| /* inflate.c -- zlib decompression |
| * Copyright (C) 1995-2005 Mark Adler |
| * For conditions of distribution and use, see copyright notice in zlib.h |
| * |
| * Based on zlib 1.2.3 but modified for the Linux Kernel by |
| * Richard Purdie <richard@openedhand.com> |
| * |
| * Changes mainly for static instead of dynamic memory allocation |
| * |
| */ |
| |
| #include <linux/zutil.h> |
| #include "inftrees.h" |
| #include "inflate.h" |
| #include "inffast.h" |
| #include "infutil.h" |
| |
| /* architecture-specific bits */ |
| #ifdef CONFIG_ZLIB_DFLTCC |
| # include "../zlib_dfltcc/dfltcc_inflate.h" |
| #else |
| #define INFLATE_RESET_HOOK(strm) do {} while (0) |
| #define INFLATE_TYPEDO_HOOK(strm, flush) do {} while (0) |
| #define INFLATE_NEED_UPDATEWINDOW(strm) 1 |
| #define INFLATE_NEED_CHECKSUM(strm) 1 |
| #endif |
| |
| int zlib_inflate_workspacesize(void) |
| { |
| return sizeof(struct inflate_workspace); |
| } |
| |
| int zlib_inflateReset(z_streamp strm) |
| { |
| struct inflate_state *state; |
| |
| if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; |
| state = (struct inflate_state *)strm->state; |
| strm->total_in = strm->total_out = state->total = 0; |
| strm->msg = NULL; |
| strm->adler = 1; /* to support ill-conceived Java test suite */ |
| state->mode = HEAD; |
| state->last = 0; |
| state->havedict = 0; |
| state->dmax = 32768U; |
| state->hold = 0; |
| state->bits = 0; |
| state->lencode = state->distcode = state->next = state->codes; |
| |
| /* Initialise Window */ |
| state->wsize = 1U << state->wbits; |
| state->write = 0; |
| state->whave = 0; |
| |
| INFLATE_RESET_HOOK(strm); |
| return Z_OK; |
| } |
| |
| int zlib_inflateInit2(z_streamp strm, int windowBits) |
| { |
| struct inflate_state *state; |
| |
| if (strm == NULL) return Z_STREAM_ERROR; |
| strm->msg = NULL; /* in case we return an error */ |
| |
| state = &WS(strm)->inflate_state; |
| strm->state = (struct internal_state *)state; |
| |
| if (windowBits < 0) { |
| state->wrap = 0; |
| windowBits = -windowBits; |
| } |
| else { |
| state->wrap = (windowBits >> 4) + 1; |
| } |
| if (windowBits < 8 || windowBits > 15) { |
| return Z_STREAM_ERROR; |
| } |
| state->wbits = (unsigned)windowBits; |
| #ifdef CONFIG_ZLIB_DFLTCC |
| /* |
| * DFLTCC requires the window to be page aligned. |
| * Thus, we overallocate and take the aligned portion of the buffer. |
| */ |
| state->window = PTR_ALIGN(&WS(strm)->working_window[0], PAGE_SIZE); |
| #else |
| state->window = &WS(strm)->working_window[0]; |
| #endif |
| |
| return zlib_inflateReset(strm); |
| } |
| |
| /* |
| Return state with length and distance decoding tables and index sizes set to |
| fixed code decoding. This returns fixed tables from inffixed.h. |
| */ |
| static void zlib_fixedtables(struct inflate_state *state) |
| { |
| # include "inffixed.h" |
| state->lencode = lenfix; |
| state->lenbits = 9; |
| state->distcode = distfix; |
| state->distbits = 5; |
| } |
| |
| |
| /* |
| Update the window with the last wsize (normally 32K) bytes written before |
| returning. This is only called when a window is already in use, or when |
| output has been written during this inflate call, but the end of the deflate |
| stream has not been reached yet. It is also called to window dictionary data |
| when a dictionary is loaded. |
| |
| Providing output buffers larger than 32K to inflate() should provide a speed |
| advantage, since only the last 32K of output is copied to the sliding window |
| upon return from inflate(), and since all distances after the first 32K of |
| output will fall in the output data, making match copies simpler and faster. |
| The advantage may be dependent on the size of the processor's data caches. |
| */ |
| static void zlib_updatewindow(z_streamp strm, unsigned out) |
| { |
| struct inflate_state *state; |
| unsigned copy, dist; |
| |
| state = (struct inflate_state *)strm->state; |
| |
| /* copy state->wsize or less output bytes into the circular window */ |
| copy = out - strm->avail_out; |
| if (copy >= state->wsize) { |
| memcpy(state->window, strm->next_out - state->wsize, state->wsize); |
| state->write = 0; |
| state->whave = state->wsize; |
| } |
| else { |
| dist = state->wsize - state->write; |
| if (dist > copy) dist = copy; |
| memcpy(state->window + state->write, strm->next_out - copy, dist); |
| copy -= dist; |
| if (copy) { |
| memcpy(state->window, strm->next_out - copy, copy); |
| state->write = copy; |
| state->whave = state->wsize; |
| } |
| else { |
| state->write += dist; |
| if (state->write == state->wsize) state->write = 0; |
| if (state->whave < state->wsize) state->whave += dist; |
| } |
| } |
| } |
| |
| |
| /* |
| * At the end of a Deflate-compressed PPP packet, we expect to have seen |
| * a `stored' block type value but not the (zero) length bytes. |
| */ |
| /* |
| Returns true if inflate is currently at the end of a block generated by |
| Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP |
| implementation to provide an additional safety check. PPP uses |
| Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored |
| block. When decompressing, PPP checks that at the end of input packet, |
| inflate is waiting for these length bytes. |
| */ |
| static int zlib_inflateSyncPacket(z_streamp strm) |
| { |
| struct inflate_state *state; |
| |
| if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; |
| state = (struct inflate_state *)strm->state; |
| |
| if (state->mode == STORED && state->bits == 0) { |
| state->mode = TYPE; |
| return Z_OK; |
| } |
| return Z_DATA_ERROR; |
| } |
| |
| /* Macros for inflate(): */ |
| |
| /* check function to use adler32() for zlib or crc32() for gzip */ |
| #define UPDATE(check, buf, len) zlib_adler32(check, buf, len) |
| |
| /* Load registers with state in inflate() for speed */ |
| #define LOAD() \ |
| do { \ |
| put = strm->next_out; \ |
| left = strm->avail_out; \ |
| next = strm->next_in; \ |
| have = strm->avail_in; \ |
| hold = state->hold; \ |
| bits = state->bits; \ |
| } while (0) |
| |
| /* Restore state from registers in inflate() */ |
| #define RESTORE() \ |
| do { \ |
| strm->next_out = put; \ |
| strm->avail_out = left; \ |
| strm->next_in = next; \ |
| strm->avail_in = have; \ |
| state->hold = hold; \ |
| state->bits = bits; \ |
| } while (0) |
| |
| /* Clear the input bit accumulator */ |
| #define INITBITS() \ |
| do { \ |
| hold = 0; \ |
| bits = 0; \ |
| } while (0) |
| |
| /* Get a byte of input into the bit accumulator, or return from inflate() |
| if there is no input available. */ |
| #define PULLBYTE() \ |
| do { \ |
| if (have == 0) goto inf_leave; \ |
| have--; \ |
| hold += (unsigned long)(*next++) << bits; \ |
| bits += 8; \ |
| } while (0) |
| |
| /* Assure that there are at least n bits in the bit accumulator. If there is |
| not enough available input to do that, then return from inflate(). */ |
| #define NEEDBITS(n) \ |
| do { \ |
| while (bits < (unsigned)(n)) \ |
| PULLBYTE(); \ |
| } while (0) |
| |
| /* Return the low n bits of the bit accumulator (n < 16) */ |
| #define BITS(n) \ |
| ((unsigned)hold & ((1U << (n)) - 1)) |
| |
| /* Remove n bits from the bit accumulator */ |
| #define DROPBITS(n) \ |
| do { \ |
| hold >>= (n); \ |
| bits -= (unsigned)(n); \ |
| } while (0) |
| |
| /* Remove zero to seven bits as needed to go to a byte boundary */ |
| #define BYTEBITS() \ |
| do { \ |
| hold >>= bits & 7; \ |
| bits -= bits & 7; \ |
| } while (0) |
| |
| /* |
| inflate() uses a state machine to process as much input data and generate as |
| much output data as possible before returning. The state machine is |
| structured roughly as follows: |
| |
| for (;;) switch (state) { |
| ... |
| case STATEn: |
| if (not enough input data or output space to make progress) |
| return; |
| ... make progress ... |
| state = STATEm; |
| break; |
| ... |
| } |
| |
| so when inflate() is called again, the same case is attempted again, and |
| if the appropriate resources are provided, the machine proceeds to the |
| next state. The NEEDBITS() macro is usually the way the state evaluates |
| whether it can proceed or should return. NEEDBITS() does the return if |
| the requested bits are not available. The typical use of the BITS macros |
| is: |
| |
| NEEDBITS(n); |
| ... do something with BITS(n) ... |
| DROPBITS(n); |
| |
| where NEEDBITS(n) either returns from inflate() if there isn't enough |
| input left to load n bits into the accumulator, or it continues. BITS(n) |
| gives the low n bits in the accumulator. When done, DROPBITS(n) drops |
| the low n bits off the accumulator. INITBITS() clears the accumulator |
| and sets the number of available bits to zero. BYTEBITS() discards just |
| enough bits to put the accumulator on a byte boundary. After BYTEBITS() |
| and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. |
| |
| NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return |
| if there is no input available. The decoding of variable length codes uses |
| PULLBYTE() directly in order to pull just enough bytes to decode the next |
| code, and no more. |
| |
| Some states loop until they get enough input, making sure that enough |
| state information is maintained to continue the loop where it left off |
| if NEEDBITS() returns in the loop. For example, want, need, and keep |
| would all have to actually be part of the saved state in case NEEDBITS() |
| returns: |
| |
| case STATEw: |
| while (want < need) { |
| NEEDBITS(n); |
| keep[want++] = BITS(n); |
| DROPBITS(n); |
| } |
| state = STATEx; |
| case STATEx: |
| |
| As shown above, if the next state is also the next case, then the break |
| is omitted. |
| |
| A state may also return if there is not enough output space available to |
| complete that state. Those states are copying stored data, writing a |
| literal byte, and copying a matching string. |
| |
| When returning, a "goto inf_leave" is used to update the total counters, |
| update the check value, and determine whether any progress has been made |
| during that inflate() call in order to return the proper return code. |
| Progress is defined as a change in either strm->avail_in or strm->avail_out. |
| When there is a window, goto inf_leave will update the window with the last |
| output written. If a goto inf_leave occurs in the middle of decompression |
| and there is no window currently, goto inf_leave will create one and copy |
| output to the window for the next call of inflate(). |
| |
| In this implementation, the flush parameter of inflate() only affects the |
| return code (per zlib.h). inflate() always writes as much as possible to |
| strm->next_out, given the space available and the provided input--the effect |
| documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers |
| the allocation of and copying into a sliding window until necessary, which |
| provides the effect documented in zlib.h for Z_FINISH when the entire input |
| stream available. So the only thing the flush parameter actually does is: |
| when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it |
| will return Z_BUF_ERROR if it has not reached the end of the stream. |
| */ |
| |
| int zlib_inflate(z_streamp strm, int flush) |
| { |
| struct inflate_state *state; |
| const unsigned char *next; /* next input */ |
| unsigned char *put; /* next output */ |
| unsigned have, left; /* available input and output */ |
| unsigned long hold; /* bit buffer */ |
| unsigned bits; /* bits in bit buffer */ |
| unsigned in, out; /* save starting available input and output */ |
| unsigned copy; /* number of stored or match bytes to copy */ |
| unsigned char *from; /* where to copy match bytes from */ |
| code this; /* current decoding table entry */ |
| code last; /* parent table entry */ |
| unsigned len; /* length to copy for repeats, bits to drop */ |
| int ret; /* return code */ |
| static const unsigned short order[19] = /* permutation of code lengths */ |
| {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| |
| /* Do not check for strm->next_out == NULL here as ppc zImage |
| inflates to strm->next_out = 0 */ |
| |
| if (strm == NULL || strm->state == NULL || |
| (strm->next_in == NULL && strm->avail_in != 0)) |
| return Z_STREAM_ERROR; |
| |
| state = (struct inflate_state *)strm->state; |
| |
| if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ |
| LOAD(); |
| in = have; |
| out = left; |
| ret = Z_OK; |
| for (;;) |
| switch (state->mode) { |
| case HEAD: |
| if (state->wrap == 0) { |
| state->mode = TYPEDO; |
| break; |
| } |
| NEEDBITS(16); |
| if ( |
| ((BITS(8) << 8) + (hold >> 8)) % 31) { |
| strm->msg = (char *)"incorrect header check"; |
| state->mode = BAD; |
| break; |
| } |
| if (BITS(4) != Z_DEFLATED) { |
| strm->msg = (char *)"unknown compression method"; |
| state->mode = BAD; |
| break; |
| } |
| DROPBITS(4); |
| len = BITS(4) + 8; |
| if (len > state->wbits) { |
| strm->msg = (char *)"invalid window size"; |
| state->mode = BAD; |
| break; |
| } |
| state->dmax = 1U << len; |
| strm->adler = state->check = zlib_adler32(0L, NULL, 0); |
| state->mode = hold & 0x200 ? DICTID : TYPE; |
| INITBITS(); |
| break; |
| case DICTID: |
| NEEDBITS(32); |
| strm->adler = state->check = REVERSE(hold); |
| INITBITS(); |
| state->mode = DICT; |
| fallthrough; |
| case DICT: |
| if (state->havedict == 0) { |
| RESTORE(); |
| return Z_NEED_DICT; |
| } |
| strm->adler = state->check = zlib_adler32(0L, NULL, 0); |
| state->mode = TYPE; |
| fallthrough; |
| case TYPE: |
| if (flush == Z_BLOCK) goto inf_leave; |
| fallthrough; |
| case TYPEDO: |
| INFLATE_TYPEDO_HOOK(strm, flush); |
| if (state->last) { |
| BYTEBITS(); |
| state->mode = CHECK; |
| break; |
| } |
| NEEDBITS(3); |
| state->last = BITS(1); |
| DROPBITS(1); |
| switch (BITS(2)) { |
| case 0: /* stored block */ |
| state->mode = STORED; |
| break; |
| case 1: /* fixed block */ |
| zlib_fixedtables(state); |
| state->mode = LEN; /* decode codes */ |
| break; |
| case 2: /* dynamic block */ |
| state->mode = TABLE; |
| break; |
| case 3: |
| strm->msg = (char *)"invalid block type"; |
| state->mode = BAD; |
| } |
| DROPBITS(2); |
| break; |
| case STORED: |
| BYTEBITS(); /* go to byte boundary */ |
| NEEDBITS(32); |
| if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { |
| strm->msg = (char *)"invalid stored block lengths"; |
| state->mode = BAD; |
| break; |
| } |
| state->length = (unsigned)hold & 0xffff; |
| INITBITS(); |
| state->mode = COPY; |
| fallthrough; |
| case COPY: |
| copy = state->length; |
| if (copy) { |
| if (copy > have) copy = have; |
| if (copy > left) copy = left; |
| if (copy == 0) goto inf_leave; |
| memcpy(put, next, copy); |
| have -= copy; |
| next += copy; |
| left -= copy; |
| put += copy; |
| state->length -= copy; |
| break; |
| } |
| state->mode = TYPE; |
| break; |
| case TABLE: |
| NEEDBITS(14); |
| state->nlen = BITS(5) + 257; |
| DROPBITS(5); |
| state->ndist = BITS(5) + 1; |
| DROPBITS(5); |
| state->ncode = BITS(4) + 4; |
| DROPBITS(4); |
| #ifndef PKZIP_BUG_WORKAROUND |
| if (state->nlen > 286 || state->ndist > 30) { |
| strm->msg = (char *)"too many length or distance symbols"; |
| state->mode = BAD; |
| break; |
| } |
| #endif |
| state->have = 0; |
| state->mode = LENLENS; |
| fallthrough; |
| case LENLENS: |
| while (state->have < state->ncode) { |
| NEEDBITS(3); |
| state->lens[order[state->have++]] = (unsigned short)BITS(3); |
| DROPBITS(3); |
| } |
| while (state->have < 19) |
| state->lens[order[state->have++]] = 0; |
| state->next = state->codes; |
| state->lencode = (code const *)(state->next); |
| state->lenbits = 7; |
| ret = zlib_inflate_table(CODES, state->lens, 19, &(state->next), |
| &(state->lenbits), state->work); |
| if (ret) { |
| strm->msg = (char *)"invalid code lengths set"; |
| state->mode = BAD; |
| break; |
| } |
| state->have = 0; |
| state->mode = CODELENS; |
| fallthrough; |
| case CODELENS: |
| while (state->have < state->nlen + state->ndist) { |
| for (;;) { |
| this = state->lencode[BITS(state->lenbits)]; |
| if ((unsigned)(this.bits) <= bits) break; |
| PULLBYTE(); |
| } |
| if (this.val < 16) { |
| NEEDBITS(this.bits); |
| DROPBITS(this.bits); |
| state->lens[state->have++] = this.val; |
| } |
| else { |
| if (this.val == 16) { |
| NEEDBITS(this.bits + 2); |
| DROPBITS(this.bits); |
| if (state->have == 0) { |
| strm->msg = (char *)"invalid bit length repeat"; |
| state->mode = BAD; |
| break; |
| } |
| len = state->lens[state->have - 1]; |
| copy = 3 + BITS(2); |
| DROPBITS(2); |
| } |
| else if (this.val == 17) { |
| NEEDBITS(this.bits + 3); |
| DROPBITS(this.bits); |
| len = 0; |
| copy = 3 + BITS(3); |
| DROPBITS(3); |
| } |
| else { |
| NEEDBITS(this.bits + 7); |
| DROPBITS(this.bits); |
| len = 0; |
| copy = 11 + BITS(7); |
| DROPBITS(7); |
| } |
| if (state->have + copy > state->nlen + state->ndist) { |
| strm->msg = (char *)"invalid bit length repeat"; |
| state->mode = BAD; |
| break; |
| } |
| while (copy--) |
| state->lens[state->have++] = (unsigned short)len; |
| } |
| } |
| |
| /* handle error breaks in while */ |
| if (state->mode == BAD) break; |
| |
| /* build code tables */ |
| state->next = state->codes; |
| state->lencode = (code const *)(state->next); |
| state->lenbits = 9; |
| ret = zlib_inflate_table(LENS, state->lens, state->nlen, &(state->next), |
| &(state->lenbits), state->work); |
| if (ret) { |
| strm->msg = (char *)"invalid literal/lengths set"; |
| state->mode = BAD; |
| break; |
| } |
| state->distcode = (code const *)(state->next); |
| state->distbits = 6; |
| ret = zlib_inflate_table(DISTS, state->lens + state->nlen, state->ndist, |
| &(state->next), &(state->distbits), state->work); |
| if (ret) { |
| strm->msg = (char *)"invalid distances set"; |
| state->mode = BAD; |
| break; |
| } |
| state->mode = LEN; |
| fallthrough; |
| case LEN: |
| if (have >= 6 && left >= 258) { |
| RESTORE(); |
| inflate_fast(strm, out); |
| LOAD(); |
| break; |
| } |
| for (;;) { |
| this = state->lencode[BITS(state->lenbits)]; |
| if ((unsigned)(this.bits) <= bits) break; |
| PULLBYTE(); |
| } |
| if (this.op && (this.op & 0xf0) == 0) { |
| last = this; |
| for (;;) { |
| this = state->lencode[last.val + |
| (BITS(last.bits + last.op) >> last.bits)]; |
| if ((unsigned)(last.bits + this.bits) <= bits) break; |
| PULLBYTE(); |
| } |
| DROPBITS(last.bits); |
| } |
| DROPBITS(this.bits); |
| state->length = (unsigned)this.val; |
| if ((int)(this.op) == 0) { |
| state->mode = LIT; |
| break; |
| } |
| if (this.op & 32) { |
| state->mode = TYPE; |
| break; |
| } |
| if (this.op & 64) { |
| strm->msg = (char *)"invalid literal/length code"; |
| state->mode = BAD; |
| break; |
| } |
| state->extra = (unsigned)(this.op) & 15; |
| state->mode = LENEXT; |
| fallthrough; |
| case LENEXT: |
| if (state->extra) { |
| NEEDBITS(state->extra); |
| state->length += BITS(state->extra); |
| DROPBITS(state->extra); |
| } |
| state->mode = DIST; |
| fallthrough; |
| case DIST: |
| for (;;) { |
| this = state->distcode[BITS(state->distbits)]; |
| if ((unsigned)(this.bits) <= bits) break; |
| PULLBYTE(); |
| } |
| if ((this.op & 0xf0) == 0) { |
| last = this; |
| for (;;) { |
| this = state->distcode[last.val + |
| (BITS(last.bits + last.op) >> last.bits)]; |
| if ((unsigned)(last.bits + this.bits) <= bits) break; |
| PULLBYTE(); |
| } |
| DROPBITS(last.bits); |
| } |
| DROPBITS(this.bits); |
| if (this.op & 64) { |
| strm->msg = (char *)"invalid distance code"; |
| state->mode = BAD; |
| break; |
| } |
| state->offset = (unsigned)this.val; |
| state->extra = (unsigned)(this.op) & 15; |
| state->mode = DISTEXT; |
| fallthrough; |
| case DISTEXT: |
| if (state->extra) { |
| NEEDBITS(state->extra); |
| state->offset += BITS(state->extra); |
| DROPBITS(state->extra); |
| } |
| #ifdef INFLATE_STRICT |
| if (state->offset > state->dmax) { |
| strm->msg = (char *)"invalid distance too far back"; |
| state->mode = BAD; |
| break; |
| } |
| #endif |
| if (state->offset > state->whave + out - left) { |
| strm->msg = (char *)"invalid distance too far back"; |
| state->mode = BAD; |
| break; |
| } |
| state->mode = MATCH; |
| fallthrough; |
| case MATCH: |
| if (left == 0) goto inf_leave; |
| copy = out - left; |
| if (state->offset > copy) { /* copy from window */ |
| copy = state->offset - copy; |
| if (copy > state->write) { |
| copy -= state->write; |
| from = state->window + (state->wsize - copy); |
| } |
| else |
| from = state->window + (state->write - copy); |
| if (copy > state->length) copy = state->length; |
| } |
| else { /* copy from output */ |
| from = put - state->offset; |
| copy = state->length; |
| } |
| if (copy > left) copy = left; |
| left -= copy; |
| state->length -= copy; |
| do { |
| *put++ = *from++; |
| } while (--copy); |
| if (state->length == 0) state->mode = LEN; |
| break; |
| case LIT: |
| if (left == 0) goto inf_leave; |
| *put++ = (unsigned char)(state->length); |
| left--; |
| state->mode = LEN; |
| break; |
| case CHECK: |
| if (state->wrap) { |
| NEEDBITS(32); |
| out -= left; |
| strm->total_out += out; |
| state->total += out; |
| if (INFLATE_NEED_CHECKSUM(strm) && out) |
| strm->adler = state->check = |
| UPDATE(state->check, put - out, out); |
| out = left; |
| if (( |
| REVERSE(hold)) != state->check) { |
| strm->msg = (char *)"incorrect data check"; |
| state->mode = BAD; |
| break; |
| } |
| INITBITS(); |
| } |
| state->mode = DONE; |
| fallthrough; |
| case DONE: |
| ret = Z_STREAM_END; |
| goto inf_leave; |
| case BAD: |
| ret = Z_DATA_ERROR; |
| goto inf_leave; |
| case MEM: |
| return Z_MEM_ERROR; |
| case SYNC: |
| default: |
| return Z_STREAM_ERROR; |
| } |
| |
| /* |
| Return from inflate(), updating the total counts and the check value. |
| If there was no progress during the inflate() call, return a buffer |
| error. Call zlib_updatewindow() to create and/or update the window state. |
| */ |
| inf_leave: |
| RESTORE(); |
| if (INFLATE_NEED_UPDATEWINDOW(strm) && |
| (state->wsize || (state->mode < CHECK && out != strm->avail_out))) |
| zlib_updatewindow(strm, out); |
| |
| in -= strm->avail_in; |
| out -= strm->avail_out; |
| strm->total_in += in; |
| strm->total_out += out; |
| state->total += out; |
| if (INFLATE_NEED_CHECKSUM(strm) && state->wrap && out) |
| strm->adler = state->check = |
| UPDATE(state->check, strm->next_out - out, out); |
| |
| strm->data_type = state->bits + (state->last ? 64 : 0) + |
| (state->mode == TYPE ? 128 : 0); |
| |
| if (flush == Z_PACKET_FLUSH && ret == Z_OK && |
| strm->avail_out != 0 && strm->avail_in == 0) |
| return zlib_inflateSyncPacket(strm); |
| |
| if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) |
| ret = Z_BUF_ERROR; |
| |
| return ret; |
| } |
| |
| int zlib_inflateEnd(z_streamp strm) |
| { |
| if (strm == NULL || strm->state == NULL) |
| return Z_STREAM_ERROR; |
| return Z_OK; |
| } |
| |
| /* |
| * This subroutine adds the data at next_in/avail_in to the output history |
| * without performing any output. The output buffer must be "caught up"; |
| * i.e. no pending output but this should always be the case. The state must |
| * be waiting on the start of a block (i.e. mode == TYPE or HEAD). On exit, |
| * the output will also be caught up, and the checksum will have been updated |
| * if need be. |
| */ |
| int zlib_inflateIncomp(z_stream *z) |
| { |
| struct inflate_state *state = (struct inflate_state *)z->state; |
| Byte *saved_no = z->next_out; |
| uInt saved_ao = z->avail_out; |
| |
| if (state->mode != TYPE && state->mode != HEAD) |
| return Z_DATA_ERROR; |
| |
| /* Setup some variables to allow misuse of updateWindow */ |
| z->avail_out = 0; |
| z->next_out = (unsigned char*)z->next_in + z->avail_in; |
| |
| zlib_updatewindow(z, z->avail_in); |
| |
| /* Restore saved variables */ |
| z->avail_out = saved_ao; |
| z->next_out = saved_no; |
| |
| z->adler = state->check = |
| UPDATE(state->check, z->next_in, z->avail_in); |
| |
| z->total_out += z->avail_in; |
| z->total_in += z->avail_in; |
| z->next_in += z->avail_in; |
| state->total += z->avail_in; |
| z->avail_in = 0; |
| |
| return Z_OK; |
| } |