blob: b0f3e0082a0da113fc31eedb484c44ae5c10a9b7 [file] [log] [blame]
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <asm/errno.h>
#include <asm/of_device.h>
/**
* of_match_device - Tell if an of_device structure has a matching
* of_match structure
* @ids: array of of device match structures to search in
* @dev: the of device structure to match against
*
* Used by a driver to check whether an of_device present in the
* system is in its list of supported devices.
*/
const struct of_device_id *of_match_device(const struct of_device_id *matches,
const struct of_device *dev)
{
if (!dev->node)
return NULL;
while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
int match = 1;
if (matches->name[0])
match &= dev->node->name
&& !strcmp(matches->name, dev->node->name);
if (matches->type[0])
match &= dev->node->type
&& !strcmp(matches->type, dev->node->type);
if (matches->compatible[0])
match &= of_device_is_compatible(dev->node,
matches->compatible);
if (match)
return matches;
matches++;
}
return NULL;
}
static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * of_drv = to_of_platform_driver(drv);
const struct of_device_id * matches = of_drv->match_table;
if (!matches)
return 0;
return of_match_device(matches, of_dev) != NULL;
}
struct of_device *of_dev_get(struct of_device *dev)
{
struct device *tmp;
if (!dev)
return NULL;
tmp = get_device(&dev->dev);
if (tmp)
return to_of_device(tmp);
else
return NULL;
}
void of_dev_put(struct of_device *dev)
{
if (dev)
put_device(&dev->dev);
}
static int of_device_probe(struct device *dev)
{
int error = -ENODEV;
struct of_platform_driver *drv;
struct of_device *of_dev;
const struct of_device_id *match;
drv = to_of_platform_driver(dev->driver);
of_dev = to_of_device(dev);
if (!drv->probe)
return error;
of_dev_get(of_dev);
match = of_match_device(drv->match_table, of_dev);
if (match)
error = drv->probe(of_dev, match);
if (error)
of_dev_put(of_dev);
return error;
}
static int of_device_remove(struct device *dev)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
if (dev->driver && drv->remove)
drv->remove(of_dev);
return 0;
}
static int of_device_suspend(struct device *dev, pm_message_t state)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
int error = 0;
if (dev->driver && drv->suspend)
error = drv->suspend(of_dev, state);
return error;
}
static int of_device_resume(struct device * dev)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
int error = 0;
if (dev->driver && drv->resume)
error = drv->resume(of_dev);
return error;
}
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
unsigned long ret = res->start + offset;
struct resource *r;
if (res->flags & IORESOURCE_MEM)
r = request_mem_region(ret, size, name);
else
r = request_region(ret, size, name);
if (!r)
ret = 0;
return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
if (res->flags & IORESOURCE_MEM)
release_mem_region((unsigned long) base, size);
else
release_region((unsigned long) base, size);
}
EXPORT_SYMBOL(of_iounmap);
static int node_match(struct device *dev, void *data)
{
struct of_device *op = to_of_device(dev);
struct device_node *dp = data;
return (op->node == dp);
}
struct of_device *of_find_device_by_node(struct device_node *dp)
{
struct device *dev = bus_find_device(&of_bus_type, NULL,
dp, node_match);
if (dev)
return to_of_device(dev);
return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);
#ifdef CONFIG_PCI
struct bus_type isa_bus_type = {
.name = "isa",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(isa_bus_type);
struct bus_type ebus_bus_type = {
.name = "ebus",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type = {
.name = "sbus",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(sbus_bus_type);
#endif
struct bus_type of_bus_type = {
.name = "of",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(of_bus_type);
static inline u64 of_read_addr(const u32 *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | *(cell++);
return r;
}
static void __init get_cells(struct device_node *dp,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dp);
if (sizec)
*sizec = of_n_size_cells(dp);
}
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
struct of_bus {
const char *name;
const char *addr_prop_name;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
int (*map)(u32 *addr, const u32 *range,
int na, int ns, int pna);
unsigned int (*get_flags)(u32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
get_cells(dev, addrc, sizec);
}
/* Make sure the least significant 64-bits are in-range. Even
* for 3 or 4 cell values it is a good enough approximation.
*/
static int of_out_of_range(const u32 *addr, const u32 *base,
const u32 *size, int na, int ns)
{
u64 a = of_read_addr(addr, na);
u64 b = of_read_addr(base, na);
if (a < b)
return 1;
b += of_read_addr(size, ns);
if (a >= b)
return 1;
return 0;
}
static int of_bus_default_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
if (ns > 2) {
printk("of_device: Cannot handle size cells (%d) > 2.", ns);
return -EINVAL;
}
if (of_out_of_range(addr, range, range + na + pna, na, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset. */
for (i = 0; i < na; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_default_get_flags(u32 *addr)
{
return IORESOURCE_MEM;
}
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
/* Do not do PCI specific frobbing if the
* PCI bridge lacks a ranges property. We
* want to pass it through up to the next
* parent as-is, not with the PCI translate
* method which chops off the top address cell.
*/
if (!of_find_property(np, "ranges", NULL))
return 0;
return 1;
}
return 0;
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static int of_bus_pci_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
/* Check address type match */
if ((addr[0] ^ range[0]) & 0x03000000)
return -EINVAL;
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
na - 1, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset, skipping high cell. */
for (i = 0; i < na - 1; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_pci_get_flags(u32 *addr)
{
unsigned int flags = 0;
u32 w = addr[0];
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
/*
* SBUS bus specific translator
*/
static int of_bus_sbus_match(struct device_node *np)
{
return !strcmp(np->name, "sbus") ||
!strcmp(np->name, "sbi");
}
static void of_bus_sbus_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
/*
* FHC/Central bus specific translator.
*
* This is just needed to hard-code the address and size cell
* counts. 'fhc' and 'central' nodes lack the #address-cells and
* #size-cells properties, and if you walk to the root on such
* Enterprise boxes all you'll get is a #size-cells of 2 which is
* not what we want to use.
*/
static int of_bus_fhc_match(struct device_node *np)
{
return !strcmp(np->name, "fhc") ||
!strcmp(np->name, "central");
}
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
/* PCI */
{
.name = "pci",
.addr_prop_name = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.get_flags = of_bus_pci_get_flags,
},
/* SBUS */
{
.name = "sbus",
.addr_prop_name = "reg",
.match = of_bus_sbus_match,
.count_cells = of_bus_sbus_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* FHC */
{
.name = "fhc",
.addr_prop_name = "reg",
.match = of_bus_fhc_match,
.count_cells = of_bus_fhc_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* Default */
{
.name = "default",
.addr_prop_name = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int __init build_one_resource(struct device_node *parent,
struct of_bus *bus,
struct of_bus *pbus,
u32 *addr,
int na, int ns, int pna)
{
u32 *ranges;
unsigned int rlen;
int rone;
ranges = of_get_property(parent, "ranges", &rlen);
if (ranges == NULL || rlen == 0) {
u32 result[OF_MAX_ADDR_CELLS];
int i;
memset(result, 0, pna * 4);
for (i = 0; i < na; i++)
result[pna - 1 - i] =
addr[na - 1 - i];
memcpy(addr, result, pna * 4);
return 0;
}
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
if (!bus->map(addr, ranges, na, ns, pna))
return 0;
}
return 1;
}
static int __init use_1to1_mapping(struct device_node *pp)
{
char *model;
/* If this is on the PMU bus, don't try to translate it even
* if a ranges property exists.
*/
if (!strcmp(pp->name, "pmu"))
return 1;
/* If we have a ranges property in the parent, use it. */
if (of_find_property(pp, "ranges", NULL) != NULL)
return 0;
/* If the parent is the dma node of an ISA bus, pass
* the translation up to the root.
*/
if (!strcmp(pp->name, "dma"))
return 0;
/* Similarly for Simba PCI bridges. */
model = of_get_property(pp, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 0;
return 1;
}
static int of_resource_verbose;
static void __init build_device_resources(struct of_device *op,
struct device *parent)
{
struct of_device *p_op;
struct of_bus *bus;
int na, ns;
int index, num_reg;
void *preg;
if (!parent)
return;
p_op = to_of_device(parent);
bus = of_match_bus(p_op->node);
bus->count_cells(op->node, &na, &ns);
preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
if (!preg || num_reg == 0)
return;
/* Convert to num-cells. */
num_reg /= 4;
/* Convert to num-entries. */
num_reg /= na + ns;
/* Prevent overruning the op->resources[] array. */
if (num_reg > PROMREG_MAX) {
printk(KERN_WARNING "%s: Too many regs (%d), "
"limiting to %d.\n",
op->node->full_name, num_reg, PROMREG_MAX);
num_reg = PROMREG_MAX;
}
for (index = 0; index < num_reg; index++) {
struct resource *r = &op->resource[index];
u32 addr[OF_MAX_ADDR_CELLS];
u32 *reg = (preg + (index * ((na + ns) * 4)));
struct device_node *dp = op->node;
struct device_node *pp = p_op->node;
struct of_bus *pbus;
u64 size, result = OF_BAD_ADDR;
unsigned long flags;
int dna, dns;
int pna, pns;
size = of_read_addr(reg + na, ns);
flags = bus->get_flags(reg);
memcpy(addr, reg, na * 4);
if (use_1to1_mapping(pp)) {
result = of_read_addr(addr, na);
goto build_res;
}
dna = na;
dns = ns;
while (1) {
dp = pp;
pp = dp->parent;
if (!pp) {
result = of_read_addr(addr, dna);
break;
}
pbus = of_match_bus(pp);
pbus->count_cells(dp, &pna, &pns);
if (build_one_resource(dp, bus, pbus, addr,
dna, dns, pna))
break;
dna = pna;
dns = pns;
bus = pbus;
}
build_res:
memset(r, 0, sizeof(*r));
if (of_resource_verbose)
printk("%s reg[%d] -> %lx\n",
op->node->full_name, index,
result);
if (result != OF_BAD_ADDR) {
if (tlb_type == hypervisor)
result &= 0x0fffffffffffffffUL;
r->start = result;
r->end = result + size - 1;
r->flags = flags;
} else {
r->start = ~0UL;
r->end = ~0UL;
}
r->name = op->node->name;
}
}
static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
u32 *imap, int imlen, u32 *imask,
unsigned int *irq_p)
{
struct device_node *cp;
unsigned int irq = *irq_p;
struct of_bus *bus;
phandle handle;
u32 *reg;
int na, num_reg, i;
bus = of_match_bus(pp);
bus->count_cells(dp, &na, NULL);
reg = of_get_property(dp, "reg", &num_reg);
if (!reg || !num_reg)
return NULL;
imlen /= ((na + 3) * 4);
handle = 0;
for (i = 0; i < imlen; i++) {
int j;
for (j = 0; j < na; j++) {
if ((reg[j] & imask[j]) != imap[j])
goto next;
}
if (imap[na] == irq) {
handle = imap[na + 1];
irq = imap[na + 2];
break;
}
next:
imap += (na + 3);
}
if (i == imlen) {
/* Psycho and Sabre PCI controllers can have 'interrupt-map'
* properties that do not include the on-board device
* interrupts. Instead, the device's 'interrupts' property
* is already a fully specified INO value.
*
* Handle this by deciding that, if we didn't get a
* match in the parent's 'interrupt-map', and the
* parent is an IRQ translater, then use the parent as
* our IRQ controller.
*/
if (pp->irq_trans)
return pp;
return NULL;
}
*irq_p = irq;
cp = of_find_node_by_phandle(handle);
return cp;
}
static unsigned int __init pci_irq_swizzle(struct device_node *dp,
struct device_node *pp,
unsigned int irq)
{
struct linux_prom_pci_registers *regs;
unsigned int devfn, slot, ret;
if (irq < 1 || irq > 4)
return irq;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return irq;
devfn = (regs->phys_hi >> 8) & 0xff;
slot = (devfn >> 3) & 0x1f;
ret = ((irq - 1 + (slot & 3)) & 3) + 1;
return ret;
}
static int of_irq_verbose;
static unsigned int __init build_one_device_irq(struct of_device *op,
struct device *parent,
unsigned int irq)
{
struct device_node *dp = op->node;
struct device_node *pp, *ip;
unsigned int orig_irq = irq;
if (irq == 0xffffffff)
return irq;
if (dp->irq_trans) {
irq = dp->irq_trans->irq_build(dp, irq,
dp->irq_trans->data);
if (of_irq_verbose)
printk("%s: direct translate %x --> %x\n",
dp->full_name, orig_irq, irq);
return irq;
}
/* Something more complicated. Walk up to the root, applying
* interrupt-map or bus specific translations, until we hit
* an IRQ translator.
*
* If we hit a bus type or situation we cannot handle, we
* stop and assume that the original IRQ number was in a
* format which has special meaning to it's immediate parent.
*/
pp = dp->parent;
ip = NULL;
while (pp) {
void *imap, *imsk;
int imlen;
imap = of_get_property(pp, "interrupt-map", &imlen);
imsk = of_get_property(pp, "interrupt-map-mask", NULL);
if (imap && imsk) {
struct device_node *iret;
int this_orig_irq = irq;
iret = apply_interrupt_map(dp, pp,
imap, imlen, imsk,
&irq);
if (of_irq_verbose)
printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
op->node->full_name,
pp->full_name, this_orig_irq,
(iret ? iret->full_name : "NULL"), irq);
if (!iret)
break;
if (iret->irq_trans) {
ip = iret;
break;
}
} else {
if (!strcmp(pp->type, "pci") ||
!strcmp(pp->type, "pciex")) {
unsigned int this_orig_irq = irq;
irq = pci_irq_swizzle(dp, pp, irq);
if (of_irq_verbose)
printk("%s: PCI swizzle [%s] "
"%x --> %x\n",
op->node->full_name,
pp->full_name, this_orig_irq,
irq);
}
if (pp->irq_trans) {
ip = pp;
break;
}
}
dp = pp;
pp = pp->parent;
}
if (!ip)
return orig_irq;
irq = ip->irq_trans->irq_build(op->node, irq,
ip->irq_trans->data);
if (of_irq_verbose)
printk("%s: Apply IRQ trans [%s] %x --> %x\n",
op->node->full_name, ip->full_name, orig_irq, irq);
return irq;
}
static struct of_device * __init scan_one_device(struct device_node *dp,
struct device *parent)
{
struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
unsigned int *irq;
int len, i;
if (!op)
return NULL;
op->node = dp;
op->clock_freq = of_getintprop_default(dp, "clock-frequency",
(25*1000*1000));
op->portid = of_getintprop_default(dp, "upa-portid", -1);
if (op->portid == -1)
op->portid = of_getintprop_default(dp, "portid", -1);
irq = of_get_property(dp, "interrupts", &len);
if (irq) {
memcpy(op->irqs, irq, len);
op->num_irqs = len / 4;
} else {
op->num_irqs = 0;
}
/* Prevent overruning the op->irqs[] array. */
if (op->num_irqs > PROMINTR_MAX) {
printk(KERN_WARNING "%s: Too many irqs (%d), "
"limiting to %d.\n",
dp->full_name, op->num_irqs, PROMINTR_MAX);
op->num_irqs = PROMINTR_MAX;
}
build_device_resources(op, parent);
for (i = 0; i < op->num_irqs; i++)
op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
op->dev.parent = parent;
op->dev.bus = &of_bus_type;
if (!parent)
strcpy(op->dev.bus_id, "root");
else
sprintf(op->dev.bus_id, "%08x", dp->node);
if (of_device_register(op)) {
printk("%s: Could not register of device.\n",
dp->full_name);
kfree(op);
op = NULL;
}
return op;
}
static void __init scan_tree(struct device_node *dp, struct device *parent)
{
while (dp) {
struct of_device *op = scan_one_device(dp, parent);
if (op)
scan_tree(dp->child, &op->dev);
dp = dp->sibling;
}
}
static void __init scan_of_devices(void)
{
struct device_node *root = of_find_node_by_path("/");
struct of_device *parent;
parent = scan_one_device(root, NULL);
if (!parent)
return;
scan_tree(root->child, &parent->dev);
}
static int __init of_bus_driver_init(void)
{
int err;
err = bus_register(&of_bus_type);
#ifdef CONFIG_PCI
if (!err)
err = bus_register(&isa_bus_type);
if (!err)
err = bus_register(&ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
if (!err)
err = bus_register(&sbus_bus_type);
#endif
if (!err)
scan_of_devices();
return err;
}
postcore_initcall(of_bus_driver_init);
static int __init of_debug(char *str)
{
int val = 0;
get_option(&str, &val);
if (val & 1)
of_resource_verbose = 1;
if (val & 2)
of_irq_verbose = 1;
return 1;
}
__setup("of_debug=", of_debug);
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
{
/* initialize common driver fields */
drv->driver.name = drv->name;
drv->driver.bus = bus;
/* register with core */
return driver_register(&drv->driver);
}
void of_unregister_driver(struct of_platform_driver *drv)
{
driver_unregister(&drv->driver);
}
static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
{
struct of_device *ofdev;
ofdev = to_of_device(dev);
return sprintf(buf, "%s", ofdev->node->full_name);
}
static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
/**
* of_release_dev - free an of device structure when all users of it are finished.
* @dev: device that's been disconnected
*
* Will be called only by the device core when all users of this of device are
* done.
*/
void of_release_dev(struct device *dev)
{
struct of_device *ofdev;
ofdev = to_of_device(dev);
kfree(ofdev);
}
int of_device_register(struct of_device *ofdev)
{
int rc;
BUG_ON(ofdev->node == NULL);
rc = device_register(&ofdev->dev);
if (rc)
return rc;
rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
if (rc)
device_unregister(&ofdev->dev);
return rc;
}
void of_device_unregister(struct of_device *ofdev)
{
device_remove_file(&ofdev->dev, &dev_attr_devspec);
device_unregister(&ofdev->dev);
}
struct of_device* of_platform_device_create(struct device_node *np,
const char *bus_id,
struct device *parent,
struct bus_type *bus)
{
struct of_device *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
dev->dev.parent = parent;
dev->dev.bus = bus;
dev->dev.release = of_release_dev;
strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
if (of_device_register(dev) != 0) {
kfree(dev);
return NULL;
}
return dev;
}
EXPORT_SYMBOL(of_match_device);
EXPORT_SYMBOL(of_register_driver);
EXPORT_SYMBOL(of_unregister_driver);
EXPORT_SYMBOL(of_device_register);
EXPORT_SYMBOL(of_device_unregister);
EXPORT_SYMBOL(of_dev_get);
EXPORT_SYMBOL(of_dev_put);
EXPORT_SYMBOL(of_platform_device_create);
EXPORT_SYMBOL(of_release_dev);