| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2007 Alan Stern |
| * Copyright (C) IBM Corporation, 2009 |
| * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com> |
| * |
| * Thanks to Ingo Molnar for his many suggestions. |
| * |
| * Authors: Alan Stern <stern@rowland.harvard.edu> |
| * K.Prasad <prasad@linux.vnet.ibm.com> |
| * Frederic Weisbecker <fweisbec@gmail.com> |
| */ |
| |
| /* |
| * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, |
| * using the CPU's debug registers. |
| * This file contains the arch-independent routines. |
| */ |
| |
| #include <linux/hw_breakpoint.h> |
| |
| #include <linux/atomic.h> |
| #include <linux/bug.h> |
| #include <linux/cpu.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/irqflags.h> |
| #include <linux/kdebug.h> |
| #include <linux/kernel.h> |
| #include <linux/mutex.h> |
| #include <linux/notifier.h> |
| #include <linux/percpu-rwsem.h> |
| #include <linux/percpu.h> |
| #include <linux/rhashtable.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| /* |
| * Datastructure to track the total uses of N slots across tasks or CPUs; |
| * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots. |
| */ |
| struct bp_slots_histogram { |
| #ifdef hw_breakpoint_slots |
| atomic_t count[hw_breakpoint_slots(0)]; |
| #else |
| atomic_t *count; |
| #endif |
| }; |
| |
| /* |
| * Per-CPU constraints data. |
| */ |
| struct bp_cpuinfo { |
| /* Number of pinned CPU breakpoints in a CPU. */ |
| unsigned int cpu_pinned; |
| /* Histogram of pinned task breakpoints in a CPU. */ |
| struct bp_slots_histogram tsk_pinned; |
| }; |
| |
| static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]); |
| |
| static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type) |
| { |
| return per_cpu_ptr(bp_cpuinfo + type, cpu); |
| } |
| |
| /* Number of pinned CPU breakpoints globally. */ |
| static struct bp_slots_histogram cpu_pinned[TYPE_MAX]; |
| /* Number of pinned CPU-independent task breakpoints. */ |
| static struct bp_slots_histogram tsk_pinned_all[TYPE_MAX]; |
| |
| /* Keep track of the breakpoints attached to tasks */ |
| static struct rhltable task_bps_ht; |
| static const struct rhashtable_params task_bps_ht_params = { |
| .head_offset = offsetof(struct hw_perf_event, bp_list), |
| .key_offset = offsetof(struct hw_perf_event, target), |
| .key_len = sizeof_field(struct hw_perf_event, target), |
| .automatic_shrinking = true, |
| }; |
| |
| static bool constraints_initialized __ro_after_init; |
| |
| /* |
| * Synchronizes accesses to the per-CPU constraints; the locking rules are: |
| * |
| * 1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock |
| * (due to bp_slots_histogram::count being atomic, no update are lost). |
| * |
| * 2. Holding a write-lock is required for computations that require a |
| * stable snapshot of all bp_cpuinfo::tsk_pinned. |
| * |
| * 3. In all other cases, non-atomic accesses require the appropriately held |
| * lock (read-lock for read-only accesses; write-lock for reads/writes). |
| */ |
| DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem); |
| |
| /* |
| * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since |
| * rhltable synchronizes concurrent insertions/deletions, independent tasks may |
| * insert/delete concurrently; therefore, a mutex per task is sufficient. |
| * |
| * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a |
| * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is |
| * that hw_breakpoint may contend with per-task perf event list management. The |
| * assumption is that perf usecases involving hw_breakpoints are very unlikely |
| * to result in unnecessary contention. |
| */ |
| static inline struct mutex *get_task_bps_mutex(struct perf_event *bp) |
| { |
| struct task_struct *tsk = bp->hw.target; |
| |
| return tsk ? &tsk->perf_event_mutex : NULL; |
| } |
| |
| static struct mutex *bp_constraints_lock(struct perf_event *bp) |
| { |
| struct mutex *tsk_mtx = get_task_bps_mutex(bp); |
| |
| if (tsk_mtx) { |
| /* |
| * Fully analogous to the perf_try_init_event() nesting |
| * argument in the comment near perf_event_ctx_lock_nested(); |
| * this child->perf_event_mutex cannot ever deadlock against |
| * the parent->perf_event_mutex usage from |
| * perf_event_task_{en,dis}able(). |
| * |
| * Specifically, inherited events will never occur on |
| * ->perf_event_list. |
| */ |
| mutex_lock_nested(tsk_mtx, SINGLE_DEPTH_NESTING); |
| percpu_down_read(&bp_cpuinfo_sem); |
| } else { |
| percpu_down_write(&bp_cpuinfo_sem); |
| } |
| |
| return tsk_mtx; |
| } |
| |
| static void bp_constraints_unlock(struct mutex *tsk_mtx) |
| { |
| if (tsk_mtx) { |
| percpu_up_read(&bp_cpuinfo_sem); |
| mutex_unlock(tsk_mtx); |
| } else { |
| percpu_up_write(&bp_cpuinfo_sem); |
| } |
| } |
| |
| static bool bp_constraints_is_locked(struct perf_event *bp) |
| { |
| struct mutex *tsk_mtx = get_task_bps_mutex(bp); |
| |
| return percpu_is_write_locked(&bp_cpuinfo_sem) || |
| (tsk_mtx ? mutex_is_locked(tsk_mtx) : |
| percpu_is_read_locked(&bp_cpuinfo_sem)); |
| } |
| |
| static inline void assert_bp_constraints_lock_held(struct perf_event *bp) |
| { |
| struct mutex *tsk_mtx = get_task_bps_mutex(bp); |
| |
| if (tsk_mtx) |
| lockdep_assert_held(tsk_mtx); |
| lockdep_assert_held(&bp_cpuinfo_sem); |
| } |
| |
| #ifdef hw_breakpoint_slots |
| /* |
| * Number of breakpoint slots is constant, and the same for all types. |
| */ |
| static_assert(hw_breakpoint_slots(TYPE_INST) == hw_breakpoint_slots(TYPE_DATA)); |
| static inline int hw_breakpoint_slots_cached(int type) { return hw_breakpoint_slots(type); } |
| static inline int init_breakpoint_slots(void) { return 0; } |
| #else |
| /* |
| * Dynamic number of breakpoint slots. |
| */ |
| static int __nr_bp_slots[TYPE_MAX] __ro_after_init; |
| |
| static inline int hw_breakpoint_slots_cached(int type) |
| { |
| return __nr_bp_slots[type]; |
| } |
| |
| static __init bool |
| bp_slots_histogram_alloc(struct bp_slots_histogram *hist, enum bp_type_idx type) |
| { |
| hist->count = kcalloc(hw_breakpoint_slots_cached(type), sizeof(*hist->count), GFP_KERNEL); |
| return hist->count; |
| } |
| |
| static __init void bp_slots_histogram_free(struct bp_slots_histogram *hist) |
| { |
| kfree(hist->count); |
| } |
| |
| static __init int init_breakpoint_slots(void) |
| { |
| int i, cpu, err_cpu; |
| |
| for (i = 0; i < TYPE_MAX; i++) |
| __nr_bp_slots[i] = hw_breakpoint_slots(i); |
| |
| for_each_possible_cpu(cpu) { |
| for (i = 0; i < TYPE_MAX; i++) { |
| struct bp_cpuinfo *info = get_bp_info(cpu, i); |
| |
| if (!bp_slots_histogram_alloc(&info->tsk_pinned, i)) |
| goto err; |
| } |
| } |
| for (i = 0; i < TYPE_MAX; i++) { |
| if (!bp_slots_histogram_alloc(&cpu_pinned[i], i)) |
| goto err; |
| if (!bp_slots_histogram_alloc(&tsk_pinned_all[i], i)) |
| goto err; |
| } |
| |
| return 0; |
| err: |
| for_each_possible_cpu(err_cpu) { |
| for (i = 0; i < TYPE_MAX; i++) |
| bp_slots_histogram_free(&get_bp_info(err_cpu, i)->tsk_pinned); |
| if (err_cpu == cpu) |
| break; |
| } |
| for (i = 0; i < TYPE_MAX; i++) { |
| bp_slots_histogram_free(&cpu_pinned[i]); |
| bp_slots_histogram_free(&tsk_pinned_all[i]); |
| } |
| |
| return -ENOMEM; |
| } |
| #endif |
| |
| static inline void |
| bp_slots_histogram_add(struct bp_slots_histogram *hist, int old, int val) |
| { |
| const int old_idx = old - 1; |
| const int new_idx = old_idx + val; |
| |
| if (old_idx >= 0) |
| WARN_ON(atomic_dec_return_relaxed(&hist->count[old_idx]) < 0); |
| if (new_idx >= 0) |
| WARN_ON(atomic_inc_return_relaxed(&hist->count[new_idx]) < 0); |
| } |
| |
| static int |
| bp_slots_histogram_max(struct bp_slots_histogram *hist, enum bp_type_idx type) |
| { |
| for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) { |
| const int count = atomic_read(&hist->count[i]); |
| |
| /* Catch unexpected writers; we want a stable snapshot. */ |
| ASSERT_EXCLUSIVE_WRITER(hist->count[i]); |
| if (count > 0) |
| return i + 1; |
| WARN(count < 0, "inconsistent breakpoint slots histogram"); |
| } |
| |
| return 0; |
| } |
| |
| static int |
| bp_slots_histogram_max_merge(struct bp_slots_histogram *hist1, struct bp_slots_histogram *hist2, |
| enum bp_type_idx type) |
| { |
| for (int i = hw_breakpoint_slots_cached(type) - 1; i >= 0; i--) { |
| const int count1 = atomic_read(&hist1->count[i]); |
| const int count2 = atomic_read(&hist2->count[i]); |
| |
| /* Catch unexpected writers; we want a stable snapshot. */ |
| ASSERT_EXCLUSIVE_WRITER(hist1->count[i]); |
| ASSERT_EXCLUSIVE_WRITER(hist2->count[i]); |
| if (count1 + count2 > 0) |
| return i + 1; |
| WARN(count1 < 0, "inconsistent breakpoint slots histogram"); |
| WARN(count2 < 0, "inconsistent breakpoint slots histogram"); |
| } |
| |
| return 0; |
| } |
| |
| #ifndef hw_breakpoint_weight |
| static inline int hw_breakpoint_weight(struct perf_event *bp) |
| { |
| return 1; |
| } |
| #endif |
| |
| static inline enum bp_type_idx find_slot_idx(u64 bp_type) |
| { |
| if (bp_type & HW_BREAKPOINT_RW) |
| return TYPE_DATA; |
| |
| return TYPE_INST; |
| } |
| |
| /* |
| * Return the maximum number of pinned breakpoints a task has in this CPU. |
| */ |
| static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) |
| { |
| struct bp_slots_histogram *tsk_pinned = &get_bp_info(cpu, type)->tsk_pinned; |
| |
| /* |
| * At this point we want to have acquired the bp_cpuinfo_sem as a |
| * writer to ensure that there are no concurrent writers in |
| * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot. |
| */ |
| lockdep_assert_held_write(&bp_cpuinfo_sem); |
| return bp_slots_histogram_max_merge(tsk_pinned, &tsk_pinned_all[type], type); |
| } |
| |
| /* |
| * Count the number of breakpoints of the same type and same task. |
| * The given event must be not on the list. |
| * |
| * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent, |
| * returns a negative value. |
| */ |
| static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type) |
| { |
| struct rhlist_head *head, *pos; |
| struct perf_event *iter; |
| int count = 0; |
| |
| /* |
| * We need a stable snapshot of the per-task breakpoint list. |
| */ |
| assert_bp_constraints_lock_held(bp); |
| |
| rcu_read_lock(); |
| head = rhltable_lookup(&task_bps_ht, &bp->hw.target, task_bps_ht_params); |
| if (!head) |
| goto out; |
| |
| rhl_for_each_entry_rcu(iter, pos, head, hw.bp_list) { |
| if (find_slot_idx(iter->attr.bp_type) != type) |
| continue; |
| |
| if (iter->cpu >= 0) { |
| if (cpu == -1) { |
| count = -1; |
| goto out; |
| } else if (cpu != iter->cpu) |
| continue; |
| } |
| |
| count += hw_breakpoint_weight(iter); |
| } |
| |
| out: |
| rcu_read_unlock(); |
| return count; |
| } |
| |
| static const struct cpumask *cpumask_of_bp(struct perf_event *bp) |
| { |
| if (bp->cpu >= 0) |
| return cpumask_of(bp->cpu); |
| return cpu_possible_mask; |
| } |
| |
| /* |
| * Returns the max pinned breakpoint slots in a given |
| * CPU (cpu > -1) or across all of them (cpu = -1). |
| */ |
| static int |
| max_bp_pinned_slots(struct perf_event *bp, enum bp_type_idx type) |
| { |
| const struct cpumask *cpumask = cpumask_of_bp(bp); |
| int pinned_slots = 0; |
| int cpu; |
| |
| if (bp->hw.target && bp->cpu < 0) { |
| int max_pinned = task_bp_pinned(-1, bp, type); |
| |
| if (max_pinned >= 0) { |
| /* |
| * Fast path: task_bp_pinned() is CPU-independent and |
| * returns the same value for any CPU. |
| */ |
| max_pinned += bp_slots_histogram_max(&cpu_pinned[type], type); |
| return max_pinned; |
| } |
| } |
| |
| for_each_cpu(cpu, cpumask) { |
| struct bp_cpuinfo *info = get_bp_info(cpu, type); |
| int nr; |
| |
| nr = info->cpu_pinned; |
| if (!bp->hw.target) |
| nr += max_task_bp_pinned(cpu, type); |
| else |
| nr += task_bp_pinned(cpu, bp, type); |
| |
| pinned_slots = max(nr, pinned_slots); |
| } |
| |
| return pinned_slots; |
| } |
| |
| /* |
| * Add/remove the given breakpoint in our constraint table |
| */ |
| static int |
| toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight) |
| { |
| int cpu, next_tsk_pinned; |
| |
| if (!enable) |
| weight = -weight; |
| |
| if (!bp->hw.target) { |
| /* |
| * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the |
| * global histogram. |
| */ |
| struct bp_cpuinfo *info = get_bp_info(bp->cpu, type); |
| |
| lockdep_assert_held_write(&bp_cpuinfo_sem); |
| bp_slots_histogram_add(&cpu_pinned[type], info->cpu_pinned, weight); |
| info->cpu_pinned += weight; |
| return 0; |
| } |
| |
| /* |
| * If bp->hw.target, tsk_pinned is only modified, but not used |
| * otherwise. We can permit concurrent updates as long as there are no |
| * other uses: having acquired bp_cpuinfo_sem as a reader allows |
| * concurrent updates here. Uses of tsk_pinned will require acquiring |
| * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value. |
| */ |
| lockdep_assert_held_read(&bp_cpuinfo_sem); |
| |
| /* |
| * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global |
| * histogram. We need to take care of 4 cases: |
| * |
| * 1. This breakpoint targets all CPUs (cpu < 0), and there may only |
| * exist other task breakpoints targeting all CPUs. In this case we |
| * can simply update the global slots histogram. |
| * |
| * 2. This breakpoint targets a specific CPU (cpu >= 0), but there may |
| * only exist other task breakpoints targeting all CPUs. |
| * |
| * a. On enable: remove the existing breakpoints from the global |
| * slots histogram and use the per-CPU histogram. |
| * |
| * b. On disable: re-insert the existing breakpoints into the global |
| * slots histogram and remove from per-CPU histogram. |
| * |
| * 3. Some other existing task breakpoints target specific CPUs. Only |
| * update the per-CPU slots histogram. |
| */ |
| |
| if (!enable) { |
| /* |
| * Remove before updating histograms so we can determine if this |
| * was the last task breakpoint for a specific CPU. |
| */ |
| int ret = rhltable_remove(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params); |
| |
| if (ret) |
| return ret; |
| } |
| /* |
| * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint. |
| */ |
| next_tsk_pinned = task_bp_pinned(-1, bp, type); |
| |
| if (next_tsk_pinned >= 0) { |
| if (bp->cpu < 0) { /* Case 1: fast path */ |
| if (!enable) |
| next_tsk_pinned += hw_breakpoint_weight(bp); |
| bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, weight); |
| } else if (enable) { /* Case 2.a: slow path */ |
| /* Add existing to per-CPU histograms. */ |
| for_each_possible_cpu(cpu) { |
| bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned, |
| 0, next_tsk_pinned); |
| } |
| /* Add this first CPU-pinned task breakpoint. */ |
| bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned, |
| next_tsk_pinned, weight); |
| /* Rebalance global task pinned histogram. */ |
| bp_slots_histogram_add(&tsk_pinned_all[type], next_tsk_pinned, |
| -next_tsk_pinned); |
| } else { /* Case 2.b: slow path */ |
| /* Remove this last CPU-pinned task breakpoint. */ |
| bp_slots_histogram_add(&get_bp_info(bp->cpu, type)->tsk_pinned, |
| next_tsk_pinned + hw_breakpoint_weight(bp), weight); |
| /* Remove all from per-CPU histograms. */ |
| for_each_possible_cpu(cpu) { |
| bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned, |
| next_tsk_pinned, -next_tsk_pinned); |
| } |
| /* Rebalance global task pinned histogram. */ |
| bp_slots_histogram_add(&tsk_pinned_all[type], 0, next_tsk_pinned); |
| } |
| } else { /* Case 3: slow path */ |
| const struct cpumask *cpumask = cpumask_of_bp(bp); |
| |
| for_each_cpu(cpu, cpumask) { |
| next_tsk_pinned = task_bp_pinned(cpu, bp, type); |
| if (!enable) |
| next_tsk_pinned += hw_breakpoint_weight(bp); |
| bp_slots_histogram_add(&get_bp_info(cpu, type)->tsk_pinned, |
| next_tsk_pinned, weight); |
| } |
| } |
| |
| /* |
| * Readers want a stable snapshot of the per-task breakpoint list. |
| */ |
| assert_bp_constraints_lock_held(bp); |
| |
| if (enable) |
| return rhltable_insert(&task_bps_ht, &bp->hw.bp_list, task_bps_ht_params); |
| |
| return 0; |
| } |
| |
| /* |
| * Constraints to check before allowing this new breakpoint counter. |
| * |
| * Note: Flexible breakpoints are currently unimplemented, but outlined in the |
| * below algorithm for completeness. The implementation treats flexible as |
| * pinned due to no guarantee that we currently always schedule flexible events |
| * before a pinned event in a same CPU. |
| * |
| * == Non-pinned counter == (Considered as pinned for now) |
| * |
| * - If attached to a single cpu, check: |
| * |
| * (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu) |
| * + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM |
| * |
| * -> If there are already non-pinned counters in this cpu, it means |
| * there is already a free slot for them. |
| * Otherwise, we check that the maximum number of per task |
| * breakpoints (for this cpu) plus the number of per cpu breakpoint |
| * (for this cpu) doesn't cover every registers. |
| * |
| * - If attached to every cpus, check: |
| * |
| * (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *)) |
| * + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM |
| * |
| * -> This is roughly the same, except we check the number of per cpu |
| * bp for every cpu and we keep the max one. Same for the per tasks |
| * breakpoints. |
| * |
| * |
| * == Pinned counter == |
| * |
| * - If attached to a single cpu, check: |
| * |
| * ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu) |
| * + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM |
| * |
| * -> Same checks as before. But now the info->flexible, if any, must keep |
| * one register at least (or they will never be fed). |
| * |
| * - If attached to every cpus, check: |
| * |
| * ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *)) |
| * + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM |
| */ |
| static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type) |
| { |
| enum bp_type_idx type; |
| int max_pinned_slots; |
| int weight; |
| |
| /* We couldn't initialize breakpoint constraints on boot */ |
| if (!constraints_initialized) |
| return -ENOMEM; |
| |
| /* Basic checks */ |
| if (bp_type == HW_BREAKPOINT_EMPTY || |
| bp_type == HW_BREAKPOINT_INVALID) |
| return -EINVAL; |
| |
| type = find_slot_idx(bp_type); |
| weight = hw_breakpoint_weight(bp); |
| |
| /* Check if this new breakpoint can be satisfied across all CPUs. */ |
| max_pinned_slots = max_bp_pinned_slots(bp, type) + weight; |
| if (max_pinned_slots > hw_breakpoint_slots_cached(type)) |
| return -ENOSPC; |
| |
| return toggle_bp_slot(bp, true, type, weight); |
| } |
| |
| int reserve_bp_slot(struct perf_event *bp) |
| { |
| struct mutex *mtx = bp_constraints_lock(bp); |
| int ret = __reserve_bp_slot(bp, bp->attr.bp_type); |
| |
| bp_constraints_unlock(mtx); |
| return ret; |
| } |
| |
| static void __release_bp_slot(struct perf_event *bp, u64 bp_type) |
| { |
| enum bp_type_idx type; |
| int weight; |
| |
| type = find_slot_idx(bp_type); |
| weight = hw_breakpoint_weight(bp); |
| WARN_ON(toggle_bp_slot(bp, false, type, weight)); |
| } |
| |
| void release_bp_slot(struct perf_event *bp) |
| { |
| struct mutex *mtx = bp_constraints_lock(bp); |
| |
| __release_bp_slot(bp, bp->attr.bp_type); |
| bp_constraints_unlock(mtx); |
| } |
| |
| static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type) |
| { |
| int err; |
| |
| __release_bp_slot(bp, old_type); |
| |
| err = __reserve_bp_slot(bp, new_type); |
| if (err) { |
| /* |
| * Reserve the old_type slot back in case |
| * there's no space for the new type. |
| * |
| * This must succeed, because we just released |
| * the old_type slot in the __release_bp_slot |
| * call above. If not, something is broken. |
| */ |
| WARN_ON(__reserve_bp_slot(bp, old_type)); |
| } |
| |
| return err; |
| } |
| |
| static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type) |
| { |
| struct mutex *mtx = bp_constraints_lock(bp); |
| int ret = __modify_bp_slot(bp, old_type, new_type); |
| |
| bp_constraints_unlock(mtx); |
| return ret; |
| } |
| |
| /* |
| * Allow the kernel debugger to reserve breakpoint slots without |
| * taking a lock using the dbg_* variant of for the reserve and |
| * release breakpoint slots. |
| */ |
| int dbg_reserve_bp_slot(struct perf_event *bp) |
| { |
| int ret; |
| |
| if (bp_constraints_is_locked(bp)) |
| return -1; |
| |
| /* Locks aren't held; disable lockdep assert checking. */ |
| lockdep_off(); |
| ret = __reserve_bp_slot(bp, bp->attr.bp_type); |
| lockdep_on(); |
| |
| return ret; |
| } |
| |
| int dbg_release_bp_slot(struct perf_event *bp) |
| { |
| if (bp_constraints_is_locked(bp)) |
| return -1; |
| |
| /* Locks aren't held; disable lockdep assert checking. */ |
| lockdep_off(); |
| __release_bp_slot(bp, bp->attr.bp_type); |
| lockdep_on(); |
| |
| return 0; |
| } |
| |
| static int hw_breakpoint_parse(struct perf_event *bp, |
| const struct perf_event_attr *attr, |
| struct arch_hw_breakpoint *hw) |
| { |
| int err; |
| |
| err = hw_breakpoint_arch_parse(bp, attr, hw); |
| if (err) |
| return err; |
| |
| if (arch_check_bp_in_kernelspace(hw)) { |
| if (attr->exclude_kernel) |
| return -EINVAL; |
| /* |
| * Don't let unprivileged users set a breakpoint in the trap |
| * path to avoid trap recursion attacks. |
| */ |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| } |
| |
| return 0; |
| } |
| |
| int register_perf_hw_breakpoint(struct perf_event *bp) |
| { |
| struct arch_hw_breakpoint hw = { }; |
| int err; |
| |
| err = reserve_bp_slot(bp); |
| if (err) |
| return err; |
| |
| err = hw_breakpoint_parse(bp, &bp->attr, &hw); |
| if (err) { |
| release_bp_slot(bp); |
| return err; |
| } |
| |
| bp->hw.info = hw; |
| |
| return 0; |
| } |
| |
| /** |
| * register_user_hw_breakpoint - register a hardware breakpoint for user space |
| * @attr: breakpoint attributes |
| * @triggered: callback to trigger when we hit the breakpoint |
| * @context: context data could be used in the triggered callback |
| * @tsk: pointer to 'task_struct' of the process to which the address belongs |
| */ |
| struct perf_event * |
| register_user_hw_breakpoint(struct perf_event_attr *attr, |
| perf_overflow_handler_t triggered, |
| void *context, |
| struct task_struct *tsk) |
| { |
| return perf_event_create_kernel_counter(attr, -1, tsk, triggered, |
| context); |
| } |
| EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); |
| |
| static void hw_breakpoint_copy_attr(struct perf_event_attr *to, |
| struct perf_event_attr *from) |
| { |
| to->bp_addr = from->bp_addr; |
| to->bp_type = from->bp_type; |
| to->bp_len = from->bp_len; |
| to->disabled = from->disabled; |
| } |
| |
| int |
| modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr, |
| bool check) |
| { |
| struct arch_hw_breakpoint hw = { }; |
| int err; |
| |
| err = hw_breakpoint_parse(bp, attr, &hw); |
| if (err) |
| return err; |
| |
| if (check) { |
| struct perf_event_attr old_attr; |
| |
| old_attr = bp->attr; |
| hw_breakpoint_copy_attr(&old_attr, attr); |
| if (memcmp(&old_attr, attr, sizeof(*attr))) |
| return -EINVAL; |
| } |
| |
| if (bp->attr.bp_type != attr->bp_type) { |
| err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type); |
| if (err) |
| return err; |
| } |
| |
| hw_breakpoint_copy_attr(&bp->attr, attr); |
| bp->hw.info = hw; |
| |
| return 0; |
| } |
| |
| /** |
| * modify_user_hw_breakpoint - modify a user-space hardware breakpoint |
| * @bp: the breakpoint structure to modify |
| * @attr: new breakpoint attributes |
| */ |
| int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) |
| { |
| int err; |
| |
| /* |
| * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it |
| * will not be possible to raise IPIs that invoke __perf_event_disable. |
| * So call the function directly after making sure we are targeting the |
| * current task. |
| */ |
| if (irqs_disabled() && bp->ctx && bp->ctx->task == current) |
| perf_event_disable_local(bp); |
| else |
| perf_event_disable(bp); |
| |
| err = modify_user_hw_breakpoint_check(bp, attr, false); |
| |
| if (!bp->attr.disabled) |
| perf_event_enable(bp); |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); |
| |
| /** |
| * unregister_hw_breakpoint - unregister a user-space hardware breakpoint |
| * @bp: the breakpoint structure to unregister |
| */ |
| void unregister_hw_breakpoint(struct perf_event *bp) |
| { |
| if (!bp) |
| return; |
| perf_event_release_kernel(bp); |
| } |
| EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); |
| |
| /** |
| * register_wide_hw_breakpoint - register a wide breakpoint in the kernel |
| * @attr: breakpoint attributes |
| * @triggered: callback to trigger when we hit the breakpoint |
| * @context: context data could be used in the triggered callback |
| * |
| * @return a set of per_cpu pointers to perf events |
| */ |
| struct perf_event * __percpu * |
| register_wide_hw_breakpoint(struct perf_event_attr *attr, |
| perf_overflow_handler_t triggered, |
| void *context) |
| { |
| struct perf_event * __percpu *cpu_events, *bp; |
| long err = 0; |
| int cpu; |
| |
| cpu_events = alloc_percpu(typeof(*cpu_events)); |
| if (!cpu_events) |
| return (void __percpu __force *)ERR_PTR(-ENOMEM); |
| |
| cpus_read_lock(); |
| for_each_online_cpu(cpu) { |
| bp = perf_event_create_kernel_counter(attr, cpu, NULL, |
| triggered, context); |
| if (IS_ERR(bp)) { |
| err = PTR_ERR(bp); |
| break; |
| } |
| |
| per_cpu(*cpu_events, cpu) = bp; |
| } |
| cpus_read_unlock(); |
| |
| if (likely(!err)) |
| return cpu_events; |
| |
| unregister_wide_hw_breakpoint(cpu_events); |
| return (void __percpu __force *)ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); |
| |
| /** |
| * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel |
| * @cpu_events: the per cpu set of events to unregister |
| */ |
| void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| unregister_hw_breakpoint(per_cpu(*cpu_events, cpu)); |
| |
| free_percpu(cpu_events); |
| } |
| EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); |
| |
| /** |
| * hw_breakpoint_is_used - check if breakpoints are currently used |
| * |
| * Returns: true if breakpoints are used, false otherwise. |
| */ |
| bool hw_breakpoint_is_used(void) |
| { |
| int cpu; |
| |
| if (!constraints_initialized) |
| return false; |
| |
| for_each_possible_cpu(cpu) { |
| for (int type = 0; type < TYPE_MAX; ++type) { |
| struct bp_cpuinfo *info = get_bp_info(cpu, type); |
| |
| if (info->cpu_pinned) |
| return true; |
| |
| for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) { |
| if (atomic_read(&info->tsk_pinned.count[slot])) |
| return true; |
| } |
| } |
| } |
| |
| for (int type = 0; type < TYPE_MAX; ++type) { |
| for (int slot = 0; slot < hw_breakpoint_slots_cached(type); ++slot) { |
| /* |
| * Warn, because if there are CPU pinned counters, |
| * should never get here; bp_cpuinfo::cpu_pinned should |
| * be consistent with the global cpu_pinned histogram. |
| */ |
| if (WARN_ON(atomic_read(&cpu_pinned[type].count[slot]))) |
| return true; |
| |
| if (atomic_read(&tsk_pinned_all[type].count[slot])) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static struct notifier_block hw_breakpoint_exceptions_nb = { |
| .notifier_call = hw_breakpoint_exceptions_notify, |
| /* we need to be notified first */ |
| .priority = 0x7fffffff |
| }; |
| |
| static void bp_perf_event_destroy(struct perf_event *event) |
| { |
| release_bp_slot(event); |
| } |
| |
| static int hw_breakpoint_event_init(struct perf_event *bp) |
| { |
| int err; |
| |
| if (bp->attr.type != PERF_TYPE_BREAKPOINT) |
| return -ENOENT; |
| |
| /* |
| * no branch sampling for breakpoint events |
| */ |
| if (has_branch_stack(bp)) |
| return -EOPNOTSUPP; |
| |
| err = register_perf_hw_breakpoint(bp); |
| if (err) |
| return err; |
| |
| bp->destroy = bp_perf_event_destroy; |
| |
| return 0; |
| } |
| |
| static int hw_breakpoint_add(struct perf_event *bp, int flags) |
| { |
| if (!(flags & PERF_EF_START)) |
| bp->hw.state = PERF_HES_STOPPED; |
| |
| if (is_sampling_event(bp)) { |
| bp->hw.last_period = bp->hw.sample_period; |
| perf_swevent_set_period(bp); |
| } |
| |
| return arch_install_hw_breakpoint(bp); |
| } |
| |
| static void hw_breakpoint_del(struct perf_event *bp, int flags) |
| { |
| arch_uninstall_hw_breakpoint(bp); |
| } |
| |
| static void hw_breakpoint_start(struct perf_event *bp, int flags) |
| { |
| bp->hw.state = 0; |
| } |
| |
| static void hw_breakpoint_stop(struct perf_event *bp, int flags) |
| { |
| bp->hw.state = PERF_HES_STOPPED; |
| } |
| |
| static struct pmu perf_breakpoint = { |
| .task_ctx_nr = perf_sw_context, /* could eventually get its own */ |
| |
| .event_init = hw_breakpoint_event_init, |
| .add = hw_breakpoint_add, |
| .del = hw_breakpoint_del, |
| .start = hw_breakpoint_start, |
| .stop = hw_breakpoint_stop, |
| .read = hw_breakpoint_pmu_read, |
| }; |
| |
| int __init init_hw_breakpoint(void) |
| { |
| int ret; |
| |
| ret = rhltable_init(&task_bps_ht, &task_bps_ht_params); |
| if (ret) |
| return ret; |
| |
| ret = init_breakpoint_slots(); |
| if (ret) |
| return ret; |
| |
| constraints_initialized = true; |
| |
| perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT); |
| |
| return register_die_notifier(&hw_breakpoint_exceptions_nb); |
| } |