| /* |
| * drivers/ata/sata_dwc_460ex.c |
| * |
| * Synopsys DesignWare Cores (DWC) SATA host driver |
| * |
| * Author: Mark Miesfeld <mmiesfeld@amcc.com> |
| * |
| * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de> |
| * Copyright 2008 DENX Software Engineering |
| * |
| * Based on versions provided by AMCC and Synopsys which are: |
| * Copyright 2006 Applied Micro Circuits Corporation |
| * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or (at your |
| * option) any later version. |
| */ |
| |
| #ifdef CONFIG_SATA_DWC_DEBUG |
| #define DEBUG |
| #endif |
| |
| #ifdef CONFIG_SATA_DWC_VDEBUG |
| #define VERBOSE_DEBUG |
| #define DEBUG_NCQ |
| #endif |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/platform_device.h> |
| #include <linux/libata.h> |
| #include <linux/slab.h> |
| #include "libata.h" |
| |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_cmnd.h> |
| |
| /* These two are defined in "libata.h" */ |
| #undef DRV_NAME |
| #undef DRV_VERSION |
| |
| #define DRV_NAME "sata-dwc" |
| #define DRV_VERSION "1.3" |
| |
| /* SATA DMA driver Globals */ |
| #define DMA_NUM_CHANS 1 |
| #define DMA_NUM_CHAN_REGS 8 |
| |
| /* SATA DMA Register definitions */ |
| #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/ |
| |
| struct dmareg { |
| u32 low; /* Low bits 0-31 */ |
| u32 high; /* High bits 32-63 */ |
| }; |
| |
| /* DMA Per Channel registers */ |
| struct dma_chan_regs { |
| struct dmareg sar; /* Source Address */ |
| struct dmareg dar; /* Destination address */ |
| struct dmareg llp; /* Linked List Pointer */ |
| struct dmareg ctl; /* Control */ |
| struct dmareg sstat; /* Source Status not implemented in core */ |
| struct dmareg dstat; /* Destination Status not implemented in core*/ |
| struct dmareg sstatar; /* Source Status Address not impl in core */ |
| struct dmareg dstatar; /* Destination Status Address not implemente */ |
| struct dmareg cfg; /* Config */ |
| struct dmareg sgr; /* Source Gather */ |
| struct dmareg dsr; /* Destination Scatter */ |
| }; |
| |
| /* Generic Interrupt Registers */ |
| struct dma_interrupt_regs { |
| struct dmareg tfr; /* Transfer Interrupt */ |
| struct dmareg block; /* Block Interrupt */ |
| struct dmareg srctran; /* Source Transfer Interrupt */ |
| struct dmareg dsttran; /* Dest Transfer Interrupt */ |
| struct dmareg error; /* Error */ |
| }; |
| |
| struct ahb_dma_regs { |
| struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS]; |
| struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */ |
| struct dma_interrupt_regs interrupt_status; /* Interrupt Status */ |
| struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */ |
| struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */ |
| struct dmareg statusInt; /* Interrupt combined*/ |
| struct dmareg rq_srcreg; /* Src Trans Req */ |
| struct dmareg rq_dstreg; /* Dst Trans Req */ |
| struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/ |
| struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/ |
| struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/ |
| struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/ |
| struct dmareg dma_cfg; /* DMA Config */ |
| struct dmareg dma_chan_en; /* DMA Channel Enable*/ |
| struct dmareg dma_id; /* DMA ID */ |
| struct dmareg dma_test; /* DMA Test */ |
| struct dmareg res1; /* reserved */ |
| struct dmareg res2; /* reserved */ |
| /* |
| * DMA Comp Params |
| * Param 6 = dma_param[0], Param 5 = dma_param[1], |
| * Param 4 = dma_param[2] ... |
| */ |
| struct dmareg dma_params[6]; |
| }; |
| |
| /* Data structure for linked list item */ |
| struct lli { |
| u32 sar; /* Source Address */ |
| u32 dar; /* Destination address */ |
| u32 llp; /* Linked List Pointer */ |
| struct dmareg ctl; /* Control */ |
| struct dmareg dstat; /* Destination Status */ |
| }; |
| |
| enum { |
| SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)), |
| SATA_DWC_DMAC_LLI_NUM = 256, |
| SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \ |
| SATA_DWC_DMAC_LLI_NUM), |
| SATA_DWC_DMAC_TWIDTH_BYTES = 4, |
| SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \ |
| SATA_DWC_DMAC_TWIDTH_BYTES), |
| }; |
| |
| /* DMA Register Operation Bits */ |
| enum { |
| DMA_EN = 0x00000001, /* Enable AHB DMA */ |
| DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */ |
| DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */ |
| }; |
| |
| #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */ |
| #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */ |
| /* Enable channel */ |
| #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \ |
| ((0x000000001 << (ch)) << 8)) |
| /* Disable channel */ |
| #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8)) |
| /* Transfer Type & Flow Controller */ |
| #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20) |
| #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */ |
| #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */ |
| /* Src Burst Transaction Length */ |
| #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14) |
| /* Dst Burst Transaction Length */ |
| #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11) |
| /* Source Transfer Width */ |
| #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4) |
| /* Destination Transfer Width */ |
| #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1) |
| |
| /* Assign HW handshaking interface (x) to destination / source peripheral */ |
| #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11) |
| #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7) |
| #define DMA_CFG_HW_CH_PRIOR(int_num) (((int_num) & 0xF) << 5) |
| #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master)) |
| |
| /* |
| * This define is used to set block chaining disabled in the control low |
| * register. It is already in little endian format so it can be &'d dirctly. |
| * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN)) |
| */ |
| enum { |
| DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7, |
| DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */ |
| DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */ |
| DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */ |
| DMA_CTL_SINC_DEC = 0x00000200, |
| DMA_CTL_SINC_NOCHANGE = 0x00000400, |
| DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */ |
| DMA_CTL_DINC_DEC = 0x00000080, |
| DMA_CTL_DINC_NOCHANGE = 0x00000100, |
| DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */ |
| |
| /* Channel Configuration Register high bits */ |
| DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */ |
| DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */ |
| |
| /* Channel Configuration Register low bits */ |
| DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */ |
| DMA_CFG_RELD_SRC = 0x40000000, |
| DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */ |
| DMA_CFG_HS_SELDST = 0x00000400, |
| DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */ |
| |
| /* Channel Linked List Pointer Register */ |
| DMA_LLP_AHBMASTER1 = 0, /* List Master Select */ |
| DMA_LLP_AHBMASTER2 = 1, |
| |
| SATA_DWC_MAX_PORTS = 1, |
| |
| SATA_DWC_SCR_OFFSET = 0x24, |
| SATA_DWC_REG_OFFSET = 0x64, |
| }; |
| |
| /* DWC SATA Registers */ |
| struct sata_dwc_regs { |
| u32 fptagr; /* 1st party DMA tag */ |
| u32 fpbor; /* 1st party DMA buffer offset */ |
| u32 fptcr; /* 1st party DMA Xfr count */ |
| u32 dmacr; /* DMA Control */ |
| u32 dbtsr; /* DMA Burst Transac size */ |
| u32 intpr; /* Interrupt Pending */ |
| u32 intmr; /* Interrupt Mask */ |
| u32 errmr; /* Error Mask */ |
| u32 llcr; /* Link Layer Control */ |
| u32 phycr; /* PHY Control */ |
| u32 physr; /* PHY Status */ |
| u32 rxbistpd; /* Recvd BIST pattern def register */ |
| u32 rxbistpd1; /* Recvd BIST data dword1 */ |
| u32 rxbistpd2; /* Recvd BIST pattern data dword2 */ |
| u32 txbistpd; /* Trans BIST pattern def register */ |
| u32 txbistpd1; /* Trans BIST data dword1 */ |
| u32 txbistpd2; /* Trans BIST data dword2 */ |
| u32 bistcr; /* BIST Control Register */ |
| u32 bistfctr; /* BIST FIS Count Register */ |
| u32 bistsr; /* BIST Status Register */ |
| u32 bistdecr; /* BIST Dword Error count register */ |
| u32 res[15]; /* Reserved locations */ |
| u32 testr; /* Test Register */ |
| u32 versionr; /* Version Register */ |
| u32 idr; /* ID Register */ |
| u32 unimpl[192]; /* Unimplemented */ |
| u32 dmadr[256]; /* FIFO Locations in DMA Mode */ |
| }; |
| |
| enum { |
| SCR_SCONTROL_DET_ENABLE = 0x00000001, |
| SCR_SSTATUS_DET_PRESENT = 0x00000001, |
| SCR_SERROR_DIAG_X = 0x04000000, |
| /* DWC SATA Register Operations */ |
| SATA_DWC_TXFIFO_DEPTH = 0x01FF, |
| SATA_DWC_RXFIFO_DEPTH = 0x01FF, |
| SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004, |
| SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN), |
| SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN), |
| SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN, |
| SATA_DWC_INTPR_DMAT = 0x00000001, |
| SATA_DWC_INTPR_NEWFP = 0x00000002, |
| SATA_DWC_INTPR_PMABRT = 0x00000004, |
| SATA_DWC_INTPR_ERR = 0x00000008, |
| SATA_DWC_INTPR_NEWBIST = 0x00000010, |
| SATA_DWC_INTPR_IPF = 0x10000000, |
| SATA_DWC_INTMR_DMATM = 0x00000001, |
| SATA_DWC_INTMR_NEWFPM = 0x00000002, |
| SATA_DWC_INTMR_PMABRTM = 0x00000004, |
| SATA_DWC_INTMR_ERRM = 0x00000008, |
| SATA_DWC_INTMR_NEWBISTM = 0x00000010, |
| SATA_DWC_LLCR_SCRAMEN = 0x00000001, |
| SATA_DWC_LLCR_DESCRAMEN = 0x00000002, |
| SATA_DWC_LLCR_RPDEN = 0x00000004, |
| /* This is all error bits, zero's are reserved fields. */ |
| SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03 |
| }; |
| |
| #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F) |
| #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\ |
| SATA_DWC_DMACR_TMOD_TXCHEN) |
| #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\ |
| SATA_DWC_DMACR_TMOD_TXCHEN) |
| #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH) |
| #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\ |
| << 16) |
| struct sata_dwc_device { |
| struct device *dev; /* generic device struct */ |
| struct ata_probe_ent *pe; /* ptr to probe-ent */ |
| struct ata_host *host; |
| u8 *reg_base; |
| struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */ |
| int irq_dma; |
| }; |
| |
| #define SATA_DWC_QCMD_MAX 32 |
| |
| struct sata_dwc_device_port { |
| struct sata_dwc_device *hsdev; |
| int cmd_issued[SATA_DWC_QCMD_MAX]; |
| struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */ |
| dma_addr_t llit_dma[SATA_DWC_QCMD_MAX]; |
| u32 dma_chan[SATA_DWC_QCMD_MAX]; |
| int dma_pending[SATA_DWC_QCMD_MAX]; |
| }; |
| |
| /* |
| * Commonly used DWC SATA driver Macros |
| */ |
| #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\ |
| (host)->private_data) |
| #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\ |
| (ap)->host->private_data) |
| #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\ |
| (ap)->private_data) |
| #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\ |
| (qc)->ap->host->private_data) |
| #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\ |
| (hsdevp)->hsdev) |
| |
| enum { |
| SATA_DWC_CMD_ISSUED_NOT = 0, |
| SATA_DWC_CMD_ISSUED_PEND = 1, |
| SATA_DWC_CMD_ISSUED_EXEC = 2, |
| SATA_DWC_CMD_ISSUED_NODATA = 3, |
| |
| SATA_DWC_DMA_PENDING_NONE = 0, |
| SATA_DWC_DMA_PENDING_TX = 1, |
| SATA_DWC_DMA_PENDING_RX = 2, |
| }; |
| |
| struct sata_dwc_host_priv { |
| void __iomem *scr_addr_sstatus; |
| u32 sata_dwc_sactive_issued ; |
| u32 sata_dwc_sactive_queued ; |
| u32 dma_interrupt_count; |
| struct ahb_dma_regs *sata_dma_regs; |
| struct device *dwc_dev; |
| int dma_channel; |
| }; |
| struct sata_dwc_host_priv host_pvt; |
| /* |
| * Prototypes |
| */ |
| static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag); |
| static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, |
| u32 check_status); |
| static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status); |
| static void sata_dwc_port_stop(struct ata_port *ap); |
| static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag); |
| static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq); |
| static void dma_dwc_exit(struct sata_dwc_device *hsdev); |
| static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, |
| struct lli *lli, dma_addr_t dma_lli, |
| void __iomem *addr, int dir); |
| static void dma_dwc_xfer_start(int dma_ch); |
| |
| static const char *get_prot_descript(u8 protocol) |
| { |
| switch ((enum ata_tf_protocols)protocol) { |
| case ATA_PROT_NODATA: |
| return "ATA no data"; |
| case ATA_PROT_PIO: |
| return "ATA PIO"; |
| case ATA_PROT_DMA: |
| return "ATA DMA"; |
| case ATA_PROT_NCQ: |
| return "ATA NCQ"; |
| case ATAPI_PROT_NODATA: |
| return "ATAPI no data"; |
| case ATAPI_PROT_PIO: |
| return "ATAPI PIO"; |
| case ATAPI_PROT_DMA: |
| return "ATAPI DMA"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| static const char *get_dma_dir_descript(int dma_dir) |
| { |
| switch ((enum dma_data_direction)dma_dir) { |
| case DMA_BIDIRECTIONAL: |
| return "bidirectional"; |
| case DMA_TO_DEVICE: |
| return "to device"; |
| case DMA_FROM_DEVICE: |
| return "from device"; |
| default: |
| return "none"; |
| } |
| } |
| |
| static void sata_dwc_tf_dump(struct ata_taskfile *tf) |
| { |
| dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:" |
| "0x%lx device: %x\n", tf->command, |
| get_prot_descript(tf->protocol), tf->flags, tf->device); |
| dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x " |
| "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal, |
| tf->lbam, tf->lbah); |
| dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x " |
| "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n", |
| tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, |
| tf->hob_lbah); |
| } |
| |
| /* |
| * Function: get_burst_length_encode |
| * arguments: datalength: length in bytes of data |
| * returns value to be programmed in register corresponding to data length |
| * This value is effectively the log(base 2) of the length |
| */ |
| static int get_burst_length_encode(int datalength) |
| { |
| int items = datalength >> 2; /* div by 4 to get lword count */ |
| |
| if (items >= 64) |
| return 5; |
| |
| if (items >= 32) |
| return 4; |
| |
| if (items >= 16) |
| return 3; |
| |
| if (items >= 8) |
| return 2; |
| |
| if (items >= 4) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void clear_chan_interrupts(int c) |
| { |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low), |
| DMA_CHANNEL(c)); |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low), |
| DMA_CHANNEL(c)); |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low), |
| DMA_CHANNEL(c)); |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low), |
| DMA_CHANNEL(c)); |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low), |
| DMA_CHANNEL(c)); |
| } |
| |
| /* |
| * Function: dma_request_channel |
| * arguments: None |
| * returns channel number if available else -1 |
| * This function assigns the next available DMA channel from the list to the |
| * requester |
| */ |
| static int dma_request_channel(void) |
| { |
| /* Check if the channel is not currently in use */ |
| if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) & |
| DMA_CHANNEL(host_pvt.dma_channel))) |
| return host_pvt.dma_channel; |
| dev_err(host_pvt.dwc_dev, "%s Channel %d is currently in use\n", |
| __func__, host_pvt.dma_channel); |
| return -1; |
| } |
| |
| /* |
| * Function: dma_dwc_interrupt |
| * arguments: irq, dev_id, pt_regs |
| * returns channel number if available else -1 |
| * Interrupt Handler for DW AHB SATA DMA |
| */ |
| static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance) |
| { |
| int chan; |
| u32 tfr_reg, err_reg; |
| unsigned long flags; |
| struct sata_dwc_device *hsdev = hsdev_instance; |
| struct ata_host *host = (struct ata_host *)hsdev->host; |
| struct ata_port *ap; |
| struct sata_dwc_device_port *hsdevp; |
| u8 tag = 0; |
| unsigned int port = 0; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| ap = host->ports[port]; |
| hsdevp = HSDEVP_FROM_AP(ap); |
| tag = ap->link.active_tag; |
| |
| tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\ |
| .low)); |
| err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\ |
| .low)); |
| |
| dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n", |
| tfr_reg, err_reg, hsdevp->dma_pending[tag], port); |
| |
| chan = host_pvt.dma_channel; |
| if (chan >= 0) { |
| /* Check for end-of-transfer interrupt. */ |
| if (tfr_reg & DMA_CHANNEL(chan)) { |
| /* |
| * Each DMA command produces 2 interrupts. Only |
| * complete the command after both interrupts have been |
| * seen. (See sata_dwc_isr()) |
| */ |
| host_pvt.dma_interrupt_count++; |
| sata_dwc_clear_dmacr(hsdevp, tag); |
| |
| if (hsdevp->dma_pending[tag] == |
| SATA_DWC_DMA_PENDING_NONE) { |
| dev_err(ap->dev, "DMA not pending eot=0x%08x " |
| "err=0x%08x tag=0x%02x pending=%d\n", |
| tfr_reg, err_reg, tag, |
| hsdevp->dma_pending[tag]); |
| } |
| |
| if ((host_pvt.dma_interrupt_count % 2) == 0) |
| sata_dwc_dma_xfer_complete(ap, 1); |
| |
| /* Clear the interrupt */ |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ |
| .tfr.low), |
| DMA_CHANNEL(chan)); |
| } |
| |
| /* Check for error interrupt. */ |
| if (err_reg & DMA_CHANNEL(chan)) { |
| /* TODO Need error handler ! */ |
| dev_err(ap->dev, "error interrupt err_reg=0x%08x\n", |
| err_reg); |
| |
| /* Clear the interrupt. */ |
| out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\ |
| .error.low), |
| DMA_CHANNEL(chan)); |
| } |
| } |
| spin_unlock_irqrestore(&host->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Function: dma_request_interrupts |
| * arguments: hsdev |
| * returns status |
| * This function registers ISR for a particular DMA channel interrupt |
| */ |
| static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq) |
| { |
| int retval = 0; |
| int chan = host_pvt.dma_channel; |
| |
| if (chan >= 0) { |
| /* Unmask error interrupt */ |
| out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low, |
| DMA_ENABLE_CHAN(chan)); |
| |
| /* Unmask end-of-transfer interrupt */ |
| out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low, |
| DMA_ENABLE_CHAN(chan)); |
| } |
| |
| retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev); |
| if (retval) { |
| dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n", |
| __func__, irq); |
| return -ENODEV; |
| } |
| |
| /* Mark this interrupt as requested */ |
| hsdev->irq_dma = irq; |
| return 0; |
| } |
| |
| /* |
| * Function: map_sg_to_lli |
| * The Synopsis driver has a comment proposing that better performance |
| * is possible by only enabling interrupts on the last item in the linked list. |
| * However, it seems that could be a problem if an error happened on one of the |
| * first items. The transfer would halt, but no error interrupt would occur. |
| * Currently this function sets interrupts enabled for each linked list item: |
| * DMA_CTL_INT_EN. |
| */ |
| static int map_sg_to_lli(struct scatterlist *sg, int num_elems, |
| struct lli *lli, dma_addr_t dma_lli, |
| void __iomem *dmadr_addr, int dir) |
| { |
| int i, idx = 0; |
| int fis_len = 0; |
| dma_addr_t next_llp; |
| int bl; |
| int sms_val, dms_val; |
| |
| sms_val = 0; |
| dms_val = 1 + host_pvt.dma_channel; |
| dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x" |
| " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli, |
| (u32)dmadr_addr); |
| |
| bl = get_burst_length_encode(AHB_DMA_BRST_DFLT); |
| |
| for (i = 0; i < num_elems; i++, sg++) { |
| u32 addr, offset; |
| u32 sg_len, len; |
| |
| addr = (u32) sg_dma_address(sg); |
| sg_len = sg_dma_len(sg); |
| |
| dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len" |
| "=%d\n", __func__, i, addr, sg_len); |
| |
| while (sg_len) { |
| if (idx >= SATA_DWC_DMAC_LLI_NUM) { |
| /* The LLI table is not large enough. */ |
| dev_err(host_pvt.dwc_dev, "LLI table overrun " |
| "(idx=%d)\n", idx); |
| break; |
| } |
| len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ? |
| SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len; |
| |
| offset = addr & 0xffff; |
| if ((offset + sg_len) > 0x10000) |
| len = 0x10000 - offset; |
| |
| /* |
| * Make sure a LLI block is not created that will span |
| * 8K max FIS boundary. If the block spans such a FIS |
| * boundary, there is a chance that a DMA burst will |
| * cross that boundary -- this results in an error in |
| * the host controller. |
| */ |
| if (fis_len + len > 8192) { |
| dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len=" |
| "%d(0x%x) len=%d(0x%x)\n", fis_len, |
| fis_len, len, len); |
| len = 8192 - fis_len; |
| fis_len = 0; |
| } else { |
| fis_len += len; |
| } |
| if (fis_len == 8192) |
| fis_len = 0; |
| |
| /* |
| * Set DMA addresses and lower half of control register |
| * based on direction. |
| */ |
| if (dir == DMA_FROM_DEVICE) { |
| lli[idx].dar = cpu_to_le32(addr); |
| lli[idx].sar = cpu_to_le32((u32)dmadr_addr); |
| |
| lli[idx].ctl.low = cpu_to_le32( |
| DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) | |
| DMA_CTL_SMS(sms_val) | |
| DMA_CTL_DMS(dms_val) | |
| DMA_CTL_SRC_MSIZE(bl) | |
| DMA_CTL_DST_MSIZE(bl) | |
| DMA_CTL_SINC_NOCHANGE | |
| DMA_CTL_SRC_TRWID(2) | |
| DMA_CTL_DST_TRWID(2) | |
| DMA_CTL_INT_EN | |
| DMA_CTL_LLP_SRCEN | |
| DMA_CTL_LLP_DSTEN); |
| } else { /* DMA_TO_DEVICE */ |
| lli[idx].sar = cpu_to_le32(addr); |
| lli[idx].dar = cpu_to_le32((u32)dmadr_addr); |
| |
| lli[idx].ctl.low = cpu_to_le32( |
| DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) | |
| DMA_CTL_SMS(dms_val) | |
| DMA_CTL_DMS(sms_val) | |
| DMA_CTL_SRC_MSIZE(bl) | |
| DMA_CTL_DST_MSIZE(bl) | |
| DMA_CTL_DINC_NOCHANGE | |
| DMA_CTL_SRC_TRWID(2) | |
| DMA_CTL_DST_TRWID(2) | |
| DMA_CTL_INT_EN | |
| DMA_CTL_LLP_SRCEN | |
| DMA_CTL_LLP_DSTEN); |
| } |
| |
| dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: " |
| "0x%08x val: 0x%08x\n", __func__, |
| len, DMA_CTL_BLK_TS(len / 4)); |
| |
| /* Program the LLI CTL high register */ |
| lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\ |
| (len / 4)); |
| |
| /* Program the next pointer. The next pointer must be |
| * the physical address, not the virtual address. |
| */ |
| next_llp = (dma_lli + ((idx + 1) * sizeof(struct \ |
| lli))); |
| |
| /* The last 2 bits encode the list master select. */ |
| next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2); |
| |
| lli[idx].llp = cpu_to_le32(next_llp); |
| idx++; |
| sg_len -= len; |
| addr += len; |
| } |
| } |
| |
| /* |
| * The last next ptr has to be zero and the last control low register |
| * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source |
| * and destination enable) set back to 0 (disabled.) This is what tells |
| * the core that this is the last item in the linked list. |
| */ |
| if (idx) { |
| lli[idx-1].llp = 0x00000000; |
| lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32; |
| |
| /* Flush cache to memory */ |
| dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx), |
| DMA_BIDIRECTIONAL); |
| } |
| |
| return idx; |
| } |
| |
| /* |
| * Function: dma_dwc_xfer_start |
| * arguments: Channel number |
| * Return : None |
| * Enables the DMA channel |
| */ |
| static void dma_dwc_xfer_start(int dma_ch) |
| { |
| /* Enable the DMA channel */ |
| out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low), |
| in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) | |
| DMA_ENABLE_CHAN(dma_ch)); |
| } |
| |
| static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems, |
| struct lli *lli, dma_addr_t dma_lli, |
| void __iomem *addr, int dir) |
| { |
| int dma_ch; |
| int num_lli; |
| /* Acquire DMA channel */ |
| dma_ch = dma_request_channel(); |
| if (dma_ch == -1) { |
| dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n", |
| __func__); |
| return -EAGAIN; |
| } |
| |
| /* Convert SG list to linked list of items (LLIs) for AHB DMA */ |
| num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir); |
| |
| dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:" |
| " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems, |
| lli, (u32)dma_lli, addr, num_lli); |
| |
| clear_chan_interrupts(dma_ch); |
| |
| /* Program the CFG register. */ |
| out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high), |
| DMA_CFG_HW_HS_SRC(dma_ch) | DMA_CFG_HW_HS_DEST(dma_ch) | |
| DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ); |
| out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), |
| DMA_CFG_HW_CH_PRIOR(dma_ch)); |
| |
| /* Program the address of the linked list */ |
| out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low), |
| DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2)); |
| |
| /* Program the CTL register with src enable / dst enable */ |
| out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low), |
| DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN); |
| return dma_ch; |
| } |
| |
| /* |
| * Function: dma_dwc_exit |
| * arguments: None |
| * returns status |
| * This function exits the SATA DMA driver |
| */ |
| static void dma_dwc_exit(struct sata_dwc_device *hsdev) |
| { |
| dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__); |
| if (host_pvt.sata_dma_regs) { |
| iounmap(host_pvt.sata_dma_regs); |
| host_pvt.sata_dma_regs = NULL; |
| } |
| |
| if (hsdev->irq_dma) { |
| free_irq(hsdev->irq_dma, hsdev); |
| hsdev->irq_dma = 0; |
| } |
| } |
| |
| /* |
| * Function: dma_dwc_init |
| * arguments: hsdev |
| * returns status |
| * This function initializes the SATA DMA driver |
| */ |
| static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq) |
| { |
| int err; |
| |
| err = dma_request_interrupts(hsdev, irq); |
| if (err) { |
| dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns" |
| " %d\n", __func__, err); |
| return err; |
| } |
| |
| /* Enabe DMA */ |
| out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN); |
| |
| dev_notice(host_pvt.dwc_dev, "DMA initialized\n"); |
| dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\ |
| sata_dma_regs); |
| |
| return 0; |
| } |
| |
| static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val) |
| { |
| if (scr > SCR_NOTIFICATION) { |
| dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", |
| __func__, scr); |
| return -EINVAL; |
| } |
| |
| *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4)); |
| dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", |
| __func__, link->ap->print_id, scr, *val); |
| |
| return 0; |
| } |
| |
| static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val) |
| { |
| dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n", |
| __func__, link->ap->print_id, scr, val); |
| if (scr > SCR_NOTIFICATION) { |
| dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n", |
| __func__, scr); |
| return -EINVAL; |
| } |
| out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val); |
| |
| return 0; |
| } |
| |
| static u32 core_scr_read(unsigned int scr) |
| { |
| return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\ |
| (scr * 4)); |
| } |
| |
| static void core_scr_write(unsigned int scr, u32 val) |
| { |
| out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4), |
| val); |
| } |
| |
| static void clear_serror(void) |
| { |
| u32 val; |
| val = core_scr_read(SCR_ERROR); |
| core_scr_write(SCR_ERROR, val); |
| |
| } |
| |
| static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit) |
| { |
| out_le32(&hsdev->sata_dwc_regs->intpr, |
| in_le32(&hsdev->sata_dwc_regs->intpr)); |
| } |
| |
| static u32 qcmd_tag_to_mask(u8 tag) |
| { |
| return 0x00000001 << (tag & 0x1f); |
| } |
| |
| /* See ahci.c */ |
| static void sata_dwc_error_intr(struct ata_port *ap, |
| struct sata_dwc_device *hsdev, uint intpr) |
| { |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| struct ata_eh_info *ehi = &ap->link.eh_info; |
| unsigned int err_mask = 0, action = 0; |
| struct ata_queued_cmd *qc; |
| u32 serror; |
| u8 status, tag; |
| u32 err_reg; |
| |
| ata_ehi_clear_desc(ehi); |
| |
| serror = core_scr_read(SCR_ERROR); |
| status = ap->ops->sff_check_status(ap); |
| |
| err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\ |
| low)); |
| tag = ap->link.active_tag; |
| |
| dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x " |
| "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n", |
| __func__, serror, intpr, status, host_pvt.dma_interrupt_count, |
| hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg); |
| |
| /* Clear error register and interrupt bit */ |
| clear_serror(); |
| clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR); |
| |
| /* This is the only error happening now. TODO check for exact error */ |
| |
| err_mask |= AC_ERR_HOST_BUS; |
| action |= ATA_EH_RESET; |
| |
| /* Pass this on to EH */ |
| ehi->serror |= serror; |
| ehi->action |= action; |
| |
| qc = ata_qc_from_tag(ap, tag); |
| if (qc) |
| qc->err_mask |= err_mask; |
| else |
| ehi->err_mask |= err_mask; |
| |
| ata_port_abort(ap); |
| } |
| |
| /* |
| * Function : sata_dwc_isr |
| * arguments : irq, void *dev_instance, struct pt_regs *regs |
| * Return value : irqreturn_t - status of IRQ |
| * This Interrupt handler called via port ops registered function. |
| * .irq_handler = sata_dwc_isr |
| */ |
| static irqreturn_t sata_dwc_isr(int irq, void *dev_instance) |
| { |
| struct ata_host *host = (struct ata_host *)dev_instance; |
| struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host); |
| struct ata_port *ap; |
| struct ata_queued_cmd *qc; |
| unsigned long flags; |
| u8 status, tag; |
| int handled, num_processed, port = 0; |
| uint intpr, sactive, sactive2, tag_mask; |
| struct sata_dwc_device_port *hsdevp; |
| host_pvt.sata_dwc_sactive_issued = 0; |
| |
| spin_lock_irqsave(&host->lock, flags); |
| |
| /* Read the interrupt register */ |
| intpr = in_le32(&hsdev->sata_dwc_regs->intpr); |
| |
| ap = host->ports[port]; |
| hsdevp = HSDEVP_FROM_AP(ap); |
| |
| dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr, |
| ap->link.active_tag); |
| |
| /* Check for error interrupt */ |
| if (intpr & SATA_DWC_INTPR_ERR) { |
| sata_dwc_error_intr(ap, hsdev, intpr); |
| handled = 1; |
| goto DONE; |
| } |
| |
| /* Check for DMA SETUP FIS (FP DMA) interrupt */ |
| if (intpr & SATA_DWC_INTPR_NEWFP) { |
| clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP); |
| |
| tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr)); |
| dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag); |
| if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND) |
| dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag); |
| |
| host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag); |
| |
| qc = ata_qc_from_tag(ap, tag); |
| /* |
| * Start FP DMA for NCQ command. At this point the tag is the |
| * active tag. It is the tag that matches the command about to |
| * be completed. |
| */ |
| qc->ap->link.active_tag = tag; |
| sata_dwc_bmdma_start_by_tag(qc, tag); |
| |
| handled = 1; |
| goto DONE; |
| } |
| sactive = core_scr_read(SCR_ACTIVE); |
| tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; |
| |
| /* If no sactive issued and tag_mask is zero then this is not NCQ */ |
| if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) { |
| if (ap->link.active_tag == ATA_TAG_POISON) |
| tag = 0; |
| else |
| tag = ap->link.active_tag; |
| qc = ata_qc_from_tag(ap, tag); |
| |
| /* DEV interrupt w/ no active qc? */ |
| if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) { |
| dev_err(ap->dev, "%s interrupt with no active qc " |
| "qc=%p\n", __func__, qc); |
| ap->ops->sff_check_status(ap); |
| handled = 1; |
| goto DONE; |
| } |
| status = ap->ops->sff_check_status(ap); |
| |
| qc->ap->link.active_tag = tag; |
| hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; |
| |
| if (status & ATA_ERR) { |
| dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status); |
| sata_dwc_qc_complete(ap, qc, 1); |
| handled = 1; |
| goto DONE; |
| } |
| |
| dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n", |
| __func__, get_prot_descript(qc->tf.protocol)); |
| DRVSTILLBUSY: |
| if (ata_is_dma(qc->tf.protocol)) { |
| /* |
| * Each DMA transaction produces 2 interrupts. The DMAC |
| * transfer complete interrupt and the SATA controller |
| * operation done interrupt. The command should be |
| * completed only after both interrupts are seen. |
| */ |
| host_pvt.dma_interrupt_count++; |
| if (hsdevp->dma_pending[tag] == \ |
| SATA_DWC_DMA_PENDING_NONE) { |
| dev_err(ap->dev, "%s: DMA not pending " |
| "intpr=0x%08x status=0x%08x pending" |
| "=%d\n", __func__, intpr, status, |
| hsdevp->dma_pending[tag]); |
| } |
| |
| if ((host_pvt.dma_interrupt_count % 2) == 0) |
| sata_dwc_dma_xfer_complete(ap, 1); |
| } else if (ata_is_pio(qc->tf.protocol)) { |
| ata_sff_hsm_move(ap, qc, status, 0); |
| handled = 1; |
| goto DONE; |
| } else { |
| if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) |
| goto DRVSTILLBUSY; |
| } |
| |
| handled = 1; |
| goto DONE; |
| } |
| |
| /* |
| * This is a NCQ command. At this point we need to figure out for which |
| * tags we have gotten a completion interrupt. One interrupt may serve |
| * as completion for more than one operation when commands are queued |
| * (NCQ). We need to process each completed command. |
| */ |
| |
| /* process completed commands */ |
| sactive = core_scr_read(SCR_ACTIVE); |
| tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive; |
| |
| if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \ |
| tag_mask > 1) { |
| dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x" |
| "tag_mask=0x%08x\n", __func__, sactive, |
| host_pvt.sata_dwc_sactive_issued, tag_mask); |
| } |
| |
| if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \ |
| (host_pvt.sata_dwc_sactive_issued)) { |
| dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x " |
| "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask" |
| "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued, |
| tag_mask); |
| } |
| |
| /* read just to clear ... not bad if currently still busy */ |
| status = ap->ops->sff_check_status(ap); |
| dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status); |
| |
| tag = 0; |
| num_processed = 0; |
| while (tag_mask) { |
| num_processed++; |
| while (!(tag_mask & 0x00000001)) { |
| tag++; |
| tag_mask <<= 1; |
| } |
| |
| tag_mask &= (~0x00000001); |
| qc = ata_qc_from_tag(ap, tag); |
| |
| /* To be picked up by completion functions */ |
| qc->ap->link.active_tag = tag; |
| hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT; |
| |
| /* Let libata/scsi layers handle error */ |
| if (status & ATA_ERR) { |
| dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__, |
| status); |
| sata_dwc_qc_complete(ap, qc, 1); |
| handled = 1; |
| goto DONE; |
| } |
| |
| /* Process completed command */ |
| dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__, |
| get_prot_descript(qc->tf.protocol)); |
| if (ata_is_dma(qc->tf.protocol)) { |
| host_pvt.dma_interrupt_count++; |
| if (hsdevp->dma_pending[tag] == \ |
| SATA_DWC_DMA_PENDING_NONE) |
| dev_warn(ap->dev, "%s: DMA not pending?\n", |
| __func__); |
| if ((host_pvt.dma_interrupt_count % 2) == 0) |
| sata_dwc_dma_xfer_complete(ap, 1); |
| } else { |
| if (unlikely(sata_dwc_qc_complete(ap, qc, 1))) |
| goto STILLBUSY; |
| } |
| continue; |
| |
| STILLBUSY: |
| ap->stats.idle_irq++; |
| dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n", |
| ap->print_id); |
| } /* while tag_mask */ |
| |
| /* |
| * Check to see if any commands completed while we were processing our |
| * initial set of completed commands (read status clears interrupts, |
| * so we might miss a completed command interrupt if one came in while |
| * we were processing --we read status as part of processing a completed |
| * command). |
| */ |
| sactive2 = core_scr_read(SCR_ACTIVE); |
| if (sactive2 != sactive) { |
| dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2" |
| "=0x%x\n", sactive, sactive2); |
| } |
| handled = 1; |
| |
| DONE: |
| spin_unlock_irqrestore(&host->lock, flags); |
| return IRQ_RETVAL(handled); |
| } |
| |
| static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag) |
| { |
| struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp); |
| |
| if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) { |
| out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| SATA_DWC_DMACR_RX_CLEAR( |
| in_le32(&(hsdev->sata_dwc_regs->dmacr)))); |
| } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) { |
| out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| SATA_DWC_DMACR_TX_CLEAR( |
| in_le32(&(hsdev->sata_dwc_regs->dmacr)))); |
| } else { |
| /* |
| * This should not happen, it indicates the driver is out of |
| * sync. If it does happen, clear dmacr anyway. |
| */ |
| dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and" |
| "TX DMA not pending tag=0x%02x pending=%d" |
| " dmacr: 0x%08x\n", __func__, tag, |
| hsdevp->dma_pending[tag], |
| in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| out_le32(&(hsdev->sata_dwc_regs->dmacr), |
| SATA_DWC_DMACR_TXRXCH_CLEAR); |
| } |
| } |
| |
| static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status) |
| { |
| struct ata_queued_cmd *qc; |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| u8 tag = 0; |
| |
| tag = ap->link.active_tag; |
| qc = ata_qc_from_tag(ap, tag); |
| if (!qc) { |
| dev_err(ap->dev, "failed to get qc"); |
| return; |
| } |
| |
| #ifdef DEBUG_NCQ |
| if (tag > 0) { |
| dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s " |
| "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command, |
| get_dma_dir_descript(qc->dma_dir), |
| get_prot_descript(qc->tf.protocol), |
| in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| } |
| #endif |
| |
| if (ata_is_dma(qc->tf.protocol)) { |
| if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) { |
| dev_err(ap->dev, "%s DMA protocol RX and TX DMA not " |
| "pending dmacr: 0x%08x\n", __func__, |
| in_le32(&(hsdev->sata_dwc_regs->dmacr))); |
| } |
| |
| hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE; |
| sata_dwc_qc_complete(ap, qc, check_status); |
| ap->link.active_tag = ATA_TAG_POISON; |
| } else { |
| sata_dwc_qc_complete(ap, qc, check_status); |
| } |
| } |
| |
| static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc, |
| u32 check_status) |
| { |
| u8 status = 0; |
| u32 mask = 0x0; |
| u8 tag = qc->tag; |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| host_pvt.sata_dwc_sactive_queued = 0; |
| dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status); |
| |
| if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) |
| dev_err(ap->dev, "TX DMA PENDING\n"); |
| else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) |
| dev_err(ap->dev, "RX DMA PENDING\n"); |
| dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:" |
| " protocol=%d\n", qc->tf.command, status, ap->print_id, |
| qc->tf.protocol); |
| |
| /* clear active bit */ |
| mask = (~(qcmd_tag_to_mask(tag))); |
| host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \ |
| & mask; |
| host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \ |
| & mask; |
| ata_qc_complete(qc); |
| return 0; |
| } |
| |
| static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev) |
| { |
| /* Enable selective interrupts by setting the interrupt maskregister*/ |
| out_le32(&hsdev->sata_dwc_regs->intmr, |
| SATA_DWC_INTMR_ERRM | |
| SATA_DWC_INTMR_NEWFPM | |
| SATA_DWC_INTMR_PMABRTM | |
| SATA_DWC_INTMR_DMATM); |
| /* |
| * Unmask the error bits that should trigger an error interrupt by |
| * setting the error mask register. |
| */ |
| out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS); |
| |
| dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n", |
| __func__, in_le32(&hsdev->sata_dwc_regs->intmr), |
| in_le32(&hsdev->sata_dwc_regs->errmr)); |
| } |
| |
| static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base) |
| { |
| port->cmd_addr = (void *)base + 0x00; |
| port->data_addr = (void *)base + 0x00; |
| |
| port->error_addr = (void *)base + 0x04; |
| port->feature_addr = (void *)base + 0x04; |
| |
| port->nsect_addr = (void *)base + 0x08; |
| |
| port->lbal_addr = (void *)base + 0x0c; |
| port->lbam_addr = (void *)base + 0x10; |
| port->lbah_addr = (void *)base + 0x14; |
| |
| port->device_addr = (void *)base + 0x18; |
| port->command_addr = (void *)base + 0x1c; |
| port->status_addr = (void *)base + 0x1c; |
| |
| port->altstatus_addr = (void *)base + 0x20; |
| port->ctl_addr = (void *)base + 0x20; |
| } |
| |
| /* |
| * Function : sata_dwc_port_start |
| * arguments : struct ata_ioports *port |
| * Return value : returns 0 if success, error code otherwise |
| * This function allocates the scatter gather LLI table for AHB DMA |
| */ |
| static int sata_dwc_port_start(struct ata_port *ap) |
| { |
| int err = 0; |
| struct sata_dwc_device *hsdev; |
| struct sata_dwc_device_port *hsdevp = NULL; |
| struct device *pdev; |
| int i; |
| |
| hsdev = HSDEV_FROM_AP(ap); |
| |
| dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no); |
| |
| hsdev->host = ap->host; |
| pdev = ap->host->dev; |
| if (!pdev) { |
| dev_err(ap->dev, "%s: no ap->host->dev\n", __func__); |
| err = -ENODEV; |
| goto CLEANUP; |
| } |
| |
| /* Allocate Port Struct */ |
| hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL); |
| if (!hsdevp) { |
| dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__); |
| err = -ENOMEM; |
| goto CLEANUP; |
| } |
| hsdevp->hsdev = hsdev; |
| |
| for (i = 0; i < SATA_DWC_QCMD_MAX; i++) |
| hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT; |
| |
| ap->bmdma_prd = 0; /* set these so libata doesn't use them */ |
| ap->bmdma_prd_dma = 0; |
| |
| /* |
| * DMA - Assign scatter gather LLI table. We can't use the libata |
| * version since it's PRD is IDE PCI specific. |
| */ |
| for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { |
| hsdevp->llit[i] = dma_alloc_coherent(pdev, |
| SATA_DWC_DMAC_LLI_TBL_SZ, |
| &(hsdevp->llit_dma[i]), |
| GFP_ATOMIC); |
| if (!hsdevp->llit[i]) { |
| dev_err(ap->dev, "%s: dma_alloc_coherent failed\n", |
| __func__); |
| err = -ENOMEM; |
| goto CLEANUP_ALLOC; |
| } |
| } |
| |
| if (ap->port_no == 0) { |
| dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n", |
| __func__); |
| out_le32(&hsdev->sata_dwc_regs->dmacr, |
| SATA_DWC_DMACR_TXRXCH_CLEAR); |
| |
| dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n", |
| __func__); |
| out_le32(&hsdev->sata_dwc_regs->dbtsr, |
| (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | |
| SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT))); |
| } |
| |
| /* Clear any error bits before libata starts issuing commands */ |
| clear_serror(); |
| ap->private_data = hsdevp; |
| dev_dbg(ap->dev, "%s: done\n", __func__); |
| return 0; |
| |
| CLEANUP_ALLOC: |
| kfree(hsdevp); |
| CLEANUP: |
| dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id); |
| return err; |
| } |
| |
| static void sata_dwc_port_stop(struct ata_port *ap) |
| { |
| int i; |
| struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| |
| dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id); |
| |
| if (hsdevp && hsdev) { |
| /* deallocate LLI table */ |
| for (i = 0; i < SATA_DWC_QCMD_MAX; i++) { |
| dma_free_coherent(ap->host->dev, |
| SATA_DWC_DMAC_LLI_TBL_SZ, |
| hsdevp->llit[i], hsdevp->llit_dma[i]); |
| } |
| |
| kfree(hsdevp); |
| } |
| ap->private_data = NULL; |
| } |
| |
| /* |
| * Function : sata_dwc_exec_command_by_tag |
| * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued |
| * Return value : None |
| * This function keeps track of individual command tag ids and calls |
| * ata_exec_command in libata |
| */ |
| static void sata_dwc_exec_command_by_tag(struct ata_port *ap, |
| struct ata_taskfile *tf, |
| u8 tag, u32 cmd_issued) |
| { |
| unsigned long flags; |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| |
| dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command, |
| ata_get_cmd_descript(tf->command), tag); |
| |
| spin_lock_irqsave(&ap->host->lock, flags); |
| hsdevp->cmd_issued[tag] = cmd_issued; |
| spin_unlock_irqrestore(&ap->host->lock, flags); |
| /* |
| * Clear SError before executing a new command. |
| * sata_dwc_scr_write and read can not be used here. Clearing the PM |
| * managed SError register for the disk needs to be done before the |
| * task file is loaded. |
| */ |
| clear_serror(); |
| ata_sff_exec_command(ap, tf); |
| } |
| |
| static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| { |
| sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag, |
| SATA_DWC_CMD_ISSUED_PEND); |
| } |
| |
| static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc) |
| { |
| u8 tag = qc->tag; |
| |
| if (ata_is_ncq(qc->tf.protocol)) { |
| dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", |
| __func__, qc->ap->link.sactive, tag); |
| } else { |
| tag = 0; |
| } |
| sata_dwc_bmdma_setup_by_tag(qc, tag); |
| } |
| |
| static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| { |
| int start_dma; |
| u32 reg, dma_chan; |
| struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc); |
| struct ata_port *ap = qc->ap; |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| int dir = qc->dma_dir; |
| dma_chan = hsdevp->dma_chan[tag]; |
| |
| if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) { |
| start_dma = 1; |
| if (dir == DMA_TO_DEVICE) |
| hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX; |
| else |
| hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX; |
| } else { |
| dev_err(ap->dev, "%s: Command not pending cmd_issued=%d " |
| "(tag=%d) DMA NOT started\n", __func__, |
| hsdevp->cmd_issued[tag], tag); |
| start_dma = 0; |
| } |
| |
| dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s " |
| "start_dma? %x\n", __func__, qc, tag, qc->tf.command, |
| get_dma_dir_descript(qc->dma_dir), start_dma); |
| sata_dwc_tf_dump(&(qc->tf)); |
| |
| if (start_dma) { |
| reg = core_scr_read(SCR_ERROR); |
| if (reg & SATA_DWC_SERROR_ERR_BITS) { |
| dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n", |
| __func__, reg); |
| } |
| |
| if (dir == DMA_TO_DEVICE) |
| out_le32(&hsdev->sata_dwc_regs->dmacr, |
| SATA_DWC_DMACR_TXCHEN); |
| else |
| out_le32(&hsdev->sata_dwc_regs->dmacr, |
| SATA_DWC_DMACR_RXCHEN); |
| |
| /* Enable AHB DMA transfer on the specified channel */ |
| dma_dwc_xfer_start(dma_chan); |
| } |
| } |
| |
| static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc) |
| { |
| u8 tag = qc->tag; |
| |
| if (ata_is_ncq(qc->tf.protocol)) { |
| dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n", |
| __func__, qc->ap->link.sactive, tag); |
| } else { |
| tag = 0; |
| } |
| dev_dbg(qc->ap->dev, "%s\n", __func__); |
| sata_dwc_bmdma_start_by_tag(qc, tag); |
| } |
| |
| /* |
| * Function : sata_dwc_qc_prep_by_tag |
| * arguments : ata_queued_cmd *qc, u8 tag |
| * Return value : None |
| * qc_prep for a particular queued command based on tag |
| */ |
| static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag) |
| { |
| struct scatterlist *sg = qc->sg; |
| struct ata_port *ap = qc->ap; |
| int dma_chan; |
| struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap); |
| struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap); |
| |
| dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n", |
| __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir), |
| qc->n_elem); |
| |
| dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag], |
| hsdevp->llit_dma[tag], |
| (void *__iomem)(&hsdev->sata_dwc_regs->\ |
| dmadr), qc->dma_dir); |
| if (dma_chan < 0) { |
| dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n", |
| __func__, dma_chan); |
| return; |
| } |
| hsdevp->dma_chan[tag] = dma_chan; |
| } |
| |
| static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc) |
| { |
| u32 sactive; |
| u8 tag = qc->tag; |
| struct ata_port *ap = qc->ap; |
| |
| #ifdef DEBUG_NCQ |
| if (qc->tag > 0 || ap->link.sactive > 1) |
| dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d " |
| "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n", |
| __func__, ap->print_id, qc->tf.command, |
| ata_get_cmd_descript(qc->tf.command), |
| qc->tag, get_prot_descript(qc->tf.protocol), |
| ap->link.active_tag, ap->link.sactive); |
| #endif |
| |
| if (!ata_is_ncq(qc->tf.protocol)) |
| tag = 0; |
| sata_dwc_qc_prep_by_tag(qc, tag); |
| |
| if (ata_is_ncq(qc->tf.protocol)) { |
| sactive = core_scr_read(SCR_ACTIVE); |
| sactive |= (0x00000001 << tag); |
| core_scr_write(SCR_ACTIVE, sactive); |
| |
| dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x " |
| "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive, |
| sactive); |
| |
| ap->ops->sff_tf_load(ap, &qc->tf); |
| sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag, |
| SATA_DWC_CMD_ISSUED_PEND); |
| } else { |
| ata_sff_qc_issue(qc); |
| } |
| return 0; |
| } |
| |
| /* |
| * Function : sata_dwc_qc_prep |
| * arguments : ata_queued_cmd *qc |
| * Return value : None |
| * qc_prep for a particular queued command |
| */ |
| |
| static void sata_dwc_qc_prep(struct ata_queued_cmd *qc) |
| { |
| if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO)) |
| return; |
| |
| #ifdef DEBUG_NCQ |
| if (qc->tag > 0) |
| dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n", |
| __func__, qc->tag, qc->ap->link.active_tag); |
| |
| return ; |
| #endif |
| } |
| |
| static void sata_dwc_error_handler(struct ata_port *ap) |
| { |
| ata_sff_error_handler(ap); |
| } |
| |
| int sata_dwc_hardreset(struct ata_link *link, unsigned int *class, |
| unsigned long deadline) |
| { |
| struct sata_dwc_device *hsdev = HSDEV_FROM_AP(link->ap); |
| int ret; |
| |
| ret = sata_sff_hardreset(link, class, deadline); |
| |
| sata_dwc_enable_interrupts(hsdev); |
| |
| /* Reconfigure the DMA control register */ |
| out_le32(&hsdev->sata_dwc_regs->dmacr, |
| SATA_DWC_DMACR_TXRXCH_CLEAR); |
| |
| /* Reconfigure the DMA Burst Transaction Size register */ |
| out_le32(&hsdev->sata_dwc_regs->dbtsr, |
| SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) | |
| SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)); |
| |
| return ret; |
| } |
| |
| /* |
| * scsi mid-layer and libata interface structures |
| */ |
| static struct scsi_host_template sata_dwc_sht = { |
| ATA_NCQ_SHT(DRV_NAME), |
| /* |
| * test-only: Currently this driver doesn't handle NCQ |
| * correctly. We enable NCQ but set the queue depth to a |
| * max of 1. This will get fixed in in a future release. |
| */ |
| .sg_tablesize = LIBATA_MAX_PRD, |
| .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */ |
| .dma_boundary = ATA_DMA_BOUNDARY, |
| }; |
| |
| static struct ata_port_operations sata_dwc_ops = { |
| .inherits = &ata_sff_port_ops, |
| |
| .error_handler = sata_dwc_error_handler, |
| .hardreset = sata_dwc_hardreset, |
| |
| .qc_prep = sata_dwc_qc_prep, |
| .qc_issue = sata_dwc_qc_issue, |
| |
| .scr_read = sata_dwc_scr_read, |
| .scr_write = sata_dwc_scr_write, |
| |
| .port_start = sata_dwc_port_start, |
| .port_stop = sata_dwc_port_stop, |
| |
| .bmdma_setup = sata_dwc_bmdma_setup, |
| .bmdma_start = sata_dwc_bmdma_start, |
| }; |
| |
| static const struct ata_port_info sata_dwc_port_info[] = { |
| { |
| .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ, |
| .pio_mask = ATA_PIO4, |
| .udma_mask = ATA_UDMA6, |
| .port_ops = &sata_dwc_ops, |
| }, |
| }; |
| |
| static int sata_dwc_probe(struct platform_device *ofdev) |
| { |
| struct sata_dwc_device *hsdev; |
| u32 idr, versionr; |
| char *ver = (char *)&versionr; |
| u8 *base = NULL; |
| int err = 0; |
| int irq; |
| struct ata_host *host; |
| struct ata_port_info pi = sata_dwc_port_info[0]; |
| const struct ata_port_info *ppi[] = { &pi, NULL }; |
| struct device_node *np = ofdev->dev.of_node; |
| u32 dma_chan; |
| |
| /* Allocate DWC SATA device */ |
| hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL); |
| if (hsdev == NULL) { |
| dev_err(&ofdev->dev, "kmalloc failed for hsdev\n"); |
| err = -ENOMEM; |
| goto error; |
| } |
| |
| if (of_property_read_u32(np, "dma-channel", &dma_chan)) { |
| dev_warn(&ofdev->dev, "no dma-channel property set." |
| " Use channel 0\n"); |
| dma_chan = 0; |
| } |
| host_pvt.dma_channel = dma_chan; |
| |
| /* Ioremap SATA registers */ |
| base = of_iomap(ofdev->dev.of_node, 0); |
| if (!base) { |
| dev_err(&ofdev->dev, "ioremap failed for SATA register" |
| " address\n"); |
| err = -ENODEV; |
| goto error_kmalloc; |
| } |
| hsdev->reg_base = base; |
| dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n"); |
| |
| /* Synopsys DWC SATA specific Registers */ |
| hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET); |
| |
| /* Allocate and fill host */ |
| host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS); |
| if (!host) { |
| dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n"); |
| err = -ENOMEM; |
| goto error_iomap; |
| } |
| |
| host->private_data = hsdev; |
| |
| /* Setup port */ |
| host->ports[0]->ioaddr.cmd_addr = base; |
| host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET; |
| host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET; |
| sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base); |
| |
| /* Read the ID and Version Registers */ |
| idr = in_le32(&hsdev->sata_dwc_regs->idr); |
| versionr = in_le32(&hsdev->sata_dwc_regs->versionr); |
| dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n", |
| idr, ver[0], ver[1], ver[2]); |
| |
| /* Get SATA DMA interrupt number */ |
| irq = irq_of_parse_and_map(ofdev->dev.of_node, 1); |
| if (irq == NO_IRQ) { |
| dev_err(&ofdev->dev, "no SATA DMA irq\n"); |
| err = -ENODEV; |
| goto error_iomap; |
| } |
| |
| /* Get physical SATA DMA register base address */ |
| host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1); |
| if (!(host_pvt.sata_dma_regs)) { |
| dev_err(&ofdev->dev, "ioremap failed for AHBDMA register" |
| " address\n"); |
| err = -ENODEV; |
| goto error_iomap; |
| } |
| |
| /* Save dev for later use in dev_xxx() routines */ |
| host_pvt.dwc_dev = &ofdev->dev; |
| |
| /* Initialize AHB DMAC */ |
| err = dma_dwc_init(hsdev, irq); |
| if (err) |
| goto error_dma_iomap; |
| |
| /* Enable SATA Interrupts */ |
| sata_dwc_enable_interrupts(hsdev); |
| |
| /* Get SATA interrupt number */ |
| irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); |
| if (irq == NO_IRQ) { |
| dev_err(&ofdev->dev, "no SATA DMA irq\n"); |
| err = -ENODEV; |
| goto error_out; |
| } |
| |
| /* |
| * Now, register with libATA core, this will also initiate the |
| * device discovery process, invoking our port_start() handler & |
| * error_handler() to execute a dummy Softreset EH session |
| */ |
| err = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht); |
| if (err) |
| dev_err(&ofdev->dev, "failed to activate host"); |
| |
| dev_set_drvdata(&ofdev->dev, host); |
| return 0; |
| |
| error_out: |
| /* Free SATA DMA resources */ |
| dma_dwc_exit(hsdev); |
| error_dma_iomap: |
| iounmap((void __iomem *)host_pvt.sata_dma_regs); |
| error_iomap: |
| iounmap(base); |
| error_kmalloc: |
| kfree(hsdev); |
| error: |
| return err; |
| } |
| |
| static int sata_dwc_remove(struct platform_device *ofdev) |
| { |
| struct device *dev = &ofdev->dev; |
| struct ata_host *host = dev_get_drvdata(dev); |
| struct sata_dwc_device *hsdev = host->private_data; |
| |
| ata_host_detach(host); |
| |
| /* Free SATA DMA resources */ |
| dma_dwc_exit(hsdev); |
| |
| iounmap((void __iomem *)host_pvt.sata_dma_regs); |
| iounmap(hsdev->reg_base); |
| kfree(hsdev); |
| kfree(host); |
| dev_dbg(&ofdev->dev, "done\n"); |
| return 0; |
| } |
| |
| static const struct of_device_id sata_dwc_match[] = { |
| { .compatible = "amcc,sata-460ex", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, sata_dwc_match); |
| |
| static struct platform_driver sata_dwc_driver = { |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = sata_dwc_match, |
| }, |
| .probe = sata_dwc_probe, |
| .remove = sata_dwc_remove, |
| }; |
| |
| module_platform_driver(sata_dwc_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>"); |
| MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver"); |
| MODULE_VERSION(DRV_VERSION); |