| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "misc.h" |
| #include "ctree.h" |
| #include "block-group.h" |
| #include "space-info.h" |
| #include "disk-io.h" |
| #include "free-space-cache.h" |
| #include "free-space-tree.h" |
| #include "disk-io.h" |
| #include "volumes.h" |
| #include "transaction.h" |
| #include "ref-verify.h" |
| #include "sysfs.h" |
| #include "tree-log.h" |
| #include "delalloc-space.h" |
| |
| /* |
| * Return target flags in extended format or 0 if restripe for this chunk_type |
| * is not in progress |
| * |
| * Should be called with balance_lock held |
| */ |
| static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| u64 target = 0; |
| |
| if (!bctl) |
| return 0; |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA && |
| bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && |
| bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; |
| } else if (flags & BTRFS_BLOCK_GROUP_METADATA && |
| bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { |
| target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; |
| } |
| |
| return target; |
| } |
| |
| /* |
| * @flags: available profiles in extended format (see ctree.h) |
| * |
| * Return reduced profile in chunk format. If profile changing is in progress |
| * (either running or paused) picks the target profile (if it's already |
| * available), otherwise falls back to plain reducing. |
| */ |
| static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 num_devices = fs_info->fs_devices->rw_devices; |
| u64 target; |
| u64 raid_type; |
| u64 allowed = 0; |
| |
| /* |
| * See if restripe for this chunk_type is in progress, if so try to |
| * reduce to the target profile |
| */ |
| spin_lock(&fs_info->balance_lock); |
| target = get_restripe_target(fs_info, flags); |
| if (target) { |
| /* Pick target profile only if it's already available */ |
| if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { |
| spin_unlock(&fs_info->balance_lock); |
| return extended_to_chunk(target); |
| } |
| } |
| spin_unlock(&fs_info->balance_lock); |
| |
| /* First, mask out the RAID levels which aren't possible */ |
| for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { |
| if (num_devices >= btrfs_raid_array[raid_type].devs_min) |
| allowed |= btrfs_raid_array[raid_type].bg_flag; |
| } |
| allowed &= flags; |
| |
| if (allowed & BTRFS_BLOCK_GROUP_RAID6) |
| allowed = BTRFS_BLOCK_GROUP_RAID6; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID5) |
| allowed = BTRFS_BLOCK_GROUP_RAID5; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID10) |
| allowed = BTRFS_BLOCK_GROUP_RAID10; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID1) |
| allowed = BTRFS_BLOCK_GROUP_RAID1; |
| else if (allowed & BTRFS_BLOCK_GROUP_RAID0) |
| allowed = BTRFS_BLOCK_GROUP_RAID0; |
| |
| flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; |
| |
| return extended_to_chunk(flags | allowed); |
| } |
| |
| static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) |
| { |
| unsigned seq; |
| u64 flags; |
| |
| do { |
| flags = orig_flags; |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| flags |= fs_info->avail_data_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| flags |= fs_info->avail_system_alloc_bits; |
| else if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| flags |= fs_info->avail_metadata_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| return btrfs_reduce_alloc_profile(fs_info, flags); |
| } |
| |
| u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) |
| { |
| return get_alloc_profile(fs_info, orig_flags); |
| } |
| |
| void btrfs_get_block_group(struct btrfs_block_group *cache) |
| { |
| atomic_inc(&cache->count); |
| } |
| |
| void btrfs_put_block_group(struct btrfs_block_group *cache) |
| { |
| if (atomic_dec_and_test(&cache->count)) { |
| WARN_ON(cache->pinned > 0); |
| WARN_ON(cache->reserved > 0); |
| |
| /* |
| * If not empty, someone is still holding mutex of |
| * full_stripe_lock, which can only be released by caller. |
| * And it will definitely cause use-after-free when caller |
| * tries to release full stripe lock. |
| * |
| * No better way to resolve, but only to warn. |
| */ |
| WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); |
| kfree(cache->free_space_ctl); |
| kfree(cache); |
| } |
| } |
| |
| /* |
| * This adds the block group to the fs_info rb tree for the block group cache |
| */ |
| static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, |
| struct btrfs_block_group *block_group) |
| { |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| struct btrfs_block_group *cache; |
| |
| spin_lock(&info->block_group_cache_lock); |
| p = &info->block_group_cache_tree.rb_node; |
| |
| while (*p) { |
| parent = *p; |
| cache = rb_entry(parent, struct btrfs_block_group, cache_node); |
| if (block_group->start < cache->start) { |
| p = &(*p)->rb_left; |
| } else if (block_group->start > cache->start) { |
| p = &(*p)->rb_right; |
| } else { |
| spin_unlock(&info->block_group_cache_lock); |
| return -EEXIST; |
| } |
| } |
| |
| rb_link_node(&block_group->cache_node, parent, p); |
| rb_insert_color(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| |
| if (info->first_logical_byte > block_group->start) |
| info->first_logical_byte = block_group->start; |
| |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * This will return the block group at or after bytenr if contains is 0, else |
| * it will return the block group that contains the bytenr |
| */ |
| static struct btrfs_block_group *block_group_cache_tree_search( |
| struct btrfs_fs_info *info, u64 bytenr, int contains) |
| { |
| struct btrfs_block_group *cache, *ret = NULL; |
| struct rb_node *n; |
| u64 end, start; |
| |
| spin_lock(&info->block_group_cache_lock); |
| n = info->block_group_cache_tree.rb_node; |
| |
| while (n) { |
| cache = rb_entry(n, struct btrfs_block_group, cache_node); |
| end = cache->start + cache->length - 1; |
| start = cache->start; |
| |
| if (bytenr < start) { |
| if (!contains && (!ret || start < ret->start)) |
| ret = cache; |
| n = n->rb_left; |
| } else if (bytenr > start) { |
| if (contains && bytenr <= end) { |
| ret = cache; |
| break; |
| } |
| n = n->rb_right; |
| } else { |
| ret = cache; |
| break; |
| } |
| } |
| if (ret) { |
| btrfs_get_block_group(ret); |
| if (bytenr == 0 && info->first_logical_byte > ret->start) |
| info->first_logical_byte = ret->start; |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Return the block group that starts at or after bytenr |
| */ |
| struct btrfs_block_group *btrfs_lookup_first_block_group( |
| struct btrfs_fs_info *info, u64 bytenr) |
| { |
| return block_group_cache_tree_search(info, bytenr, 0); |
| } |
| |
| /* |
| * Return the block group that contains the given bytenr |
| */ |
| struct btrfs_block_group *btrfs_lookup_block_group( |
| struct btrfs_fs_info *info, u64 bytenr) |
| { |
| return block_group_cache_tree_search(info, bytenr, 1); |
| } |
| |
| struct btrfs_block_group *btrfs_next_block_group( |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct rb_node *node; |
| |
| spin_lock(&fs_info->block_group_cache_lock); |
| |
| /* If our block group was removed, we need a full search. */ |
| if (RB_EMPTY_NODE(&cache->cache_node)) { |
| const u64 next_bytenr = cache->start + cache->length; |
| |
| spin_unlock(&fs_info->block_group_cache_lock); |
| btrfs_put_block_group(cache); |
| cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; |
| } |
| node = rb_next(&cache->cache_node); |
| btrfs_put_block_group(cache); |
| if (node) { |
| cache = rb_entry(node, struct btrfs_block_group, cache_node); |
| btrfs_get_block_group(cache); |
| } else |
| cache = NULL; |
| spin_unlock(&fs_info->block_group_cache_lock); |
| return cache; |
| } |
| |
| bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group *bg; |
| bool ret = true; |
| |
| bg = btrfs_lookup_block_group(fs_info, bytenr); |
| if (!bg) |
| return false; |
| |
| spin_lock(&bg->lock); |
| if (bg->ro) |
| ret = false; |
| else |
| atomic_inc(&bg->nocow_writers); |
| spin_unlock(&bg->lock); |
| |
| /* No put on block group, done by btrfs_dec_nocow_writers */ |
| if (!ret) |
| btrfs_put_block_group(bg); |
| |
| return ret; |
| } |
| |
| void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct btrfs_block_group *bg; |
| |
| bg = btrfs_lookup_block_group(fs_info, bytenr); |
| ASSERT(bg); |
| if (atomic_dec_and_test(&bg->nocow_writers)) |
| wake_up_var(&bg->nocow_writers); |
| /* |
| * Once for our lookup and once for the lookup done by a previous call |
| * to btrfs_inc_nocow_writers() |
| */ |
| btrfs_put_block_group(bg); |
| btrfs_put_block_group(bg); |
| } |
| |
| void btrfs_wait_nocow_writers(struct btrfs_block_group *bg) |
| { |
| wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); |
| } |
| |
| void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, |
| const u64 start) |
| { |
| struct btrfs_block_group *bg; |
| |
| bg = btrfs_lookup_block_group(fs_info, start); |
| ASSERT(bg); |
| if (atomic_dec_and_test(&bg->reservations)) |
| wake_up_var(&bg->reservations); |
| btrfs_put_block_group(bg); |
| } |
| |
| void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg) |
| { |
| struct btrfs_space_info *space_info = bg->space_info; |
| |
| ASSERT(bg->ro); |
| |
| if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) |
| return; |
| |
| /* |
| * Our block group is read only but before we set it to read only, |
| * some task might have had allocated an extent from it already, but it |
| * has not yet created a respective ordered extent (and added it to a |
| * root's list of ordered extents). |
| * Therefore wait for any task currently allocating extents, since the |
| * block group's reservations counter is incremented while a read lock |
| * on the groups' semaphore is held and decremented after releasing |
| * the read access on that semaphore and creating the ordered extent. |
| */ |
| down_write(&space_info->groups_sem); |
| up_write(&space_info->groups_sem); |
| |
| wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); |
| } |
| |
| struct btrfs_caching_control *btrfs_get_caching_control( |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_caching_control *ctl; |
| |
| spin_lock(&cache->lock); |
| if (!cache->caching_ctl) { |
| spin_unlock(&cache->lock); |
| return NULL; |
| } |
| |
| ctl = cache->caching_ctl; |
| refcount_inc(&ctl->count); |
| spin_unlock(&cache->lock); |
| return ctl; |
| } |
| |
| void btrfs_put_caching_control(struct btrfs_caching_control *ctl) |
| { |
| if (refcount_dec_and_test(&ctl->count)) |
| kfree(ctl); |
| } |
| |
| /* |
| * When we wait for progress in the block group caching, its because our |
| * allocation attempt failed at least once. So, we must sleep and let some |
| * progress happen before we try again. |
| * |
| * This function will sleep at least once waiting for new free space to show |
| * up, and then it will check the block group free space numbers for our min |
| * num_bytes. Another option is to have it go ahead and look in the rbtree for |
| * a free extent of a given size, but this is a good start. |
| * |
| * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using |
| * any of the information in this block group. |
| */ |
| void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache, |
| u64 num_bytes) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| |
| caching_ctl = btrfs_get_caching_control(cache); |
| if (!caching_ctl) |
| return; |
| |
| wait_event(caching_ctl->wait, btrfs_block_group_done(cache) || |
| (cache->free_space_ctl->free_space >= num_bytes)); |
| |
| btrfs_put_caching_control(caching_ctl); |
| } |
| |
| int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache) |
| { |
| struct btrfs_caching_control *caching_ctl; |
| int ret = 0; |
| |
| caching_ctl = btrfs_get_caching_control(cache); |
| if (!caching_ctl) |
| return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; |
| |
| wait_event(caching_ctl->wait, btrfs_block_group_done(cache)); |
| if (cache->cached == BTRFS_CACHE_ERROR) |
| ret = -EIO; |
| btrfs_put_caching_control(caching_ctl); |
| return ret; |
| } |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| static void fragment_free_space(struct btrfs_block_group *block_group) |
| { |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| u64 start = block_group->start; |
| u64 len = block_group->length; |
| u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? |
| fs_info->nodesize : fs_info->sectorsize; |
| u64 step = chunk << 1; |
| |
| while (len > chunk) { |
| btrfs_remove_free_space(block_group, start, chunk); |
| start += step; |
| if (len < step) |
| len = 0; |
| else |
| len -= step; |
| } |
| } |
| #endif |
| |
| /* |
| * This is only called by btrfs_cache_block_group, since we could have freed |
| * extents we need to check the pinned_extents for any extents that can't be |
| * used yet since their free space will be released as soon as the transaction |
| * commits. |
| */ |
| u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end) |
| { |
| struct btrfs_fs_info *info = block_group->fs_info; |
| u64 extent_start, extent_end, size, total_added = 0; |
| int ret; |
| |
| while (start < end) { |
| ret = find_first_extent_bit(info->pinned_extents, start, |
| &extent_start, &extent_end, |
| EXTENT_DIRTY | EXTENT_UPTODATE, |
| NULL); |
| if (ret) |
| break; |
| |
| if (extent_start <= start) { |
| start = extent_end + 1; |
| } else if (extent_start > start && extent_start < end) { |
| size = extent_start - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, |
| size); |
| BUG_ON(ret); /* -ENOMEM or logic error */ |
| start = extent_end + 1; |
| } else { |
| break; |
| } |
| } |
| |
| if (start < end) { |
| size = end - start; |
| total_added += size; |
| ret = btrfs_add_free_space(block_group, start, size); |
| BUG_ON(ret); /* -ENOMEM or logic error */ |
| } |
| |
| return total_added; |
| } |
| |
| static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) |
| { |
| struct btrfs_block_group *block_group = caching_ctl->block_group; |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| u64 total_found = 0; |
| u64 last = 0; |
| u32 nritems; |
| int ret; |
| bool wakeup = true; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| /* |
| * If we're fragmenting we don't want to make anybody think we can |
| * allocate from this block group until we've had a chance to fragment |
| * the free space. |
| */ |
| if (btrfs_should_fragment_free_space(block_group)) |
| wakeup = false; |
| #endif |
| /* |
| * We don't want to deadlock with somebody trying to allocate a new |
| * extent for the extent root while also trying to search the extent |
| * root to add free space. So we skip locking and search the commit |
| * root, since its read-only |
| */ |
| path->skip_locking = 1; |
| path->search_commit_root = 1; |
| path->reada = READA_FORWARD; |
| |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| next: |
| ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| |
| while (1) { |
| if (btrfs_fs_closing(fs_info) > 1) { |
| last = (u64)-1; |
| break; |
| } |
| |
| if (path->slots[0] < nritems) { |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| } else { |
| ret = btrfs_find_next_key(extent_root, path, &key, 0, 0); |
| if (ret) |
| break; |
| |
| if (need_resched() || |
| rwsem_is_contended(&fs_info->commit_root_sem)) { |
| if (wakeup) |
| caching_ctl->progress = last; |
| btrfs_release_path(path); |
| up_read(&fs_info->commit_root_sem); |
| mutex_unlock(&caching_ctl->mutex); |
| cond_resched(); |
| mutex_lock(&caching_ctl->mutex); |
| down_read(&fs_info->commit_root_sem); |
| goto next; |
| } |
| |
| ret = btrfs_next_leaf(extent_root, path); |
| if (ret < 0) |
| goto out; |
| if (ret) |
| break; |
| leaf = path->nodes[0]; |
| nritems = btrfs_header_nritems(leaf); |
| continue; |
| } |
| |
| if (key.objectid < last) { |
| key.objectid = last; |
| key.offset = 0; |
| key.type = BTRFS_EXTENT_ITEM_KEY; |
| |
| if (wakeup) |
| caching_ctl->progress = last; |
| btrfs_release_path(path); |
| goto next; |
| } |
| |
| if (key.objectid < block_group->start) { |
| path->slots[0]++; |
| continue; |
| } |
| |
| if (key.objectid >= block_group->start + block_group->length) |
| break; |
| |
| if (key.type == BTRFS_EXTENT_ITEM_KEY || |
| key.type == BTRFS_METADATA_ITEM_KEY) { |
| total_found += add_new_free_space(block_group, last, |
| key.objectid); |
| if (key.type == BTRFS_METADATA_ITEM_KEY) |
| last = key.objectid + |
| fs_info->nodesize; |
| else |
| last = key.objectid + key.offset; |
| |
| if (total_found > CACHING_CTL_WAKE_UP) { |
| total_found = 0; |
| if (wakeup) |
| wake_up(&caching_ctl->wait); |
| } |
| } |
| path->slots[0]++; |
| } |
| ret = 0; |
| |
| total_found += add_new_free_space(block_group, last, |
| block_group->start + block_group->length); |
| caching_ctl->progress = (u64)-1; |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static noinline void caching_thread(struct btrfs_work *work) |
| { |
| struct btrfs_block_group *block_group; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| int ret; |
| |
| caching_ctl = container_of(work, struct btrfs_caching_control, work); |
| block_group = caching_ctl->block_group; |
| fs_info = block_group->fs_info; |
| |
| mutex_lock(&caching_ctl->mutex); |
| down_read(&fs_info->commit_root_sem); |
| |
| if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) |
| ret = load_free_space_tree(caching_ctl); |
| else |
| ret = load_extent_tree_free(caching_ctl); |
| |
| spin_lock(&block_group->lock); |
| block_group->caching_ctl = NULL; |
| block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; |
| spin_unlock(&block_group->lock); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (btrfs_should_fragment_free_space(block_group)) { |
| u64 bytes_used; |
| |
| spin_lock(&block_group->space_info->lock); |
| spin_lock(&block_group->lock); |
| bytes_used = block_group->length - block_group->used; |
| block_group->space_info->bytes_used += bytes_used >> 1; |
| spin_unlock(&block_group->lock); |
| spin_unlock(&block_group->space_info->lock); |
| fragment_free_space(block_group); |
| } |
| #endif |
| |
| caching_ctl->progress = (u64)-1; |
| |
| up_read(&fs_info->commit_root_sem); |
| btrfs_free_excluded_extents(block_group); |
| mutex_unlock(&caching_ctl->mutex); |
| |
| wake_up(&caching_ctl->wait); |
| |
| btrfs_put_caching_control(caching_ctl); |
| btrfs_put_block_group(block_group); |
| } |
| |
| int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only) |
| { |
| DEFINE_WAIT(wait); |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_caching_control *caching_ctl; |
| int ret = 0; |
| |
| caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); |
| if (!caching_ctl) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&caching_ctl->list); |
| mutex_init(&caching_ctl->mutex); |
| init_waitqueue_head(&caching_ctl->wait); |
| caching_ctl->block_group = cache; |
| caching_ctl->progress = cache->start; |
| refcount_set(&caching_ctl->count, 1); |
| btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); |
| |
| spin_lock(&cache->lock); |
| /* |
| * This should be a rare occasion, but this could happen I think in the |
| * case where one thread starts to load the space cache info, and then |
| * some other thread starts a transaction commit which tries to do an |
| * allocation while the other thread is still loading the space cache |
| * info. The previous loop should have kept us from choosing this block |
| * group, but if we've moved to the state where we will wait on caching |
| * block groups we need to first check if we're doing a fast load here, |
| * so we can wait for it to finish, otherwise we could end up allocating |
| * from a block group who's cache gets evicted for one reason or |
| * another. |
| */ |
| while (cache->cached == BTRFS_CACHE_FAST) { |
| struct btrfs_caching_control *ctl; |
| |
| ctl = cache->caching_ctl; |
| refcount_inc(&ctl->count); |
| prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); |
| spin_unlock(&cache->lock); |
| |
| schedule(); |
| |
| finish_wait(&ctl->wait, &wait); |
| btrfs_put_caching_control(ctl); |
| spin_lock(&cache->lock); |
| } |
| |
| if (cache->cached != BTRFS_CACHE_NO) { |
| spin_unlock(&cache->lock); |
| kfree(caching_ctl); |
| return 0; |
| } |
| WARN_ON(cache->caching_ctl); |
| cache->caching_ctl = caching_ctl; |
| cache->cached = BTRFS_CACHE_FAST; |
| spin_unlock(&cache->lock); |
| |
| if (btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| mutex_lock(&caching_ctl->mutex); |
| ret = load_free_space_cache(cache); |
| |
| spin_lock(&cache->lock); |
| if (ret == 1) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| cache->last_byte_to_unpin = (u64)-1; |
| caching_ctl->progress = (u64)-1; |
| } else { |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| cache->has_caching_ctl = 1; |
| } |
| } |
| spin_unlock(&cache->lock); |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (ret == 1 && |
| btrfs_should_fragment_free_space(cache)) { |
| u64 bytes_used; |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| bytes_used = cache->length - cache->used; |
| cache->space_info->bytes_used += bytes_used >> 1; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| fragment_free_space(cache); |
| } |
| #endif |
| mutex_unlock(&caching_ctl->mutex); |
| |
| wake_up(&caching_ctl->wait); |
| if (ret == 1) { |
| btrfs_put_caching_control(caching_ctl); |
| btrfs_free_excluded_extents(cache); |
| return 0; |
| } |
| } else { |
| /* |
| * We're either using the free space tree or no caching at all. |
| * Set cached to the appropriate value and wakeup any waiters. |
| */ |
| spin_lock(&cache->lock); |
| if (load_cache_only) { |
| cache->caching_ctl = NULL; |
| cache->cached = BTRFS_CACHE_NO; |
| } else { |
| cache->cached = BTRFS_CACHE_STARTED; |
| cache->has_caching_ctl = 1; |
| } |
| spin_unlock(&cache->lock); |
| wake_up(&caching_ctl->wait); |
| } |
| |
| if (load_cache_only) { |
| btrfs_put_caching_control(caching_ctl); |
| return 0; |
| } |
| |
| down_write(&fs_info->commit_root_sem); |
| refcount_inc(&caching_ctl->count); |
| list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); |
| up_write(&fs_info->commit_root_sem); |
| |
| btrfs_get_block_group(cache); |
| |
| btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); |
| |
| return ret; |
| } |
| |
| static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = chunk_to_extended(flags) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| write_seqlock(&fs_info->profiles_lock); |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits &= ~extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits &= ~extra_flags; |
| write_sequnlock(&fs_info->profiles_lock); |
| } |
| |
| /* |
| * Clear incompat bits for the following feature(s): |
| * |
| * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group |
| * in the whole filesystem |
| * |
| * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups |
| */ |
| static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| bool found_raid56 = false; |
| bool found_raid1c34 = false; |
| |
| if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) || |
| (flags & BTRFS_BLOCK_GROUP_RAID1C3) || |
| (flags & BTRFS_BLOCK_GROUP_RAID1C4)) { |
| struct list_head *head = &fs_info->space_info; |
| struct btrfs_space_info *sinfo; |
| |
| list_for_each_entry_rcu(sinfo, head, list) { |
| down_read(&sinfo->groups_sem); |
| if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5])) |
| found_raid56 = true; |
| if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6])) |
| found_raid56 = true; |
| if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3])) |
| found_raid1c34 = true; |
| if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4])) |
| found_raid1c34 = true; |
| up_read(&sinfo->groups_sem); |
| } |
| if (found_raid56) |
| btrfs_clear_fs_incompat(fs_info, RAID56); |
| if (found_raid1c34) |
| btrfs_clear_fs_incompat(fs_info, RAID1C34); |
| } |
| } |
| |
| int btrfs_remove_block_group(struct btrfs_trans_handle *trans, |
| u64 group_start, struct extent_map *em) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->extent_root; |
| struct btrfs_path *path; |
| struct btrfs_block_group *block_group; |
| struct btrfs_free_cluster *cluster; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_key key; |
| struct inode *inode; |
| struct kobject *kobj = NULL; |
| int ret; |
| int index; |
| int factor; |
| struct btrfs_caching_control *caching_ctl = NULL; |
| bool remove_em; |
| bool remove_rsv = false; |
| |
| block_group = btrfs_lookup_block_group(fs_info, group_start); |
| BUG_ON(!block_group); |
| BUG_ON(!block_group->ro); |
| |
| trace_btrfs_remove_block_group(block_group); |
| /* |
| * Free the reserved super bytes from this block group before |
| * remove it. |
| */ |
| btrfs_free_excluded_extents(block_group); |
| btrfs_free_ref_tree_range(fs_info, block_group->start, |
| block_group->length); |
| |
| index = btrfs_bg_flags_to_raid_index(block_group->flags); |
| factor = btrfs_bg_type_to_factor(block_group->flags); |
| |
| /* make sure this block group isn't part of an allocation cluster */ |
| cluster = &fs_info->data_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| /* |
| * make sure this block group isn't part of a metadata |
| * allocation cluster |
| */ |
| cluster = &fs_info->meta_alloc_cluster; |
| spin_lock(&cluster->refill_lock); |
| btrfs_return_cluster_to_free_space(block_group, cluster); |
| spin_unlock(&cluster->refill_lock); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * get the inode first so any iput calls done for the io_list |
| * aren't the final iput (no unlinks allowed now) |
| */ |
| inode = lookup_free_space_inode(block_group, path); |
| |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| /* |
| * Make sure our free space cache IO is done before removing the |
| * free space inode |
| */ |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| if (!list_empty(&block_group->io_list)) { |
| list_del_init(&block_group->io_list); |
| |
| WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); |
| |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| btrfs_wait_cache_io(trans, block_group, path); |
| btrfs_put_block_group(block_group); |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| } |
| |
| if (!list_empty(&block_group->dirty_list)) { |
| list_del_init(&block_group->dirty_list); |
| remove_rsv = true; |
| btrfs_put_block_group(block_group); |
| } |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| |
| if (!IS_ERR(inode)) { |
| ret = btrfs_orphan_add(trans, BTRFS_I(inode)); |
| if (ret) { |
| btrfs_add_delayed_iput(inode); |
| goto out; |
| } |
| clear_nlink(inode); |
| /* One for the block groups ref */ |
| spin_lock(&block_group->lock); |
| if (block_group->iref) { |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| iput(inode); |
| } else { |
| spin_unlock(&block_group->lock); |
| } |
| /* One for our lookup ref */ |
| btrfs_add_delayed_iput(inode); |
| } |
| |
| key.objectid = BTRFS_FREE_SPACE_OBJECTID; |
| key.type = 0; |
| key.offset = block_group->start; |
| |
| ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) |
| btrfs_release_path(path); |
| if (ret == 0) { |
| ret = btrfs_del_item(trans, tree_root, path); |
| if (ret) |
| goto out; |
| btrfs_release_path(path); |
| } |
| |
| spin_lock(&fs_info->block_group_cache_lock); |
| rb_erase(&block_group->cache_node, |
| &fs_info->block_group_cache_tree); |
| RB_CLEAR_NODE(&block_group->cache_node); |
| |
| if (fs_info->first_logical_byte == block_group->start) |
| fs_info->first_logical_byte = (u64)-1; |
| spin_unlock(&fs_info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| /* |
| * we must use list_del_init so people can check to see if they |
| * are still on the list after taking the semaphore |
| */ |
| list_del_init(&block_group->list); |
| if (list_empty(&block_group->space_info->block_groups[index])) { |
| kobj = block_group->space_info->block_group_kobjs[index]; |
| block_group->space_info->block_group_kobjs[index] = NULL; |
| clear_avail_alloc_bits(fs_info, block_group->flags); |
| } |
| up_write(&block_group->space_info->groups_sem); |
| clear_incompat_bg_bits(fs_info, block_group->flags); |
| if (kobj) { |
| kobject_del(kobj); |
| kobject_put(kobj); |
| } |
| |
| if (block_group->has_caching_ctl) |
| caching_ctl = btrfs_get_caching_control(block_group); |
| if (block_group->cached == BTRFS_CACHE_STARTED) |
| btrfs_wait_block_group_cache_done(block_group); |
| if (block_group->has_caching_ctl) { |
| down_write(&fs_info->commit_root_sem); |
| if (!caching_ctl) { |
| struct btrfs_caching_control *ctl; |
| |
| list_for_each_entry(ctl, |
| &fs_info->caching_block_groups, list) |
| if (ctl->block_group == block_group) { |
| caching_ctl = ctl; |
| refcount_inc(&caching_ctl->count); |
| break; |
| } |
| } |
| if (caching_ctl) |
| list_del_init(&caching_ctl->list); |
| up_write(&fs_info->commit_root_sem); |
| if (caching_ctl) { |
| /* Once for the caching bgs list and once for us. */ |
| btrfs_put_caching_control(caching_ctl); |
| btrfs_put_caching_control(caching_ctl); |
| } |
| } |
| |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| WARN_ON(!list_empty(&block_group->dirty_list)); |
| WARN_ON(!list_empty(&block_group->io_list)); |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| |
| btrfs_remove_free_space_cache(block_group); |
| |
| spin_lock(&block_group->space_info->lock); |
| list_del_init(&block_group->ro_list); |
| |
| if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| WARN_ON(block_group->space_info->total_bytes |
| < block_group->length); |
| WARN_ON(block_group->space_info->bytes_readonly |
| < block_group->length); |
| WARN_ON(block_group->space_info->disk_total |
| < block_group->length * factor); |
| } |
| block_group->space_info->total_bytes -= block_group->length; |
| block_group->space_info->bytes_readonly -= block_group->length; |
| block_group->space_info->disk_total -= block_group->length * factor; |
| |
| spin_unlock(&block_group->space_info->lock); |
| |
| key.objectid = block_group->start; |
| key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| key.offset = block_group->length; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| spin_lock(&block_group->lock); |
| block_group->removed = 1; |
| /* |
| * At this point trimming can't start on this block group, because we |
| * removed the block group from the tree fs_info->block_group_cache_tree |
| * so no one can't find it anymore and even if someone already got this |
| * block group before we removed it from the rbtree, they have already |
| * incremented block_group->trimming - if they didn't, they won't find |
| * any free space entries because we already removed them all when we |
| * called btrfs_remove_free_space_cache(). |
| * |
| * And we must not remove the extent map from the fs_info->mapping_tree |
| * to prevent the same logical address range and physical device space |
| * ranges from being reused for a new block group. This is because our |
| * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is |
| * completely transactionless, so while it is trimming a range the |
| * currently running transaction might finish and a new one start, |
| * allowing for new block groups to be created that can reuse the same |
| * physical device locations unless we take this special care. |
| * |
| * There may also be an implicit trim operation if the file system |
| * is mounted with -odiscard. The same protections must remain |
| * in place until the extents have been discarded completely when |
| * the transaction commit has completed. |
| */ |
| remove_em = (atomic_read(&block_group->trimming) == 0); |
| spin_unlock(&block_group->lock); |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| ret = remove_block_group_free_space(trans, block_group); |
| if (ret) |
| goto out; |
| |
| btrfs_put_block_group(block_group); |
| btrfs_put_block_group(block_group); |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) |
| ret = -EIO; |
| if (ret < 0) |
| goto out; |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret) |
| goto out; |
| |
| if (remove_em) { |
| struct extent_map_tree *em_tree; |
| |
| em_tree = &fs_info->mapping_tree; |
| write_lock(&em_tree->lock); |
| remove_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| out: |
| if (remove_rsv) |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_trans_remove_block_group( |
| struct btrfs_fs_info *fs_info, const u64 chunk_offset) |
| { |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| struct map_lookup *map; |
| unsigned int num_items; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| read_unlock(&em_tree->lock); |
| ASSERT(em && em->start == chunk_offset); |
| |
| /* |
| * We need to reserve 3 + N units from the metadata space info in order |
| * to remove a block group (done at btrfs_remove_chunk() and at |
| * btrfs_remove_block_group()), which are used for: |
| * |
| * 1 unit for adding the free space inode's orphan (located in the tree |
| * of tree roots). |
| * 1 unit for deleting the block group item (located in the extent |
| * tree). |
| * 1 unit for deleting the free space item (located in tree of tree |
| * roots). |
| * N units for deleting N device extent items corresponding to each |
| * stripe (located in the device tree). |
| * |
| * In order to remove a block group we also need to reserve units in the |
| * system space info in order to update the chunk tree (update one or |
| * more device items and remove one chunk item), but this is done at |
| * btrfs_remove_chunk() through a call to check_system_chunk(). |
| */ |
| map = em->map_lookup; |
| num_items = 3 + map->num_stripes; |
| free_extent_map(em); |
| |
| return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, |
| num_items, 1); |
| } |
| |
| /* |
| * Mark block group @cache read-only, so later write won't happen to block |
| * group @cache. |
| * |
| * If @force is not set, this function will only mark the block group readonly |
| * if we have enough free space (1M) in other metadata/system block groups. |
| * If @force is not set, this function will mark the block group readonly |
| * without checking free space. |
| * |
| * NOTE: This function doesn't care if other block groups can contain all the |
| * data in this block group. That check should be done by relocation routine, |
| * not this function. |
| */ |
| static int inc_block_group_ro(struct btrfs_block_group *cache, int force) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| u64 sinfo_used; |
| int ret = -ENOSPC; |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| |
| if (cache->ro) { |
| cache->ro++; |
| ret = 0; |
| goto out; |
| } |
| |
| num_bytes = cache->length - cache->reserved - cache->pinned - |
| cache->bytes_super - cache->used; |
| sinfo_used = btrfs_space_info_used(sinfo, true); |
| |
| /* |
| * sinfo_used + num_bytes should always <= sinfo->total_bytes. |
| * |
| * Here we make sure if we mark this bg RO, we still have enough |
| * free space as buffer. |
| */ |
| if (sinfo_used + num_bytes <= sinfo->total_bytes) { |
| sinfo->bytes_readonly += num_bytes; |
| cache->ro++; |
| list_add_tail(&cache->ro_list, &sinfo->ro_bgs); |
| ret = 0; |
| } |
| out: |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) { |
| btrfs_info(cache->fs_info, |
| "unable to make block group %llu ro", cache->start); |
| btrfs_info(cache->fs_info, |
| "sinfo_used=%llu bg_num_bytes=%llu", |
| sinfo_used, num_bytes); |
| btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0); |
| } |
| return ret; |
| } |
| |
| /* |
| * Process the unused_bgs list and remove any that don't have any allocated |
| * space inside of them. |
| */ |
| void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_group *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_trans_handle *trans; |
| int ret = 0; |
| |
| if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| return; |
| |
| spin_lock(&fs_info->unused_bgs_lock); |
| while (!list_empty(&fs_info->unused_bgs)) { |
| u64 start, end; |
| int trimming; |
| |
| block_group = list_first_entry(&fs_info->unused_bgs, |
| struct btrfs_block_group, |
| bg_list); |
| list_del_init(&block_group->bg_list); |
| |
| space_info = block_group->space_info; |
| |
| if (ret || btrfs_mixed_space_info(space_info)) { |
| btrfs_put_block_group(block_group); |
| continue; |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| |
| mutex_lock(&fs_info->delete_unused_bgs_mutex); |
| |
| /* Don't want to race with allocators so take the groups_sem */ |
| down_write(&space_info->groups_sem); |
| spin_lock(&block_group->lock); |
| if (block_group->reserved || block_group->pinned || |
| block_group->used || block_group->ro || |
| list_is_singular(&block_group->list)) { |
| /* |
| * We want to bail if we made new allocations or have |
| * outstanding allocations in this block group. We do |
| * the ro check in case balance is currently acting on |
| * this block group. |
| */ |
| trace_btrfs_skip_unused_block_group(block_group); |
| spin_unlock(&block_group->lock); |
| up_write(&space_info->groups_sem); |
| goto next; |
| } |
| spin_unlock(&block_group->lock); |
| |
| /* We don't want to force the issue, only flip if it's ok. */ |
| ret = inc_block_group_ro(block_group, 0); |
| up_write(&space_info->groups_sem); |
| if (ret < 0) { |
| ret = 0; |
| goto next; |
| } |
| |
| /* |
| * Want to do this before we do anything else so we can recover |
| * properly if we fail to join the transaction. |
| */ |
| trans = btrfs_start_trans_remove_block_group(fs_info, |
| block_group->start); |
| if (IS_ERR(trans)) { |
| btrfs_dec_block_group_ro(block_group); |
| ret = PTR_ERR(trans); |
| goto next; |
| } |
| |
| /* |
| * We could have pending pinned extents for this block group, |
| * just delete them, we don't care about them anymore. |
| */ |
| start = block_group->start; |
| end = start + block_group->length - 1; |
| /* |
| * Hold the unused_bg_unpin_mutex lock to avoid racing with |
| * btrfs_finish_extent_commit(). If we are at transaction N, |
| * another task might be running finish_extent_commit() for the |
| * previous transaction N - 1, and have seen a range belonging |
| * to the block group in freed_extents[] before we were able to |
| * clear the whole block group range from freed_extents[]. This |
| * means that task can lookup for the block group after we |
| * unpinned it from freed_extents[] and removed it, leading to |
| * a BUG_ON() at btrfs_unpin_extent_range(). |
| */ |
| mutex_lock(&fs_info->unused_bg_unpin_mutex); |
| ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, |
| EXTENT_DIRTY); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| btrfs_dec_block_group_ro(block_group); |
| goto end_trans; |
| } |
| ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, |
| EXTENT_DIRTY); |
| if (ret) { |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| btrfs_dec_block_group_ro(block_group); |
| goto end_trans; |
| } |
| mutex_unlock(&fs_info->unused_bg_unpin_mutex); |
| |
| /* Reset pinned so btrfs_put_block_group doesn't complain */ |
| spin_lock(&space_info->lock); |
| spin_lock(&block_group->lock); |
| |
| btrfs_space_info_update_bytes_pinned(fs_info, space_info, |
| -block_group->pinned); |
| space_info->bytes_readonly += block_group->pinned; |
| percpu_counter_add_batch(&space_info->total_bytes_pinned, |
| -block_group->pinned, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| block_group->pinned = 0; |
| |
| spin_unlock(&block_group->lock); |
| spin_unlock(&space_info->lock); |
| |
| /* DISCARD can flip during remount */ |
| trimming = btrfs_test_opt(fs_info, DISCARD); |
| |
| /* Implicit trim during transaction commit. */ |
| if (trimming) |
| btrfs_get_block_group_trimming(block_group); |
| |
| /* |
| * Btrfs_remove_chunk will abort the transaction if things go |
| * horribly wrong. |
| */ |
| ret = btrfs_remove_chunk(trans, block_group->start); |
| |
| if (ret) { |
| if (trimming) |
| btrfs_put_block_group_trimming(block_group); |
| goto end_trans; |
| } |
| |
| /* |
| * If we're not mounted with -odiscard, we can just forget |
| * about this block group. Otherwise we'll need to wait |
| * until transaction commit to do the actual discard. |
| */ |
| if (trimming) { |
| spin_lock(&fs_info->unused_bgs_lock); |
| /* |
| * A concurrent scrub might have added us to the list |
| * fs_info->unused_bgs, so use a list_move operation |
| * to add the block group to the deleted_bgs list. |
| */ |
| list_move(&block_group->bg_list, |
| &trans->transaction->deleted_bgs); |
| spin_unlock(&fs_info->unused_bgs_lock); |
| btrfs_get_block_group(block_group); |
| } |
| end_trans: |
| btrfs_end_transaction(trans); |
| next: |
| mutex_unlock(&fs_info->delete_unused_bgs_mutex); |
| btrfs_put_block_group(block_group); |
| spin_lock(&fs_info->unused_bgs_lock); |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| } |
| |
| void btrfs_mark_bg_unused(struct btrfs_block_group *bg) |
| { |
| struct btrfs_fs_info *fs_info = bg->fs_info; |
| |
| spin_lock(&fs_info->unused_bgs_lock); |
| if (list_empty(&bg->bg_list)) { |
| btrfs_get_block_group(bg); |
| trace_btrfs_add_unused_block_group(bg); |
| list_add_tail(&bg->bg_list, &fs_info->unused_bgs); |
| } |
| spin_unlock(&fs_info->unused_bgs_lock); |
| } |
| |
| static int find_first_block_group(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| struct btrfs_key *key) |
| { |
| struct btrfs_root *root = fs_info->extent_root; |
| int ret = 0; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| struct btrfs_block_group_item bg; |
| u64 flags; |
| int slot; |
| |
| ret = btrfs_search_slot(NULL, root, key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| while (1) { |
| slot = path->slots[0]; |
| leaf = path->nodes[0]; |
| if (slot >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| break; |
| } |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid >= key->objectid && |
| found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| |
| em_tree = &root->fs_info->mapping_tree; |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, found_key.objectid, |
| found_key.offset); |
| read_unlock(&em_tree->lock); |
| if (!em) { |
| btrfs_err(fs_info, |
| "logical %llu len %llu found bg but no related chunk", |
| found_key.objectid, found_key.offset); |
| ret = -ENOENT; |
| } else if (em->start != found_key.objectid || |
| em->len != found_key.offset) { |
| btrfs_err(fs_info, |
| "block group %llu len %llu mismatch with chunk %llu len %llu", |
| found_key.objectid, found_key.offset, |
| em->start, em->len); |
| ret = -EUCLEAN; |
| } else { |
| read_extent_buffer(leaf, &bg, |
| btrfs_item_ptr_offset(leaf, slot), |
| sizeof(bg)); |
| flags = btrfs_stack_block_group_flags(&bg) & |
| BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| if (flags != (em->map_lookup->type & |
| BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| btrfs_err(fs_info, |
| "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", |
| found_key.objectid, |
| found_key.offset, flags, |
| (BTRFS_BLOCK_GROUP_TYPE_MASK & |
| em->map_lookup->type)); |
| ret = -EUCLEAN; |
| } else { |
| ret = 0; |
| } |
| } |
| free_extent_map(em); |
| goto out; |
| } |
| path->slots[0]++; |
| } |
| out: |
| return ret; |
| } |
| |
| static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 extra_flags = chunk_to_extended(flags) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| write_seqlock(&fs_info->profiles_lock); |
| if (flags & BTRFS_BLOCK_GROUP_DATA) |
| fs_info->avail_data_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_METADATA) |
| fs_info->avail_metadata_alloc_bits |= extra_flags; |
| if (flags & BTRFS_BLOCK_GROUP_SYSTEM) |
| fs_info->avail_system_alloc_bits |= extra_flags; |
| write_sequnlock(&fs_info->profiles_lock); |
| } |
| |
| static int exclude_super_stripes(struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| u64 bytenr; |
| u64 *logical; |
| int stripe_len; |
| int i, nr, ret; |
| |
| if (cache->start < BTRFS_SUPER_INFO_OFFSET) { |
| stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start; |
| cache->bytes_super += stripe_len; |
| ret = btrfs_add_excluded_extent(fs_info, cache->start, |
| stripe_len); |
| if (ret) |
| return ret; |
| } |
| |
| for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { |
| bytenr = btrfs_sb_offset(i); |
| ret = btrfs_rmap_block(fs_info, cache->start, |
| bytenr, &logical, &nr, &stripe_len); |
| if (ret) |
| return ret; |
| |
| while (nr--) { |
| u64 start, len; |
| |
| if (logical[nr] > cache->start + cache->length) |
| continue; |
| |
| if (logical[nr] + stripe_len <= cache->start) |
| continue; |
| |
| start = logical[nr]; |
| if (start < cache->start) { |
| start = cache->start; |
| len = (logical[nr] + stripe_len) - start; |
| } else { |
| len = min_t(u64, stripe_len, |
| cache->start + cache->length - start); |
| } |
| |
| cache->bytes_super += len; |
| ret = btrfs_add_excluded_extent(fs_info, start, len); |
| if (ret) { |
| kfree(logical); |
| return ret; |
| } |
| } |
| |
| kfree(logical); |
| } |
| return 0; |
| } |
| |
| static void link_block_group(struct btrfs_block_group *cache) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| int index = btrfs_bg_flags_to_raid_index(cache->flags); |
| bool first = false; |
| |
| down_write(&space_info->groups_sem); |
| if (list_empty(&space_info->block_groups[index])) |
| first = true; |
| list_add_tail(&cache->list, &space_info->block_groups[index]); |
| up_write(&space_info->groups_sem); |
| |
| if (first) |
| btrfs_sysfs_add_block_group_type(cache); |
| } |
| |
| static struct btrfs_block_group *btrfs_create_block_group_cache( |
| struct btrfs_fs_info *fs_info, u64 start, u64 size) |
| { |
| struct btrfs_block_group *cache; |
| |
| cache = kzalloc(sizeof(*cache), GFP_NOFS); |
| if (!cache) |
| return NULL; |
| |
| cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), |
| GFP_NOFS); |
| if (!cache->free_space_ctl) { |
| kfree(cache); |
| return NULL; |
| } |
| |
| cache->start = start; |
| cache->length = size; |
| |
| cache->fs_info = fs_info; |
| cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); |
| set_free_space_tree_thresholds(cache); |
| |
| atomic_set(&cache->count, 1); |
| spin_lock_init(&cache->lock); |
| init_rwsem(&cache->data_rwsem); |
| INIT_LIST_HEAD(&cache->list); |
| INIT_LIST_HEAD(&cache->cluster_list); |
| INIT_LIST_HEAD(&cache->bg_list); |
| INIT_LIST_HEAD(&cache->ro_list); |
| INIT_LIST_HEAD(&cache->dirty_list); |
| INIT_LIST_HEAD(&cache->io_list); |
| btrfs_init_free_space_ctl(cache); |
| atomic_set(&cache->trimming, 0); |
| mutex_init(&cache->free_space_lock); |
| btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); |
| |
| return cache; |
| } |
| |
| /* |
| * Iterate all chunks and verify that each of them has the corresponding block |
| * group |
| */ |
| static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| struct btrfs_block_group *bg; |
| u64 start = 0; |
| int ret = 0; |
| |
| while (1) { |
| read_lock(&map_tree->lock); |
| /* |
| * lookup_extent_mapping will return the first extent map |
| * intersecting the range, so setting @len to 1 is enough to |
| * get the first chunk. |
| */ |
| em = lookup_extent_mapping(map_tree, start, 1); |
| read_unlock(&map_tree->lock); |
| if (!em) |
| break; |
| |
| bg = btrfs_lookup_block_group(fs_info, em->start); |
| if (!bg) { |
| btrfs_err(fs_info, |
| "chunk start=%llu len=%llu doesn't have corresponding block group", |
| em->start, em->len); |
| ret = -EUCLEAN; |
| free_extent_map(em); |
| break; |
| } |
| if (bg->start != em->start || bg->length != em->len || |
| (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != |
| (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| btrfs_err(fs_info, |
| "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", |
| em->start, em->len, |
| em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, |
| bg->start, bg->length, |
| bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); |
| ret = -EUCLEAN; |
| free_extent_map(em); |
| btrfs_put_block_group(bg); |
| break; |
| } |
| start = em->start + em->len; |
| free_extent_map(em); |
| btrfs_put_block_group(bg); |
| } |
| return ret; |
| } |
| |
| static int read_one_block_group(struct btrfs_fs_info *info, |
| struct btrfs_path *path, |
| const struct btrfs_key *key, |
| int need_clear) |
| { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_block_group *cache; |
| struct btrfs_space_info *space_info; |
| struct btrfs_block_group_item bgi; |
| const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS); |
| int slot = path->slots[0]; |
| int ret; |
| |
| ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY); |
| |
| cache = btrfs_create_block_group_cache(info, key->objectid, key->offset); |
| if (!cache) |
| return -ENOMEM; |
| |
| if (need_clear) { |
| /* |
| * When we mount with old space cache, we need to |
| * set BTRFS_DC_CLEAR and set dirty flag. |
| * |
| * a) Setting 'BTRFS_DC_CLEAR' makes sure that we |
| * truncate the old free space cache inode and |
| * setup a new one. |
| * b) Setting 'dirty flag' makes sure that we flush |
| * the new space cache info onto disk. |
| */ |
| if (btrfs_test_opt(info, SPACE_CACHE)) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| } |
| read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), |
| sizeof(bgi)); |
| cache->used = btrfs_stack_block_group_used(&bgi); |
| cache->flags = btrfs_stack_block_group_flags(&bgi); |
| if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && |
| (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { |
| btrfs_err(info, |
| "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", |
| cache->start); |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| /* |
| * We need to exclude the super stripes now so that the space info has |
| * super bytes accounted for, otherwise we'll think we have more space |
| * than we actually do. |
| */ |
| ret = exclude_super_stripes(cache); |
| if (ret) { |
| /* We may have excluded something, so call this just in case. */ |
| btrfs_free_excluded_extents(cache); |
| goto error; |
| } |
| |
| /* |
| * Check for two cases, either we are full, and therefore don't need |
| * to bother with the caching work since we won't find any space, or we |
| * are empty, and we can just add all the space in and be done with it. |
| * This saves us _a_lot_ of time, particularly in the full case. |
| */ |
| if (key->offset == cache->used) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| btrfs_free_excluded_extents(cache); |
| } else if (cache->used == 0) { |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| add_new_free_space(cache, key->objectid, |
| key->objectid + key->offset); |
| btrfs_free_excluded_extents(cache); |
| } |
| |
| ret = btrfs_add_block_group_cache(info, cache); |
| if (ret) { |
| btrfs_remove_free_space_cache(cache); |
| goto error; |
| } |
| trace_btrfs_add_block_group(info, cache, 0); |
| btrfs_update_space_info(info, cache->flags, key->offset, |
| cache->used, cache->bytes_super, &space_info); |
| |
| cache->space_info = space_info; |
| |
| link_block_group(cache); |
| |
| set_avail_alloc_bits(info, cache->flags); |
| if (btrfs_chunk_readonly(info, cache->start)) { |
| inc_block_group_ro(cache, 1); |
| } else if (cache->used == 0) { |
| ASSERT(list_empty(&cache->bg_list)); |
| btrfs_mark_bg_unused(cache); |
| } |
| return 0; |
| error: |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| int btrfs_read_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_path *path; |
| int ret; |
| struct btrfs_block_group *cache; |
| struct btrfs_space_info *space_info; |
| struct btrfs_key key; |
| int need_clear = 0; |
| u64 cache_gen; |
| |
| key.objectid = 0; |
| key.offset = 0; |
| key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| path->reada = READA_FORWARD; |
| |
| cache_gen = btrfs_super_cache_generation(info->super_copy); |
| if (btrfs_test_opt(info, SPACE_CACHE) && |
| btrfs_super_generation(info->super_copy) != cache_gen) |
| need_clear = 1; |
| if (btrfs_test_opt(info, CLEAR_CACHE)) |
| need_clear = 1; |
| |
| while (1) { |
| ret = find_first_block_group(info, path, &key); |
| if (ret > 0) |
| break; |
| if (ret != 0) |
| goto error; |
| |
| btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); |
| ret = read_one_block_group(info, path, &key, need_clear); |
| if (ret < 0) |
| goto error; |
| key.objectid += key.offset; |
| key.offset = 0; |
| btrfs_release_path(path); |
| } |
| |
| list_for_each_entry_rcu(space_info, &info->space_info, list) { |
| if (!(btrfs_get_alloc_profile(info, space_info->flags) & |
| (BTRFS_BLOCK_GROUP_RAID10 | |
| BTRFS_BLOCK_GROUP_RAID1_MASK | |
| BTRFS_BLOCK_GROUP_RAID56_MASK | |
| BTRFS_BLOCK_GROUP_DUP))) |
| continue; |
| /* |
| * Avoid allocating from un-mirrored block group if there are |
| * mirrored block groups. |
| */ |
| list_for_each_entry(cache, |
| &space_info->block_groups[BTRFS_RAID_RAID0], |
| list) |
| inc_block_group_ro(cache, 1); |
| list_for_each_entry(cache, |
| &space_info->block_groups[BTRFS_RAID_SINGLE], |
| list) |
| inc_block_group_ro(cache, 1); |
| } |
| |
| btrfs_init_global_block_rsv(info); |
| ret = check_chunk_block_group_mappings(info); |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *block_group; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| struct btrfs_block_group_item item; |
| struct btrfs_key key; |
| int ret = 0; |
| |
| if (!trans->can_flush_pending_bgs) |
| return; |
| |
| while (!list_empty(&trans->new_bgs)) { |
| block_group = list_first_entry(&trans->new_bgs, |
| struct btrfs_block_group, |
| bg_list); |
| if (ret) |
| goto next; |
| |
| spin_lock(&block_group->lock); |
| btrfs_set_stack_block_group_used(&item, block_group->used); |
| btrfs_set_stack_block_group_chunk_objectid(&item, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| btrfs_set_stack_block_group_flags(&item, block_group->flags); |
| key.objectid = block_group->start; |
| key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| key.offset = block_group->length; |
| spin_unlock(&block_group->lock); |
| |
| ret = btrfs_insert_item(trans, extent_root, &key, &item, |
| sizeof(item)); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| add_block_group_free_space(trans, block_group); |
| /* Already aborted the transaction if it failed. */ |
| next: |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| list_del_init(&block_group->bg_list); |
| } |
| btrfs_trans_release_chunk_metadata(trans); |
| } |
| |
| int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, |
| u64 type, u64 chunk_offset, u64 size) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *cache; |
| int ret; |
| |
| btrfs_set_log_full_commit(trans); |
| |
| cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); |
| if (!cache) |
| return -ENOMEM; |
| |
| cache->used = bytes_used; |
| cache->flags = type; |
| cache->last_byte_to_unpin = (u64)-1; |
| cache->cached = BTRFS_CACHE_FINISHED; |
| cache->needs_free_space = 1; |
| ret = exclude_super_stripes(cache); |
| if (ret) { |
| /* We may have excluded something, so call this just in case */ |
| btrfs_free_excluded_extents(cache); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| add_new_free_space(cache, chunk_offset, chunk_offset + size); |
| |
| btrfs_free_excluded_extents(cache); |
| |
| #ifdef CONFIG_BTRFS_DEBUG |
| if (btrfs_should_fragment_free_space(cache)) { |
| u64 new_bytes_used = size - bytes_used; |
| |
| bytes_used += new_bytes_used >> 1; |
| fragment_free_space(cache); |
| } |
| #endif |
| /* |
| * Ensure the corresponding space_info object is created and |
| * assigned to our block group. We want our bg to be added to the rbtree |
| * with its ->space_info set. |
| */ |
| cache->space_info = btrfs_find_space_info(fs_info, cache->flags); |
| ASSERT(cache->space_info); |
| |
| ret = btrfs_add_block_group_cache(fs_info, cache); |
| if (ret) { |
| btrfs_remove_free_space_cache(cache); |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| /* |
| * Now that our block group has its ->space_info set and is inserted in |
| * the rbtree, update the space info's counters. |
| */ |
| trace_btrfs_add_block_group(fs_info, cache, 1); |
| btrfs_update_space_info(fs_info, cache->flags, size, bytes_used, |
| cache->bytes_super, &cache->space_info); |
| btrfs_update_global_block_rsv(fs_info); |
| |
| link_block_group(cache); |
| |
| list_add_tail(&cache->bg_list, &trans->new_bgs); |
| trans->delayed_ref_updates++; |
| btrfs_update_delayed_refs_rsv(trans); |
| |
| set_avail_alloc_bits(fs_info, type); |
| return 0; |
| } |
| |
| static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) |
| { |
| u64 num_devices; |
| u64 stripped; |
| |
| /* |
| * if restripe for this chunk_type is on pick target profile and |
| * return, otherwise do the usual balance |
| */ |
| stripped = get_restripe_target(fs_info, flags); |
| if (stripped) |
| return extended_to_chunk(stripped); |
| |
| num_devices = fs_info->fs_devices->rw_devices; |
| |
| stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK | |
| BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10; |
| |
| if (num_devices == 1) { |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* turn raid0 into single device chunks */ |
| if (flags & BTRFS_BLOCK_GROUP_RAID0) |
| return stripped; |
| |
| /* turn mirroring into duplication */ |
| if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK | |
| BTRFS_BLOCK_GROUP_RAID10)) |
| return stripped | BTRFS_BLOCK_GROUP_DUP; |
| } else { |
| /* they already had raid on here, just return */ |
| if (flags & stripped) |
| return flags; |
| |
| stripped |= BTRFS_BLOCK_GROUP_DUP; |
| stripped = flags & ~stripped; |
| |
| /* switch duplicated blocks with raid1 */ |
| if (flags & BTRFS_BLOCK_GROUP_DUP) |
| return stripped | BTRFS_BLOCK_GROUP_RAID1; |
| |
| /* this is drive concat, leave it alone */ |
| } |
| |
| return flags; |
| } |
| |
| /* |
| * Mark one block group RO, can be called several times for the same block |
| * group. |
| * |
| * @cache: the destination block group |
| * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to |
| * ensure we still have some free space after marking this |
| * block group RO. |
| */ |
| int btrfs_inc_block_group_ro(struct btrfs_block_group *cache, |
| bool do_chunk_alloc) |
| { |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| struct btrfs_trans_handle *trans; |
| u64 alloc_flags; |
| int ret; |
| |
| again: |
| trans = btrfs_join_transaction(fs_info->extent_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| /* |
| * we're not allowed to set block groups readonly after the dirty |
| * block groups cache has started writing. If it already started, |
| * back off and let this transaction commit |
| */ |
| mutex_lock(&fs_info->ro_block_group_mutex); |
| if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { |
| u64 transid = trans->transid; |
| |
| mutex_unlock(&fs_info->ro_block_group_mutex); |
| btrfs_end_transaction(trans); |
| |
| ret = btrfs_wait_for_commit(fs_info, transid); |
| if (ret) |
| return ret; |
| goto again; |
| } |
| |
| if (do_chunk_alloc) { |
| /* |
| * If we are changing raid levels, try to allocate a |
| * corresponding block group with the new raid level. |
| */ |
| alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| if (alloc_flags != cache->flags) { |
| ret = btrfs_chunk_alloc(trans, alloc_flags, |
| CHUNK_ALLOC_FORCE); |
| /* |
| * ENOSPC is allowed here, we may have enough space |
| * already allocated at the new raid level to carry on |
| */ |
| if (ret == -ENOSPC) |
| ret = 0; |
| if (ret < 0) |
| goto out; |
| } |
| } |
| |
| ret = inc_block_group_ro(cache, !do_chunk_alloc); |
| if (!do_chunk_alloc) |
| goto unlock_out; |
| if (!ret) |
| goto out; |
| alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags); |
| ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| if (ret < 0) |
| goto out; |
| ret = inc_block_group_ro(cache, 0); |
| out: |
| if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { |
| alloc_flags = update_block_group_flags(fs_info, cache->flags); |
| mutex_lock(&fs_info->chunk_mutex); |
| check_system_chunk(trans, alloc_flags); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| unlock_out: |
| mutex_unlock(&fs_info->ro_block_group_mutex); |
| |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| void btrfs_dec_block_group_ro(struct btrfs_block_group *cache) |
| { |
| struct btrfs_space_info *sinfo = cache->space_info; |
| u64 num_bytes; |
| |
| BUG_ON(!cache->ro); |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&cache->lock); |
| if (!--cache->ro) { |
| num_bytes = cache->length - cache->reserved - |
| cache->pinned - cache->bytes_super - cache->used; |
| sinfo->bytes_readonly -= num_bytes; |
| list_del_init(&cache->ro_list); |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&sinfo->lock); |
| } |
| |
| static int write_one_cache_group(struct btrfs_trans_handle *trans, |
| struct btrfs_path *path, |
| struct btrfs_block_group *cache) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| int ret; |
| struct btrfs_root *extent_root = fs_info->extent_root; |
| unsigned long bi; |
| struct extent_buffer *leaf; |
| struct btrfs_block_group_item bgi; |
| struct btrfs_key key; |
| |
| key.objectid = cache->start; |
| key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; |
| key.offset = cache->length; |
| |
| ret = btrfs_search_slot(trans, extent_root, &key, path, 0, 1); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto fail; |
| } |
| |
| leaf = path->nodes[0]; |
| bi = btrfs_item_ptr_offset(leaf, path->slots[0]); |
| btrfs_set_stack_block_group_used(&bgi, cache->used); |
| btrfs_set_stack_block_group_chunk_objectid(&bgi, |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| btrfs_set_stack_block_group_flags(&bgi, cache->flags); |
| write_extent_buffer(leaf, &bgi, bi, sizeof(bgi)); |
| btrfs_mark_buffer_dirty(leaf); |
| fail: |
| btrfs_release_path(path); |
| return ret; |
| |
| } |
| |
| static int cache_save_setup(struct btrfs_block_group *block_group, |
| struct btrfs_trans_handle *trans, |
| struct btrfs_path *path) |
| { |
| struct btrfs_fs_info *fs_info = block_group->fs_info; |
| struct btrfs_root *root = fs_info->tree_root; |
| struct inode *inode = NULL; |
| struct extent_changeset *data_reserved = NULL; |
| u64 alloc_hint = 0; |
| int dcs = BTRFS_DC_ERROR; |
| u64 num_pages = 0; |
| int retries = 0; |
| int ret = 0; |
| |
| /* |
| * If this block group is smaller than 100 megs don't bother caching the |
| * block group. |
| */ |
| if (block_group->length < (100 * SZ_1M)) { |
| spin_lock(&block_group->lock); |
| block_group->disk_cache_state = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| return 0; |
| } |
| |
| if (trans->aborted) |
| return 0; |
| again: |
| inode = lookup_free_space_inode(block_group, path); |
| if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { |
| ret = PTR_ERR(inode); |
| btrfs_release_path(path); |
| goto out; |
| } |
| |
| if (IS_ERR(inode)) { |
| BUG_ON(retries); |
| retries++; |
| |
| if (block_group->ro) |
| goto out_free; |
| |
| ret = create_free_space_inode(trans, block_group, path); |
| if (ret) |
| goto out_free; |
| goto again; |
| } |
| |
| /* |
| * We want to set the generation to 0, that way if anything goes wrong |
| * from here on out we know not to trust this cache when we load up next |
| * time. |
| */ |
| BTRFS_I(inode)->generation = 0; |
| ret = btrfs_update_inode(trans, root, inode); |
| if (ret) { |
| /* |
| * So theoretically we could recover from this, simply set the |
| * super cache generation to 0 so we know to invalidate the |
| * cache, but then we'd have to keep track of the block groups |
| * that fail this way so we know we _have_ to reset this cache |
| * before the next commit or risk reading stale cache. So to |
| * limit our exposure to horrible edge cases lets just abort the |
| * transaction, this only happens in really bad situations |
| * anyway. |
| */ |
| btrfs_abort_transaction(trans, ret); |
| goto out_put; |
| } |
| WARN_ON(ret); |
| |
| /* We've already setup this transaction, go ahead and exit */ |
| if (block_group->cache_generation == trans->transid && |
| i_size_read(inode)) { |
| dcs = BTRFS_DC_SETUP; |
| goto out_put; |
| } |
| |
| if (i_size_read(inode) > 0) { |
| ret = btrfs_check_trunc_cache_free_space(fs_info, |
| &fs_info->global_block_rsv); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_truncate_free_space_cache(trans, NULL, inode); |
| if (ret) |
| goto out_put; |
| } |
| |
| spin_lock(&block_group->lock); |
| if (block_group->cached != BTRFS_CACHE_FINISHED || |
| !btrfs_test_opt(fs_info, SPACE_CACHE)) { |
| /* |
| * don't bother trying to write stuff out _if_ |
| * a) we're not cached, |
| * b) we're with nospace_cache mount option, |
| * c) we're with v2 space_cache (FREE_SPACE_TREE). |
| */ |
| dcs = BTRFS_DC_WRITTEN; |
| spin_unlock(&block_group->lock); |
| goto out_put; |
| } |
| spin_unlock(&block_group->lock); |
| |
| /* |
| * We hit an ENOSPC when setting up the cache in this transaction, just |
| * skip doing the setup, we've already cleared the cache so we're safe. |
| */ |
| if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { |
| ret = -ENOSPC; |
| goto out_put; |
| } |
| |
| /* |
| * Try to preallocate enough space based on how big the block group is. |
| * Keep in mind this has to include any pinned space which could end up |
| * taking up quite a bit since it's not folded into the other space |
| * cache. |
| */ |
| num_pages = div_u64(block_group->length, SZ_256M); |
| if (!num_pages) |
| num_pages = 1; |
| |
| num_pages *= 16; |
| num_pages *= PAGE_SIZE; |
| |
| ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); |
| if (ret) |
| goto out_put; |
| |
| ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, |
| num_pages, num_pages, |
| &alloc_hint); |
| /* |
| * Our cache requires contiguous chunks so that we don't modify a bunch |
| * of metadata or split extents when writing the cache out, which means |
| * we can enospc if we are heavily fragmented in addition to just normal |
| * out of space conditions. So if we hit this just skip setting up any |
| * other block groups for this transaction, maybe we'll unpin enough |
| * space the next time around. |
| */ |
| if (!ret) |
| dcs = BTRFS_DC_SETUP; |
| else if (ret == -ENOSPC) |
| set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); |
| |
| out_put: |
| iput(inode); |
| out_free: |
| btrfs_release_path(path); |
| out: |
| spin_lock(&block_group->lock); |
| if (!ret && dcs == BTRFS_DC_SETUP) |
| block_group->cache_generation = trans->transid; |
| block_group->disk_cache_state = dcs; |
| spin_unlock(&block_group->lock); |
| |
| extent_changeset_free(data_reserved); |
| return ret; |
| } |
| |
| int btrfs_setup_space_cache(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *cache, *tmp; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| struct btrfs_path *path; |
| |
| if (list_empty(&cur_trans->dirty_bgs) || |
| !btrfs_test_opt(fs_info, SPACE_CACHE)) |
| return 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* Could add new block groups, use _safe just in case */ |
| list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, |
| dirty_list) { |
| if (cache->disk_cache_state == BTRFS_DC_CLEAR) |
| cache_save_setup(cache, trans, path); |
| } |
| |
| btrfs_free_path(path); |
| return 0; |
| } |
| |
| /* |
| * Transaction commit does final block group cache writeback during a critical |
| * section where nothing is allowed to change the FS. This is required in |
| * order for the cache to actually match the block group, but can introduce a |
| * lot of latency into the commit. |
| * |
| * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO. |
| * There's a chance we'll have to redo some of it if the block group changes |
| * again during the commit, but it greatly reduces the commit latency by |
| * getting rid of the easy block groups while we're still allowing others to |
| * join the commit. |
| */ |
| int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *cache; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| int ret = 0; |
| int should_put; |
| struct btrfs_path *path = NULL; |
| LIST_HEAD(dirty); |
| struct list_head *io = &cur_trans->io_bgs; |
| int num_started = 0; |
| int loops = 0; |
| |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| if (list_empty(&cur_trans->dirty_bgs)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| return 0; |
| } |
| list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| again: |
| /* Make sure all the block groups on our dirty list actually exist */ |
| btrfs_create_pending_block_groups(trans); |
| |
| if (!path) { |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| } |
| |
| /* |
| * cache_write_mutex is here only to save us from balance or automatic |
| * removal of empty block groups deleting this block group while we are |
| * writing out the cache |
| */ |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| while (!list_empty(&dirty)) { |
| bool drop_reserve = true; |
| |
| cache = list_first_entry(&dirty, struct btrfs_block_group, |
| dirty_list); |
| /* |
| * This can happen if something re-dirties a block group that |
| * is already under IO. Just wait for it to finish and then do |
| * it all again |
| */ |
| if (!list_empty(&cache->io_list)) { |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| } |
| |
| |
| /* |
| * btrfs_wait_cache_io uses the cache->dirty_list to decide if |
| * it should update the cache_state. Don't delete until after |
| * we wait. |
| * |
| * Since we're not running in the commit critical section |
| * we need the dirty_bgs_lock to protect from update_block_group |
| */ |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| list_del_init(&cache->dirty_list); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| should_put = 1; |
| |
| cache_save_setup(cache, trans, path); |
| |
| if (cache->disk_cache_state == BTRFS_DC_SETUP) { |
| cache->io_ctl.inode = NULL; |
| ret = btrfs_write_out_cache(trans, cache, path); |
| if (ret == 0 && cache->io_ctl.inode) { |
| num_started++; |
| should_put = 0; |
| |
| /* |
| * The cache_write_mutex is protecting the |
| * io_list, also refer to the definition of |
| * btrfs_transaction::io_bgs for more details |
| */ |
| list_add_tail(&cache->io_list, io); |
| } else { |
| /* |
| * If we failed to write the cache, the |
| * generation will be bad and life goes on |
| */ |
| ret = 0; |
| } |
| } |
| if (!ret) { |
| ret = write_one_cache_group(trans, path, cache); |
| /* |
| * Our block group might still be attached to the list |
| * of new block groups in the transaction handle of some |
| * other task (struct btrfs_trans_handle->new_bgs). This |
| * means its block group item isn't yet in the extent |
| * tree. If this happens ignore the error, as we will |
| * try again later in the critical section of the |
| * transaction commit. |
| */ |
| if (ret == -ENOENT) { |
| ret = 0; |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| if (list_empty(&cache->dirty_list)) { |
| list_add_tail(&cache->dirty_list, |
| &cur_trans->dirty_bgs); |
| btrfs_get_block_group(cache); |
| drop_reserve = false; |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| } else if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| } |
| } |
| |
| /* If it's not on the io list, we need to put the block group */ |
| if (should_put) |
| btrfs_put_block_group(cache); |
| if (drop_reserve) |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| |
| if (ret) |
| break; |
| |
| /* |
| * Avoid blocking other tasks for too long. It might even save |
| * us from writing caches for block groups that are going to be |
| * removed. |
| */ |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| mutex_lock(&trans->transaction->cache_write_mutex); |
| } |
| mutex_unlock(&trans->transaction->cache_write_mutex); |
| |
| /* |
| * Go through delayed refs for all the stuff we've just kicked off |
| * and then loop back (just once) |
| */ |
| ret = btrfs_run_delayed_refs(trans, 0); |
| if (!ret && loops == 0) { |
| loops++; |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| list_splice_init(&cur_trans->dirty_bgs, &dirty); |
| /* |
| * dirty_bgs_lock protects us from concurrent block group |
| * deletes too (not just cache_write_mutex). |
| */ |
| if (!list_empty(&dirty)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| goto again; |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| } else if (ret < 0) { |
| btrfs_cleanup_dirty_bgs(cur_trans, fs_info); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_block_group *cache; |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| int ret = 0; |
| int should_put; |
| struct btrfs_path *path; |
| struct list_head *io = &cur_trans->io_bgs; |
| int num_started = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * Even though we are in the critical section of the transaction commit, |
| * we can still have concurrent tasks adding elements to this |
| * transaction's list of dirty block groups. These tasks correspond to |
| * endio free space workers started when writeback finishes for a |
| * space cache, which run inode.c:btrfs_finish_ordered_io(), and can |
| * allocate new block groups as a result of COWing nodes of the root |
| * tree when updating the free space inode. The writeback for the space |
| * caches is triggered by an earlier call to |
| * btrfs_start_dirty_block_groups() and iterations of the following |
| * loop. |
| * Also we want to do the cache_save_setup first and then run the |
| * delayed refs to make sure we have the best chance at doing this all |
| * in one shot. |
| */ |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| while (!list_empty(&cur_trans->dirty_bgs)) { |
| cache = list_first_entry(&cur_trans->dirty_bgs, |
| struct btrfs_block_group, |
| dirty_list); |
| |
| /* |
| * This can happen if cache_save_setup re-dirties a block group |
| * that is already under IO. Just wait for it to finish and |
| * then do it all again |
| */ |
| if (!list_empty(&cache->io_list)) { |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| |
| /* |
| * Don't remove from the dirty list until after we've waited on |
| * any pending IO |
| */ |
| list_del_init(&cache->dirty_list); |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| should_put = 1; |
| |
| cache_save_setup(cache, trans, path); |
| |
| if (!ret) |
| ret = btrfs_run_delayed_refs(trans, |
| (unsigned long) -1); |
| |
| if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { |
| cache->io_ctl.inode = NULL; |
| ret = btrfs_write_out_cache(trans, cache, path); |
| if (ret == 0 && cache->io_ctl.inode) { |
| num_started++; |
| should_put = 0; |
| list_add_tail(&cache->io_list, io); |
| } else { |
| /* |
| * If we failed to write the cache, the |
| * generation will be bad and life goes on |
| */ |
| ret = 0; |
| } |
| } |
| if (!ret) { |
| ret = write_one_cache_group(trans, path, cache); |
| /* |
| * One of the free space endio workers might have |
| * created a new block group while updating a free space |
| * cache's inode (at inode.c:btrfs_finish_ordered_io()) |
| * and hasn't released its transaction handle yet, in |
| * which case the new block group is still attached to |
| * its transaction handle and its creation has not |
| * finished yet (no block group item in the extent tree |
| * yet, etc). If this is the case, wait for all free |
| * space endio workers to finish and retry. This is a |
| * a very rare case so no need for a more efficient and |
| * complex approach. |
| */ |
| if (ret == -ENOENT) { |
| wait_event(cur_trans->writer_wait, |
| atomic_read(&cur_trans->num_writers) == 1); |
| ret = write_one_cache_group(trans, path, cache); |
| } |
| if (ret) |
| btrfs_abort_transaction(trans, ret); |
| } |
| |
| /* If its not on the io list, we need to put the block group */ |
| if (should_put) |
| btrfs_put_block_group(cache); |
| btrfs_delayed_refs_rsv_release(fs_info, 1); |
| spin_lock(&cur_trans->dirty_bgs_lock); |
| } |
| spin_unlock(&cur_trans->dirty_bgs_lock); |
| |
| /* |
| * Refer to the definition of io_bgs member for details why it's safe |
| * to use it without any locking |
| */ |
| while (!list_empty(io)) { |
| cache = list_first_entry(io, struct btrfs_block_group, |
| io_list); |
| list_del_init(&cache->io_list); |
| btrfs_wait_cache_io(trans, cache, path); |
| btrfs_put_block_group(cache); |
| } |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_update_block_group(struct btrfs_trans_handle *trans, |
| u64 bytenr, u64 num_bytes, int alloc) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_block_group *cache = NULL; |
| u64 total = num_bytes; |
| u64 old_val; |
| u64 byte_in_group; |
| int factor; |
| int ret = 0; |
| |
| /* Block accounting for super block */ |
| spin_lock(&info->delalloc_root_lock); |
| old_val = btrfs_super_bytes_used(info->super_copy); |
| if (alloc) |
| old_val += num_bytes; |
| else |
| old_val -= num_bytes; |
| btrfs_set_super_bytes_used(info->super_copy, old_val); |
| spin_unlock(&info->delalloc_root_lock); |
| |
| while (total) { |
| cache = btrfs_lookup_block_group(info, bytenr); |
| if (!cache) { |
| ret = -ENOENT; |
| break; |
| } |
| factor = btrfs_bg_type_to_factor(cache->flags); |
| |
| /* |
| * If this block group has free space cache written out, we |
| * need to make sure to load it if we are removing space. This |
| * is because we need the unpinning stage to actually add the |
| * space back to the block group, otherwise we will leak space. |
| */ |
| if (!alloc && !btrfs_block_group_done(cache)) |
| btrfs_cache_block_group(cache, 1); |
| |
| byte_in_group = bytenr - cache->start; |
| WARN_ON(byte_in_group > cache->length); |
| |
| spin_lock(&cache->space_info->lock); |
| spin_lock(&cache->lock); |
| |
| if (btrfs_test_opt(info, SPACE_CACHE) && |
| cache->disk_cache_state < BTRFS_DC_CLEAR) |
| cache->disk_cache_state = BTRFS_DC_CLEAR; |
| |
| old_val = cache->used; |
| num_bytes = min(total, cache->length - byte_in_group); |
| if (alloc) { |
| old_val += num_bytes; |
| cache->used = old_val; |
| cache->reserved -= num_bytes; |
| cache->space_info->bytes_reserved -= num_bytes; |
| cache->space_info->bytes_used += num_bytes; |
| cache->space_info->disk_used += num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| } else { |
| old_val -= num_bytes; |
| cache->used = old_val; |
| cache->pinned += num_bytes; |
| btrfs_space_info_update_bytes_pinned(info, |
| cache->space_info, num_bytes); |
| cache->space_info->bytes_used -= num_bytes; |
| cache->space_info->disk_used -= num_bytes * factor; |
| spin_unlock(&cache->lock); |
| spin_unlock(&cache->space_info->lock); |
| |
| percpu_counter_add_batch( |
| &cache->space_info->total_bytes_pinned, |
| num_bytes, |
| BTRFS_TOTAL_BYTES_PINNED_BATCH); |
| set_extent_dirty(info->pinned_extents, |
| bytenr, bytenr + num_bytes - 1, |
| GFP_NOFS | __GFP_NOFAIL); |
| } |
| |
| spin_lock(&trans->transaction->dirty_bgs_lock); |
| if (list_empty(&cache->dirty_list)) { |
| list_add_tail(&cache->dirty_list, |
| &trans->transaction->dirty_bgs); |
| trans->delayed_ref_updates++; |
| btrfs_get_block_group(cache); |
| } |
| spin_unlock(&trans->transaction->dirty_bgs_lock); |
| |
| /* |
| * No longer have used bytes in this block group, queue it for |
| * deletion. We do this after adding the block group to the |
| * dirty list to avoid races between cleaner kthread and space |
| * cache writeout. |
| */ |
| if (!alloc && old_val == 0) |
| btrfs_mark_bg_unused(cache); |
| |
| btrfs_put_block_group(cache); |
| total -= num_bytes; |
| bytenr += num_bytes; |
| } |
| |
| /* Modified block groups are accounted for in the delayed_refs_rsv. */ |
| btrfs_update_delayed_refs_rsv(trans); |
| return ret; |
| } |
| |
| /** |
| * btrfs_add_reserved_bytes - update the block_group and space info counters |
| * @cache: The cache we are manipulating |
| * @ram_bytes: The number of bytes of file content, and will be same to |
| * @num_bytes except for the compress path. |
| * @num_bytes: The number of bytes in question |
| * @delalloc: The blocks are allocated for the delalloc write |
| * |
| * This is called by the allocator when it reserves space. If this is a |
| * reservation and the block group has become read only we cannot make the |
| * reservation and return -EAGAIN, otherwise this function always succeeds. |
| */ |
| int btrfs_add_reserved_bytes(struct btrfs_block_group *cache, |
| u64 ram_bytes, u64 num_bytes, int delalloc) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| int ret = 0; |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| if (cache->ro) { |
| ret = -EAGAIN; |
| } else { |
| cache->reserved += num_bytes; |
| space_info->bytes_reserved += num_bytes; |
| trace_btrfs_space_reservation(cache->fs_info, "space_info", |
| space_info->flags, num_bytes, 1); |
| btrfs_space_info_update_bytes_may_use(cache->fs_info, |
| space_info, -ram_bytes); |
| if (delalloc) |
| cache->delalloc_bytes += num_bytes; |
| } |
| spin_unlock(&cache->lock); |
| spin_unlock(&space_info->lock); |
| return ret; |
| } |
| |
| /** |
| * btrfs_free_reserved_bytes - update the block_group and space info counters |
| * @cache: The cache we are manipulating |
| * @num_bytes: The number of bytes in question |
| * @delalloc: The blocks are allocated for the delalloc write |
| * |
| * This is called by somebody who is freeing space that was never actually used |
| * on disk. For example if you reserve some space for a new leaf in transaction |
| * A and before transaction A commits you free that leaf, you call this with |
| * reserve set to 0 in order to clear the reservation. |
| */ |
| void btrfs_free_reserved_bytes(struct btrfs_block_group *cache, |
| u64 num_bytes, int delalloc) |
| { |
| struct btrfs_space_info *space_info = cache->space_info; |
| |
| spin_lock(&space_info->lock); |
| spin_lock(&cache->lock); |
| if (cache->ro) |
| space_info->bytes_readonly += num_bytes; |
| cache->reserved -= num_bytes; |
| space_info->bytes_reserved -= num_bytes; |
| space_info->max_extent_size = 0; |
| |
| if (delalloc) |
| cache->delalloc_bytes -= num_bytes; |
| spin_unlock(&cache->lock); |
| spin_unlock(&space_info->lock); |
| } |
| |
| static void force_metadata_allocation(struct btrfs_fs_info *info) |
| { |
| struct list_head *head = &info->space_info; |
| struct btrfs_space_info *found; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(found, head, list) { |
| if (found->flags & BTRFS_BLOCK_GROUP_METADATA) |
| found->force_alloc = CHUNK_ALLOC_FORCE; |
| } |
| rcu_read_unlock(); |
| } |
| |
| static int should_alloc_chunk(struct btrfs_fs_info *fs_info, |
| struct btrfs_space_info *sinfo, int force) |
| { |
| u64 bytes_used = btrfs_space_info_used(sinfo, false); |
| u64 thresh; |
| |
| if (force == CHUNK_ALLOC_FORCE) |
| return 1; |
| |
| /* |
| * in limited mode, we want to have some free space up to |
| * about 1% of the FS size. |
| */ |
| if (force == CHUNK_ALLOC_LIMITED) { |
| thresh = btrfs_super_total_bytes(fs_info->super_copy); |
| thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); |
| |
| if (sinfo->total_bytes - bytes_used < thresh) |
| return 1; |
| } |
| |
| if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) |
| return 0; |
| return 1; |
| } |
| |
| int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) |
| { |
| u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type); |
| |
| return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); |
| } |
| |
| /* |
| * If force is CHUNK_ALLOC_FORCE: |
| * - return 1 if it successfully allocates a chunk, |
| * - return errors including -ENOSPC otherwise. |
| * If force is NOT CHUNK_ALLOC_FORCE: |
| * - return 0 if it doesn't need to allocate a new chunk, |
| * - return 1 if it successfully allocates a chunk, |
| * - return errors including -ENOSPC otherwise. |
| */ |
| int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, |
| enum btrfs_chunk_alloc_enum force) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_space_info *space_info; |
| bool wait_for_alloc = false; |
| bool should_alloc = false; |
| int ret = 0; |
| |
| /* Don't re-enter if we're already allocating a chunk */ |
| if (trans->allocating_chunk) |
| return -ENOSPC; |
| |
| space_info = btrfs_find_space_info(fs_info, flags); |
| ASSERT(space_info); |
| |
| do { |
| spin_lock(&space_info->lock); |
| if (force < space_info->force_alloc) |
| force = space_info->force_alloc; |
| should_alloc = should_alloc_chunk(fs_info, space_info, force); |
| if (space_info->full) { |
| /* No more free physical space */ |
| if (should_alloc) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| spin_unlock(&space_info->lock); |
| return ret; |
| } else if (!should_alloc) { |
| spin_unlock(&space_info->lock); |
| return 0; |
| } else if (space_info->chunk_alloc) { |
| /* |
| * Someone is already allocating, so we need to block |
| * until this someone is finished and then loop to |
| * recheck if we should continue with our allocation |
| * attempt. |
| */ |
| wait_for_alloc = true; |
| spin_unlock(&space_info->lock); |
| mutex_lock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } else { |
| /* Proceed with allocation */ |
| space_info->chunk_alloc = 1; |
| wait_for_alloc = false; |
| spin_unlock(&space_info->lock); |
| } |
| |
| cond_resched(); |
| } while (wait_for_alloc); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| trans->allocating_chunk = true; |
| |
| /* |
| * If we have mixed data/metadata chunks we want to make sure we keep |
| * allocating mixed chunks instead of individual chunks. |
| */ |
| if (btrfs_mixed_space_info(space_info)) |
| flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); |
| |
| /* |
| * if we're doing a data chunk, go ahead and make sure that |
| * we keep a reasonable number of metadata chunks allocated in the |
| * FS as well. |
| */ |
| if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { |
| fs_info->data_chunk_allocations++; |
| if (!(fs_info->data_chunk_allocations % |
| fs_info->metadata_ratio)) |
| force_metadata_allocation(fs_info); |
| } |
| |
| /* |
| * Check if we have enough space in SYSTEM chunk because we may need |
| * to update devices. |
| */ |
| check_system_chunk(trans, flags); |
| |
| ret = btrfs_alloc_chunk(trans, flags); |
| trans->allocating_chunk = false; |
| |
| spin_lock(&space_info->lock); |
| if (ret < 0) { |
| if (ret == -ENOSPC) |
| space_info->full = 1; |
| else |
| goto out; |
| } else { |
| ret = 1; |
| space_info->max_extent_size = 0; |
| } |
| |
| space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; |
| out: |
| space_info->chunk_alloc = 0; |
| spin_unlock(&space_info->lock); |
| mutex_unlock(&fs_info->chunk_mutex); |
| /* |
| * When we allocate a new chunk we reserve space in the chunk block |
| * reserve to make sure we can COW nodes/leafs in the chunk tree or |
| * add new nodes/leafs to it if we end up needing to do it when |
| * inserting the chunk item and updating device items as part of the |
| * second phase of chunk allocation, performed by |
| * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a |
| * large number of new block groups to create in our transaction |
| * handle's new_bgs list to avoid exhausting the chunk block reserve |
| * in extreme cases - like having a single transaction create many new |
| * block groups when starting to write out the free space caches of all |
| * the block groups that were made dirty during the lifetime of the |
| * transaction. |
| */ |
| if (trans->chunk_bytes_reserved >= (u64)SZ_2M) |
| btrfs_create_pending_block_groups(trans); |
| |
| return ret; |
| } |
| |
| static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) |
| { |
| u64 num_dev; |
| |
| num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max; |
| if (!num_dev) |
| num_dev = fs_info->fs_devices->rw_devices; |
| |
| return num_dev; |
| } |
| |
| /* |
| * Reserve space in the system space for allocating or removing a chunk |
| */ |
| void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_space_info *info; |
| u64 left; |
| u64 thresh; |
| int ret = 0; |
| u64 num_devs; |
| |
| /* |
| * Needed because we can end up allocating a system chunk and for an |
| * atomic and race free space reservation in the chunk block reserve. |
| */ |
| lockdep_assert_held(&fs_info->chunk_mutex); |
| |
| info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| spin_lock(&info->lock); |
| left = info->total_bytes - btrfs_space_info_used(info, true); |
| spin_unlock(&info->lock); |
| |
| num_devs = get_profile_num_devs(fs_info, type); |
| |
| /* num_devs device items to update and 1 chunk item to add or remove */ |
| thresh = btrfs_calc_metadata_size(fs_info, num_devs) + |
| btrfs_calc_insert_metadata_size(fs_info, 1); |
| |
| if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", |
| left, thresh, type); |
| btrfs_dump_space_info(fs_info, info, 0, 0); |
| } |
| |
| if (left < thresh) { |
| u64 flags = btrfs_system_alloc_profile(fs_info); |
| |
| /* |
| * Ignore failure to create system chunk. We might end up not |
| * needing it, as we might not need to COW all nodes/leafs from |
| * the paths we visit in the chunk tree (they were already COWed |
| * or created in the current transaction for example). |
| */ |
| ret = btrfs_alloc_chunk(trans, flags); |
| } |
| |
| if (!ret) { |
| ret = btrfs_block_rsv_add(fs_info->chunk_root, |
| &fs_info->chunk_block_rsv, |
| thresh, BTRFS_RESERVE_NO_FLUSH); |
| if (!ret) |
| trans->chunk_bytes_reserved += thresh; |
| } |
| } |
| |
| void btrfs_put_block_group_cache(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group *block_group; |
| u64 last = 0; |
| |
| while (1) { |
| struct inode *inode; |
| |
| block_group = btrfs_lookup_first_block_group(info, last); |
| while (block_group) { |
| btrfs_wait_block_group_cache_done(block_group); |
| spin_lock(&block_group->lock); |
| if (block_group->iref) |
| break; |
| spin_unlock(&block_group->lock); |
| block_group = btrfs_next_block_group(block_group); |
| } |
| if (!block_group) { |
| if (last == 0) |
| break; |
| last = 0; |
| continue; |
| } |
| |
| inode = block_group->inode; |
| block_group->iref = 0; |
| block_group->inode = NULL; |
| spin_unlock(&block_group->lock); |
| ASSERT(block_group->io_ctl.inode == NULL); |
| iput(inode); |
| last = block_group->start + block_group->length; |
| btrfs_put_block_group(block_group); |
| } |
| } |
| |
| /* |
| * Must be called only after stopping all workers, since we could have block |
| * group caching kthreads running, and therefore they could race with us if we |
| * freed the block groups before stopping them. |
| */ |
| int btrfs_free_block_groups(struct btrfs_fs_info *info) |
| { |
| struct btrfs_block_group *block_group; |
| struct btrfs_space_info *space_info; |
| struct btrfs_caching_control *caching_ctl; |
| struct rb_node *n; |
| |
| down_write(&info->commit_root_sem); |
| while (!list_empty(&info->caching_block_groups)) { |
| caching_ctl = list_entry(info->caching_block_groups.next, |
| struct btrfs_caching_control, list); |
| list_del(&caching_ctl->list); |
| btrfs_put_caching_control(caching_ctl); |
| } |
| up_write(&info->commit_root_sem); |
| |
| spin_lock(&info->unused_bgs_lock); |
| while (!list_empty(&info->unused_bgs)) { |
| block_group = list_first_entry(&info->unused_bgs, |
| struct btrfs_block_group, |
| bg_list); |
| list_del_init(&block_group->bg_list); |
| btrfs_put_block_group(block_group); |
| } |
| spin_unlock(&info->unused_bgs_lock); |
| |
| spin_lock(&info->block_group_cache_lock); |
| while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { |
| block_group = rb_entry(n, struct btrfs_block_group, |
| cache_node); |
| rb_erase(&block_group->cache_node, |
| &info->block_group_cache_tree); |
| RB_CLEAR_NODE(&block_group->cache_node); |
| spin_unlock(&info->block_group_cache_lock); |
| |
| down_write(&block_group->space_info->groups_sem); |
| list_del(&block_group->list); |
| up_write(&block_group->space_info->groups_sem); |
| |
| /* |
| * We haven't cached this block group, which means we could |
| * possibly have excluded extents on this block group. |
| */ |
| if (block_group->cached == BTRFS_CACHE_NO || |
| block_group->cached == BTRFS_CACHE_ERROR) |
| btrfs_free_excluded_extents(block_group); |
| |
| btrfs_remove_free_space_cache(block_group); |
| ASSERT(block_group->cached != BTRFS_CACHE_STARTED); |
| ASSERT(list_empty(&block_group->dirty_list)); |
| ASSERT(list_empty(&block_group->io_list)); |
| ASSERT(list_empty(&block_group->bg_list)); |
| ASSERT(atomic_read(&block_group->count) == 1); |
| btrfs_put_block_group(block_group); |
| |
| spin_lock(&info->block_group_cache_lock); |
| } |
| spin_unlock(&info->block_group_cache_lock); |
| |
| /* |
| * Now that all the block groups are freed, go through and free all the |
| * space_info structs. This is only called during the final stages of |
| * unmount, and so we know nobody is using them. We call |
| * synchronize_rcu() once before we start, just to be on the safe side. |
| */ |
| synchronize_rcu(); |
| |
| btrfs_release_global_block_rsv(info); |
| |
| while (!list_empty(&info->space_info)) { |
| space_info = list_entry(info->space_info.next, |
| struct btrfs_space_info, |
| list); |
| |
| /* |
| * Do not hide this behind enospc_debug, this is actually |
| * important and indicates a real bug if this happens. |
| */ |
| if (WARN_ON(space_info->bytes_pinned > 0 || |
| space_info->bytes_reserved > 0 || |
| space_info->bytes_may_use > 0)) |
| btrfs_dump_space_info(info, space_info, 0, 0); |
| list_del(&space_info->list); |
| btrfs_sysfs_remove_space_info(space_info); |
| } |
| return 0; |
| } |