blob: 918f47d87d7a210190bc6d339c694b26c07f346a [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/******************************************************************************
* elfnote.h
*
* Definitions used for the Xen ELF notes.
*
* Copyright (c) 2006, Ian Campbell, XenSource Ltd.
*/
#ifndef __XEN_PUBLIC_ELFNOTE_H__
#define __XEN_PUBLIC_ELFNOTE_H__
/*
* `incontents 200 elfnotes ELF notes
*
* The notes should live in a PT_NOTE segment and have "Xen" in the
* name field.
*
* Numeric types are either 4 or 8 bytes depending on the content of
* the desc field.
*
* LEGACY indicated the fields in the legacy __xen_guest string which
* this a note type replaces.
*
* String values (for non-legacy) are NULL terminated ASCII, also known
* as ASCIZ type.
*
* Xen only uses ELF Notes contained in x86 binaries.
*/
/*
* NAME=VALUE pair (string).
*/
#define XEN_ELFNOTE_INFO 0
/*
* The virtual address of the entry point (numeric).
*
* LEGACY: VIRT_ENTRY
*/
#define XEN_ELFNOTE_ENTRY 1
/* The virtual address of the hypercall transfer page (numeric).
*
* LEGACY: HYPERCALL_PAGE. (n.b. legacy value is a physical page
* number not a virtual address)
*/
#define XEN_ELFNOTE_HYPERCALL_PAGE 2
/* The virtual address where the kernel image should be mapped (numeric).
*
* Defaults to 0.
*
* LEGACY: VIRT_BASE
*/
#define XEN_ELFNOTE_VIRT_BASE 3
/*
* The offset of the ELF paddr field from the actual required
* pseudo-physical address (numeric).
*
* This is used to maintain backwards compatibility with older kernels
* which wrote __PAGE_OFFSET into that field. This field defaults to 0
* if not present.
*
* LEGACY: ELF_PADDR_OFFSET. (n.b. legacy default is VIRT_BASE)
*/
#define XEN_ELFNOTE_PADDR_OFFSET 4
/*
* The version of Xen that we work with (string).
*
* LEGACY: XEN_VER
*/
#define XEN_ELFNOTE_XEN_VERSION 5
/*
* The name of the guest operating system (string).
*
* LEGACY: GUEST_OS
*/
#define XEN_ELFNOTE_GUEST_OS 6
/*
* The version of the guest operating system (string).
*
* LEGACY: GUEST_VER
*/
#define XEN_ELFNOTE_GUEST_VERSION 7
/*
* The loader type (string).
*
* LEGACY: LOADER
*/
#define XEN_ELFNOTE_LOADER 8
/*
* The kernel supports PAE (x86/32 only, string = "yes", "no" or
* "bimodal").
*
* For compatibility with Xen 3.0.3 and earlier the "bimodal" setting
* may be given as "yes,bimodal" which will cause older Xen to treat
* this kernel as PAE.
*
* LEGACY: PAE (n.b. The legacy interface included a provision to
* indicate 'extended-cr3' support allowing L3 page tables to be
* placed above 4G. It is assumed that any kernel new enough to use
* these ELF notes will include this and therefore "yes" here is
* equivalent to "yes[entended-cr3]" in the __xen_guest interface.
*/
#define XEN_ELFNOTE_PAE_MODE 9
/*
* The features supported/required by this kernel (string).
*
* The string must consist of a list of feature names (as given in
* features.h, without the "XENFEAT_" prefix) separated by '|'
* characters. If a feature is required for the kernel to function
* then the feature name must be preceded by a '!' character.
*
* LEGACY: FEATURES
*/
#define XEN_ELFNOTE_FEATURES 10
/*
* The kernel requires the symbol table to be loaded (string = "yes" or "no")
* LEGACY: BSD_SYMTAB (n.b. The legacy treated the presence or absence
* of this string as a boolean flag rather than requiring "yes" or
* "no".
*/
#define XEN_ELFNOTE_BSD_SYMTAB 11
/*
* The lowest address the hypervisor hole can begin at (numeric).
*
* This must not be set higher than HYPERVISOR_VIRT_START. Its presence
* also indicates to the hypervisor that the kernel can deal with the
* hole starting at a higher address.
*/
#define XEN_ELFNOTE_HV_START_LOW 12
/*
* List of maddr_t-sized mask/value pairs describing how to recognize
* (non-present) L1 page table entries carrying valid MFNs (numeric).
*/
#define XEN_ELFNOTE_L1_MFN_VALID 13
/*
* Whether or not the guest supports cooperative suspend cancellation.
* This is a numeric value.
*
* Default is 0
*/
#define XEN_ELFNOTE_SUSPEND_CANCEL 14
/*
* The (non-default) location the initial phys-to-machine map should be
* placed at by the hypervisor (Dom0) or the tools (DomU).
* The kernel must be prepared for this mapping to be established using
* large pages, despite such otherwise not being available to guests. Note
* that these large pages may be misaligned in PFN space (they'll obviously
* be aligned in MFN and virtual address spaces).
* The kernel must also be able to handle the page table pages used for
* this mapping not being accessible through the initial mapping.
* (Only x86-64 supports this at present.)
*/
#define XEN_ELFNOTE_INIT_P2M 15
/*
* Whether or not the guest can deal with being passed an initrd not
* mapped through its initial page tables.
*/
#define XEN_ELFNOTE_MOD_START_PFN 16
/*
* The features supported by this kernel (numeric).
*
* Other than XEN_ELFNOTE_FEATURES on pre-4.2 Xen, this note allows a
* kernel to specify support for features that older hypervisors don't
* know about. The set of features 4.2 and newer hypervisors will
* consider supported by the kernel is the combination of the sets
* specified through this and the string note.
*
* LEGACY: FEATURES
*/
#define XEN_ELFNOTE_SUPPORTED_FEATURES 17
/*
* Physical entry point into the kernel.
*
* 32bit entry point into the kernel. When requested to launch the
* guest kernel in a HVM container, Xen will use this entry point to
* launch the guest in 32bit protected mode with paging disabled.
* Ignored otherwise.
*/
#define XEN_ELFNOTE_PHYS32_ENTRY 18
/*
* Physical loading constraints for PVH kernels
*
* The presence of this note indicates the kernel supports relocating itself.
*
* The note may include up to three 32bit values to place constraints on the
* guest physical loading addresses and alignment for a PVH kernel. Values
* are read in the following order:
* - a required start alignment (default 0x200000)
* - a minimum address for the start of the image (default 0; see below)
* - a maximum address for the last byte of the image (default 0xffffffff)
*
* When this note specifies an alignment value, it is used. Otherwise the
* maximum p_align value from loadable ELF Program Headers is used, if it is
* greater than or equal to 4k (0x1000). Otherwise, the default is used.
*/
#define XEN_ELFNOTE_PHYS32_RELOC 19
/*
* The number of the highest elfnote defined.
*/
#define XEN_ELFNOTE_MAX XEN_ELFNOTE_PHYS32_RELOC
/*
* System information exported through crash notes.
*
* The kexec / kdump code will create one XEN_ELFNOTE_CRASH_INFO
* note in case of a system crash. This note will contain various
* information about the system, see xen/include/xen/elfcore.h.
*/
#define XEN_ELFNOTE_CRASH_INFO 0x1000001
/*
* System registers exported through crash notes.
*
* The kexec / kdump code will create one XEN_ELFNOTE_CRASH_REGS
* note per cpu in case of a system crash. This note is architecture
* specific and will contain registers not saved in the "CORE" note.
* See xen/include/xen/elfcore.h for more information.
*/
#define XEN_ELFNOTE_CRASH_REGS 0x1000002
/*
* xen dump-core none note.
* xm dump-core code will create one XEN_ELFNOTE_DUMPCORE_NONE
* in its dump file to indicate that the file is xen dump-core
* file. This note doesn't have any other information.
* See tools/libxc/xc_core.h for more information.
*/
#define XEN_ELFNOTE_DUMPCORE_NONE 0x2000000
/*
* xen dump-core header note.
* xm dump-core code will create one XEN_ELFNOTE_DUMPCORE_HEADER
* in its dump file.
* See tools/libxc/xc_core.h for more information.
*/
#define XEN_ELFNOTE_DUMPCORE_HEADER 0x2000001
/*
* xen dump-core xen version note.
* xm dump-core code will create one XEN_ELFNOTE_DUMPCORE_XEN_VERSION
* in its dump file. It contains the xen version obtained via the
* XENVER hypercall.
* See tools/libxc/xc_core.h for more information.
*/
#define XEN_ELFNOTE_DUMPCORE_XEN_VERSION 0x2000002
/*
* xen dump-core format version note.
* xm dump-core code will create one XEN_ELFNOTE_DUMPCORE_FORMAT_VERSION
* in its dump file. It contains a format version identifier.
* See tools/libxc/xc_core.h for more information.
*/
#define XEN_ELFNOTE_DUMPCORE_FORMAT_VERSION 0x2000003
#endif /* __XEN_PUBLIC_ELFNOTE_H__ */