
| ret = uncompress_inline(path, page, pg_offset, |
| extent_offset, item); |
| if (ret) |
| goto out; |
| } else { |
| map = kmap(page); |
| read_extent_buffer(leaf, map + pg_offset, ptr, |
| copy_size); |
| if (pg_offset + copy_size < PAGE_SIZE) { |
| memset(map + pg_offset + copy_size, 0, |
| PAGE_SIZE - pg_offset - |
| copy_size); |
| } |
| kunmap(page); |
| } |
| flush_dcache_page(page); |
| } |
| set_extent_uptodate(io_tree, em->start, |
| extent_map_end(em) - 1, NULL, GFP_NOFS); |
| goto insert; |
| } |
| not_found: |
| em->start = start; |
| em->orig_start = start; |
| em->len = len; |
| em->block_start = EXTENT_MAP_HOLE; |
| insert: |
| ret = 0; |
| btrfs_release_path(path); |
| if (em->start > start || extent_map_end(em) <= start) { |
| btrfs_err(fs_info, |
| "bad extent! em: [%llu %llu] passed [%llu %llu]", |
| em->start, em->len, start, len); |
| ret = -EIO; |
| goto out; |
| } |
| |
| write_lock(&em_tree->lock); |
| ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); |
| write_unlock(&em_tree->lock); |
| out: |
| btrfs_free_path(path); |
| |
| trace_btrfs_get_extent(root, inode, em); |
| |
| if (ret) { |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| return em; |
| } |
| |
| struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, |
| u64 start, u64 len) |
| { |
| struct extent_map *em; |
| struct extent_map *hole_em = NULL; |
| u64 delalloc_start = start; |
| u64 end; |
| u64 delalloc_len; |
| u64 delalloc_end; |
| int err = 0; |
| |
| em = btrfs_get_extent(inode, NULL, 0, start, len); |
| if (IS_ERR(em)) |
| return em; |
| /* |
| * If our em maps to: |
| * - a hole or |
| * - a pre-alloc extent, |
| * there might actually be delalloc bytes behind it. |
| */ |
| if (em->block_start != EXTENT_MAP_HOLE && |
| !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| return em; |
| else |
| hole_em = em; |
| |
| /* check to see if we've wrapped (len == -1 or similar) */ |
| end = start + len; |
| if (end < start) |
| end = (u64)-1; |
| else |
| end -= 1; |
| |
| em = NULL; |
| |
| /* ok, we didn't find anything, lets look for delalloc */ |
| delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, |
| end, len, EXTENT_DELALLOC, 1); |
| delalloc_end = delalloc_start + delalloc_len; |
| if (delalloc_end < delalloc_start) |
| delalloc_end = (u64)-1; |
| |
| /* |
| * We didn't find anything useful, return the original results from |
| * get_extent() |
| */ |
| if (delalloc_start > end || delalloc_end <= start) { |
| em = hole_em; |
| hole_em = NULL; |
| goto out; |
| } |
| |
| /* |
| * Adjust the delalloc_start to make sure it doesn't go backwards from |
| * the start they passed in |
| */ |
| delalloc_start = max(start, delalloc_start); |
| delalloc_len = delalloc_end - delalloc_start; |
| |
| if (delalloc_len > 0) { |
| u64 hole_start; |
| u64 hole_len; |
| const u64 hole_end = extent_map_end(hole_em); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ASSERT(hole_em); |
| /* |
| * When btrfs_get_extent can't find anything it returns one |
| * huge hole |
| * |
| * Make sure what it found really fits our range, and adjust to |
| * make sure it is based on the start from the caller |
| */ |
| if (hole_end <= start || hole_em->start > end) { |
| free_extent_map(hole_em); |
| hole_em = NULL; |
| } else { |
| hole_start = max(hole_em->start, start); |
| hole_len = hole_end - hole_start; |
| } |
| |
| if (hole_em && delalloc_start > hole_start) { |
| /* |
| * Our hole starts before our delalloc, so we have to |
| * return just the parts of the hole that go until the |
| * delalloc starts |
| */ |
| em->len = min(hole_len, delalloc_start - hole_start); |
| em->start = hole_start; |
| em->orig_start = hole_start; |
| /* |
| * Don't adjust block start at all, it is fixed at |
| * EXTENT_MAP_HOLE |
| */ |
| em->block_start = hole_em->block_start; |
| em->block_len = hole_len; |
| if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| } else { |
| /* |
| * Hole is out of passed range or it starts after |
| * delalloc range |
| */ |
| em->start = delalloc_start; |
| em->len = delalloc_len; |
| em->orig_start = delalloc_start; |
| em->block_start = EXTENT_MAP_DELALLOC; |
| em->block_len = delalloc_len; |
| } |
| } else { |
| return hole_em; |
| } |
| out: |
| |
| free_extent_map(hole_em); |
| if (err) { |
| free_extent_map(em); |
| return ERR_PTR(err); |
| } |
| return em; |
| } |
| |
| static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, |
| const u64 start, |
| const u64 len, |
| const u64 orig_start, |
| const u64 block_start, |
| const u64 block_len, |
| const u64 orig_block_len, |
| const u64 ram_bytes, |
| const int type) |
| { |
| struct extent_map *em = NULL; |
| int ret; |
| |
| if (type != BTRFS_ORDERED_NOCOW) { |
| em = create_io_em(inode, start, len, orig_start, block_start, |
| block_len, orig_block_len, ram_bytes, |
| BTRFS_COMPRESS_NONE, /* compress_type */ |
| type); |
| if (IS_ERR(em)) |
| goto out; |
| } |
| ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, |
| block_len, type); |
| if (ret) { |
| if (em) { |
| free_extent_map(em); |
| btrfs_drop_extent_cache(inode, start, start + len - 1, 0); |
| } |
| em = ERR_PTR(ret); |
| } |
| out: |
| |
| return em; |
| } |
| |
| static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, |
| u64 start, u64 len) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_map *em; |
| struct btrfs_key ins; |
| u64 alloc_hint; |
| int ret; |
| |
| alloc_hint = get_extent_allocation_hint(inode, start, len); |
| ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, |
| 0, alloc_hint, &ins, 1, 1); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| em = btrfs_create_dio_extent(inode, start, ins.offset, start, |
| ins.objectid, ins.offset, ins.offset, |
| ins.offset, BTRFS_ORDERED_REGULAR); |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| if (IS_ERR(em)) |
| btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, |
| 1); |
| |
| return em; |
| } |
| |
| /* |
| * Check if we can do nocow write into the range [@offset, @offset + @len) |
| * |
| * @offset: File offset |
| * @len: The length to write, will be updated to the nocow writeable |
| * range |
| * @orig_start: (optional) Return the original file offset of the file extent |
| * @orig_len: (optional) Return the original on-disk length of the file extent |
| * @ram_bytes: (optional) Return the ram_bytes of the file extent |
| * @strict: if true, omit optimizations that might force us into unnecessary |
| * cow. e.g., don't trust generation number. |
| * |
| * This function will flush ordered extents in the range to ensure proper |
| * nocow checks for (nowait == false) case. |
| * |
| * Return: |
| * >0 and update @len if we can do nocow write |
| * 0 if we can't do nocow write |
| * <0 if error happened |
| * |
| * NOTE: This only checks the file extents, caller is responsible to wait for |
| * any ordered extents. |
| */ |
| noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, |
| u64 *orig_start, u64 *orig_block_len, |
| u64 *ram_bytes, bool strict) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_path *path; |
| int ret; |
| struct extent_buffer *leaf; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_file_extent_item *fi; |
| struct btrfs_key key; |
| u64 disk_bytenr; |
| u64 backref_offset; |
| u64 extent_end; |
| u64 num_bytes; |
| int slot; |
| int found_type; |
| bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| ret = btrfs_lookup_file_extent(NULL, root, path, |
| btrfs_ino(BTRFS_I(inode)), offset, 0); |
| if (ret < 0) |
| goto out; |
| |
| slot = path->slots[0]; |
| if (ret == 1) { |
| if (slot == 0) { |
| /* can't find the item, must cow */ |
| ret = 0; |
| goto out; |
| } |
| slot--; |
| } |
| ret = 0; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.objectid != btrfs_ino(BTRFS_I(inode)) || |
| key.type != BTRFS_EXTENT_DATA_KEY) { |
| /* not our file or wrong item type, must cow */ |
| goto out; |
| } |
| |
| if (key.offset > offset) { |
| /* Wrong offset, must cow */ |
| goto out; |
| } |
| |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| found_type = btrfs_file_extent_type(leaf, fi); |
| if (found_type != BTRFS_FILE_EXTENT_REG && |
| found_type != BTRFS_FILE_EXTENT_PREALLOC) { |
| /* not a regular extent, must cow */ |
| goto out; |
| } |
| |
| if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) |
| goto out; |
| |
| extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); |
| if (extent_end <= offset) |
| goto out; |
| |
| disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); |
| if (disk_bytenr == 0) |
| goto out; |
| |
| if (btrfs_file_extent_compression(leaf, fi) || |
| btrfs_file_extent_encryption(leaf, fi) || |
| btrfs_file_extent_other_encoding(leaf, fi)) |
| goto out; |
| |
| /* |
| * Do the same check as in btrfs_cross_ref_exist but without the |
| * unnecessary search. |
| */ |
| if (!strict && |
| (btrfs_file_extent_generation(leaf, fi) <= |
| btrfs_root_last_snapshot(&root->root_item))) |
| goto out; |
| |
| backref_offset = btrfs_file_extent_offset(leaf, fi); |
| |
| if (orig_start) { |
| *orig_start = key.offset - backref_offset; |
| *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); |
| *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); |
| } |
| |
| if (btrfs_extent_readonly(fs_info, disk_bytenr)) |
| goto out; |
| |
| num_bytes = min(offset + *len, extent_end) - offset; |
| if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { |
| u64 range_end; |
| |
| range_end = round_up(offset + num_bytes, |
| root->fs_info->sectorsize) - 1; |
| ret = test_range_bit(io_tree, offset, range_end, |
| EXTENT_DELALLOC, 0, NULL); |
| if (ret) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| } |
| |
| btrfs_release_path(path); |
| |
| /* |
| * look for other files referencing this extent, if we |
| * find any we must cow |
| */ |
| |
| ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), |
| key.offset - backref_offset, disk_bytenr, |
| strict); |
| if (ret) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* |
| * adjust disk_bytenr and num_bytes to cover just the bytes |
| * in this extent we are about to write. If there |
| * are any csums in that range we have to cow in order |
| * to keep the csums correct |
| */ |
| disk_bytenr += backref_offset; |
| disk_bytenr += offset - key.offset; |
| if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) |
| goto out; |
| /* |
| * all of the above have passed, it is safe to overwrite this extent |
| * without cow |
| */ |
| *len = num_bytes; |
| ret = 1; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, |
| struct extent_state **cached_state, bool writing) |
| { |
| struct btrfs_ordered_extent *ordered; |
| int ret = 0; |
| |
| while (1) { |
| lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| cached_state); |
| /* |
| * We're concerned with the entire range that we're going to be |
| * doing DIO to, so we need to make sure there's no ordered |
| * extents in this range. |
| */ |
| ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, |
| lockend - lockstart + 1); |
| |
| /* |
| * We need to make sure there are no buffered pages in this |
| * range either, we could have raced between the invalidate in |
| * generic_file_direct_write and locking the extent. The |
| * invalidate needs to happen so that reads after a write do not |
| * get stale data. |
| */ |
| if (!ordered && |
| (!writing || !filemap_range_has_page(inode->i_mapping, |
| lockstart, lockend))) |
| break; |
| |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| cached_state); |
| |
| if (ordered) { |
| /* |
| * If we are doing a DIO read and the ordered extent we |
| * found is for a buffered write, we can not wait for it |
| * to complete and retry, because if we do so we can |
| * deadlock with concurrent buffered writes on page |
| * locks. This happens only if our DIO read covers more |
| * than one extent map, if at this point has already |
| * created an ordered extent for a previous extent map |
| * and locked its range in the inode's io tree, and a |
| * concurrent write against that previous extent map's |
| * range and this range started (we unlock the ranges |
| * in the io tree only when the bios complete and |
| * buffered writes always lock pages before attempting |
| * to lock range in the io tree). |
| */ |
| if (writing || |
| test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) |
| btrfs_start_ordered_extent(ordered, 1); |
| else |
| ret = -ENOTBLK; |
| btrfs_put_ordered_extent(ordered); |
| } else { |
| /* |
| * We could trigger writeback for this range (and wait |
| * for it to complete) and then invalidate the pages for |
| * this range (through invalidate_inode_pages2_range()), |
| * but that can lead us to a deadlock with a concurrent |
| * call to readahead (a buffered read or a defrag call |
| * triggered a readahead) on a page lock due to an |
| * ordered dio extent we created before but did not have |
| * yet a corresponding bio submitted (whence it can not |
| * complete), which makes readahead wait for that |
| * ordered extent to complete while holding a lock on |
| * that page. |
| */ |
| ret = -ENOTBLK; |
| } |
| |
| if (ret) |
| break; |
| |
| cond_resched(); |
| } |
| |
| return ret; |
| } |
| |
| /* The callers of this must take lock_extent() */ |
| static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, |
| u64 len, u64 orig_start, u64 block_start, |
| u64 block_len, u64 orig_block_len, |
| u64 ram_bytes, int compress_type, |
| int type) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| int ret; |
| |
| ASSERT(type == BTRFS_ORDERED_PREALLOC || |
| type == BTRFS_ORDERED_COMPRESSED || |
| type == BTRFS_ORDERED_NOCOW || |
| type == BTRFS_ORDERED_REGULAR); |
| |
| em_tree = &inode->extent_tree; |
| em = alloc_extent_map(); |
| if (!em) |
| return ERR_PTR(-ENOMEM); |
| |
| em->start = start; |
| em->orig_start = orig_start; |
| em->len = len; |
| em->block_len = block_len; |
| em->block_start = block_start; |
| em->orig_block_len = orig_block_len; |
| em->ram_bytes = ram_bytes; |
| em->generation = -1; |
| set_bit(EXTENT_FLAG_PINNED, &em->flags); |
| if (type == BTRFS_ORDERED_PREALLOC) { |
| set_bit(EXTENT_FLAG_FILLING, &em->flags); |
| } else if (type == BTRFS_ORDERED_COMPRESSED) { |
| set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| em->compress_type = compress_type; |
| } |
| |
| do { |
| btrfs_drop_extent_cache(inode, em->start, |
| em->start + em->len - 1, 0); |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| /* |
| * The caller has taken lock_extent(), who could race with us |
| * to add em? |
| */ |
| } while (ret == -EEXIST); |
| |
| if (ret) { |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| /* em got 2 refs now, callers needs to do free_extent_map once. */ |
| return em; |
| } |
| |
| |
| static int btrfs_get_blocks_direct_write(struct extent_map **map, |
| struct inode *inode, |
| struct btrfs_dio_data *dio_data, |
| u64 start, u64 len) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *em = *map; |
| int ret = 0; |
| |
| /* |
| * We don't allocate a new extent in the following cases |
| * |
| * 1) The inode is marked as NODATACOW. In this case we'll just use the |
| * existing extent. |
| * 2) The extent is marked as PREALLOC. We're good to go here and can |
| * just use the extent. |
| * |
| */ |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || |
| ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && |
| em->block_start != EXTENT_MAP_HOLE)) { |
| int type; |
| u64 block_start, orig_start, orig_block_len, ram_bytes; |
| |
| if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| type = BTRFS_ORDERED_PREALLOC; |
| else |
| type = BTRFS_ORDERED_NOCOW; |
| len = min(len, em->len - (start - em->start)); |
| block_start = em->block_start + (start - em->start); |
| |
| if (can_nocow_extent(inode, start, &len, &orig_start, |
| &orig_block_len, &ram_bytes, false) == 1 && |
| btrfs_inc_nocow_writers(fs_info, block_start)) { |
| struct extent_map *em2; |
| |
| em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, |
| orig_start, block_start, |
| len, orig_block_len, |
| ram_bytes, type); |
| btrfs_dec_nocow_writers(fs_info, block_start); |
| if (type == BTRFS_ORDERED_PREALLOC) { |
| free_extent_map(em); |
| *map = em = em2; |
| } |
| |
| if (em2 && IS_ERR(em2)) { |
| ret = PTR_ERR(em2); |
| goto out; |
| } |
| /* |
| * For inode marked NODATACOW or extent marked PREALLOC, |
| * use the existing or preallocated extent, so does not |
| * need to adjust btrfs_space_info's bytes_may_use. |
| */ |
| btrfs_free_reserved_data_space_noquota(fs_info, len); |
| goto skip_cow; |
| } |
| } |
| |
| /* this will cow the extent */ |
| free_extent_map(em); |
| *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| |
| len = min(len, em->len - (start - em->start)); |
| |
| skip_cow: |
| /* |
| * Need to update the i_size under the extent lock so buffered |
| * readers will get the updated i_size when we unlock. |
| */ |
| if (start + len > i_size_read(inode)) |
| i_size_write(inode, start + len); |
| |
| dio_data->reserve -= len; |
| out: |
| return ret; |
| } |
| |
| static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, |
| loff_t length, unsigned int flags, struct iomap *iomap, |
| struct iomap *srcmap) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map *em; |
| struct extent_state *cached_state = NULL; |
| struct btrfs_dio_data *dio_data = NULL; |
| u64 lockstart, lockend; |
| const bool write = !!(flags & IOMAP_WRITE); |
| int ret = 0; |
| u64 len = length; |
| bool unlock_extents = false; |
| bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB); |
| |
| /* |
| * We used current->journal_info here to see if we were sync, but |
| * there's a lot of tests in the enospc machinery to not do flushing if |
| * we have a journal_info set, so we need to clear this out and re-set |
| * it in iomap_end. |
| */ |
| ASSERT(current->journal_info == NULL || |
| current->journal_info == BTRFS_DIO_SYNC_STUB); |
| current->journal_info = NULL; |
| |
| if (!write) |
| len = min_t(u64, len, fs_info->sectorsize); |
| |
| lockstart = start; |
| lockend = start + len - 1; |
| |
| /* |
| * The generic stuff only does filemap_write_and_wait_range, which |
| * isn't enough if we've written compressed pages to this area, so we |
| * need to flush the dirty pages again to make absolutely sure that any |
| * outstanding dirty pages are on disk. |
| */ |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) { |
| ret = filemap_fdatawrite_range(inode->i_mapping, start, |
| start + length - 1); |
| if (ret) |
| return ret; |
| } |
| |
| dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); |
| if (!dio_data) |
| return -ENOMEM; |
| |
| dio_data->sync = sync; |
| dio_data->length = length; |
| if (write) { |
| dio_data->reserve = round_up(length, fs_info->sectorsize); |
| ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), |
| &dio_data->data_reserved, |
| start, dio_data->reserve); |
| if (ret) { |
| extent_changeset_free(dio_data->data_reserved); |
| kfree(dio_data); |
| return ret; |
| } |
| } |
| iomap->private = dio_data; |
| |
| |
| /* |
| * If this errors out it's because we couldn't invalidate pagecache for |
| * this range and we need to fallback to buffered. |
| */ |
| if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { |
| ret = -ENOTBLK; |
| goto err; |
| } |
| |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto unlock_err; |
| } |
| |
| /* |
| * Ok for INLINE and COMPRESSED extents we need to fallback on buffered |
| * io. INLINE is special, and we could probably kludge it in here, but |
| * it's still buffered so for safety lets just fall back to the generic |
| * buffered path. |
| * |
| * For COMPRESSED we _have_ to read the entire extent in so we can |
| * decompress it, so there will be buffering required no matter what we |
| * do, so go ahead and fallback to buffered. |
| * |
| * We return -ENOTBLK because that's what makes DIO go ahead and go back |
| * to buffered IO. Don't blame me, this is the price we pay for using |
| * the generic code. |
| */ |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || |
| em->block_start == EXTENT_MAP_INLINE) { |
| free_extent_map(em); |
| ret = -ENOTBLK; |
| goto unlock_err; |
| } |
| |
| len = min(len, em->len - (start - em->start)); |
| if (write) { |
| ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, |
| start, len); |
| if (ret < 0) |
| goto unlock_err; |
| unlock_extents = true; |
| /* Recalc len in case the new em is smaller than requested */ |
| len = min(len, em->len - (start - em->start)); |
| } else { |
| /* |
| * We need to unlock only the end area that we aren't using. |
| * The rest is going to be unlocked by the endio routine. |
| */ |
| lockstart = start + len; |
| if (lockstart < lockend) |
| unlock_extents = true; |
| } |
| |
| if (unlock_extents) |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, |
| lockstart, lockend, &cached_state); |
| else |
| free_extent_state(cached_state); |
| |
| /* |
| * Translate extent map information to iomap. |
| * We trim the extents (and move the addr) even though iomap code does |
| * that, since we have locked only the parts we are performing I/O in. |
| */ |
| if ((em->block_start == EXTENT_MAP_HOLE) || |
| (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { |
| iomap->addr = IOMAP_NULL_ADDR; |
| iomap->type = IOMAP_HOLE; |
| } else { |
| iomap->addr = em->block_start + (start - em->start); |
| iomap->type = IOMAP_MAPPED; |
| } |
| iomap->offset = start; |
| iomap->bdev = fs_info->fs_devices->latest_bdev; |
| iomap->length = len; |
| |
| free_extent_map(em); |
| |
| return 0; |
| |
| unlock_err: |
| unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, |
| &cached_state); |
| err: |
| if (dio_data) { |
| btrfs_delalloc_release_space(BTRFS_I(inode), |
| dio_data->data_reserved, start, |
| dio_data->reserve, true); |
| btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); |
| extent_changeset_free(dio_data->data_reserved); |
| kfree(dio_data); |
| } |
| return ret; |
| } |
| |
| static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, |
| ssize_t written, unsigned int flags, struct iomap *iomap) |
| { |
| int ret = 0; |
| struct btrfs_dio_data *dio_data = iomap->private; |
| size_t submitted = dio_data->submitted; |
| const bool write = !!(flags & IOMAP_WRITE); |
| |
| if (!write && (iomap->type == IOMAP_HOLE)) { |
| /* If reading from a hole, unlock and return */ |
| unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); |
| goto out; |
| } |
| |
| if (submitted < length) { |
| pos += submitted; |
| length -= submitted; |
| if (write) |
| __endio_write_update_ordered(BTRFS_I(inode), pos, |
| length, false); |
| else |
| unlock_extent(&BTRFS_I(inode)->io_tree, pos, |
| pos + length - 1); |
| ret = -ENOTBLK; |
| } |
| |
| if (write) { |
| if (dio_data->reserve) |
| btrfs_delalloc_release_space(BTRFS_I(inode), |
| dio_data->data_reserved, pos, |
| dio_data->reserve, true); |
| btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); |
| extent_changeset_free(dio_data->data_reserved); |
| } |
| out: |
| /* |
| * We're all done, we can re-set the current->journal_info now safely |
| * for our endio. |
| */ |
| if (dio_data->sync) { |
| ASSERT(current->journal_info == NULL); |
| current->journal_info = BTRFS_DIO_SYNC_STUB; |
| } |
| kfree(dio_data); |
| iomap->private = NULL; |
| |
| return ret; |
| } |
| |
| static void btrfs_dio_private_put(struct btrfs_dio_private *dip) |
| { |
| /* |
| * This implies a barrier so that stores to dio_bio->bi_status before |
| * this and loads of dio_bio->bi_status after this are fully ordered. |
| */ |
| if (!refcount_dec_and_test(&dip->refs)) |
| return; |
| |
| if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { |
| __endio_write_update_ordered(BTRFS_I(dip->inode), |
| dip->logical_offset, |
| dip->bytes, |
| !dip->dio_bio->bi_status); |
| } else { |
| unlock_extent(&BTRFS_I(dip->inode)->io_tree, |
| dip->logical_offset, |
| dip->logical_offset + dip->bytes - 1); |
| } |
| |
| bio_endio(dip->dio_bio); |
| kfree(dip); |
| } |
| |
| static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, |
| int mirror_num, |
| unsigned long bio_flags) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| blk_status_t ret; |
| |
| BUG_ON(bio_op(bio) == REQ_OP_WRITE); |
| |
| ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); |
| if (ret) |
| return ret; |
| |
| refcount_inc(&dip->refs); |
| ret = btrfs_map_bio(fs_info, bio, mirror_num); |
| if (ret) |
| refcount_dec(&dip->refs); |
| return ret; |
| } |
| |
| static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, |
| struct btrfs_io_bio *io_bio, |
| const bool uptodate) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| const u32 sectorsize = fs_info->sectorsize; |
| struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); |
| struct bio_vec bvec; |
| struct bvec_iter iter; |
| u64 start = io_bio->logical; |
| int icsum = 0; |
| blk_status_t err = BLK_STS_OK; |
| |
| __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { |
| unsigned int i, nr_sectors, pgoff; |
| |
| nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); |
| pgoff = bvec.bv_offset; |
| for (i = 0; i < nr_sectors; i++) { |
| ASSERT(pgoff < PAGE_SIZE); |
| if (uptodate && |
| (!csum || !check_data_csum(inode, io_bio, icsum, |
| bvec.bv_page, pgoff, |
| start, sectorsize))) { |
| clean_io_failure(fs_info, failure_tree, io_tree, |
| start, bvec.bv_page, |
| btrfs_ino(BTRFS_I(inode)), |
| pgoff); |
| } else { |
| blk_status_t status; |
| |
| status = btrfs_submit_read_repair(inode, |
| &io_bio->bio, |
| start - io_bio->logical, |
| bvec.bv_page, pgoff, |
| start, |
| start + sectorsize - 1, |
| io_bio->mirror_num, |
| submit_dio_repair_bio); |
| if (status) |
| err = status; |
| } |
| start += sectorsize; |
| icsum++; |
| pgoff += sectorsize; |
| } |
| } |
| return err; |
| } |
| |
| static void __endio_write_update_ordered(struct btrfs_inode *inode, |
| const u64 offset, const u64 bytes, |
| const bool uptodate) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct btrfs_ordered_extent *ordered = NULL; |
| struct btrfs_workqueue *wq; |
| u64 ordered_offset = offset; |
| u64 ordered_bytes = bytes; |
| u64 last_offset; |
| |
| if (btrfs_is_free_space_inode(inode)) |
| wq = fs_info->endio_freespace_worker; |
| else |
| wq = fs_info->endio_write_workers; |
| |
| while (ordered_offset < offset + bytes) { |
| last_offset = ordered_offset; |
| if (btrfs_dec_test_first_ordered_pending(inode, &ordered, |
| &ordered_offset, |
| ordered_bytes, |
| uptodate)) { |
| btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, |
| NULL); |
| btrfs_queue_work(wq, &ordered->work); |
| } |
| /* |
| * If btrfs_dec_test_ordered_pending does not find any ordered |
| * extent in the range, we can exit. |
| */ |
| if (ordered_offset == last_offset) |
| return; |
| /* |
| * Our bio might span multiple ordered extents. In this case |
| * we keep going until we have accounted the whole dio. |
| */ |
| if (ordered_offset < offset + bytes) { |
| ordered_bytes = offset + bytes - ordered_offset; |
| ordered = NULL; |
| } |
| } |
| } |
| |
| static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, |
| struct bio *bio, u64 offset) |
| { |
| struct inode *inode = private_data; |
| |
| return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1); |
| } |
| |
| static void btrfs_end_dio_bio(struct bio *bio) |
| { |
| struct btrfs_dio_private *dip = bio->bi_private; |
| blk_status_t err = bio->bi_status; |
| |
| if (err) |
| btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, |
| "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", |
| btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), |
| bio->bi_opf, |
| (unsigned long long)bio->bi_iter.bi_sector, |
| bio->bi_iter.bi_size, err); |
| |
| if (bio_op(bio) == REQ_OP_READ) { |
| err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), |
| !err); |
| } |
| |
| if (err) |
| dip->dio_bio->bi_status = err; |
| |
| bio_put(bio); |
| btrfs_dio_private_put(dip); |
| } |
| |
| static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, |
| struct inode *inode, u64 file_offset, int async_submit) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_dio_private *dip = bio->bi_private; |
| bool write = bio_op(bio) == REQ_OP_WRITE; |
| blk_status_t ret; |
| |
| /* Check btrfs_submit_bio_hook() for rules about async submit. */ |
| if (async_submit) |
| async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); |
| |
| if (!write) { |
| ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); |
| if (ret) |
| goto err; |
| } |
| |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) |
| goto map; |
| |
| if (write && async_submit) { |
| ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, |
| file_offset, inode, |
| btrfs_submit_bio_start_direct_io); |
| goto err; |
| } else if (write) { |
| /* |
| * If we aren't doing async submit, calculate the csum of the |
| * bio now. |
| */ |
| ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); |
| if (ret) |
| goto err; |
| } else { |
| u64 csum_offset; |
| |
| csum_offset = file_offset - dip->logical_offset; |
| csum_offset >>= inode->i_sb->s_blocksize_bits; |
| csum_offset *= btrfs_super_csum_size(fs_info->super_copy); |
| btrfs_io_bio(bio)->csum = dip->csums + csum_offset; |
| } |
| map: |
| ret = btrfs_map_bio(fs_info, bio, 0); |
| err: |
| return ret; |
| } |
| |
| /* |
| * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked |
| * or ordered extents whether or not we submit any bios. |
| */ |
| static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, |
| struct inode *inode, |
| loff_t file_offset) |
| { |
| const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); |
| const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); |
| size_t dip_size; |
| struct btrfs_dio_private *dip; |
| |
| dip_size = sizeof(*dip); |
| if (!write && csum) { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| size_t nblocks; |
| |
| nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; |
| dip_size += csum_size * nblocks; |
| } |
| |
| dip = kzalloc(dip_size, GFP_NOFS); |
| if (!dip) |
| return NULL; |
| |
| dip->inode = inode; |
| dip->logical_offset = file_offset; |
| dip->bytes = dio_bio->bi_iter.bi_size; |
| dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; |
| dip->dio_bio = dio_bio; |
| refcount_set(&dip->refs, 1); |
| return dip; |
| } |
| |
| static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, |
| struct bio *dio_bio, loff_t file_offset) |
| { |
| const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); |
| const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| const bool raid56 = (btrfs_data_alloc_profile(fs_info) & |
| BTRFS_BLOCK_GROUP_RAID56_MASK); |
| struct btrfs_dio_private *dip; |
| struct bio *bio; |
| u64 start_sector; |
| int async_submit = 0; |
| u64 submit_len; |
| int clone_offset = 0; |
| int clone_len; |
| int ret; |
| blk_status_t status; |
| struct btrfs_io_geometry geom; |
| struct btrfs_dio_data *dio_data = iomap->private; |
| |
| dip = btrfs_create_dio_private(dio_bio, inode, file_offset); |
| if (!dip) { |
| if (!write) { |
| unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, |
| file_offset + dio_bio->bi_iter.bi_size - 1); |
| } |
| dio_bio->bi_status = BLK_STS_RESOURCE; |
| bio_endio(dio_bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| if (!write && csum) { |
| /* |
| * Load the csums up front to reduce csum tree searches and |
| * contention when submitting bios. |
| */ |
| status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, |
| dip->csums); |
| if (status != BLK_STS_OK) |
| goto out_err; |
| } |
| |
| start_sector = dio_bio->bi_iter.bi_sector; |
| submit_len = dio_bio->bi_iter.bi_size; |
| |
| do { |
| ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), |
| start_sector << 9, submit_len, |
| &geom); |
| if (ret) { |
| status = errno_to_blk_status(ret); |
| goto out_err; |
| } |
| ASSERT(geom.len <= INT_MAX); |
| |
| clone_len = min_t(int, submit_len, geom.len); |
| |
| /* |
| * This will never fail as it's passing GPF_NOFS and |
| * the allocation is backed by btrfs_bioset. |
| */ |
| bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); |
| bio->bi_private = dip; |
| bio->bi_end_io = btrfs_end_dio_bio; |
| btrfs_io_bio(bio)->logical = file_offset; |
| |
| ASSERT(submit_len >= clone_len); |
| submit_len -= clone_len; |
| |
| /* |
| * Increase the count before we submit the bio so we know |
| * the end IO handler won't happen before we increase the |
| * count. Otherwise, the dip might get freed before we're |
| * done setting it up. |
| * |
| * We transfer the initial reference to the last bio, so we |
| * don't need to increment the reference count for the last one. |
| */ |
| if (submit_len > 0) { |
| refcount_inc(&dip->refs); |
| /* |
| * If we are submitting more than one bio, submit them |
| * all asynchronously. The exception is RAID 5 or 6, as |
| * asynchronous checksums make it difficult to collect |
| * full stripe writes. |
| */ |
| if (!raid56) |
| async_submit = 1; |
| } |
| |
| status = btrfs_submit_dio_bio(bio, inode, file_offset, |
| async_submit); |
| if (status) { |
| bio_put(bio); |
| if (submit_len > 0) |
| refcount_dec(&dip->refs); |
| goto out_err; |
| } |
| |
| dio_data->submitted += clone_len; |
| clone_offset += clone_len; |
| start_sector += clone_len >> 9; |
| file_offset += clone_len; |
| } while (submit_len > 0); |
| return BLK_QC_T_NONE; |
| |
| out_err: |
| dip->dio_bio->bi_status = status; |
| btrfs_dio_private_put(dip); |
| return BLK_QC_T_NONE; |
| } |
| |
| static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, |
| const struct iov_iter *iter, loff_t offset) |
| { |
| int seg; |
| int i; |
| unsigned int blocksize_mask = fs_info->sectorsize - 1; |
| ssize_t retval = -EINVAL; |
| |
| if (offset & blocksize_mask) |
| goto out; |
| |
| if (iov_iter_alignment(iter) & blocksize_mask) |
| goto out; |
| |
| /* If this is a write we don't need to check anymore */ |
| if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) |
| return 0; |
| /* |
| * Check to make sure we don't have duplicate iov_base's in this |
| * iovec, if so return EINVAL, otherwise we'll get csum errors |
| * when reading back. |
| */ |
| for (seg = 0; seg < iter->nr_segs; seg++) { |
| for (i = seg + 1; i < iter->nr_segs; i++) { |
| if (iter->iov[seg].iov_base == iter->iov[i].iov_base) |
| goto out; |
| } |
| } |
| retval = 0; |
| out: |
| return retval; |
| } |
| |
| static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size, |
| int error, unsigned flags) |
| { |
| /* |
| * Now if we're still in the context of our submitter we know we can't |
| * safely run generic_write_sync(), so clear our flag here so that the |
| * caller knows to follow up with a sync. |
| */ |
| if (current->journal_info == BTRFS_DIO_SYNC_STUB) { |
| current->journal_info = NULL; |
| return error; |
| } |
| |
| if (error) |
| return error; |
| |
| if (size) { |
| iocb->ki_flags |= IOCB_DSYNC; |
| return generic_write_sync(iocb, size); |
| } |
| |
| return 0; |
| } |
| |
| static const struct iomap_ops btrfs_dio_iomap_ops = { |
| .iomap_begin = btrfs_dio_iomap_begin, |
| .iomap_end = btrfs_dio_iomap_end, |
| }; |
| |
| static const struct iomap_dio_ops btrfs_dio_ops = { |
| .submit_io = btrfs_submit_direct, |
| }; |
| |
| static const struct iomap_dio_ops btrfs_sync_dops = { |
| .submit_io = btrfs_submit_direct, |
| .end_io = btrfs_maybe_fsync_end_io, |
| }; |
| |
| ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_changeset *data_reserved = NULL; |
| loff_t offset = iocb->ki_pos; |
| size_t count = 0; |
| bool relock = false; |
| ssize_t ret; |
| |
| if (check_direct_IO(fs_info, iter, offset)) { |
| ASSERT(current->journal_info == NULL || |
| current->journal_info == BTRFS_DIO_SYNC_STUB); |
| current->journal_info = NULL; |
| return 0; |
| } |
| |
| count = iov_iter_count(iter); |
| if (iov_iter_rw(iter) == WRITE) { |
| /* |
| * If the write DIO is beyond the EOF, we need update |
| * the isize, but it is protected by i_mutex. So we can |
| * not unlock the i_mutex at this case. |
| */ |
| if (offset + count <= inode->i_size) { |
| inode_unlock(inode); |
| relock = true; |
| } |
| down_read(&BTRFS_I(inode)->dio_sem); |
| } |
| |
| /* |
| * We have are actually a sync iocb, so we need our fancy endio to know |
| * if we need to sync. |
| */ |
| if (current->journal_info) |
| ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, |
| &btrfs_sync_dops, is_sync_kiocb(iocb)); |
| else |
| ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, |
| &btrfs_dio_ops, is_sync_kiocb(iocb)); |
| |
| if (ret == -ENOTBLK) |
| ret = 0; |
| |
| if (iov_iter_rw(iter) == WRITE) |
| up_read(&BTRFS_I(inode)->dio_sem); |
| |
| if (relock) |
| inode_lock(inode); |
| |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| u64 start, u64 len) |
| { |
| int ret; |
| |
| ret = fiemap_prep(inode, fieinfo, start, &len, 0); |
| if (ret) |
| return ret; |
| |
| return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); |
| } |
| |
| int btrfs_readpage(struct file *file, struct page *page) |
| { |
| struct btrfs_inode *inode = BTRFS_I(page->mapping->host); |
| u64 start = page_offset(page); |
| u64 end = start + PAGE_SIZE - 1; |
| unsigned long bio_flags = 0; |
| struct bio *bio = NULL; |
| int ret; |
| |
| btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); |
| |
| ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); |
| if (bio) |
| ret = submit_one_bio(bio, 0, bio_flags); |
| return ret; |
| } |
| |
| static int btrfs_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| struct inode *inode = page->mapping->host; |
| int ret; |
| |
| if (current->flags & PF_MEMALLOC) { |
| redirty_page_for_writepage(wbc, page); |
| unlock_page(page); |
| return 0; |
| } |
| |
| /* |
| * If we are under memory pressure we will call this directly from the |
| * VM, we need to make sure we have the inode referenced for the ordered |
| * extent. If not just return like we didn't do anything. |
| */ |
| if (!igrab(inode)) { |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| ret = extent_write_full_page(page, wbc); |
| btrfs_add_delayed_iput(inode); |
| return ret; |
| } |
| |
| static int btrfs_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| return extent_writepages(mapping, wbc); |
| } |
| |
| static void btrfs_readahead(struct readahead_control *rac) |
| { |
| extent_readahead(rac); |
| } |
| |
| static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| int ret = try_release_extent_mapping(page, gfp_flags); |
| if (ret == 1) |
| detach_page_private(page); |
| return ret; |
| } |
| |
| static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| if (PageWriteback(page) || PageDirty(page)) |
| return 0; |
| return __btrfs_releasepage(page, gfp_flags); |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| static int btrfs_migratepage(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| int ret; |
| |
| ret = migrate_page_move_mapping(mapping, newpage, page, 0); |
| if (ret != MIGRATEPAGE_SUCCESS) |
| return ret; |
| |
| if (page_has_private(page)) |
| attach_page_private(newpage, detach_page_private(page)); |
| |
| if (PagePrivate2(page)) { |
| ClearPagePrivate2(page); |
| SetPagePrivate2(newpage); |
| } |
| |
| if (mode != MIGRATE_SYNC_NO_COPY) |
| migrate_page_copy(newpage, page); |
| else |
| migrate_page_states(newpage, page); |
| return MIGRATEPAGE_SUCCESS; |
| } |
| #endif |
| |
| static void btrfs_invalidatepage(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct btrfs_inode *inode = BTRFS_I(page->mapping->host); |
| struct extent_io_tree *tree = &inode->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| u64 page_start = page_offset(page); |
| u64 page_end = page_start + PAGE_SIZE - 1; |
| u64 start; |
| u64 end; |
| int inode_evicting = inode->vfs_inode.i_state & I_FREEING; |
| |
| /* |
| * we have the page locked, so new writeback can't start, |
| * and the dirty bit won't be cleared while we are here. |
| * |
| * Wait for IO on this page so that we can safely clear |
| * the PagePrivate2 bit and do ordered accounting |
| */ |
| wait_on_page_writeback(page); |
| |
| /* |
| * For subpage case, we have call sites like |
| * btrfs_punch_hole_lock_range() which passes range not aligned to |
| * sectorsize. |
| * If the range doesn't cover the full page, we don't need to and |
| * shouldn't clear page extent mapped, as page->private can still |
| * record subpage dirty bits for other part of the range. |
| * |
| * For cases that can invalidate the full even the range doesn't |
| * cover the full page, like invalidating the last page, we're |
| * still safe to wait for ordered extent to finish. |
| */ |
| if (!(offset == 0 && length == PAGE_SIZE)) { |
| btrfs_releasepage(page, GFP_NOFS); |
| return; |
| } |
| |
| if (!inode_evicting) |
| lock_extent_bits(tree, page_start, page_end, &cached_state); |
| |
| start = page_start; |
| again: |
| ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); |
| if (ordered) { |
| end = min(page_end, |
| ordered->file_offset + ordered->num_bytes - 1); |
| /* |
| * IO on this page will never be started, so we need |
| * to account for any ordered extents now |
| */ |
| if (!inode_evicting) |
| clear_extent_bit(tree, start, end, |
| EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | |
| EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 1, 0, &cached_state); |
| /* |
| * whoever cleared the private bit is responsible |
| * for the finish_ordered_io |
| */ |
| if (TestClearPagePrivate2(page)) { |
| struct btrfs_ordered_inode_tree *tree; |
| u64 new_len; |
| |
| tree = &inode->ordered_tree; |
| |
| spin_lock_irq(&tree->lock); |
| set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); |
| new_len = start - ordered->file_offset; |
| if (new_len < ordered->truncated_len) |
| ordered->truncated_len = new_len; |
| spin_unlock_irq(&tree->lock); |
| |
| if (btrfs_dec_test_ordered_pending(inode, &ordered, |
| start, |
| end - start + 1, 1)) |
| btrfs_finish_ordered_io(ordered); |
| } |
| btrfs_put_ordered_extent(ordered); |
| if (!inode_evicting) { |
| cached_state = NULL; |
| lock_extent_bits(tree, start, end, |
| &cached_state); |
| } |
| |
| start = end + 1; |
| if (start < page_end) |
| goto again; |
| } |
| |
| /* |
| * Qgroup reserved space handler |
| * Page here will be either |
| * 1) Already written to disk or ordered extent already submitted |
| * Then its QGROUP_RESERVED bit in io_tree is already cleaned. |
| * Qgroup will be handled by its qgroup_record then. |
| * btrfs_qgroup_free_data() call will do nothing here. |
| * |
| * 2) Not written to disk yet |
| * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED |
| * bit of its io_tree, and free the qgroup reserved data space. |
| * Since the IO will never happen for this page. |
| */ |
| btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); |
| if (!inode_evicting) { |
| clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | |
| EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | |
| EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, |
| &cached_state); |
| |
| __btrfs_releasepage(page, GFP_NOFS); |
| } |
| |
| ClearPageChecked(page); |
| detach_page_private(page); |
| } |
| |
| /* |
| * btrfs_page_mkwrite() is not allowed to change the file size as it gets |
| * called from a page fault handler when a page is first dirtied. Hence we must |
| * be careful to check for EOF conditions here. We set the page up correctly |
| * for a written page which means we get ENOSPC checking when writing into |
| * holes and correct delalloc and unwritten extent mapping on filesystems that |
| * support these features. |
| * |
| * We are not allowed to take the i_mutex here so we have to play games to |
| * protect against truncate races as the page could now be beyond EOF. Because |
| * truncate_setsize() writes the inode size before removing pages, once we have |
| * the page lock we can determine safely if the page is beyond EOF. If it is not |
| * beyond EOF, then the page is guaranteed safe against truncation until we |
| * unlock the page. |
| */ |
| vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) |
| { |
| struct page *page = vmf->page; |
| struct inode *inode = file_inode(vmf->vma->vm_file); |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct btrfs_ordered_extent *ordered; |
| struct extent_state *cached_state = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| char *kaddr; |
| unsigned long zero_start; |
| loff_t size; |
| vm_fault_t ret; |
| int ret2; |
| int reserved = 0; |
| u64 reserved_space; |
| u64 page_start; |
| u64 page_end; |
| u64 end; |
| |
| reserved_space = PAGE_SIZE; |
| |
| sb_start_pagefault(inode->i_sb); |
| page_start = page_offset(page); |
| page_end = page_start + PAGE_SIZE - 1; |
| end = page_end; |
| |
| /* |
| * Reserving delalloc space after obtaining the page lock can lead to |
| * deadlock. For example, if a dirty page is locked by this function |
| * and the call to btrfs_delalloc_reserve_space() ends up triggering |
| * dirty page write out, then the btrfs_writepage() function could |
| * end up waiting indefinitely to get a lock on the page currently |
| * being processed by btrfs_page_mkwrite() function. |
| */ |
| ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, |
| page_start, reserved_space); |
| if (!ret2) { |
| ret2 = file_update_time(vmf->vma->vm_file); |
| reserved = 1; |
| } |
| if (ret2) { |
| ret = vmf_error(ret2); |
| if (reserved) |
| goto out; |
| goto out_noreserve; |
| } |
| |
| ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ |
| again: |
| lock_page(page); |
| size = i_size_read(inode); |
| |
| if ((page->mapping != inode->i_mapping) || |
| (page_start >= size)) { |
| /* page got truncated out from underneath us */ |
| goto out_unlock; |
| } |
| wait_on_page_writeback(page); |
| |
| lock_extent_bits(io_tree, page_start, page_end, &cached_state); |
| set_page_extent_mapped(page); |
| |
| /* |
| * we can't set the delalloc bits if there are pending ordered |
| * extents. Drop our locks and wait for them to finish |
| */ |
| ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, |
| PAGE_SIZE); |
| if (ordered) { |
| unlock_extent_cached(io_tree, page_start, page_end, |
| &cached_state); |
| unlock_page(page); |
| btrfs_start_ordered_extent(ordered, 1); |
| btrfs_put_ordered_extent(ordered); |
| goto again; |
| } |
| |
| if (page->index == ((size - 1) >> PAGE_SHIFT)) { |
| reserved_space = round_up(size - page_start, |
| fs_info->sectorsize); |
| if (reserved_space < PAGE_SIZE) { |
| end = page_start + reserved_space - 1; |
| btrfs_delalloc_release_space(BTRFS_I(inode), |
| data_reserved, page_start, |
| PAGE_SIZE - reserved_space, true); |
| } |
| } |
| |
| /* |
| * page_mkwrite gets called when the page is firstly dirtied after it's |
| * faulted in, but write(2) could also dirty a page and set delalloc |
| * bits, thus in this case for space account reason, we still need to |
| * clear any delalloc bits within this page range since we have to |
| * reserve data&meta space before lock_page() (see above comments). |
| */ |
| clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, |
| EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | |
| EXTENT_DEFRAG, 0, 0, &cached_state); |
| |
| ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, |
| &cached_state); |
| if (ret2) { |
| unlock_extent_cached(io_tree, page_start, page_end, |
| &cached_state); |
| ret = VM_FAULT_SIGBUS; |
| goto out_unlock; |
| } |
| |
| /* page is wholly or partially inside EOF */ |
| if (page_start + PAGE_SIZE > size) |
| zero_start = offset_in_page(size); |
| else |
| zero_start = PAGE_SIZE; |
| |
| if (zero_start != PAGE_SIZE) { |
| kaddr = kmap(page); |
| memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); |
| flush_dcache_page(page); |
| kunmap(page); |
| } |
| ClearPageChecked(page); |
| set_page_dirty(page); |
| SetPageUptodate(page); |
| |
| btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); |
| |
| unlock_extent_cached(io_tree, page_start, page_end, &cached_state); |
| |
| btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); |
| sb_end_pagefault(inode->i_sb); |
| extent_changeset_free(data_reserved); |
| return VM_FAULT_LOCKED; |
| |
| out_unlock: |
| unlock_page(page); |
| out: |
| btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); |
| btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, |
| reserved_space, (ret != 0)); |
| out_noreserve: |
| sb_end_pagefault(inode->i_sb); |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| static int btrfs_truncate(struct inode *inode, bool skip_writeback) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_block_rsv *rsv; |
| int ret; |
| struct btrfs_trans_handle *trans; |
| u64 mask = fs_info->sectorsize - 1; |
| u64 min_size = btrfs_calc_metadata_size(fs_info, 1); |
| |
| if (!skip_writeback) { |
| ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), |
| (u64)-1); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Yes ladies and gentlemen, this is indeed ugly. We have a couple of |
| * things going on here: |
| * |
| * 1) We need to reserve space to update our inode. |
| * |
| * 2) We need to have something to cache all the space that is going to |
| * be free'd up by the truncate operation, but also have some slack |
| * space reserved in case it uses space during the truncate (thank you |
| * very much snapshotting). |
| * |
| * And we need these to be separate. The fact is we can use a lot of |
| * space doing the truncate, and we have no earthly idea how much space |
| * we will use, so we need the truncate reservation to be separate so it |
| * doesn't end up using space reserved for updating the inode. We also |
| * need to be able to stop the transaction and start a new one, which |
| * means we need to be able to update the inode several times, and we |
| * have no idea of knowing how many times that will be, so we can't just |
| * reserve 1 item for the entirety of the operation, so that has to be |
| * done separately as well. |
| * |
| * So that leaves us with |
| * |
| * 1) rsv - for the truncate reservation, which we will steal from the |
| * transaction reservation. |
| * 2) fs_info->trans_block_rsv - this will have 1 items worth left for |
| * updating the inode. |
| */ |
| rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); |
| if (!rsv) |
| return -ENOMEM; |
| rsv->size = min_size; |
| rsv->failfast = 1; |
| |
| /* |
| * 1 for the truncate slack space |
| * 1 for updating the inode. |
| */ |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| |
| /* Migrate the slack space for the truncate to our reserve */ |
| ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, |
| min_size, false); |
| BUG_ON(ret); |
| |
| /* |
| * So if we truncate and then write and fsync we normally would just |
| * write the extents that changed, which is a problem if we need to |
| * first truncate that entire inode. So set this flag so we write out |
| * all of the extents in the inode to the sync log so we're completely |
| * safe. |
| */ |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); |
| trans->block_rsv = rsv; |
| |
| while (1) { |
| ret = btrfs_truncate_inode_items(trans, root, inode, |
| inode->i_size, |
| BTRFS_EXTENT_DATA_KEY); |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| if (ret != -ENOSPC && ret != -EAGAIN) |
| break; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) |
| break; |
| |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| |
| trans = btrfs_start_transaction(root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| break; |
| } |
| |
| btrfs_block_rsv_release(fs_info, rsv, -1, NULL); |
| ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, |
| rsv, min_size, false); |
| BUG_ON(ret); /* shouldn't happen */ |
| trans->block_rsv = rsv; |
| } |
| |
| /* |
| * We can't call btrfs_truncate_block inside a trans handle as we could |
| * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know |
| * we've truncated everything except the last little bit, and can do |
| * btrfs_truncate_block and then update the disk_i_size. |
| */ |
| if (ret == NEED_TRUNCATE_BLOCK) { |
| btrfs_end_transaction(trans); |
| btrfs_btree_balance_dirty(fs_info); |
| |
| ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); |
| if (ret) |
| goto out; |
| trans = btrfs_start_transaction(root, 1); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out; |
| } |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| } |
| |
| if (trans) { |
| int ret2; |
| |
| trans->block_rsv = &fs_info->trans_block_rsv; |
| ret2 = btrfs_update_inode(trans, root, inode); |
| if (ret2 && !ret) |
| ret = ret2; |
| |
| ret2 = btrfs_end_transaction(trans); |
| if (ret2 && !ret) |
| ret = ret2; |
| btrfs_btree_balance_dirty(fs_info); |
| } |
| out: |
| btrfs_free_block_rsv(fs_info, rsv); |
| |
| return ret; |
| } |
| |
| /* |
| * create a new subvolume directory/inode (helper for the ioctl). |
| */ |
| int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *new_root, |
| struct btrfs_root *parent_root, |
| u64 new_dirid) |
| { |
| struct inode *inode; |
| int err; |
| u64 index = 0; |
| |
| inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, |
| new_dirid, new_dirid, |
| S_IFDIR | (~current_umask() & S_IRWXUGO), |
| &index); |
| if (IS_ERR(inode)) |
| return PTR_ERR(inode); |
| inode->i_op = &btrfs_dir_inode_operations; |
| inode->i_fop = &btrfs_dir_file_operations; |
| |
| set_nlink(inode, 1); |
| btrfs_i_size_write(BTRFS_I(inode), 0); |
| unlock_new_inode(inode); |
| |
| err = btrfs_subvol_inherit_props(trans, new_root, parent_root); |
| if (err) |
| btrfs_err(new_root->fs_info, |
| "error inheriting subvolume %llu properties: %d", |
| new_root->root_key.objectid, err); |
| |
| err = btrfs_update_inode(trans, new_root, inode); |
| |
| iput(inode); |
| return err; |
| } |
| |
| struct inode *btrfs_alloc_inode(struct super_block *sb) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| struct btrfs_inode *ei; |
| struct inode *inode; |
| |
| ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); |
| if (!ei) |
| return NULL; |
| |
| ei->root = NULL; |
| ei->generation = 0; |
| ei->last_trans = 0; |
| ei->last_sub_trans = 0; |
| ei->logged_trans = 0; |
| ei->delalloc_bytes = 0; |
| ei->new_delalloc_bytes = 0; |
| ei->defrag_bytes = 0; |
| ei->disk_i_size = 0; |
| ei->flags = 0; |
| ei->csum_bytes = 0; |
| ei->index_cnt = (u64)-1; |
| ei->dir_index = 0; |
| ei->last_unlink_trans = 0; |
| ei->last_reflink_trans = 0; |
| ei->last_log_commit = 0; |
| |
| spin_lock_init(&ei->lock); |
| ei->outstanding_extents = 0; |
| if (sb->s_magic != BTRFS_TEST_MAGIC) |
| btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, |
| BTRFS_BLOCK_RSV_DELALLOC); |
| ei->runtime_flags = 0; |
| ei->prop_compress = BTRFS_COMPRESS_NONE; |
| ei->defrag_compress = BTRFS_COMPRESS_NONE; |
| |
| ei->delayed_node = NULL; |
| |
| ei->i_otime.tv_sec = 0; |
| ei->i_otime.tv_nsec = 0; |
| |
| inode = &ei->vfs_inode; |
| extent_map_tree_init(&ei->extent_tree); |
| extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); |
| extent_io_tree_init(fs_info, &ei->io_failure_tree, |
| IO_TREE_INODE_IO_FAILURE, inode); |
| extent_io_tree_init(fs_info, &ei->file_extent_tree, |
| IO_TREE_INODE_FILE_EXTENT, inode); |
| ei->io_tree.track_uptodate = true; |
| ei->io_failure_tree.track_uptodate = true; |
| atomic_set(&ei->sync_writers, 0); |
| mutex_init(&ei->log_mutex); |
| btrfs_ordered_inode_tree_init(&ei->ordered_tree); |
| INIT_LIST_HEAD(&ei->delalloc_inodes); |
| INIT_LIST_HEAD(&ei->delayed_iput); |
| RB_CLEAR_NODE(&ei->rb_node); |
| init_rwsem(&ei->dio_sem); |
| |
| return inode; |
| } |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| void btrfs_test_destroy_inode(struct inode *inode) |
| { |
| btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| #endif |
| |
| void btrfs_free_inode(struct inode *inode) |
| { |
| kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); |
| } |
| |
| void btrfs_destroy_inode(struct inode *vfs_inode) |
| { |
| struct btrfs_ordered_extent *ordered; |
| struct btrfs_inode *inode = BTRFS_I(vfs_inode); |
| struct btrfs_root *root = inode->root; |
| |
| WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); |
| WARN_ON(vfs_inode->i_data.nrpages); |
| WARN_ON(inode->block_rsv.reserved); |
| WARN_ON(inode->block_rsv.size); |
| WARN_ON(inode->outstanding_extents); |
| WARN_ON(inode->delalloc_bytes); |
| WARN_ON(inode->new_delalloc_bytes); |
| WARN_ON(inode->csum_bytes); |
| WARN_ON(inode->defrag_bytes); |
| |
| /* |
| * This can happen where we create an inode, but somebody else also |
| * created the same inode and we need to destroy the one we already |
| * created. |
| */ |
| if (!root) |
| return; |
| |
| while (1) { |
| ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); |
| if (!ordered) |
| break; |
| else { |
| btrfs_err(root->fs_info, |
| "found ordered extent %llu %llu on inode cleanup", |
| ordered->file_offset, ordered->num_bytes); |
| btrfs_remove_ordered_extent(inode, ordered); |
| btrfs_put_ordered_extent(ordered); |
| btrfs_put_ordered_extent(ordered); |
| } |
| } |
| btrfs_qgroup_check_reserved_leak(inode); |
| inode_tree_del(inode); |
| btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); |
| btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); |
| btrfs_put_root(inode->root); |
| } |
| |
| int btrfs_drop_inode(struct inode *inode) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| |
| if (root == NULL) |
| return 1; |
| |
| /* the snap/subvol tree is on deleting */ |
| if (btrfs_root_refs(&root->root_item) == 0) |
| return 1; |
| else |
| return generic_drop_inode(inode); |
| } |
| |
| static void init_once(void *foo) |
| { |
| struct btrfs_inode *ei = (struct btrfs_inode *) foo; |
| |
| inode_init_once(&ei->vfs_inode); |
| } |
| |
| void __cold btrfs_destroy_cachep(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(btrfs_inode_cachep); |
| kmem_cache_destroy(btrfs_trans_handle_cachep); |
| kmem_cache_destroy(btrfs_path_cachep); |
| kmem_cache_destroy(btrfs_free_space_cachep); |
| kmem_cache_destroy(btrfs_free_space_bitmap_cachep); |
| } |
| |
| int __init btrfs_init_cachep(void) |
| { |
| btrfs_inode_cachep = kmem_cache_create("btrfs_inode", |
| sizeof(struct btrfs_inode), 0, |
| SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, |
| init_once); |
| if (!btrfs_inode_cachep) |
| goto fail; |
| |
| btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", |
| sizeof(struct btrfs_trans_handle), 0, |
| SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_trans_handle_cachep) |
| goto fail; |
| |
| btrfs_path_cachep = kmem_cache_create("btrfs_path", |
| sizeof(struct btrfs_path), 0, |
| SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_path_cachep) |
| goto fail; |
| |
| btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", |
| sizeof(struct btrfs_free_space), 0, |
| SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_free_space_cachep) |
| goto fail; |
| |
| btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", |
| PAGE_SIZE, PAGE_SIZE, |
| SLAB_MEM_SPREAD, NULL); |
| if (!btrfs_free_space_bitmap_cachep) |
| goto fail; |
| |
| return 0; |
| fail: |
| btrfs_destroy_cachep(); |
| return -ENOMEM; |
| } |
| |
| static int btrfs_getattr(const struct path *path, struct kstat *stat, |
| u32 request_mask, unsigned int flags) |
| { |
| u64 delalloc_bytes; |
| struct inode *inode = d_inode(path->dentry); |
| u32 blocksize = inode->i_sb->s_blocksize; |
| u32 bi_flags = BTRFS_I(inode)->flags; |
| |
| stat->result_mask |= STATX_BTIME; |
| stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; |
| stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; |
| if (bi_flags & BTRFS_INODE_APPEND) |
| stat->attributes |= STATX_ATTR_APPEND; |
| if (bi_flags & BTRFS_INODE_COMPRESS) |
| stat->attributes |= STATX_ATTR_COMPRESSED; |
| if (bi_flags & BTRFS_INODE_IMMUTABLE) |
| stat->attributes |= STATX_ATTR_IMMUTABLE; |
| if (bi_flags & BTRFS_INODE_NODUMP) |
| stat->attributes |= STATX_ATTR_NODUMP; |
| |
| stat->attributes_mask |= (STATX_ATTR_APPEND | |
| STATX_ATTR_COMPRESSED | |
| STATX_ATTR_IMMUTABLE | |
| STATX_ATTR_NODUMP); |
| |
| generic_fillattr(inode, stat); |
| stat->dev = BTRFS_I(inode)->root->anon_dev; |
| |
| spin_lock(&BTRFS_I(inode)->lock); |
| delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; |
| spin_unlock(&BTRFS_I(inode)->lock); |
| stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + |
| ALIGN(delalloc_bytes, blocksize)) >> 9; |
| return 0; |
| } |
| |
| static int btrfs_rename_exchange(struct inode *old_dir, |
| struct dentry *old_dentry, |
| struct inode *new_dir, |
| struct dentry *new_dentry) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = new_dentry->d_inode; |
| struct inode *old_inode = old_dentry->d_inode; |
| struct timespec64 ctime = current_time(old_inode); |
| u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); |
| u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); |
| u64 old_idx = 0; |
| u64 new_idx = 0; |
| int ret; |
| int ret2; |
| bool root_log_pinned = false; |
| bool dest_log_pinned = false; |
| bool need_abort = false; |
| |
| /* |
| * For non-subvolumes allow exchange only within one subvolume, in the |
| * same inode namespace. Two subvolumes (represented as directory) can |
| * be exchanged as they're a logical link and have a fixed inode number. |
| */ |
| if (root != dest && |
| (old_ino != BTRFS_FIRST_FREE_OBJECTID || |
| new_ino != BTRFS_FIRST_FREE_OBJECTID)) |
| return -EXDEV; |
| |
| /* close the race window with snapshot create/destroy ioctl */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID || |
| new_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&fs_info->subvol_sem); |
| |
| /* |
| * We want to reserve the absolute worst case amount of items. So if |
| * both inodes are subvols and we need to unlink them then that would |
| * require 4 item modifications, but if they are both normal inodes it |
| * would require 5 item modifications, so we'll assume their normal |
| * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items |
| * should cover the worst case number of items we'll modify. |
| */ |
| trans = btrfs_start_transaction(root, 12); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (dest != root) |
| btrfs_record_root_in_trans(trans, dest); |
| |
| /* |
| * We need to find a free sequence number both in the source and |
| * in the destination directory for the exchange. |
| */ |
| ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); |
| if (ret) |
| goto out_fail; |
| ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| BTRFS_I(new_inode)->dir_index = 0ULL; |
| |
| /* Reference for the source. */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| btrfs_pin_log_trans(root); |
| root_log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, dest, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, |
| old_ino, |
| btrfs_ino(BTRFS_I(new_dir)), |
| old_idx); |
| if (ret) |
| goto out_fail; |
| need_abort = true; |
| } |
| |
| /* And now for the dest. */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| btrfs_pin_log_trans(dest); |
| dest_log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, root, |
| old_dentry->d_name.name, |
| old_dentry->d_name.len, |
| new_ino, |
| btrfs_ino(BTRFS_I(old_dir)), |
| new_idx); |
| if (ret) { |
| if (need_abort) |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| } |
| |
| /* Update inode version and ctime/mtime. */ |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| inode_inc_iversion(new_inode); |
| old_dir->i_ctime = old_dir->i_mtime = ctime; |
| new_dir->i_ctime = new_dir->i_mtime = ctime; |
| old_inode->i_ctime = ctime; |
| new_inode->i_ctime = ctime; |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) { |
| btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), |
| BTRFS_I(old_inode), 1); |
| btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), |
| BTRFS_I(new_inode), 1); |
| } |
| |
| /* src is a subvolume */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); |
| } else { /* src is an inode */ |
| ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), |
| BTRFS_I(old_dentry->d_inode), |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, old_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| /* dest is a subvolume */ |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { |
| ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); |
| } else { /* dest is an inode */ |
| ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), |
| BTRFS_I(new_dentry->d_inode), |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, dest, new_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, 0, old_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), |
| old_dentry->d_name.name, |
| old_dentry->d_name.len, 0, new_idx); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = old_idx; |
| if (new_inode->i_nlink == 1) |
| BTRFS_I(new_inode)->dir_index = new_idx; |
| |
| if (root_log_pinned) { |
| btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), |
| new_dentry->d_parent); |
| btrfs_end_log_trans(root); |
| root_log_pinned = false; |
| } |
| if (dest_log_pinned) { |
| btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), |
| old_dentry->d_parent); |
| btrfs_end_log_trans(dest); |
| dest_log_pinned = false; |
| } |
| out_fail: |
| /* |
| * If we have pinned a log and an error happened, we unpin tasks |
| * trying to sync the log and force them to fallback to a transaction |
| * commit if the log currently contains any of the inodes involved in |
| * this rename operation (to ensure we do not persist a log with an |
| * inconsistent state for any of these inodes or leading to any |
| * inconsistencies when replayed). If the transaction was aborted, the |
| * abortion reason is propagated to userspace when attempting to commit |
| * the transaction. If the log does not contain any of these inodes, we |
| * allow the tasks to sync it. |
| */ |
| if (ret && (root_log_pinned || dest_log_pinned)) { |
| if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || |
| btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || |
| btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || |
| (new_inode && |
| btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) |
| btrfs_set_log_full_commit(trans); |
| |
| if (root_log_pinned) { |
| btrfs_end_log_trans(root); |
| root_log_pinned = false; |
| } |
| if (dest_log_pinned) { |
| btrfs_end_log_trans(dest); |
| dest_log_pinned = false; |
| } |
| } |
| ret2 = btrfs_end_transaction(trans); |
| ret = ret ? ret : ret2; |
| out_notrans: |
| if (new_ino == BTRFS_FIRST_FREE_OBJECTID || |
| old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&fs_info->subvol_sem); |
| |
| return ret; |
| } |
| |
| static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| struct inode *dir, |
| struct dentry *dentry) |
| { |
| int ret; |
| struct inode *inode; |
| u64 objectid; |
| u64 index; |
| |
| ret = btrfs_find_free_ino(root, &objectid); |
| if (ret) |
| return ret; |
| |
| inode = btrfs_new_inode(trans, root, dir, |
| dentry->d_name.name, |
| dentry->d_name.len, |
| btrfs_ino(BTRFS_I(dir)), |
| objectid, |
| S_IFCHR | WHITEOUT_MODE, |
| &index); |
| |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| return ret; |
| } |
| |
| inode->i_op = &btrfs_special_inode_operations; |
| init_special_inode(inode, inode->i_mode, |
| WHITEOUT_DEV); |
| |
| ret = btrfs_init_inode_security(trans, inode, dir, |
| &dentry->d_name); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, |
| BTRFS_I(inode), 0, index); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| out: |
| unlock_new_inode(inode); |
| if (ret) |
| inode_dec_link_count(inode); |
| iput(inode); |
| |
| return ret; |
| } |
| |
| static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| unsigned int trans_num_items; |
| struct btrfs_root *root = BTRFS_I(old_dir)->root; |
| struct btrfs_root *dest = BTRFS_I(new_dir)->root; |
| struct inode *new_inode = d_inode(new_dentry); |
| struct inode *old_inode = d_inode(old_dentry); |
| u64 index = 0; |
| int ret; |
| int ret2; |
| u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); |
| bool log_pinned = false; |
| |
| if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) |
| return -EPERM; |
| |
| /* we only allow rename subvolume link between subvolumes */ |
| if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) |
| return -EXDEV; |
| |
| if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || |
| (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) |
| return -ENOTEMPTY; |
| |
| if (S_ISDIR(old_inode->i_mode) && new_inode && |
| new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) |
| return -ENOTEMPTY; |
| |
| |
| /* check for collisions, even if the name isn't there */ |
| ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| |
| if (ret) { |
| if (ret == -EEXIST) { |
| /* we shouldn't get |
| * eexist without a new_inode */ |
| if (WARN_ON(!new_inode)) { |
| return ret; |
| } |
| } else { |
| /* maybe -EOVERFLOW */ |
| return ret; |
| } |
| } |
| ret = 0; |
| |
| /* |
| * we're using rename to replace one file with another. Start IO on it |
| * now so we don't add too much work to the end of the transaction |
| */ |
| if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) |
| filemap_flush(old_inode->i_mapping); |
| |
| /* close the racy window with snapshot create/destroy ioctl */ |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| down_read(&fs_info->subvol_sem); |
| /* |
| * We want to reserve the absolute worst case amount of items. So if |
| * both inodes are subvols and we need to unlink them then that would |
| * require 4 item modifications, but if they are both normal inodes it |
| * would require 5 item modifications, so we'll assume they are normal |
| * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items |
| * should cover the worst case number of items we'll modify. |
| * If our rename has the whiteout flag, we need more 5 units for the |
| * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item |
| * when selinux is enabled). |
| */ |
| trans_num_items = 11; |
| if (flags & RENAME_WHITEOUT) |
| trans_num_items += 5; |
| trans = btrfs_start_transaction(root, trans_num_items); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto out_notrans; |
| } |
| |
| if (dest != root) |
| btrfs_record_root_in_trans(trans, dest); |
| |
| ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); |
| if (ret) |
| goto out_fail; |
| |
| BTRFS_I(old_inode)->dir_index = 0ULL; |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| /* force full log commit if subvolume involved. */ |
| btrfs_set_log_full_commit(trans); |
| } else { |
| btrfs_pin_log_trans(root); |
| log_pinned = true; |
| ret = btrfs_insert_inode_ref(trans, dest, |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, |
| old_ino, |
| btrfs_ino(BTRFS_I(new_dir)), index); |
| if (ret) |
| goto out_fail; |
| } |
| |
| inode_inc_iversion(old_dir); |
| inode_inc_iversion(new_dir); |
| inode_inc_iversion(old_inode); |
| old_dir->i_ctime = old_dir->i_mtime = |
| new_dir->i_ctime = new_dir->i_mtime = |
| old_inode->i_ctime = current_time(old_dir); |
| |
| if (old_dentry->d_parent != new_dentry->d_parent) |
| btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), |
| BTRFS_I(old_inode), 1); |
| |
| if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { |
| ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); |
| } else { |
| ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), |
| BTRFS_I(d_inode(old_dentry)), |
| old_dentry->d_name.name, |
| old_dentry->d_name.len); |
| if (!ret) |
| ret = btrfs_update_inode(trans, root, old_inode); |
| } |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (new_inode) { |
| inode_inc_iversion(new_inode); |
| new_inode->i_ctime = current_time(new_inode); |
| if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == |
| BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { |
| ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); |
| BUG_ON(new_inode->i_nlink == 0); |
| } else { |
| ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), |
| BTRFS_I(d_inode(new_dentry)), |
| new_dentry->d_name.name, |
| new_dentry->d_name.len); |
| } |
| if (!ret && new_inode->i_nlink == 0) |
| ret = btrfs_orphan_add(trans, |
| BTRFS_I(d_inode(new_dentry))); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| } |
| |
| ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), |
| new_dentry->d_name.name, |
| new_dentry->d_name.len, 0, index); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| |
| if (old_inode->i_nlink == 1) |
| BTRFS_I(old_inode)->dir_index = index; |
| |
| if (log_pinned) { |
| btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), |
| new_dentry->d_parent); |
| btrfs_end_log_trans(root); |
| log_pinned = false; |
| } |
| |
| if (flags & RENAME_WHITEOUT) { |
| ret = btrfs_whiteout_for_rename(trans, root, old_dir, |
| old_dentry); |
| |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out_fail; |
| } |
| } |
| out_fail: |
| /* |
| * If we have pinned the log and an error happened, we unpin tasks |
| * trying to sync the log and force them to fallback to a transaction |
| * commit if the log currently contains any of the inodes involved in |
| * this rename operation (to ensure we do not persist a log with an |
| * inconsistent state for any of these inodes or leading to any |
| * inconsistencies when replayed). If the transaction was aborted, the |
| * abortion reason is propagated to userspace when attempting to commit |
| * the transaction. If the log does not contain any of these inodes, we |
| * allow the tasks to sync it. |
| */ |
| if (ret && log_pinned) { |
| if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || |
| btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || |
| btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || |
| (new_inode && |
| btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) |
| btrfs_set_log_full_commit(trans); |
| |
| btrfs_end_log_trans(root); |
| log_pinned = false; |
| } |
| ret2 = btrfs_end_transaction(trans); |
| ret = ret ? ret : ret2; |
| out_notrans: |
| if (old_ino == BTRFS_FIRST_FREE_OBJECTID) |
| up_read(&fs_info->subvol_sem); |
| |
| return ret; |
| } |
| |
| static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry, |
| unsigned int flags) |
| { |
| if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) |
| return -EINVAL; |
| |
| if (flags & RENAME_EXCHANGE) |
| return btrfs_rename_exchange(old_dir, old_dentry, new_dir, |
| new_dentry); |
| |
| return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); |
| } |
| |
| struct btrfs_delalloc_work { |
| struct inode *inode; |
| struct completion completion; |
| struct list_head list; |
| struct btrfs_work work; |
| }; |
| |
| static void btrfs_run_delalloc_work(struct btrfs_work *work) |
| { |
| struct btrfs_delalloc_work *delalloc_work; |
| struct inode *inode; |
| |
| delalloc_work = container_of(work, struct btrfs_delalloc_work, |
| work); |
| inode = delalloc_work->inode; |
| filemap_flush(inode->i_mapping); |
| if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| filemap_flush(inode->i_mapping); |
| |
| iput(inode); |
| complete(&delalloc_work->completion); |
| } |
| |
| static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) |
| { |
| struct btrfs_delalloc_work *work; |
| |
| work = kmalloc(sizeof(*work), GFP_NOFS); |
| if (!work) |
| return NULL; |
| |
| init_completion(&work->completion); |
| INIT_LIST_HEAD(&work->list); |
| work->inode = inode; |
| btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); |
| |
| return work; |
| } |
| |
| /* |
| * some fairly slow code that needs optimization. This walks the list |
| * of all the inodes with pending delalloc and forces them to disk. |
| */ |
| static int start_delalloc_inodes(struct btrfs_root *root, |
| struct writeback_control *wbc, bool snapshot, |
| bool in_reclaim_context) |
| { |
| struct btrfs_inode *binode; |
| struct inode *inode; |
| struct btrfs_delalloc_work *work, *next; |
| struct list_head works; |
| struct list_head splice; |
| int ret = 0; |
| bool full_flush = wbc->nr_to_write == LONG_MAX; |
| |
| INIT_LIST_HEAD(&works); |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&root->delalloc_mutex); |
| spin_lock(&root->delalloc_lock); |
| list_splice_init(&root->delalloc_inodes, &splice); |
| while (!list_empty(&splice)) { |
| binode = list_entry(splice.next, struct btrfs_inode, |
| delalloc_inodes); |
| |
| list_move_tail(&binode->delalloc_inodes, |
| &root->delalloc_inodes); |
| |
| if (in_reclaim_context && |
| test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) |
| continue; |
| |
| inode = igrab(&binode->vfs_inode); |
| if (!inode) { |
| cond_resched_lock(&root->delalloc_lock); |
| continue; |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| if (snapshot) |
| set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, |
| &binode->runtime_flags); |
| if (full_flush) { |
| work = btrfs_alloc_delalloc_work(inode); |
| if (!work) { |
| iput(inode); |
| ret = -ENOMEM; |
| goto out; |
| } |
| list_add_tail(&work->list, &works); |
| btrfs_queue_work(root->fs_info->flush_workers, |
| &work->work); |
| } else { |
| ret = sync_inode(inode, wbc); |
| if (!ret && |
| test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, |
| &BTRFS_I(inode)->runtime_flags)) |
| ret = sync_inode(inode, wbc); |
| btrfs_add_delayed_iput(inode); |
| if (ret || wbc->nr_to_write <= 0) |
| goto out; |
| } |
| cond_resched(); |
| spin_lock(&root->delalloc_lock); |
| } |
| spin_unlock(&root->delalloc_lock); |
| |
| out: |
| list_for_each_entry_safe(work, next, &works, list) { |
| list_del_init(&work->list); |
| wait_for_completion(&work->completion); |
| kfree(work); |
| } |
| |
| if (!list_empty(&splice)) { |
| spin_lock(&root->delalloc_lock); |
| list_splice_tail(&splice, &root->delalloc_inodes); |
| spin_unlock(&root->delalloc_lock); |
| } |
| mutex_unlock(&root->delalloc_mutex); |
| return ret; |
| } |
| |
| int btrfs_start_delalloc_snapshot(struct btrfs_root *root) |
| { |
| struct writeback_control wbc = { |
| .nr_to_write = LONG_MAX, |
| .sync_mode = WB_SYNC_NONE, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| }; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| return -EROFS; |
| |
| return start_delalloc_inodes(root, &wbc, true, false); |
| } |
| |
| int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr, |
| bool in_reclaim_context) |
| { |
| struct writeback_control wbc = { |
| .nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr, |
| .sync_mode = WB_SYNC_NONE, |
| .range_start = 0, |
| .range_end = LLONG_MAX, |
| }; |
| struct btrfs_root *root; |
| struct list_head splice; |
| int ret; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) |
| return -EROFS; |
| |
| INIT_LIST_HEAD(&splice); |
| |
| mutex_lock(&fs_info->delalloc_root_mutex); |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_init(&fs_info->delalloc_roots, &splice); |
| while (!list_empty(&splice) && nr) { |
| /* |
| * Reset nr_to_write here so we know that we're doing a full |
| * flush. |
| */ |
| if (nr == U64_MAX) |
| wbc.nr_to_write = LONG_MAX; |
| |
| root = list_first_entry(&splice, struct btrfs_root, |
| delalloc_root); |
| root = btrfs_grab_root(root); |
| BUG_ON(!root); |
| list_move_tail(&root->delalloc_root, |
| &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); |
| btrfs_put_root(root); |
| if (ret < 0 || wbc.nr_to_write <= 0) |
| goto out; |
| spin_lock(&fs_info->delalloc_root_lock); |
| } |
| spin_unlock(&fs_info->delalloc_root_lock); |
| |
| ret = 0; |
| out: |
| if (!list_empty(&splice)) { |
| spin_lock(&fs_info->delalloc_root_lock); |
| list_splice_tail(&splice, &fs_info->delalloc_roots); |
| spin_unlock(&fs_info->delalloc_root_lock); |
| } |
| mutex_unlock(&fs_info->delalloc_root_mutex); |
| return ret; |
| } |
| |
| static int btrfs_symlink(struct inode *dir, struct dentry *dentry, |
| const char *symname) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct inode *inode = NULL; |
| int err; |
| u64 objectid; |
| u64 index = 0; |
| int name_len; |
| int datasize; |
| unsigned long ptr; |
| struct btrfs_file_extent_item *ei; |
| struct extent_buffer *leaf; |
| |
| name_len = strlen(symname); |
| if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) |
| return -ENAMETOOLONG; |
| |
| /* |
| * 2 items for inode item and ref |
| * 2 items for dir items |
| * 1 item for updating parent inode item |
| * 1 item for the inline extent item |
| * 1 item for xattr if selinux is on |
| */ |
| trans = btrfs_start_transaction(root, 7); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| err = btrfs_find_free_ino(root, &objectid); |
| if (err) |
| goto out_unlock; |
| |
| inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, |
| dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), |
| objectid, S_IFLNK|S_IRWXUGO, &index); |
| if (IS_ERR(inode)) { |
| err = PTR_ERR(inode); |
| inode = NULL; |
| goto out_unlock; |
| } |
| |
| /* |
| * If the active LSM wants to access the inode during |
| * d_instantiate it needs these. Smack checks to see |
| * if the filesystem supports xattrs by looking at the |
| * ops vector. |
| */ |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| inode->i_mapping->a_ops = &btrfs_aops; |
| |
| err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); |
| if (err) |
| goto out_unlock; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| key.objectid = btrfs_ino(BTRFS_I(inode)); |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_DATA_KEY; |
| datasize = btrfs_file_extent_calc_inline_size(name_len); |
| err = btrfs_insert_empty_item(trans, root, path, &key, |
| datasize); |
| if (err) { |
| btrfs_free_path(path); |
| goto out_unlock; |
| } |
| leaf = path->nodes[0]; |
| ei = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_file_extent_item); |
| btrfs_set_file_extent_generation(leaf, ei, trans->transid); |
| btrfs_set_file_extent_type(leaf, ei, |
| BTRFS_FILE_EXTENT_INLINE); |
| btrfs_set_file_extent_encryption(leaf, ei, 0); |
| btrfs_set_file_extent_compression(leaf, ei, 0); |
| btrfs_set_file_extent_other_encoding(leaf, ei, 0); |
| btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); |
| |
| ptr = btrfs_file_extent_inline_start(ei); |
| write_extent_buffer(leaf, symname, ptr, name_len); |
| btrfs_mark_buffer_dirty(leaf); |
| btrfs_free_path(path); |
| |
| inode->i_op = &btrfs_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode_set_bytes(inode, name_len); |
| btrfs_i_size_write(BTRFS_I(inode), name_len); |
| err = btrfs_update_inode(trans, root, inode); |
| /* |
| * Last step, add directory indexes for our symlink inode. This is the |
| * last step to avoid extra cleanup of these indexes if an error happens |
| * elsewhere above. |
| */ |
| if (!err) |
| err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, |
| BTRFS_I(inode), 0, index); |
| if (err) |
| goto out_unlock; |
| |
| d_instantiate_new(dentry, inode); |
| |
| out_unlock: |
| btrfs_end_transaction(trans); |
| if (err && inode) { |
| inode_dec_link_count(inode); |
| discard_new_inode(inode); |
| } |
| btrfs_btree_balance_dirty(fs_info); |
| return err; |
| } |
| |
| static struct btrfs_trans_handle *insert_prealloc_file_extent( |
| struct btrfs_trans_handle *trans_in, |
| struct inode *inode, struct btrfs_key *ins, |
| u64 file_offset) |
| { |
| struct btrfs_file_extent_item stack_fi; |
| struct btrfs_replace_extent_info extent_info; |
| struct btrfs_trans_handle *trans = trans_in; |
| struct btrfs_path *path; |
| u64 start = ins->objectid; |
| u64 len = ins->offset; |
| int ret; |
| |
| memset(&stack_fi, 0, sizeof(stack_fi)); |
| |
| btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); |
| btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); |
| btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); |
| btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); |
| /* Encryption and other encoding is reserved and all 0 */ |
| |
| ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len); |
| if (ret < 0) |
| return ERR_PTR(ret); |
| |
| if (trans) { |
| ret = insert_reserved_file_extent(trans, BTRFS_I(inode), |
| file_offset, &stack_fi, ret); |
| if (ret) |
| return ERR_PTR(ret); |
| return trans; |
| } |
| |
| extent_info.disk_offset = start; |
| extent_info.disk_len = len; |
| extent_info.data_offset = 0; |
| extent_info.data_len = len; |
| extent_info.file_offset = file_offset; |
| extent_info.extent_buf = (char *)&stack_fi; |
| extent_info.is_new_extent = true; |
| extent_info.qgroup_reserved = ret; |
| extent_info.insertions = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = btrfs_replace_file_extents(inode, path, file_offset, |
| file_offset + len - 1, &extent_info, |
| &trans); |
| btrfs_free_path(path); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return trans; |
| } |
| |
| static int __btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint, |
| struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| struct extent_map *em; |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_key ins; |
| u64 cur_offset = start; |
| u64 clear_offset = start; |
| u64 i_size; |
| u64 cur_bytes; |
| u64 last_alloc = (u64)-1; |
| int ret = 0; |
| bool own_trans = true; |
| u64 end = start + num_bytes - 1; |
| |
| if (trans) |
| own_trans = false; |
| while (num_bytes > 0) { |
| cur_bytes = min_t(u64, num_bytes, SZ_256M); |
| cur_bytes = max(cur_bytes, min_size); |
| /* |
| * If we are severely fragmented we could end up with really |
| * small allocations, so if the allocator is returning small |
| * chunks lets make its job easier by only searching for those |
| * sized chunks. |
| */ |
| cur_bytes = min(cur_bytes, last_alloc); |
| ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, |
| min_size, 0, *alloc_hint, &ins, 1, 0); |
| if (ret) |
| break; |
| |
| /* |
| * We've reserved this space, and thus converted it from |
| * ->bytes_may_use to ->bytes_reserved. Any error that happens |
| * from here on out we will only need to clear our reservation |
| * for the remaining unreserved area, so advance our |
| * clear_offset by our extent size. |
| */ |
| clear_offset += ins.offset; |
| |
| last_alloc = ins.offset; |
| trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset); |
| /* |
| * Now that we inserted the prealloc extent we can finally |
| * decrement the number of reservations in the block group. |
| * If we did it before, we could race with relocation and have |
| * relocation miss the reserved extent, making it fail later. |
| */ |
| btrfs_dec_block_group_reservations(fs_info, ins.objectid); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_free_reserved_extent(fs_info, ins.objectid, |
| ins.offset, 0); |
| break; |
| } |
| |
| btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, |
| cur_offset + ins.offset -1, 0); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, |
| &BTRFS_I(inode)->runtime_flags); |
| goto next; |
| } |
| |
| em->start = cur_offset; |
| em->orig_start = cur_offset; |
| em->len = ins.offset; |
| em->block_start = ins.objectid; |
| em->block_len = ins.offset; |
| em->orig_block_len = ins.offset; |
| em->ram_bytes = ins.offset; |
| set_bit(EXTENT_FLAG_PREALLOC, &em->flags); |
| em->generation = trans->transid; |
| |
| while (1) { |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 1); |
| write_unlock(&em_tree->lock); |
| if (ret != -EEXIST) |
| break; |
| btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, |
| cur_offset + ins.offset - 1, |
| 0); |
| } |
| free_extent_map(em); |
| next: |
| num_bytes -= ins.offset; |
| cur_offset += ins.offset; |
| *alloc_hint = ins.objectid + ins.offset; |
| |
| inode_inc_iversion(inode); |
| inode->i_ctime = current_time(inode); |
| BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; |
| if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| (actual_len > inode->i_size) && |
| (cur_offset > inode->i_size)) { |
| if (cur_offset > actual_len) |
| i_size = actual_len; |
| else |
| i_size = cur_offset; |
| i_size_write(inode, i_size); |
| btrfs_inode_safe_disk_i_size_write(inode, 0); |
| } |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| if (own_trans) |
| btrfs_end_transaction(trans); |
| break; |
| } |
| |
| if (own_trans) { |
| btrfs_end_transaction(trans); |
| trans = NULL; |
| } |
| } |
| if (clear_offset < end) |
| btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, |
| end - clear_offset + 1); |
| return ret; |
| } |
| |
| int btrfs_prealloc_file_range(struct inode *inode, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, |
| NULL); |
| } |
| |
| int btrfs_prealloc_file_range_trans(struct inode *inode, |
| struct btrfs_trans_handle *trans, int mode, |
| u64 start, u64 num_bytes, u64 min_size, |
| loff_t actual_len, u64 *alloc_hint) |
| { |
| return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, |
| min_size, actual_len, alloc_hint, trans); |
| } |
| |
| static int btrfs_set_page_dirty(struct page *page) |
| { |
| return __set_page_dirty_nobuffers(page); |
| } |
| |
| static int btrfs_permission(struct inode *inode, int mask) |
| { |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| umode_t mode = inode->i_mode; |
| |
| if (mask & MAY_WRITE && |
| (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { |
| if (btrfs_root_readonly(root)) |
| return -EROFS; |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) |
| return -EACCES; |
| } |
| return generic_permission(inode, mask); |
| } |
| |
| static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *root = BTRFS_I(dir)->root; |
| struct inode *inode = NULL; |
| u64 objectid; |
| u64 index; |
| int ret = 0; |
| |
| /* |
| * 5 units required for adding orphan entry |
| */ |
| trans = btrfs_start_transaction(root, 5); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_find_free_ino(root, &objectid); |
| if (ret) |
| goto out; |
| |
| inode = btrfs_new_inode(trans, root, dir, NULL, 0, |
| btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| inode = NULL; |
| goto out; |
| } |
| |
| inode->i_fop = &btrfs_file_operations; |
| inode->i_op = &btrfs_file_inode_operations; |
| |
| inode->i_mapping->a_ops = &btrfs_aops; |
| |
| ret = btrfs_init_inode_security(trans, inode, dir, NULL); |
| if (ret) |
| goto out; |
| |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) |
| goto out; |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (ret) |
| goto out; |
| |
| /* |
| * We set number of links to 0 in btrfs_new_inode(), and here we set |
| * it to 1 because d_tmpfile() will issue a warning if the count is 0, |
| * through: |
| * |
| * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() |
| */ |
| set_nlink(inode, 1); |
| d_tmpfile(dentry, inode); |
| unlock_new_inode(inode); |
| mark_inode_dirty(inode); |
| out: |
| btrfs_end_transaction(trans); |
| if (ret && inode) |
| discard_new_inode(inode); |
| btrfs_btree_balance_dirty(fs_info); |
| return ret; |
| } |
| |
| void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) |
| { |
| struct inode *inode = tree->private_data; |
| unsigned long index = start >> PAGE_SHIFT; |
| unsigned long end_index = end >> PAGE_SHIFT; |
| struct page *page; |
| |
| while (index <= end_index) { |
| page = find_get_page(inode->i_mapping, index); |
| ASSERT(page); /* Pages should be in the extent_io_tree */ |
| set_page_writeback(page); |
| put_page(page); |
| index++; |
| } |
| } |
| |
| #ifdef CONFIG_SWAP |
| /* |
| * Add an entry indicating a block group or device which is pinned by a |
| * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a |
| * negative errno on failure. |
| */ |
| static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, |
| bool is_block_group) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_swapfile_pin *sp, *entry; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| |
| sp = kmalloc(sizeof(*sp), GFP_NOFS); |
| if (!sp) |
| return -ENOMEM; |
| sp->ptr = ptr; |
| sp->inode = inode; |
| sp->is_block_group = is_block_group; |
| sp->bg_extent_count = 1; |
| |
| spin_lock(&fs_info->swapfile_pins_lock); |
| p = &fs_info->swapfile_pins.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct btrfs_swapfile_pin, node); |
| if (sp->ptr < entry->ptr || |
| (sp->ptr == entry->ptr && sp->inode < entry->inode)) { |
| p = &(*p)->rb_left; |
| } else if (sp->ptr > entry->ptr || |
| (sp->ptr == entry->ptr && sp->inode > entry->inode)) { |
| p = &(*p)->rb_right; |
| } else { |
| if (is_block_group) |
| entry->bg_extent_count++; |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| kfree(sp); |
| return 1; |
| } |
| } |
| rb_link_node(&sp->node, parent, p); |
| rb_insert_color(&sp->node, &fs_info->swapfile_pins); |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| return 0; |
| } |
| |
| /* Free all of the entries pinned by this swapfile. */ |
| static void btrfs_free_swapfile_pins(struct inode *inode) |
| { |
| struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; |
| struct btrfs_swapfile_pin *sp; |
| struct rb_node *node, *next; |
| |
| spin_lock(&fs_info->swapfile_pins_lock); |
| node = rb_first(&fs_info->swapfile_pins); |
| while (node) { |
| next = rb_next(node); |
| sp = rb_entry(node, struct btrfs_swapfile_pin, node); |
| if (sp->inode == inode) { |
| rb_erase(&sp->node, &fs_info->swapfile_pins); |
| if (sp->is_block_group) { |
| btrfs_dec_block_group_swap_extents(sp->ptr, |
| sp->bg_extent_count); |
| btrfs_put_block_group(sp->ptr); |
| } |
| kfree(sp); |
| } |
| node = next; |
| } |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| } |
| |
| struct btrfs_swap_info { |
| u64 start; |
| u64 block_start; |
| u64 block_len; |
| u64 lowest_ppage; |
| u64 highest_ppage; |
| unsigned long nr_pages; |
| int nr_extents; |
| }; |
| |
| static int btrfs_add_swap_extent(struct swap_info_struct *sis, |
| struct btrfs_swap_info *bsi) |
| { |
| unsigned long nr_pages; |
| unsigned long max_pages; |
| u64 first_ppage, first_ppage_reported, next_ppage; |
| int ret; |
| |
| /* |
| * Our swapfile may have had its size extended after the swap header was |
| * written. In that case activating the swapfile should not go beyond |
| * the max size set in the swap header. |
| */ |
| if (bsi->nr_pages >= sis->max) |
| return 0; |
| |
| max_pages = sis->max - bsi->nr_pages; |
| first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; |
| next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, |
| PAGE_SIZE) >> PAGE_SHIFT; |
| |
| if (first_ppage >= next_ppage) |
| return 0; |
| nr_pages = next_ppage - first_ppage; |
| nr_pages = min(nr_pages, max_pages); |
| |
| first_ppage_reported = first_ppage; |
| if (bsi->start == 0) |
| first_ppage_reported++; |
| if (bsi->lowest_ppage > first_ppage_reported) |
| bsi->lowest_ppage = first_ppage_reported; |
| if (bsi->highest_ppage < (next_ppage - 1)) |
| bsi->highest_ppage = next_ppage - 1; |
| |
| ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); |
| if (ret < 0) |
| return ret; |
| bsi->nr_extents += ret; |
| bsi->nr_pages += nr_pages; |
| return 0; |
| } |
| |
| static void btrfs_swap_deactivate(struct file *file) |
| { |
| struct inode *inode = file_inode(file); |
| |
| btrfs_free_swapfile_pins(inode); |
| atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); |
| } |
| |
| static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| struct inode *inode = file_inode(file); |
| struct btrfs_root *root = BTRFS_I(inode)->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; |
| struct extent_state *cached_state = NULL; |
| struct extent_map *em = NULL; |
| struct btrfs_device *device = NULL; |
| struct btrfs_swap_info bsi = { |
| .lowest_ppage = (sector_t)-1ULL, |
| }; |
| int ret = 0; |
| u64 isize; |
| u64 start; |
| |
| /* |
| * If the swap file was just created, make sure delalloc is done. If the |
| * file changes again after this, the user is doing something stupid and |
| * we don't really care. |
| */ |
| ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); |
| if (ret) |
| return ret; |
| |
| /* |
| * The inode is locked, so these flags won't change after we check them. |
| */ |
| if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { |
| btrfs_warn(fs_info, "swapfile must not be compressed"); |
| return -EINVAL; |
| } |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { |
| btrfs_warn(fs_info, "swapfile must not be copy-on-write"); |
| return -EINVAL; |
| } |
| if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { |
| btrfs_warn(fs_info, "swapfile must not be checksummed"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Balance or device remove/replace/resize can move stuff around from |
| * under us. The exclop protection makes sure they aren't running/won't |
| * run concurrently while we are mapping the swap extents, and |
| * fs_info->swapfile_pins prevents them from running while the swap |
| * file is active and moving the extents. Note that this also prevents |
| * a concurrent device add which isn't actually necessary, but it's not |
| * really worth the trouble to allow it. |
| */ |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { |
| btrfs_warn(fs_info, |
| "cannot activate swapfile while exclusive operation is running"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Prevent snapshot creation while we are activating the swap file. |
| * We do not want to race with snapshot creation. If snapshot creation |
| * already started before we bumped nr_swapfiles from 0 to 1 and |
| * completes before the first write into the swap file after it is |
| * activated, than that write would fallback to COW. |
| */ |
| if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { |
| btrfs_exclop_finish(fs_info); |
| btrfs_warn(fs_info, |
| "cannot activate swapfile because snapshot creation is in progress"); |
| return -EINVAL; |
| } |
| /* |
| * Snapshots can create extents which require COW even if NODATACOW is |
| * set. We use this counter to prevent snapshots. We must increment it |
| * before walking the extents because we don't want a concurrent |
| * snapshot to run after we've already checked the extents. |
| */ |
| atomic_inc(&root->nr_swapfiles); |
| |
| isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); |
| |
| lock_extent_bits(io_tree, 0, isize - 1, &cached_state); |
| start = 0; |
| while (start < isize) { |
| u64 logical_block_start, physical_block_start; |
| struct btrfs_block_group *bg; |
| u64 len = isize - start; |
| |
| em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| |
| if (em->block_start == EXTENT_MAP_HOLE) { |
| btrfs_warn(fs_info, "swapfile must not have holes"); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (em->block_start == EXTENT_MAP_INLINE) { |
| /* |
| * It's unlikely we'll ever actually find ourselves |
| * here, as a file small enough to fit inline won't be |
| * big enough to store more than the swap header, but in |
| * case something changes in the future, let's catch it |
| * here rather than later. |
| */ |
| btrfs_warn(fs_info, "swapfile must not be inline"); |
| ret = -EINVAL; |
| goto out; |
| } |
| if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| btrfs_warn(fs_info, "swapfile must not be compressed"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| logical_block_start = em->block_start + (start - em->start); |
| len = min(len, em->len - (start - em->start)); |
| free_extent_map(em); |
| em = NULL; |
| |
| ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); |
| if (ret < 0) { |
| goto out; |
| } else if (ret) { |
| ret = 0; |
| } else { |
| btrfs_warn(fs_info, |
| "swapfile must not be copy-on-write"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| em = btrfs_get_chunk_map(fs_info, logical_block_start, len); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| goto out; |
| } |
| |
| if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { |
| btrfs_warn(fs_info, |
| "swapfile must have single data profile"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (device == NULL) { |
| device = em->map_lookup->stripes[0].dev; |
| ret = btrfs_add_swapfile_pin(inode, device, false); |
| if (ret == 1) |
| ret = 0; |
| else if (ret) |
| goto out; |
| } else if (device != em->map_lookup->stripes[0].dev) { |
| btrfs_warn(fs_info, "swapfile must be on one device"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| physical_block_start = (em->map_lookup->stripes[0].physical + |
| (logical_block_start - em->start)); |
| len = min(len, em->len - (logical_block_start - em->start)); |
| free_extent_map(em); |
| em = NULL; |
| |
| bg = btrfs_lookup_block_group(fs_info, logical_block_start); |
| if (!bg) { |
| btrfs_warn(fs_info, |
| "could not find block group containing swapfile"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| if (!btrfs_inc_block_group_swap_extents(bg)) { |
| btrfs_warn(fs_info, |
| "block group for swapfile at %llu is read-only%s", |
| bg->start, |
| atomic_read(&fs_info->scrubs_running) ? |
| " (scrub running)" : ""); |
| btrfs_put_block_group(bg); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| ret = btrfs_add_swapfile_pin(inode, bg, true); |
| if (ret) { |
| btrfs_put_block_group(bg); |
| if (ret == 1) |
| ret = 0; |
| else |
| goto out; |
| } |
| |
| if (bsi.block_len && |
| bsi.block_start + bsi.block_len == physical_block_start) { |
| bsi.block_len += len; |
| } else { |
| if (bsi.block_len) { |
| ret = btrfs_add_swap_extent(sis, &bsi); |
| if (ret) |
| goto out; |
| } |
| bsi.start = start; |
| bsi.block_start = physical_block_start; |
| bsi.block_len = len; |
| } |
| |
| start += len; |
| } |
| |
| if (bsi.block_len) |
| ret = btrfs_add_swap_extent(sis, &bsi); |
| |
| out: |
| if (!IS_ERR_OR_NULL(em)) |
| free_extent_map(em); |
| |
| unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); |
| |
| if (ret) |
| btrfs_swap_deactivate(file); |
| |
| btrfs_drew_write_unlock(&root->snapshot_lock); |
| |
| btrfs_exclop_finish(fs_info); |
| |
| if (ret) |
| return ret; |
| |
| if (device) |
| sis->bdev = device->bdev; |
| *span = bsi.highest_ppage - bsi.lowest_ppage + 1; |
| sis->max = bsi.nr_pages; |
| sis->pages = bsi.nr_pages - 1; |
| sis->highest_bit = bsi.nr_pages - 1; |
| return bsi.nr_extents; |
| } |
| #else |
| static void btrfs_swap_deactivate(struct file *file) |
| { |
| } |
| |
| static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, |
| sector_t *span) |
| { |
| return -EOPNOTSUPP; |
| } |
| #endif |
| |
| static const struct inode_operations btrfs_dir_inode_operations = { |
| .getattr = btrfs_getattr, |
| .lookup = btrfs_lookup, |
| .create = btrfs_create, |
| .unlink = btrfs_unlink, |
| .link = btrfs_link, |
| .mkdir = btrfs_mkdir, |
| .rmdir = btrfs_rmdir, |
| .rename = btrfs_rename2, |
| .symlink = btrfs_symlink, |
| .setattr = btrfs_setattr, |
| .mknod = btrfs_mknod, |
| .listxattr = btrfs_listxattr, |
| .permission = btrfs_permission, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| .tmpfile = btrfs_tmpfile, |
| }; |
| |
| static const struct file_operations btrfs_dir_file_operations = { |
| .llseek = generic_file_llseek, |
| .read = generic_read_dir, |
| .iterate_shared = btrfs_real_readdir, |
| .open = btrfs_opendir, |
| .unlocked_ioctl = btrfs_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = btrfs_compat_ioctl, |
| #endif |
| .release = btrfs_release_file, |
| .fsync = btrfs_sync_file, |
| }; |
| |
| /* |
| * btrfs doesn't support the bmap operation because swapfiles |
| * use bmap to make a mapping of extents in the file. They assume |
| * these extents won't change over the life of the file and they |
| * use the bmap result to do IO directly to the drive. |
| * |
| * the btrfs bmap call would return logical addresses that aren't |
| * suitable for IO and they also will change frequently as COW |
| * operations happen. So, swapfile + btrfs == corruption. |
| * |
| * For now we're avoiding this by dropping bmap. |
| */ |
| static const struct address_space_operations btrfs_aops = { |
| .readpage = btrfs_readpage, |
| .writepage = btrfs_writepage, |
| .writepages = btrfs_writepages, |
| .readahead = btrfs_readahead, |
| .direct_IO = noop_direct_IO, |
| .invalidatepage = btrfs_invalidatepage, |
| .releasepage = btrfs_releasepage, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = btrfs_migratepage, |
| #endif |
| .set_page_dirty = btrfs_set_page_dirty, |
| .error_remove_page = generic_error_remove_page, |
| .swap_activate = btrfs_swap_activate, |
| .swap_deactivate = btrfs_swap_deactivate, |
| }; |
| |
| static const struct inode_operations btrfs_file_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .listxattr = btrfs_listxattr, |
| .permission = btrfs_permission, |
| .fiemap = btrfs_fiemap, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| static const struct inode_operations btrfs_special_inode_operations = { |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .listxattr = btrfs_listxattr, |
| .get_acl = btrfs_get_acl, |
| .set_acl = btrfs_set_acl, |
| .update_time = btrfs_update_time, |
| }; |
| static const struct inode_operations btrfs_symlink_inode_operations = { |
| .get_link = page_get_link, |
| .getattr = btrfs_getattr, |
| .setattr = btrfs_setattr, |
| .permission = btrfs_permission, |
| .listxattr = btrfs_listxattr, |
| .update_time = btrfs_update_time, |
| }; |
| |
| const struct dentry_operations btrfs_dentry_operations = { |
| .d_delete = btrfs_dentry_delete, |
| }; |