| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVM Express device driver |
| * Copyright (c) 2011-2014, Intel Corporation. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/aer.h> |
| #include <linux/async.h> |
| #include <linux/blkdev.h> |
| #include <linux/blk-mq.h> |
| #include <linux/blk-mq-pci.h> |
| #include <linux/dmi.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/once.h> |
| #include <linux/pci.h> |
| #include <linux/suspend.h> |
| #include <linux/t10-pi.h> |
| #include <linux/types.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <linux/sed-opal.h> |
| #include <linux/pci-p2pdma.h> |
| |
| #include "trace.h" |
| #include "nvme.h" |
| |
| #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes) |
| #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion)) |
| |
| #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc)) |
| |
| /* |
| * These can be higher, but we need to ensure that any command doesn't |
| * require an sg allocation that needs more than a page of data. |
| */ |
| #define NVME_MAX_KB_SZ 4096 |
| #define NVME_MAX_SEGS 127 |
| |
| static int use_threaded_interrupts; |
| module_param(use_threaded_interrupts, int, 0); |
| |
| static bool use_cmb_sqes = true; |
| module_param(use_cmb_sqes, bool, 0444); |
| MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); |
| |
| static unsigned int max_host_mem_size_mb = 128; |
| module_param(max_host_mem_size_mb, uint, 0444); |
| MODULE_PARM_DESC(max_host_mem_size_mb, |
| "Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); |
| |
| static unsigned int sgl_threshold = SZ_32K; |
| module_param(sgl_threshold, uint, 0644); |
| MODULE_PARM_DESC(sgl_threshold, |
| "Use SGLs when average request segment size is larger or equal to " |
| "this size. Use 0 to disable SGLs."); |
| |
| static int io_queue_depth_set(const char *val, const struct kernel_param *kp); |
| static const struct kernel_param_ops io_queue_depth_ops = { |
| .set = io_queue_depth_set, |
| .get = param_get_uint, |
| }; |
| |
| static unsigned int io_queue_depth = 1024; |
| module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); |
| MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); |
| |
| static int io_queue_count_set(const char *val, const struct kernel_param *kp) |
| { |
| unsigned int n; |
| int ret; |
| |
| ret = kstrtouint(val, 10, &n); |
| if (ret != 0 || n > num_possible_cpus()) |
| return -EINVAL; |
| return param_set_uint(val, kp); |
| } |
| |
| static const struct kernel_param_ops io_queue_count_ops = { |
| .set = io_queue_count_set, |
| .get = param_get_uint, |
| }; |
| |
| static unsigned int write_queues; |
| module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644); |
| MODULE_PARM_DESC(write_queues, |
| "Number of queues to use for writes. If not set, reads and writes " |
| "will share a queue set."); |
| |
| static unsigned int poll_queues; |
| module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644); |
| MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO."); |
| |
| static bool noacpi; |
| module_param(noacpi, bool, 0444); |
| MODULE_PARM_DESC(noacpi, "disable acpi bios quirks"); |
| |
| struct nvme_dev; |
| struct nvme_queue; |
| |
| static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); |
| static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode); |
| |
| /* |
| * Represents an NVM Express device. Each nvme_dev is a PCI function. |
| */ |
| struct nvme_dev { |
| struct nvme_queue *queues; |
| struct blk_mq_tag_set tagset; |
| struct blk_mq_tag_set admin_tagset; |
| u32 __iomem *dbs; |
| struct device *dev; |
| struct dma_pool *prp_page_pool; |
| struct dma_pool *prp_small_pool; |
| unsigned online_queues; |
| unsigned max_qid; |
| unsigned io_queues[HCTX_MAX_TYPES]; |
| unsigned int num_vecs; |
| u32 q_depth; |
| int io_sqes; |
| u32 db_stride; |
| void __iomem *bar; |
| unsigned long bar_mapped_size; |
| struct work_struct remove_work; |
| struct mutex shutdown_lock; |
| bool subsystem; |
| u64 cmb_size; |
| bool cmb_use_sqes; |
| u32 cmbsz; |
| u32 cmbloc; |
| struct nvme_ctrl ctrl; |
| u32 last_ps; |
| |
| mempool_t *iod_mempool; |
| |
| /* shadow doorbell buffer support: */ |
| u32 *dbbuf_dbs; |
| dma_addr_t dbbuf_dbs_dma_addr; |
| u32 *dbbuf_eis; |
| dma_addr_t dbbuf_eis_dma_addr; |
| |
| /* host memory buffer support: */ |
| u64 host_mem_size; |
| u32 nr_host_mem_descs; |
| dma_addr_t host_mem_descs_dma; |
| struct nvme_host_mem_buf_desc *host_mem_descs; |
| void **host_mem_desc_bufs; |
| unsigned int nr_allocated_queues; |
| unsigned int nr_write_queues; |
| unsigned int nr_poll_queues; |
| }; |
| |
| static int io_queue_depth_set(const char *val, const struct kernel_param *kp) |
| { |
| int ret; |
| u32 n; |
| |
| ret = kstrtou32(val, 10, &n); |
| if (ret != 0 || n < 2) |
| return -EINVAL; |
| |
| return param_set_uint(val, kp); |
| } |
| |
| static inline unsigned int sq_idx(unsigned int qid, u32 stride) |
| { |
| return qid * 2 * stride; |
| } |
| |
| static inline unsigned int cq_idx(unsigned int qid, u32 stride) |
| { |
| return (qid * 2 + 1) * stride; |
| } |
| |
| static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) |
| { |
| return container_of(ctrl, struct nvme_dev, ctrl); |
| } |
| |
| /* |
| * An NVM Express queue. Each device has at least two (one for admin |
| * commands and one for I/O commands). |
| */ |
| struct nvme_queue { |
| struct nvme_dev *dev; |
| spinlock_t sq_lock; |
| void *sq_cmds; |
| /* only used for poll queues: */ |
| spinlock_t cq_poll_lock ____cacheline_aligned_in_smp; |
| struct nvme_completion *cqes; |
| dma_addr_t sq_dma_addr; |
| dma_addr_t cq_dma_addr; |
| u32 __iomem *q_db; |
| u32 q_depth; |
| u16 cq_vector; |
| u16 sq_tail; |
| u16 last_sq_tail; |
| u16 cq_head; |
| u16 qid; |
| u8 cq_phase; |
| u8 sqes; |
| unsigned long flags; |
| #define NVMEQ_ENABLED 0 |
| #define NVMEQ_SQ_CMB 1 |
| #define NVMEQ_DELETE_ERROR 2 |
| #define NVMEQ_POLLED 3 |
| u32 *dbbuf_sq_db; |
| u32 *dbbuf_cq_db; |
| u32 *dbbuf_sq_ei; |
| u32 *dbbuf_cq_ei; |
| struct completion delete_done; |
| }; |
| |
| /* |
| * The nvme_iod describes the data in an I/O. |
| * |
| * The sg pointer contains the list of PRP/SGL chunk allocations in addition |
| * to the actual struct scatterlist. |
| */ |
| struct nvme_iod { |
| struct nvme_request req; |
| struct nvme_queue *nvmeq; |
| bool use_sgl; |
| int aborted; |
| int npages; /* In the PRP list. 0 means small pool in use */ |
| int nents; /* Used in scatterlist */ |
| dma_addr_t first_dma; |
| unsigned int dma_len; /* length of single DMA segment mapping */ |
| dma_addr_t meta_dma; |
| struct scatterlist *sg; |
| }; |
| |
| static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev) |
| { |
| return dev->nr_allocated_queues * 8 * dev->db_stride; |
| } |
| |
| static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) |
| { |
| unsigned int mem_size = nvme_dbbuf_size(dev); |
| |
| if (dev->dbbuf_dbs) |
| return 0; |
| |
| dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, |
| &dev->dbbuf_dbs_dma_addr, |
| GFP_KERNEL); |
| if (!dev->dbbuf_dbs) |
| return -ENOMEM; |
| dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, |
| &dev->dbbuf_eis_dma_addr, |
| GFP_KERNEL); |
| if (!dev->dbbuf_eis) { |
| dma_free_coherent(dev->dev, mem_size, |
| dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); |
| dev->dbbuf_dbs = NULL; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_dbbuf_dma_free(struct nvme_dev *dev) |
| { |
| unsigned int mem_size = nvme_dbbuf_size(dev); |
| |
| if (dev->dbbuf_dbs) { |
| dma_free_coherent(dev->dev, mem_size, |
| dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); |
| dev->dbbuf_dbs = NULL; |
| } |
| if (dev->dbbuf_eis) { |
| dma_free_coherent(dev->dev, mem_size, |
| dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); |
| dev->dbbuf_eis = NULL; |
| } |
| } |
| |
| static void nvme_dbbuf_init(struct nvme_dev *dev, |
| struct nvme_queue *nvmeq, int qid) |
| { |
| if (!dev->dbbuf_dbs || !qid) |
| return; |
| |
| nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; |
| nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; |
| nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; |
| nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; |
| } |
| |
| static void nvme_dbbuf_free(struct nvme_queue *nvmeq) |
| { |
| if (!nvmeq->qid) |
| return; |
| |
| nvmeq->dbbuf_sq_db = NULL; |
| nvmeq->dbbuf_cq_db = NULL; |
| nvmeq->dbbuf_sq_ei = NULL; |
| nvmeq->dbbuf_cq_ei = NULL; |
| } |
| |
| static void nvme_dbbuf_set(struct nvme_dev *dev) |
| { |
| struct nvme_command c; |
| unsigned int i; |
| |
| if (!dev->dbbuf_dbs) |
| return; |
| |
| memset(&c, 0, sizeof(c)); |
| c.dbbuf.opcode = nvme_admin_dbbuf; |
| c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); |
| c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); |
| |
| if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { |
| dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); |
| /* Free memory and continue on */ |
| nvme_dbbuf_dma_free(dev); |
| |
| for (i = 1; i <= dev->online_queues; i++) |
| nvme_dbbuf_free(&dev->queues[i]); |
| } |
| } |
| |
| static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) |
| { |
| return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); |
| } |
| |
| /* Update dbbuf and return true if an MMIO is required */ |
| static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, |
| volatile u32 *dbbuf_ei) |
| { |
| if (dbbuf_db) { |
| u16 old_value; |
| |
| /* |
| * Ensure that the queue is written before updating |
| * the doorbell in memory |
| */ |
| wmb(); |
| |
| old_value = *dbbuf_db; |
| *dbbuf_db = value; |
| |
| /* |
| * Ensure that the doorbell is updated before reading the event |
| * index from memory. The controller needs to provide similar |
| * ordering to ensure the envent index is updated before reading |
| * the doorbell. |
| */ |
| mb(); |
| |
| if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Will slightly overestimate the number of pages needed. This is OK |
| * as it only leads to a small amount of wasted memory for the lifetime of |
| * the I/O. |
| */ |
| static int nvme_pci_npages_prp(void) |
| { |
| unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE, |
| NVME_CTRL_PAGE_SIZE); |
| return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); |
| } |
| |
| /* |
| * Calculates the number of pages needed for the SGL segments. For example a 4k |
| * page can accommodate 256 SGL descriptors. |
| */ |
| static int nvme_pci_npages_sgl(void) |
| { |
| return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc), |
| PAGE_SIZE); |
| } |
| |
| static size_t nvme_pci_iod_alloc_size(void) |
| { |
| size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl()); |
| |
| return sizeof(__le64 *) * npages + |
| sizeof(struct scatterlist) * NVME_MAX_SEGS; |
| } |
| |
| static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = &dev->queues[0]; |
| |
| WARN_ON(hctx_idx != 0); |
| WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); |
| |
| hctx->driver_data = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; |
| |
| WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); |
| hctx->driver_data = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, |
| unsigned int hctx_idx, unsigned int numa_node) |
| { |
| struct nvme_dev *dev = set->driver_data; |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; |
| struct nvme_queue *nvmeq = &dev->queues[queue_idx]; |
| |
| BUG_ON(!nvmeq); |
| iod->nvmeq = nvmeq; |
| |
| nvme_req(req)->ctrl = &dev->ctrl; |
| return 0; |
| } |
| |
| static int queue_irq_offset(struct nvme_dev *dev) |
| { |
| /* if we have more than 1 vec, admin queue offsets us by 1 */ |
| if (dev->num_vecs > 1) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int nvme_pci_map_queues(struct blk_mq_tag_set *set) |
| { |
| struct nvme_dev *dev = set->driver_data; |
| int i, qoff, offset; |
| |
| offset = queue_irq_offset(dev); |
| for (i = 0, qoff = 0; i < set->nr_maps; i++) { |
| struct blk_mq_queue_map *map = &set->map[i]; |
| |
| map->nr_queues = dev->io_queues[i]; |
| if (!map->nr_queues) { |
| BUG_ON(i == HCTX_TYPE_DEFAULT); |
| continue; |
| } |
| |
| /* |
| * The poll queue(s) doesn't have an IRQ (and hence IRQ |
| * affinity), so use the regular blk-mq cpu mapping |
| */ |
| map->queue_offset = qoff; |
| if (i != HCTX_TYPE_POLL && offset) |
| blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset); |
| else |
| blk_mq_map_queues(map); |
| qoff += map->nr_queues; |
| offset += map->nr_queues; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write sq tail if we are asked to, or if the next command would wrap. |
| */ |
| static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq) |
| { |
| if (!write_sq) { |
| u16 next_tail = nvmeq->sq_tail + 1; |
| |
| if (next_tail == nvmeq->q_depth) |
| next_tail = 0; |
| if (next_tail != nvmeq->last_sq_tail) |
| return; |
| } |
| |
| if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, |
| nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) |
| writel(nvmeq->sq_tail, nvmeq->q_db); |
| nvmeq->last_sq_tail = nvmeq->sq_tail; |
| } |
| |
| /** |
| * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
| * @nvmeq: The queue to use |
| * @cmd: The command to send |
| * @write_sq: whether to write to the SQ doorbell |
| */ |
| static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, |
| bool write_sq) |
| { |
| spin_lock(&nvmeq->sq_lock); |
| memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes), |
| cmd, sizeof(*cmd)); |
| if (++nvmeq->sq_tail == nvmeq->q_depth) |
| nvmeq->sq_tail = 0; |
| nvme_write_sq_db(nvmeq, write_sq); |
| spin_unlock(&nvmeq->sq_lock); |
| } |
| |
| static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx) |
| { |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| |
| spin_lock(&nvmeq->sq_lock); |
| if (nvmeq->sq_tail != nvmeq->last_sq_tail) |
| nvme_write_sq_db(nvmeq, true); |
| spin_unlock(&nvmeq->sq_lock); |
| } |
| |
| static void **nvme_pci_iod_list(struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); |
| } |
| |
| static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| int nseg = blk_rq_nr_phys_segments(req); |
| unsigned int avg_seg_size; |
| |
| avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); |
| |
| if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) |
| return false; |
| if (!iod->nvmeq->qid) |
| return false; |
| if (!sgl_threshold || avg_seg_size < sgl_threshold) |
| return false; |
| return true; |
| } |
| |
| static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1; |
| dma_addr_t dma_addr = iod->first_dma, next_dma_addr; |
| int i; |
| |
| if (iod->dma_len) { |
| dma_unmap_page(dev->dev, dma_addr, iod->dma_len, |
| rq_dma_dir(req)); |
| return; |
| } |
| |
| WARN_ON_ONCE(!iod->nents); |
| |
| if (is_pci_p2pdma_page(sg_page(iod->sg))) |
| pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents, |
| rq_dma_dir(req)); |
| else |
| dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req)); |
| |
| |
| if (iod->npages == 0) |
| dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], |
| dma_addr); |
| |
| for (i = 0; i < iod->npages; i++) { |
| void *addr = nvme_pci_iod_list(req)[i]; |
| |
| if (iod->use_sgl) { |
| struct nvme_sgl_desc *sg_list = addr; |
| |
| next_dma_addr = |
| le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); |
| } else { |
| __le64 *prp_list = addr; |
| |
| next_dma_addr = le64_to_cpu(prp_list[last_prp]); |
| } |
| |
| dma_pool_free(dev->prp_page_pool, addr, dma_addr); |
| dma_addr = next_dma_addr; |
| } |
| |
| mempool_free(iod->sg, dev->iod_mempool); |
| } |
| |
| static void nvme_print_sgl(struct scatterlist *sgl, int nents) |
| { |
| int i; |
| struct scatterlist *sg; |
| |
| for_each_sg(sgl, sg, nents, i) { |
| dma_addr_t phys = sg_phys(sg); |
| pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " |
| "dma_address:%pad dma_length:%d\n", |
| i, &phys, sg->offset, sg->length, &sg_dma_address(sg), |
| sg_dma_len(sg)); |
| } |
| } |
| |
| static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, |
| struct request *req, struct nvme_rw_command *cmnd) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct dma_pool *pool; |
| int length = blk_rq_payload_bytes(req); |
| struct scatterlist *sg = iod->sg; |
| int dma_len = sg_dma_len(sg); |
| u64 dma_addr = sg_dma_address(sg); |
| int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1); |
| __le64 *prp_list; |
| void **list = nvme_pci_iod_list(req); |
| dma_addr_t prp_dma; |
| int nprps, i; |
| |
| length -= (NVME_CTRL_PAGE_SIZE - offset); |
| if (length <= 0) { |
| iod->first_dma = 0; |
| goto done; |
| } |
| |
| dma_len -= (NVME_CTRL_PAGE_SIZE - offset); |
| if (dma_len) { |
| dma_addr += (NVME_CTRL_PAGE_SIZE - offset); |
| } else { |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| if (length <= NVME_CTRL_PAGE_SIZE) { |
| iod->first_dma = dma_addr; |
| goto done; |
| } |
| |
| nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE); |
| if (nprps <= (256 / 8)) { |
| pool = dev->prp_small_pool; |
| iod->npages = 0; |
| } else { |
| pool = dev->prp_page_pool; |
| iod->npages = 1; |
| } |
| |
| prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); |
| if (!prp_list) { |
| iod->first_dma = dma_addr; |
| iod->npages = -1; |
| return BLK_STS_RESOURCE; |
| } |
| list[0] = prp_list; |
| iod->first_dma = prp_dma; |
| i = 0; |
| for (;;) { |
| if (i == NVME_CTRL_PAGE_SIZE >> 3) { |
| __le64 *old_prp_list = prp_list; |
| prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); |
| if (!prp_list) |
| return BLK_STS_RESOURCE; |
| list[iod->npages++] = prp_list; |
| prp_list[0] = old_prp_list[i - 1]; |
| old_prp_list[i - 1] = cpu_to_le64(prp_dma); |
| i = 1; |
| } |
| prp_list[i++] = cpu_to_le64(dma_addr); |
| dma_len -= NVME_CTRL_PAGE_SIZE; |
| dma_addr += NVME_CTRL_PAGE_SIZE; |
| length -= NVME_CTRL_PAGE_SIZE; |
| if (length <= 0) |
| break; |
| if (dma_len > 0) |
| continue; |
| if (unlikely(dma_len < 0)) |
| goto bad_sgl; |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| done: |
| cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); |
| cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); |
| |
| return BLK_STS_OK; |
| |
| bad_sgl: |
| WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), |
| "Invalid SGL for payload:%d nents:%d\n", |
| blk_rq_payload_bytes(req), iod->nents); |
| return BLK_STS_IOERR; |
| } |
| |
| static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, |
| struct scatterlist *sg) |
| { |
| sge->addr = cpu_to_le64(sg_dma_address(sg)); |
| sge->length = cpu_to_le32(sg_dma_len(sg)); |
| sge->type = NVME_SGL_FMT_DATA_DESC << 4; |
| } |
| |
| static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, |
| dma_addr_t dma_addr, int entries) |
| { |
| sge->addr = cpu_to_le64(dma_addr); |
| if (entries < SGES_PER_PAGE) { |
| sge->length = cpu_to_le32(entries * sizeof(*sge)); |
| sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; |
| } else { |
| sge->length = cpu_to_le32(PAGE_SIZE); |
| sge->type = NVME_SGL_FMT_SEG_DESC << 4; |
| } |
| } |
| |
| static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, |
| struct request *req, struct nvme_rw_command *cmd, int entries) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct dma_pool *pool; |
| struct nvme_sgl_desc *sg_list; |
| struct scatterlist *sg = iod->sg; |
| dma_addr_t sgl_dma; |
| int i = 0; |
| |
| /* setting the transfer type as SGL */ |
| cmd->flags = NVME_CMD_SGL_METABUF; |
| |
| if (entries == 1) { |
| nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); |
| return BLK_STS_OK; |
| } |
| |
| if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { |
| pool = dev->prp_small_pool; |
| iod->npages = 0; |
| } else { |
| pool = dev->prp_page_pool; |
| iod->npages = 1; |
| } |
| |
| sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); |
| if (!sg_list) { |
| iod->npages = -1; |
| return BLK_STS_RESOURCE; |
| } |
| |
| nvme_pci_iod_list(req)[0] = sg_list; |
| iod->first_dma = sgl_dma; |
| |
| nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); |
| |
| do { |
| if (i == SGES_PER_PAGE) { |
| struct nvme_sgl_desc *old_sg_desc = sg_list; |
| struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; |
| |
| sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); |
| if (!sg_list) |
| return BLK_STS_RESOURCE; |
| |
| i = 0; |
| nvme_pci_iod_list(req)[iod->npages++] = sg_list; |
| sg_list[i++] = *link; |
| nvme_pci_sgl_set_seg(link, sgl_dma, entries); |
| } |
| |
| nvme_pci_sgl_set_data(&sg_list[i++], sg); |
| sg = sg_next(sg); |
| } while (--entries > 0); |
| |
| return BLK_STS_OK; |
| } |
| |
| static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev, |
| struct request *req, struct nvme_rw_command *cmnd, |
| struct bio_vec *bv) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1); |
| unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset; |
| |
| iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); |
| if (dma_mapping_error(dev->dev, iod->first_dma)) |
| return BLK_STS_RESOURCE; |
| iod->dma_len = bv->bv_len; |
| |
| cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma); |
| if (bv->bv_len > first_prp_len) |
| cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len); |
| return BLK_STS_OK; |
| } |
| |
| static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev, |
| struct request *req, struct nvme_rw_command *cmnd, |
| struct bio_vec *bv) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| |
| iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0); |
| if (dma_mapping_error(dev->dev, iod->first_dma)) |
| return BLK_STS_RESOURCE; |
| iod->dma_len = bv->bv_len; |
| |
| cmnd->flags = NVME_CMD_SGL_METABUF; |
| cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma); |
| cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len); |
| cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4; |
| return BLK_STS_OK; |
| } |
| |
| static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, |
| struct nvme_command *cmnd) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| blk_status_t ret = BLK_STS_RESOURCE; |
| int nr_mapped; |
| |
| if (blk_rq_nr_phys_segments(req) == 1) { |
| struct bio_vec bv = req_bvec(req); |
| |
| if (!is_pci_p2pdma_page(bv.bv_page)) { |
| if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2) |
| return nvme_setup_prp_simple(dev, req, |
| &cmnd->rw, &bv); |
| |
| if (iod->nvmeq->qid && |
| dev->ctrl.sgls & ((1 << 0) | (1 << 1))) |
| return nvme_setup_sgl_simple(dev, req, |
| &cmnd->rw, &bv); |
| } |
| } |
| |
| iod->dma_len = 0; |
| iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); |
| if (!iod->sg) |
| return BLK_STS_RESOURCE; |
| sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); |
| iod->nents = blk_rq_map_sg(req->q, req, iod->sg); |
| if (!iod->nents) |
| goto out; |
| |
| if (is_pci_p2pdma_page(sg_page(iod->sg))) |
| nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg, |
| iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN); |
| else |
| nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, |
| rq_dma_dir(req), DMA_ATTR_NO_WARN); |
| if (!nr_mapped) |
| goto out; |
| |
| iod->use_sgl = nvme_pci_use_sgls(dev, req); |
| if (iod->use_sgl) |
| ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); |
| else |
| ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); |
| out: |
| if (ret != BLK_STS_OK) |
| nvme_unmap_data(dev, req); |
| return ret; |
| } |
| |
| static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req, |
| struct nvme_command *cmnd) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| |
| iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req), |
| rq_dma_dir(req), 0); |
| if (dma_mapping_error(dev->dev, iod->meta_dma)) |
| return BLK_STS_IOERR; |
| cmnd->rw.metadata = cpu_to_le64(iod->meta_dma); |
| return BLK_STS_OK; |
| } |
| |
| /* |
| * NOTE: ns is NULL when called on the admin queue. |
| */ |
| static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *req = bd->rq; |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_command cmnd; |
| blk_status_t ret; |
| |
| iod->aborted = 0; |
| iod->npages = -1; |
| iod->nents = 0; |
| |
| /* |
| * We should not need to do this, but we're still using this to |
| * ensure we can drain requests on a dying queue. |
| */ |
| if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags))) |
| return BLK_STS_IOERR; |
| |
| ret = nvme_setup_cmd(ns, req, &cmnd); |
| if (ret) |
| return ret; |
| |
| if (blk_rq_nr_phys_segments(req)) { |
| ret = nvme_map_data(dev, req, &cmnd); |
| if (ret) |
| goto out_free_cmd; |
| } |
| |
| if (blk_integrity_rq(req)) { |
| ret = nvme_map_metadata(dev, req, &cmnd); |
| if (ret) |
| goto out_unmap_data; |
| } |
| |
| blk_mq_start_request(req); |
| nvme_submit_cmd(nvmeq, &cmnd, bd->last); |
| return BLK_STS_OK; |
| out_unmap_data: |
| nvme_unmap_data(dev, req); |
| out_free_cmd: |
| nvme_cleanup_cmd(req); |
| return ret; |
| } |
| |
| static void nvme_pci_complete_rq(struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_dev *dev = iod->nvmeq->dev; |
| |
| if (blk_integrity_rq(req)) |
| dma_unmap_page(dev->dev, iod->meta_dma, |
| rq_integrity_vec(req)->bv_len, rq_data_dir(req)); |
| if (blk_rq_nr_phys_segments(req)) |
| nvme_unmap_data(dev, req); |
| nvme_complete_rq(req); |
| } |
| |
| /* We read the CQE phase first to check if the rest of the entry is valid */ |
| static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) |
| { |
| struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head]; |
| |
| return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase; |
| } |
| |
| static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) |
| { |
| u16 head = nvmeq->cq_head; |
| |
| if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, |
| nvmeq->dbbuf_cq_ei)) |
| writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| } |
| |
| static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq) |
| { |
| if (!nvmeq->qid) |
| return nvmeq->dev->admin_tagset.tags[0]; |
| return nvmeq->dev->tagset.tags[nvmeq->qid - 1]; |
| } |
| |
| static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) |
| { |
| struct nvme_completion *cqe = &nvmeq->cqes[idx]; |
| struct request *req; |
| |
| /* |
| * AEN requests are special as they don't time out and can |
| * survive any kind of queue freeze and often don't respond to |
| * aborts. We don't even bother to allocate a struct request |
| * for them but rather special case them here. |
| */ |
| if (unlikely(nvme_is_aen_req(nvmeq->qid, cqe->command_id))) { |
| nvme_complete_async_event(&nvmeq->dev->ctrl, |
| cqe->status, &cqe->result); |
| return; |
| } |
| |
| req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id); |
| if (unlikely(!req)) { |
| dev_warn(nvmeq->dev->ctrl.device, |
| "invalid id %d completed on queue %d\n", |
| cqe->command_id, le16_to_cpu(cqe->sq_id)); |
| return; |
| } |
| |
| trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail); |
| if (!nvme_try_complete_req(req, cqe->status, cqe->result)) |
| nvme_pci_complete_rq(req); |
| } |
| |
| static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) |
| { |
| u16 tmp = nvmeq->cq_head + 1; |
| |
| if (tmp == nvmeq->q_depth) { |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase ^= 1; |
| } else { |
| nvmeq->cq_head = tmp; |
| } |
| } |
| |
| static inline int nvme_process_cq(struct nvme_queue *nvmeq) |
| { |
| int found = 0; |
| |
| while (nvme_cqe_pending(nvmeq)) { |
| found++; |
| /* |
| * load-load control dependency between phase and the rest of |
| * the cqe requires a full read memory barrier |
| */ |
| dma_rmb(); |
| nvme_handle_cqe(nvmeq, nvmeq->cq_head); |
| nvme_update_cq_head(nvmeq); |
| } |
| |
| if (found) |
| nvme_ring_cq_doorbell(nvmeq); |
| return found; |
| } |
| |
| static irqreturn_t nvme_irq(int irq, void *data) |
| { |
| struct nvme_queue *nvmeq = data; |
| irqreturn_t ret = IRQ_NONE; |
| |
| /* |
| * The rmb/wmb pair ensures we see all updates from a previous run of |
| * the irq handler, even if that was on another CPU. |
| */ |
| rmb(); |
| if (nvme_process_cq(nvmeq)) |
| ret = IRQ_HANDLED; |
| wmb(); |
| |
| return ret; |
| } |
| |
| static irqreturn_t nvme_irq_check(int irq, void *data) |
| { |
| struct nvme_queue *nvmeq = data; |
| |
| if (nvme_cqe_pending(nvmeq)) |
| return IRQ_WAKE_THREAD; |
| return IRQ_NONE; |
| } |
| |
| /* |
| * Poll for completions for any interrupt driven queue |
| * Can be called from any context. |
| */ |
| static void nvme_poll_irqdisable(struct nvme_queue *nvmeq) |
| { |
| struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); |
| |
| WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags)); |
| |
| disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); |
| nvme_process_cq(nvmeq); |
| enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector)); |
| } |
| |
| static int nvme_poll(struct blk_mq_hw_ctx *hctx) |
| { |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| bool found; |
| |
| if (!nvme_cqe_pending(nvmeq)) |
| return 0; |
| |
| spin_lock(&nvmeq->cq_poll_lock); |
| found = nvme_process_cq(nvmeq); |
| spin_unlock(&nvmeq->cq_poll_lock); |
| |
| return found; |
| } |
| |
| static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_dev *dev = to_nvme_dev(ctrl); |
| struct nvme_queue *nvmeq = &dev->queues[0]; |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = nvme_admin_async_event; |
| c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; |
| nvme_submit_cmd(nvmeq, &c, true); |
| } |
| |
| static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(id); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq, s16 vector) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG; |
| |
| if (!test_bit(NVMEQ_POLLED, &nvmeq->flags)) |
| flags |= NVME_CQ_IRQ_ENABLED; |
| |
| /* |
| * Note: we (ab)use the fact that the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_cq.opcode = nvme_admin_create_cq; |
| c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); |
| c.create_cq.cqid = cpu_to_le16(qid); |
| c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_cq.cq_flags = cpu_to_le16(flags); |
| c.create_cq.irq_vector = cpu_to_le16(vector); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_ctrl *ctrl = &dev->ctrl; |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG; |
| |
| /* |
| * Some drives have a bug that auto-enables WRRU if MEDIUM isn't |
| * set. Since URGENT priority is zeroes, it makes all queues |
| * URGENT. |
| */ |
| if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) |
| flags |= NVME_SQ_PRIO_MEDIUM; |
| |
| /* |
| * Note: we (ab)use the fact that the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_sq.opcode = nvme_admin_create_sq; |
| c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); |
| c.create_sq.sqid = cpu_to_le16(qid); |
| c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_sq.sq_flags = cpu_to_le16(flags); |
| c.create_sq.cqid = cpu_to_le16(qid); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| } |
| |
| static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| } |
| |
| static void abort_endio(struct request *req, blk_status_t error) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = iod->nvmeq; |
| |
| dev_warn(nvmeq->dev->ctrl.device, |
| "Abort status: 0x%x", nvme_req(req)->status); |
| atomic_inc(&nvmeq->dev->ctrl.abort_limit); |
| blk_mq_free_request(req); |
| } |
| |
| static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) |
| { |
| /* If true, indicates loss of adapter communication, possibly by a |
| * NVMe Subsystem reset. |
| */ |
| bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); |
| |
| /* If there is a reset/reinit ongoing, we shouldn't reset again. */ |
| switch (dev->ctrl.state) { |
| case NVME_CTRL_RESETTING: |
| case NVME_CTRL_CONNECTING: |
| return false; |
| default: |
| break; |
| } |
| |
| /* We shouldn't reset unless the controller is on fatal error state |
| * _or_ if we lost the communication with it. |
| */ |
| if (!(csts & NVME_CSTS_CFS) && !nssro) |
| return false; |
| |
| return true; |
| } |
| |
| static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) |
| { |
| /* Read a config register to help see what died. */ |
| u16 pci_status; |
| int result; |
| |
| result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, |
| &pci_status); |
| if (result == PCIBIOS_SUCCESSFUL) |
| dev_warn(dev->ctrl.device, |
| "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", |
| csts, pci_status); |
| else |
| dev_warn(dev->ctrl.device, |
| "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", |
| csts, result); |
| } |
| |
| static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = iod->nvmeq; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *abort_req; |
| struct nvme_command cmd; |
| u32 csts = readl(dev->bar + NVME_REG_CSTS); |
| |
| /* If PCI error recovery process is happening, we cannot reset or |
| * the recovery mechanism will surely fail. |
| */ |
| mb(); |
| if (pci_channel_offline(to_pci_dev(dev->dev))) |
| return BLK_EH_RESET_TIMER; |
| |
| /* |
| * Reset immediately if the controller is failed |
| */ |
| if (nvme_should_reset(dev, csts)) { |
| nvme_warn_reset(dev, csts); |
| nvme_dev_disable(dev, false); |
| nvme_reset_ctrl(&dev->ctrl); |
| return BLK_EH_DONE; |
| } |
| |
| /* |
| * Did we miss an interrupt? |
| */ |
| if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) |
| nvme_poll(req->mq_hctx); |
| else |
| nvme_poll_irqdisable(nvmeq); |
| |
| if (blk_mq_request_completed(req)) { |
| dev_warn(dev->ctrl.device, |
| "I/O %d QID %d timeout, completion polled\n", |
| req->tag, nvmeq->qid); |
| return BLK_EH_DONE; |
| } |
| |
| /* |
| * Shutdown immediately if controller times out while starting. The |
| * reset work will see the pci device disabled when it gets the forced |
| * cancellation error. All outstanding requests are completed on |
| * shutdown, so we return BLK_EH_DONE. |
| */ |
| switch (dev->ctrl.state) { |
| case NVME_CTRL_CONNECTING: |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); |
| fallthrough; |
| case NVME_CTRL_DELETING: |
| dev_warn_ratelimited(dev->ctrl.device, |
| "I/O %d QID %d timeout, disable controller\n", |
| req->tag, nvmeq->qid); |
| nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
| nvme_dev_disable(dev, true); |
| return BLK_EH_DONE; |
| case NVME_CTRL_RESETTING: |
| return BLK_EH_RESET_TIMER; |
| default: |
| break; |
| } |
| |
| /* |
| * Shutdown the controller immediately and schedule a reset if the |
| * command was already aborted once before and still hasn't been |
| * returned to the driver, or if this is the admin queue. |
| */ |
| if (!nvmeq->qid || iod->aborted) { |
| dev_warn(dev->ctrl.device, |
| "I/O %d QID %d timeout, reset controller\n", |
| req->tag, nvmeq->qid); |
| nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
| nvme_dev_disable(dev, false); |
| nvme_reset_ctrl(&dev->ctrl); |
| |
| return BLK_EH_DONE; |
| } |
| |
| if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { |
| atomic_inc(&dev->ctrl.abort_limit); |
| return BLK_EH_RESET_TIMER; |
| } |
| iod->aborted = 1; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.abort.opcode = nvme_admin_abort_cmd; |
| cmd.abort.cid = req->tag; |
| cmd.abort.sqid = cpu_to_le16(nvmeq->qid); |
| |
| dev_warn(nvmeq->dev->ctrl.device, |
| "I/O %d QID %d timeout, aborting\n", |
| req->tag, nvmeq->qid); |
| |
| abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, |
| BLK_MQ_REQ_NOWAIT); |
| if (IS_ERR(abort_req)) { |
| atomic_inc(&dev->ctrl.abort_limit); |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| abort_req->end_io_data = NULL; |
| blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); |
| |
| /* |
| * The aborted req will be completed on receiving the abort req. |
| * We enable the timer again. If hit twice, it'll cause a device reset, |
| * as the device then is in a faulty state. |
| */ |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static void nvme_free_queue(struct nvme_queue *nvmeq) |
| { |
| dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq), |
| (void *)nvmeq->cqes, nvmeq->cq_dma_addr); |
| if (!nvmeq->sq_cmds) |
| return; |
| |
| if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) { |
| pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev), |
| nvmeq->sq_cmds, SQ_SIZE(nvmeq)); |
| } else { |
| dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq), |
| nvmeq->sq_cmds, nvmeq->sq_dma_addr); |
| } |
| } |
| |
| static void nvme_free_queues(struct nvme_dev *dev, int lowest) |
| { |
| int i; |
| |
| for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { |
| dev->ctrl.queue_count--; |
| nvme_free_queue(&dev->queues[i]); |
| } |
| } |
| |
| /** |
| * nvme_suspend_queue - put queue into suspended state |
| * @nvmeq: queue to suspend |
| */ |
| static int nvme_suspend_queue(struct nvme_queue *nvmeq) |
| { |
| if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags)) |
| return 1; |
| |
| /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */ |
| mb(); |
| |
| nvmeq->dev->online_queues--; |
| if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) |
| blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); |
| if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags)) |
| pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq); |
| return 0; |
| } |
| |
| static void nvme_suspend_io_queues(struct nvme_dev *dev) |
| { |
| int i; |
| |
| for (i = dev->ctrl.queue_count - 1; i > 0; i--) |
| nvme_suspend_queue(&dev->queues[i]); |
| } |
| |
| static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) |
| { |
| struct nvme_queue *nvmeq = &dev->queues[0]; |
| |
| if (shutdown) |
| nvme_shutdown_ctrl(&dev->ctrl); |
| else |
| nvme_disable_ctrl(&dev->ctrl); |
| |
| nvme_poll_irqdisable(nvmeq); |
| } |
| |
| /* |
| * Called only on a device that has been disabled and after all other threads |
| * that can check this device's completion queues have synced, except |
| * nvme_poll(). This is the last chance for the driver to see a natural |
| * completion before nvme_cancel_request() terminates all incomplete requests. |
| */ |
| static void nvme_reap_pending_cqes(struct nvme_dev *dev) |
| { |
| int i; |
| |
| for (i = dev->ctrl.queue_count - 1; i > 0; i--) { |
| spin_lock(&dev->queues[i].cq_poll_lock); |
| nvme_process_cq(&dev->queues[i]); |
| spin_unlock(&dev->queues[i].cq_poll_lock); |
| } |
| } |
| |
| static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, |
| int entry_size) |
| { |
| int q_depth = dev->q_depth; |
| unsigned q_size_aligned = roundup(q_depth * entry_size, |
| NVME_CTRL_PAGE_SIZE); |
| |
| if (q_size_aligned * nr_io_queues > dev->cmb_size) { |
| u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); |
| |
| mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE); |
| q_depth = div_u64(mem_per_q, entry_size); |
| |
| /* |
| * Ensure the reduced q_depth is above some threshold where it |
| * would be better to map queues in system memory with the |
| * original depth |
| */ |
| if (q_depth < 64) |
| return -ENOMEM; |
| } |
| |
| return q_depth; |
| } |
| |
| static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| int qid) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { |
| nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq)); |
| if (nvmeq->sq_cmds) { |
| nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev, |
| nvmeq->sq_cmds); |
| if (nvmeq->sq_dma_addr) { |
| set_bit(NVMEQ_SQ_CMB, &nvmeq->flags); |
| return 0; |
| } |
| |
| pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq)); |
| } |
| } |
| |
| nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq), |
| &nvmeq->sq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->sq_cmds) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) |
| { |
| struct nvme_queue *nvmeq = &dev->queues[qid]; |
| |
| if (dev->ctrl.queue_count > qid) |
| return 0; |
| |
| nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES; |
| nvmeq->q_depth = depth; |
| nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq), |
| &nvmeq->cq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->cqes) |
| goto free_nvmeq; |
| |
| if (nvme_alloc_sq_cmds(dev, nvmeq, qid)) |
| goto free_cqdma; |
| |
| nvmeq->dev = dev; |
| spin_lock_init(&nvmeq->sq_lock); |
| spin_lock_init(&nvmeq->cq_poll_lock); |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| nvmeq->qid = qid; |
| dev->ctrl.queue_count++; |
| |
| return 0; |
| |
| free_cqdma: |
| dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes, |
| nvmeq->cq_dma_addr); |
| free_nvmeq: |
| return -ENOMEM; |
| } |
| |
| static int queue_request_irq(struct nvme_queue *nvmeq) |
| { |
| struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); |
| int nr = nvmeq->dev->ctrl.instance; |
| |
| if (use_threaded_interrupts) { |
| return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, |
| nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); |
| } else { |
| return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, |
| NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); |
| } |
| } |
| |
| static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| |
| nvmeq->sq_tail = 0; |
| nvmeq->last_sq_tail = 0; |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq)); |
| nvme_dbbuf_init(dev, nvmeq, qid); |
| dev->online_queues++; |
| wmb(); /* ensure the first interrupt sees the initialization */ |
| } |
| |
| static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| int result; |
| u16 vector = 0; |
| |
| clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); |
| |
| /* |
| * A queue's vector matches the queue identifier unless the controller |
| * has only one vector available. |
| */ |
| if (!polled) |
| vector = dev->num_vecs == 1 ? 0 : qid; |
| else |
| set_bit(NVMEQ_POLLED, &nvmeq->flags); |
| |
| result = adapter_alloc_cq(dev, qid, nvmeq, vector); |
| if (result) |
| return result; |
| |
| result = adapter_alloc_sq(dev, qid, nvmeq); |
| if (result < 0) |
| return result; |
| if (result) |
| goto release_cq; |
| |
| nvmeq->cq_vector = vector; |
| nvme_init_queue(nvmeq, qid); |
| |
| if (!polled) { |
| result = queue_request_irq(nvmeq); |
| if (result < 0) |
| goto release_sq; |
| } |
| |
| set_bit(NVMEQ_ENABLED, &nvmeq->flags); |
| return result; |
| |
| release_sq: |
| dev->online_queues--; |
| adapter_delete_sq(dev, qid); |
| release_cq: |
| adapter_delete_cq(dev, qid); |
| return result; |
| } |
| |
| static const struct blk_mq_ops nvme_mq_admin_ops = { |
| .queue_rq = nvme_queue_rq, |
| .complete = nvme_pci_complete_rq, |
| .init_hctx = nvme_admin_init_hctx, |
| .init_request = nvme_init_request, |
| .timeout = nvme_timeout, |
| }; |
| |
| static const struct blk_mq_ops nvme_mq_ops = { |
| .queue_rq = nvme_queue_rq, |
| .complete = nvme_pci_complete_rq, |
| .commit_rqs = nvme_commit_rqs, |
| .init_hctx = nvme_init_hctx, |
| .init_request = nvme_init_request, |
| .map_queues = nvme_pci_map_queues, |
| .timeout = nvme_timeout, |
| .poll = nvme_poll, |
| }; |
| |
| static void nvme_dev_remove_admin(struct nvme_dev *dev) |
| { |
| if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { |
| /* |
| * If the controller was reset during removal, it's possible |
| * user requests may be waiting on a stopped queue. Start the |
| * queue to flush these to completion. |
| */ |
| blk_mq_unquiesce_queue(dev->ctrl.admin_q); |
| blk_cleanup_queue(dev->ctrl.admin_q); |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| } |
| } |
| |
| static int nvme_alloc_admin_tags(struct nvme_dev *dev) |
| { |
| if (!dev->ctrl.admin_q) { |
| dev->admin_tagset.ops = &nvme_mq_admin_ops; |
| dev->admin_tagset.nr_hw_queues = 1; |
| |
| dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
| dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT; |
| dev->admin_tagset.numa_node = dev->ctrl.numa_node; |
| dev->admin_tagset.cmd_size = sizeof(struct nvme_iod); |
| dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; |
| dev->admin_tagset.driver_data = dev; |
| |
| if (blk_mq_alloc_tag_set(&dev->admin_tagset)) |
| return -ENOMEM; |
| dev->ctrl.admin_tagset = &dev->admin_tagset; |
| |
| dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); |
| if (IS_ERR(dev->ctrl.admin_q)) { |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| return -ENOMEM; |
| } |
| if (!blk_get_queue(dev->ctrl.admin_q)) { |
| nvme_dev_remove_admin(dev); |
| dev->ctrl.admin_q = NULL; |
| return -ENODEV; |
| } |
| } else |
| blk_mq_unquiesce_queue(dev->ctrl.admin_q); |
| |
| return 0; |
| } |
| |
| static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) |
| { |
| return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); |
| } |
| |
| static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (size <= dev->bar_mapped_size) |
| return 0; |
| if (size > pci_resource_len(pdev, 0)) |
| return -ENOMEM; |
| if (dev->bar) |
| iounmap(dev->bar); |
| dev->bar = ioremap(pci_resource_start(pdev, 0), size); |
| if (!dev->bar) { |
| dev->bar_mapped_size = 0; |
| return -ENOMEM; |
| } |
| dev->bar_mapped_size = size; |
| dev->dbs = dev->bar + NVME_REG_DBS; |
| |
| return 0; |
| } |
| |
| static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) |
| { |
| int result; |
| u32 aqa; |
| struct nvme_queue *nvmeq; |
| |
| result = nvme_remap_bar(dev, db_bar_size(dev, 0)); |
| if (result < 0) |
| return result; |
| |
| dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? |
| NVME_CAP_NSSRC(dev->ctrl.cap) : 0; |
| |
| if (dev->subsystem && |
| (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) |
| writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); |
| |
| result = nvme_disable_ctrl(&dev->ctrl); |
| if (result < 0) |
| return result; |
| |
| result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); |
| if (result) |
| return result; |
| |
| dev->ctrl.numa_node = dev_to_node(dev->dev); |
| |
| nvmeq = &dev->queues[0]; |
| aqa = nvmeq->q_depth - 1; |
| aqa |= aqa << 16; |
| |
| writel(aqa, dev->bar + NVME_REG_AQA); |
| lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); |
| lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); |
| |
| result = nvme_enable_ctrl(&dev->ctrl); |
| if (result) |
| return result; |
| |
| nvmeq->cq_vector = 0; |
| nvme_init_queue(nvmeq, 0); |
| result = queue_request_irq(nvmeq); |
| if (result) { |
| dev->online_queues--; |
| return result; |
| } |
| |
| set_bit(NVMEQ_ENABLED, &nvmeq->flags); |
| return result; |
| } |
| |
| static int nvme_create_io_queues(struct nvme_dev *dev) |
| { |
| unsigned i, max, rw_queues; |
| int ret = 0; |
| |
| for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { |
| if (nvme_alloc_queue(dev, i, dev->q_depth)) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| |
| max = min(dev->max_qid, dev->ctrl.queue_count - 1); |
| if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) { |
| rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] + |
| dev->io_queues[HCTX_TYPE_READ]; |
| } else { |
| rw_queues = max; |
| } |
| |
| for (i = dev->online_queues; i <= max; i++) { |
| bool polled = i > rw_queues; |
| |
| ret = nvme_create_queue(&dev->queues[i], i, polled); |
| if (ret) |
| break; |
| } |
| |
| /* |
| * Ignore failing Create SQ/CQ commands, we can continue with less |
| * than the desired amount of queues, and even a controller without |
| * I/O queues can still be used to issue admin commands. This might |
| * be useful to upgrade a buggy firmware for example. |
| */ |
| return ret >= 0 ? 0 : ret; |
| } |
| |
| static ssize_t nvme_cmb_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); |
| |
| return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n", |
| ndev->cmbloc, ndev->cmbsz); |
| } |
| static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); |
| |
| static u64 nvme_cmb_size_unit(struct nvme_dev *dev) |
| { |
| u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; |
| |
| return 1ULL << (12 + 4 * szu); |
| } |
| |
| static u32 nvme_cmb_size(struct nvme_dev *dev) |
| { |
| return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; |
| } |
| |
| static void nvme_map_cmb(struct nvme_dev *dev) |
| { |
| u64 size, offset; |
| resource_size_t bar_size; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| int bar; |
| |
| if (dev->cmb_size) |
| return; |
| |
| dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); |
| if (!dev->cmbsz) |
| return; |
| dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); |
| |
| size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); |
| offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); |
| bar = NVME_CMB_BIR(dev->cmbloc); |
| bar_size = pci_resource_len(pdev, bar); |
| |
| if (offset > bar_size) |
| return; |
| |
| /* |
| * Controllers may support a CMB size larger than their BAR, |
| * for example, due to being behind a bridge. Reduce the CMB to |
| * the reported size of the BAR |
| */ |
| if (size > bar_size - offset) |
| size = bar_size - offset; |
| |
| if (pci_p2pdma_add_resource(pdev, bar, size, offset)) { |
| dev_warn(dev->ctrl.device, |
| "failed to register the CMB\n"); |
| return; |
| } |
| |
| dev->cmb_size = size; |
| dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS); |
| |
| if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) == |
| (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) |
| pci_p2pmem_publish(pdev, true); |
| |
| if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, |
| &dev_attr_cmb.attr, NULL)) |
| dev_warn(dev->ctrl.device, |
| "failed to add sysfs attribute for CMB\n"); |
| } |
| |
| static inline void nvme_release_cmb(struct nvme_dev *dev) |
| { |
| if (dev->cmb_size) { |
| sysfs_remove_file_from_group(&dev->ctrl.device->kobj, |
| &dev_attr_cmb.attr, NULL); |
| dev->cmb_size = 0; |
| } |
| } |
| |
| static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) |
| { |
| u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT; |
| u64 dma_addr = dev->host_mem_descs_dma; |
| struct nvme_command c; |
| int ret; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_set_features; |
| c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); |
| c.features.dword11 = cpu_to_le32(bits); |
| c.features.dword12 = cpu_to_le32(host_mem_size); |
| c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr)); |
| c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr)); |
| c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs); |
| |
| ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| if (ret) { |
| dev_warn(dev->ctrl.device, |
| "failed to set host mem (err %d, flags %#x).\n", |
| ret, bits); |
| } |
| return ret; |
| } |
| |
| static void nvme_free_host_mem(struct nvme_dev *dev) |
| { |
| int i; |
| |
| for (i = 0; i < dev->nr_host_mem_descs; i++) { |
| struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; |
| size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE; |
| |
| dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], |
| le64_to_cpu(desc->addr), |
| DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); |
| } |
| |
| kfree(dev->host_mem_desc_bufs); |
| dev->host_mem_desc_bufs = NULL; |
| dma_free_coherent(dev->dev, |
| dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), |
| dev->host_mem_descs, dev->host_mem_descs_dma); |
| dev->host_mem_descs = NULL; |
| dev->nr_host_mem_descs = 0; |
| } |
| |
| static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, |
| u32 chunk_size) |
| { |
| struct nvme_host_mem_buf_desc *descs; |
| u32 max_entries, len; |
| dma_addr_t descs_dma; |
| int i = 0; |
| void **bufs; |
| u64 size, tmp; |
| |
| tmp = (preferred + chunk_size - 1); |
| do_div(tmp, chunk_size); |
| max_entries = tmp; |
| |
| if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) |
| max_entries = dev->ctrl.hmmaxd; |
| |
| descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs), |
| &descs_dma, GFP_KERNEL); |
| if (!descs) |
| goto out; |
| |
| bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); |
| if (!bufs) |
| goto out_free_descs; |
| |
| for (size = 0; size < preferred && i < max_entries; size += len) { |
| dma_addr_t dma_addr; |
| |
| len = min_t(u64, chunk_size, preferred - size); |
| bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, |
| DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); |
| if (!bufs[i]) |
| break; |
| |
| descs[i].addr = cpu_to_le64(dma_addr); |
| descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE); |
| i++; |
| } |
| |
| if (!size) |
| goto out_free_bufs; |
| |
| dev->nr_host_mem_descs = i; |
| dev->host_mem_size = size; |
| dev->host_mem_descs = descs; |
| dev->host_mem_descs_dma = descs_dma; |
| dev->host_mem_desc_bufs = bufs; |
| return 0; |
| |
| out_free_bufs: |
| while (--i >= 0) { |
| size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE; |
| |
| dma_free_attrs(dev->dev, size, bufs[i], |
| le64_to_cpu(descs[i].addr), |
| DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); |
| } |
| |
| kfree(bufs); |
| out_free_descs: |
| dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, |
| descs_dma); |
| out: |
| dev->host_mem_descs = NULL; |
| return -ENOMEM; |
| } |
| |
| static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) |
| { |
| u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); |
| u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); |
| u64 chunk_size; |
| |
| /* start big and work our way down */ |
| for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) { |
| if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { |
| if (!min || dev->host_mem_size >= min) |
| return 0; |
| nvme_free_host_mem(dev); |
| } |
| } |
| |
| return -ENOMEM; |
| } |
| |
| static int nvme_setup_host_mem(struct nvme_dev *dev) |
| { |
| u64 max = (u64)max_host_mem_size_mb * SZ_1M; |
| u64 preferred = (u64)dev->ctrl.hmpre * 4096; |
| u64 min = (u64)dev->ctrl.hmmin * 4096; |
| u32 enable_bits = NVME_HOST_MEM_ENABLE; |
| int ret; |
| |
| preferred = min(preferred, max); |
| if (min > max) { |
| dev_warn(dev->ctrl.device, |
| "min host memory (%lld MiB) above limit (%d MiB).\n", |
| min >> ilog2(SZ_1M), max_host_mem_size_mb); |
| nvme_free_host_mem(dev); |
| return 0; |
| } |
| |
| /* |
| * If we already have a buffer allocated check if we can reuse it. |
| */ |
| if (dev->host_mem_descs) { |
| if (dev->host_mem_size >= min) |
| enable_bits |= NVME_HOST_MEM_RETURN; |
| else |
| nvme_free_host_mem(dev); |
| } |
| |
| if (!dev->host_mem_descs) { |
| if (nvme_alloc_host_mem(dev, min, preferred)) { |
| dev_warn(dev->ctrl.device, |
| "failed to allocate host memory buffer.\n"); |
| return 0; /* controller must work without HMB */ |
| } |
| |
| dev_info(dev->ctrl.device, |
| "allocated %lld MiB host memory buffer.\n", |
| dev->host_mem_size >> ilog2(SZ_1M)); |
| } |
| |
| ret = nvme_set_host_mem(dev, enable_bits); |
| if (ret) |
| nvme_free_host_mem(dev); |
| return ret; |
| } |
| |
| /* |
| * nirqs is the number of interrupts available for write and read |
| * queues. The core already reserved an interrupt for the admin queue. |
| */ |
| static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs) |
| { |
| struct nvme_dev *dev = affd->priv; |
| unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues; |
| |
| /* |
| * If there is no interrupt available for queues, ensure that |
| * the default queue is set to 1. The affinity set size is |
| * also set to one, but the irq core ignores it for this case. |
| * |
| * If only one interrupt is available or 'write_queue' == 0, combine |
| * write and read queues. |
| * |
| * If 'write_queues' > 0, ensure it leaves room for at least one read |
| * queue. |
| */ |
| if (!nrirqs) { |
| nrirqs = 1; |
| nr_read_queues = 0; |
| } else if (nrirqs == 1 || !nr_write_queues) { |
| nr_read_queues = 0; |
| } else if (nr_write_queues >= nrirqs) { |
| nr_read_queues = 1; |
| } else { |
| nr_read_queues = nrirqs - nr_write_queues; |
| } |
| |
| dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; |
| affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues; |
| dev->io_queues[HCTX_TYPE_READ] = nr_read_queues; |
| affd->set_size[HCTX_TYPE_READ] = nr_read_queues; |
| affd->nr_sets = nr_read_queues ? 2 : 1; |
| } |
| |
| static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| struct irq_affinity affd = { |
| .pre_vectors = 1, |
| .calc_sets = nvme_calc_irq_sets, |
| .priv = dev, |
| }; |
| unsigned int irq_queues, poll_queues; |
| |
| /* |
| * Poll queues don't need interrupts, but we need at least one I/O queue |
| * left over for non-polled I/O. |
| */ |
| poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1); |
| dev->io_queues[HCTX_TYPE_POLL] = poll_queues; |
| |
| /* |
| * Initialize for the single interrupt case, will be updated in |
| * nvme_calc_irq_sets(). |
| */ |
| dev->io_queues[HCTX_TYPE_DEFAULT] = 1; |
| dev->io_queues[HCTX_TYPE_READ] = 0; |
| |
| /* |
| * We need interrupts for the admin queue and each non-polled I/O queue, |
| * but some Apple controllers require all queues to use the first |
| * vector. |
| */ |
| irq_queues = 1; |
| if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)) |
| irq_queues += (nr_io_queues - poll_queues); |
| return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues, |
| PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); |
| } |
| |
| static void nvme_disable_io_queues(struct nvme_dev *dev) |
| { |
| if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq)) |
| __nvme_disable_io_queues(dev, nvme_admin_delete_cq); |
| } |
| |
| static unsigned int nvme_max_io_queues(struct nvme_dev *dev) |
| { |
| /* |
| * If tags are shared with admin queue (Apple bug), then |
| * make sure we only use one IO queue. |
| */ |
| if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) |
| return 1; |
| return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues; |
| } |
| |
| static int nvme_setup_io_queues(struct nvme_dev *dev) |
| { |
| struct nvme_queue *adminq = &dev->queues[0]; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| unsigned int nr_io_queues; |
| unsigned long size; |
| int result; |
| |
| /* |
| * Sample the module parameters once at reset time so that we have |
| * stable values to work with. |
| */ |
| dev->nr_write_queues = write_queues; |
| dev->nr_poll_queues = poll_queues; |
| |
| nr_io_queues = dev->nr_allocated_queues - 1; |
| result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); |
| if (result < 0) |
| return result; |
| |
| if (nr_io_queues == 0) |
| return 0; |
| |
| clear_bit(NVMEQ_ENABLED, &adminq->flags); |
| |
| if (dev->cmb_use_sqes) { |
| result = nvme_cmb_qdepth(dev, nr_io_queues, |
| sizeof(struct nvme_command)); |
| if (result > 0) |
| dev->q_depth = result; |
| else |
| dev->cmb_use_sqes = false; |
| } |
| |
| do { |
| size = db_bar_size(dev, nr_io_queues); |
| result = nvme_remap_bar(dev, size); |
| if (!result) |
| break; |
| if (!--nr_io_queues) |
| return -ENOMEM; |
| } while (1); |
| adminq->q_db = dev->dbs; |
| |
| retry: |
| /* Deregister the admin queue's interrupt */ |
| pci_free_irq(pdev, 0, adminq); |
| |
| /* |
| * If we enable msix early due to not intx, disable it again before |
| * setting up the full range we need. |
| */ |
| pci_free_irq_vectors(pdev); |
| |
| result = nvme_setup_irqs(dev, nr_io_queues); |
| if (result <= 0) |
| return -EIO; |
| |
| dev->num_vecs = result; |
| result = max(result - 1, 1); |
| dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL]; |
| |
| /* |
| * Should investigate if there's a performance win from allocating |
| * more queues than interrupt vectors; it might allow the submission |
| * path to scale better, even if the receive path is limited by the |
| * number of interrupts. |
| */ |
| result = queue_request_irq(adminq); |
| if (result) |
| return result; |
| set_bit(NVMEQ_ENABLED, &adminq->flags); |
| |
| result = nvme_create_io_queues(dev); |
| if (result || dev->online_queues < 2) |
| return result; |
| |
| if (dev->online_queues - 1 < dev->max_qid) { |
| nr_io_queues = dev->online_queues - 1; |
| nvme_disable_io_queues(dev); |
| nvme_suspend_io_queues(dev); |
| goto retry; |
| } |
| dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n", |
| dev->io_queues[HCTX_TYPE_DEFAULT], |
| dev->io_queues[HCTX_TYPE_READ], |
| dev->io_queues[HCTX_TYPE_POLL]); |
| return 0; |
| } |
| |
| static void nvme_del_queue_end(struct request *req, blk_status_t error) |
| { |
| struct nvme_queue *nvmeq = req->end_io_data; |
| |
| blk_mq_free_request(req); |
| complete(&nvmeq->delete_done); |
| } |
| |
| static void nvme_del_cq_end(struct request *req, blk_status_t error) |
| { |
| struct nvme_queue *nvmeq = req->end_io_data; |
| |
| if (error) |
| set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags); |
| |
| nvme_del_queue_end(req, error); |
| } |
| |
| static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) |
| { |
| struct request_queue *q = nvmeq->dev->ctrl.admin_q; |
| struct request *req; |
| struct nvme_command cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.delete_queue.opcode = opcode; |
| cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); |
| |
| req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->end_io_data = nvmeq; |
| |
| init_completion(&nvmeq->delete_done); |
| blk_execute_rq_nowait(q, NULL, req, false, |
| opcode == nvme_admin_delete_cq ? |
| nvme_del_cq_end : nvme_del_queue_end); |
| return 0; |
| } |
| |
| static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode) |
| { |
| int nr_queues = dev->online_queues - 1, sent = 0; |
| unsigned long timeout; |
| |
| retry: |
| timeout = NVME_ADMIN_TIMEOUT; |
| while (nr_queues > 0) { |
| if (nvme_delete_queue(&dev->queues[nr_queues], opcode)) |
| break; |
| nr_queues--; |
| sent++; |
| } |
| while (sent) { |
| struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent]; |
| |
| timeout = wait_for_completion_io_timeout(&nvmeq->delete_done, |
| timeout); |
| if (timeout == 0) |
| return false; |
| |
| sent--; |
| if (nr_queues) |
| goto retry; |
| } |
| return true; |
| } |
| |
| static void nvme_dev_add(struct nvme_dev *dev) |
| { |
| int ret; |
| |
| if (!dev->ctrl.tagset) { |
| dev->tagset.ops = &nvme_mq_ops; |
| dev->tagset.nr_hw_queues = dev->online_queues - 1; |
| dev->tagset.nr_maps = 2; /* default + read */ |
| if (dev->io_queues[HCTX_TYPE_POLL]) |
| dev->tagset.nr_maps++; |
| dev->tagset.timeout = NVME_IO_TIMEOUT; |
| dev->tagset.numa_node = dev->ctrl.numa_node; |
| dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth, |
| BLK_MQ_MAX_DEPTH) - 1; |
| dev->tagset.cmd_size = sizeof(struct nvme_iod); |
| dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; |
| dev->tagset.driver_data = dev; |
| |
| /* |
| * Some Apple controllers requires tags to be unique |
| * across admin and IO queue, so reserve the first 32 |
| * tags of the IO queue. |
| */ |
| if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) |
| dev->tagset.reserved_tags = NVME_AQ_DEPTH; |
| |
| ret = blk_mq_alloc_tag_set(&dev->tagset); |
| if (ret) { |
| dev_warn(dev->ctrl.device, |
| "IO queues tagset allocation failed %d\n", ret); |
| return; |
| } |
| dev->ctrl.tagset = &dev->tagset; |
| } else { |
| blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); |
| |
| /* Free previously allocated queues that are no longer usable */ |
| nvme_free_queues(dev, dev->online_queues); |
| } |
| |
| nvme_dbbuf_set(dev); |
| } |
| |
| static int nvme_pci_enable(struct nvme_dev *dev) |
| { |
| int result = -ENOMEM; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_enable_device_mem(pdev)) |
| return result; |
| |
| pci_set_master(pdev); |
| |
| if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64))) |
| goto disable; |
| |
| if (readl(dev->bar + NVME_REG_CSTS) == -1) { |
| result = -ENODEV; |
| goto disable; |
| } |
| |
| /* |
| * Some devices and/or platforms don't advertise or work with INTx |
| * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll |
| * adjust this later. |
| */ |
| result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); |
| if (result < 0) |
| return result; |
| |
| dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); |
| |
| dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1, |
| io_queue_depth); |
| dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */ |
| dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); |
| dev->dbs = dev->bar + 4096; |
| |
| /* |
| * Some Apple controllers require a non-standard SQE size. |
| * Interestingly they also seem to ignore the CC:IOSQES register |
| * so we don't bother updating it here. |
| */ |
| if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES) |
| dev->io_sqes = 7; |
| else |
| dev->io_sqes = NVME_NVM_IOSQES; |
| |
| /* |
| * Temporary fix for the Apple controller found in the MacBook8,1 and |
| * some MacBook7,1 to avoid controller resets and data loss. |
| */ |
| if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { |
| dev->q_depth = 2; |
| dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " |
| "set queue depth=%u to work around controller resets\n", |
| dev->q_depth); |
| } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && |
| (pdev->device == 0xa821 || pdev->device == 0xa822) && |
| NVME_CAP_MQES(dev->ctrl.cap) == 0) { |
| dev->q_depth = 64; |
| dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " |
| "set queue depth=%u\n", dev->q_depth); |
| } |
| |
| /* |
| * Controllers with the shared tags quirk need the IO queue to be |
| * big enough so that we get 32 tags for the admin queue |
| */ |
| if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) && |
| (dev->q_depth < (NVME_AQ_DEPTH + 2))) { |
| dev->q_depth = NVME_AQ_DEPTH + 2; |
| dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n", |
| dev->q_depth); |
| } |
| |
| |
| nvme_map_cmb(dev); |
| |
| pci_enable_pcie_error_reporting(pdev); |
| pci_save_state(pdev); |
| return 0; |
| |
| disable: |
| pci_disable_device(pdev); |
| return result; |
| } |
| |
| static void nvme_dev_unmap(struct nvme_dev *dev) |
| { |
| if (dev->bar) |
| iounmap(dev->bar); |
| pci_release_mem_regions(to_pci_dev(dev->dev)); |
| } |
| |
| static void nvme_pci_disable(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| pci_free_irq_vectors(pdev); |
| |
| if (pci_is_enabled(pdev)) { |
| pci_disable_pcie_error_reporting(pdev); |
| pci_disable_device(pdev); |
| } |
| } |
| |
| static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) |
| { |
| bool dead = true, freeze = false; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| mutex_lock(&dev->shutdown_lock); |
| if (pci_is_enabled(pdev)) { |
| u32 csts = readl(dev->bar + NVME_REG_CSTS); |
| |
| if (dev->ctrl.state == NVME_CTRL_LIVE || |
| dev->ctrl.state == NVME_CTRL_RESETTING) { |
| freeze = true; |
| nvme_start_freeze(&dev->ctrl); |
| } |
| dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || |
| pdev->error_state != pci_channel_io_normal); |
| } |
| |
| /* |
| * Give the controller a chance to complete all entered requests if |
| * doing a safe shutdown. |
| */ |
| if (!dead && shutdown && freeze) |
| nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); |
| |
| nvme_stop_queues(&dev->ctrl); |
| |
| if (!dead && dev->ctrl.queue_count > 0) { |
| nvme_disable_io_queues(dev); |
| nvme_disable_admin_queue(dev, shutdown); |
| } |
| nvme_suspend_io_queues(dev); |
| nvme_suspend_queue(&dev->queues[0]); |
| nvme_pci_disable(dev); |
| nvme_reap_pending_cqes(dev); |
| |
| blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); |
| blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); |
| blk_mq_tagset_wait_completed_request(&dev->tagset); |
| blk_mq_tagset_wait_completed_request(&dev->admin_tagset); |
| |
| /* |
| * The driver will not be starting up queues again if shutting down so |
| * must flush all entered requests to their failed completion to avoid |
| * deadlocking blk-mq hot-cpu notifier. |
| */ |
| if (shutdown) { |
| nvme_start_queues(&dev->ctrl); |
| if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) |
| blk_mq_unquiesce_queue(dev->ctrl.admin_q); |
| } |
| mutex_unlock(&dev->shutdown_lock); |
| } |
| |
| static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown) |
| { |
| if (!nvme_wait_reset(&dev->ctrl)) |
| return -EBUSY; |
| nvme_dev_disable(dev, shutdown); |
| return 0; |
| } |
| |
| static int nvme_setup_prp_pools(struct nvme_dev *dev) |
| { |
| dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, |
| NVME_CTRL_PAGE_SIZE, |
| NVME_CTRL_PAGE_SIZE, 0); |
| if (!dev->prp_page_pool) |
| return -ENOMEM; |
| |
| /* Optimisation for I/Os between 4k and 128k */ |
| dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, |
| 256, 256, 0); |
| if (!dev->prp_small_pool) { |
| dma_pool_destroy(dev->prp_page_pool); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void nvme_release_prp_pools(struct nvme_dev *dev) |
| { |
| dma_pool_destroy(dev->prp_page_pool); |
| dma_pool_destroy(dev->prp_small_pool); |
| } |
| |
| static void nvme_free_tagset(struct nvme_dev *dev) |
| { |
| if (dev->tagset.tags) |
| blk_mq_free_tag_set(&dev->tagset); |
| dev->ctrl.tagset = NULL; |
| } |
| |
| static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_dev *dev = to_nvme_dev(ctrl); |
| |
| nvme_dbbuf_dma_free(dev); |
| nvme_free_tagset(dev); |
| if (dev->ctrl.admin_q) |
| blk_put_queue(dev->ctrl.admin_q); |
| free_opal_dev(dev->ctrl.opal_dev); |
| mempool_destroy(dev->iod_mempool); |
| put_device(dev->dev); |
| kfree(dev->queues); |
| kfree(dev); |
| } |
| |
| static void nvme_remove_dead_ctrl(struct nvme_dev *dev) |
| { |
| /* |
| * Set state to deleting now to avoid blocking nvme_wait_reset(), which |
| * may be holding this pci_dev's device lock. |
| */ |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); |
| nvme_get_ctrl(&dev->ctrl); |
| nvme_dev_disable(dev, false); |
| nvme_kill_queues(&dev->ctrl); |
| if (!queue_work(nvme_wq, &dev->remove_work)) |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static void nvme_reset_work(struct work_struct *work) |
| { |
| struct nvme_dev *dev = |
| container_of(work, struct nvme_dev, ctrl.reset_work); |
| bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); |
| int result; |
| |
| if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { |
| result = -ENODEV; |
| goto out; |
| } |
| |
| /* |
| * If we're called to reset a live controller first shut it down before |
| * moving on. |
| */ |
| if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) |
| nvme_dev_disable(dev, false); |
| nvme_sync_queues(&dev->ctrl); |
| |
| mutex_lock(&dev->shutdown_lock); |
| result = nvme_pci_enable(dev); |
| if (result) |
| goto out_unlock; |
| |
| result = nvme_pci_configure_admin_queue(dev); |
| if (result) |
| goto out_unlock; |
| |
| result = nvme_alloc_admin_tags(dev); |
| if (result) |
| goto out_unlock; |
| |
| /* |
| * Limit the max command size to prevent iod->sg allocations going |
| * over a single page. |
| */ |
| dev->ctrl.max_hw_sectors = min_t(u32, |
| NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9); |
| dev->ctrl.max_segments = NVME_MAX_SEGS; |
| |
| /* |
| * Don't limit the IOMMU merged segment size. |
| */ |
| dma_set_max_seg_size(dev->dev, 0xffffffff); |
| |
| mutex_unlock(&dev->shutdown_lock); |
| |
| /* |
| * Introduce CONNECTING state from nvme-fc/rdma transports to mark the |
| * initializing procedure here. |
| */ |
| if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { |
| dev_warn(dev->ctrl.device, |
| "failed to mark controller CONNECTING\n"); |
| result = -EBUSY; |
| goto out; |
| } |
| |
| /* |
| * We do not support an SGL for metadata (yet), so we are limited to a |
| * single integrity segment for the separate metadata pointer. |
| */ |
| dev->ctrl.max_integrity_segments = 1; |
| |
| result = nvme_init_identify(&dev->ctrl); |
| if (result) |
| goto out; |
| |
| if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { |
| if (!dev->ctrl.opal_dev) |
| dev->ctrl.opal_dev = |
| init_opal_dev(&dev->ctrl, &nvme_sec_submit); |
| else if (was_suspend) |
| opal_unlock_from_suspend(dev->ctrl.opal_dev); |
| } else { |
| free_opal_dev(dev->ctrl.opal_dev); |
| dev->ctrl.opal_dev = NULL; |
| } |
| |
| if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { |
| result = nvme_dbbuf_dma_alloc(dev); |
| if (result) |
| dev_warn(dev->dev, |
| "unable to allocate dma for dbbuf\n"); |
| } |
| |
| if (dev->ctrl.hmpre) { |
| result = nvme_setup_host_mem(dev); |
| if (result < 0) |
| goto out; |
| } |
| |
| result = nvme_setup_io_queues(dev); |
| if (result) |
| goto out; |
| |
| /* |
| * Keep the controller around but remove all namespaces if we don't have |
| * any working I/O queue. |
| */ |
| if (dev->online_queues < 2) { |
| dev_warn(dev->ctrl.device, "IO queues not created\n"); |
| nvme_kill_queues(&dev->ctrl); |
| nvme_remove_namespaces(&dev->ctrl); |
| nvme_free_tagset(dev); |
| } else { |
| nvme_start_queues(&dev->ctrl); |
| nvme_wait_freeze(&dev->ctrl); |
| nvme_dev_add(dev); |
| nvme_unfreeze(&dev->ctrl); |
| } |
| |
| /* |
| * If only admin queue live, keep it to do further investigation or |
| * recovery. |
| */ |
| if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { |
| dev_warn(dev->ctrl.device, |
| "failed to mark controller live state\n"); |
| result = -ENODEV; |
| goto out; |
| } |
| |
| nvme_start_ctrl(&dev->ctrl); |
| return; |
| |
| out_unlock: |
| mutex_unlock(&dev->shutdown_lock); |
| out: |
| if (result) |
| dev_warn(dev->ctrl.device, |
| "Removing after probe failure status: %d\n", result); |
| nvme_remove_dead_ctrl(dev); |
| } |
| |
| static void nvme_remove_dead_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_get_drvdata(pdev)) |
| device_release_driver(&pdev->dev); |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) |
| { |
| *val = readl(to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) |
| { |
| writel(val, to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) |
| { |
| *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) |
| { |
| struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); |
| |
| return snprintf(buf, size, "%s\n", dev_name(&pdev->dev)); |
| } |
| |
| static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { |
| .name = "pcie", |
| .module = THIS_MODULE, |
| .flags = NVME_F_METADATA_SUPPORTED | |
| NVME_F_PCI_P2PDMA, |
| .reg_read32 = nvme_pci_reg_read32, |
| .reg_write32 = nvme_pci_reg_write32, |
| .reg_read64 = nvme_pci_reg_read64, |
| .free_ctrl = nvme_pci_free_ctrl, |
| .submit_async_event = nvme_pci_submit_async_event, |
| .get_address = nvme_pci_get_address, |
| }; |
| |
| static int nvme_dev_map(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_request_mem_regions(pdev, "nvme")) |
| return -ENODEV; |
| |
| if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) |
| goto release; |
| |
| return 0; |
| release: |
| pci_release_mem_regions(pdev); |
| return -ENODEV; |
| } |
| |
| static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) |
| { |
| if (pdev->vendor == 0x144d && pdev->device == 0xa802) { |
| /* |
| * Several Samsung devices seem to drop off the PCIe bus |
| * randomly when APST is on and uses the deepest sleep state. |
| * This has been observed on a Samsung "SM951 NVMe SAMSUNG |
| * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD |
| * 950 PRO 256GB", but it seems to be restricted to two Dell |
| * laptops. |
| */ |
| if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && |
| (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || |
| dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) |
| return NVME_QUIRK_NO_DEEPEST_PS; |
| } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { |
| /* |
| * Samsung SSD 960 EVO drops off the PCIe bus after system |
| * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as |
| * within few minutes after bootup on a Coffee Lake board - |
| * ASUS PRIME Z370-A |
| */ |
| if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && |
| (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || |
| dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) |
| return NVME_QUIRK_NO_APST; |
| } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 || |
| pdev->device == 0xa808 || pdev->device == 0xa809)) || |
| (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) { |
| /* |
| * Forcing to use host managed nvme power settings for |
| * lowest idle power with quick resume latency on |
| * Samsung and Toshiba SSDs based on suspend behavior |
| * on Coffee Lake board for LENOVO C640 |
| */ |
| if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) && |
| dmi_match(DMI_BOARD_NAME, "LNVNB161216")) |
| return NVME_QUIRK_SIMPLE_SUSPEND; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ACPI |
| static bool nvme_acpi_storage_d3(struct pci_dev *dev) |
| { |
| struct acpi_device *adev; |
| struct pci_dev *root; |
| acpi_handle handle; |
| acpi_status status; |
| u8 val; |
| |
| /* |
| * Look for _DSD property specifying that the storage device on the port |
| * must use D3 to support deep platform power savings during |
| * suspend-to-idle. |
| */ |
| root = pcie_find_root_port(dev); |
| if (!root) |
| return false; |
| |
| adev = ACPI_COMPANION(&root->dev); |
| if (!adev) |
| return false; |
| |
| /* |
| * The property is defined in the PXSX device for South complex ports |
| * and in the PEGP device for North complex ports. |
| */ |
| status = acpi_get_handle(adev->handle, "PXSX", &handle); |
| if (ACPI_FAILURE(status)) { |
| status = acpi_get_handle(adev->handle, "PEGP", &handle); |
| if (ACPI_FAILURE(status)) |
| return false; |
| } |
| |
| if (acpi_bus_get_device(handle, &adev)) |
| return false; |
| |
| if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable", |
| &val)) |
| return false; |
| return val == 1; |
| } |
| #else |
| static inline bool nvme_acpi_storage_d3(struct pci_dev *dev) |
| { |
| return false; |
| } |
| #endif /* CONFIG_ACPI */ |
| |
| static void nvme_async_probe(void *data, async_cookie_t cookie) |
| { |
| struct nvme_dev *dev = data; |
| |
| flush_work(&dev->ctrl.reset_work); |
| flush_work(&dev->ctrl.scan_work); |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int node, result = -ENOMEM; |
| struct nvme_dev *dev; |
| unsigned long quirks = id->driver_data; |
| size_t alloc_size; |
| |
| node = dev_to_node(&pdev->dev); |
| if (node == NUMA_NO_NODE) |
| set_dev_node(&pdev->dev, first_memory_node); |
| |
| dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); |
| if (!dev) |
| return -ENOMEM; |
| |
| dev->nr_write_queues = write_queues; |
| dev->nr_poll_queues = poll_queues; |
| dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1; |
| dev->queues = kcalloc_node(dev->nr_allocated_queues, |
| sizeof(struct nvme_queue), GFP_KERNEL, node); |
| if (!dev->queues) |
| goto free; |
| |
| dev->dev = get_device(&pdev->dev); |
| pci_set_drvdata(pdev, dev); |
| |
| result = nvme_dev_map(dev); |
| if (result) |
| goto put_pci; |
| |
| INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); |
| INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); |
| mutex_init(&dev->shutdown_lock); |
| |
| result = nvme_setup_prp_pools(dev); |
| if (result) |
| goto unmap; |
| |
| quirks |= check_vendor_combination_bug(pdev); |
| |
| if (!noacpi && nvme_acpi_storage_d3(pdev)) { |
| /* |
| * Some systems use a bios work around to ask for D3 on |
| * platforms that support kernel managed suspend. |
| */ |
| dev_info(&pdev->dev, |
| "platform quirk: setting simple suspend\n"); |
| quirks |= NVME_QUIRK_SIMPLE_SUSPEND; |
| } |
| |
| /* |
| * Double check that our mempool alloc size will cover the biggest |
| * command we support. |
| */ |
| alloc_size = nvme_pci_iod_alloc_size(); |
| WARN_ON_ONCE(alloc_size > PAGE_SIZE); |
| |
| dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, |
| mempool_kfree, |
| (void *) alloc_size, |
| GFP_KERNEL, node); |
| if (!dev->iod_mempool) { |
| result = -ENOMEM; |
| goto release_pools; |
| } |
| |
| result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, |
| quirks); |
| if (result) |
| goto release_mempool; |
| |
| dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); |
| |
| nvme_reset_ctrl(&dev->ctrl); |
| async_schedule(nvme_async_probe, dev); |
| |
| return 0; |
| |
| release_mempool: |
| mempool_destroy(dev->iod_mempool); |
| release_pools: |
| nvme_release_prp_pools(dev); |
| unmap: |
| nvme_dev_unmap(dev); |
| put_pci: |
| put_device(dev->dev); |
| free: |
| kfree(dev->queues); |
| kfree(dev); |
| return result; |
| } |
| |
| static void nvme_reset_prepare(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| /* |
| * We don't need to check the return value from waiting for the reset |
| * state as pci_dev device lock is held, making it impossible to race |
| * with ->remove(). |
| */ |
| nvme_disable_prepare_reset(dev, false); |
| nvme_sync_queues(&dev->ctrl); |
| } |
| |
| static void nvme_reset_done(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| if (!nvme_try_sched_reset(&dev->ctrl)) |
| flush_work(&dev->ctrl.reset_work); |
| } |
| |
| static void nvme_shutdown(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| nvme_disable_prepare_reset(dev, true); |
| } |
| |
| /* |
| * The driver's remove may be called on a device in a partially initialized |
| * state. This function must not have any dependencies on the device state in |
| * order to proceed. |
| */ |
| static void nvme_remove(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); |
| pci_set_drvdata(pdev, NULL); |
| |
| if (!pci_device_is_present(pdev)) { |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); |
| nvme_dev_disable(dev, true); |
| nvme_dev_remove_admin(dev); |
| } |
| |
| flush_work(&dev->ctrl.reset_work); |
| nvme_stop_ctrl(&dev->ctrl); |
| nvme_remove_namespaces(&dev->ctrl); |
| nvme_dev_disable(dev, true); |
| nvme_release_cmb(dev); |
| nvme_free_host_mem(dev); |
| nvme_dev_remove_admin(dev); |
| nvme_free_queues(dev, 0); |
| nvme_release_prp_pools(dev); |
| nvme_dev_unmap(dev); |
| nvme_uninit_ctrl(&dev->ctrl); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps) |
| { |
| return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps); |
| } |
| |
| static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps) |
| { |
| return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL); |
| } |
| |
| static int nvme_resume(struct device *dev) |
| { |
| struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); |
| struct nvme_ctrl *ctrl = &ndev->ctrl; |
| |
| if (ndev->last_ps == U32_MAX || |
| nvme_set_power_state(ctrl, ndev->last_ps) != 0) |
| return nvme_try_sched_reset(&ndev->ctrl); |
| return 0; |
| } |
| |
| static int nvme_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| struct nvme_ctrl *ctrl = &ndev->ctrl; |
| int ret = -EBUSY; |
| |
| ndev->last_ps = U32_MAX; |
| |
| /* |
| * The platform does not remove power for a kernel managed suspend so |
| * use host managed nvme power settings for lowest idle power if |
| * possible. This should have quicker resume latency than a full device |
| * shutdown. But if the firmware is involved after the suspend or the |
| * device does not support any non-default power states, shut down the |
| * device fully. |
| * |
| * If ASPM is not enabled for the device, shut down the device and allow |
| * the PCI bus layer to put it into D3 in order to take the PCIe link |
| * down, so as to allow the platform to achieve its minimum low-power |
| * state (which may not be possible if the link is up). |
| * |
| * If a host memory buffer is enabled, shut down the device as the NVMe |
| * specification allows the device to access the host memory buffer in |
| * host DRAM from all power states, but hosts will fail access to DRAM |
| * during S3. |
| */ |
| if (pm_suspend_via_firmware() || !ctrl->npss || |
| !pcie_aspm_enabled(pdev) || |
| ndev->nr_host_mem_descs || |
| (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND)) |
| return nvme_disable_prepare_reset(ndev, true); |
| |
| nvme_start_freeze(ctrl); |
| nvme_wait_freeze(ctrl); |
| nvme_sync_queues(ctrl); |
| |
| if (ctrl->state != NVME_CTRL_LIVE) |
| goto unfreeze; |
| |
| ret = nvme_get_power_state(ctrl, &ndev->last_ps); |
| if (ret < 0) |
| goto unfreeze; |
| |
| /* |
| * A saved state prevents pci pm from generically controlling the |
| * device's power. If we're using protocol specific settings, we don't |
| * want pci interfering. |
| */ |
| pci_save_state(pdev); |
| |
| ret = nvme_set_power_state(ctrl, ctrl->npss); |
| if (ret < 0) |
| goto unfreeze; |
| |
| if (ret) { |
| /* discard the saved state */ |
| pci_load_saved_state(pdev, NULL); |
| |
| /* |
| * Clearing npss forces a controller reset on resume. The |
| * correct value will be rediscovered then. |
| */ |
| ret = nvme_disable_prepare_reset(ndev, true); |
| ctrl->npss = 0; |
| } |
| unfreeze: |
| nvme_unfreeze(ctrl); |
| return ret; |
| } |
| |
| static int nvme_simple_suspend(struct device *dev) |
| { |
| struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev)); |
| |
| return nvme_disable_prepare_reset(ndev, true); |
| } |
| |
| static int nvme_simple_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| |
| return nvme_try_sched_reset(&ndev->ctrl); |
| } |
| |
| static const struct dev_pm_ops nvme_dev_pm_ops = { |
| .suspend = nvme_suspend, |
| .resume = nvme_resume, |
| .freeze = nvme_simple_suspend, |
| .thaw = nvme_simple_resume, |
| .poweroff = nvme_simple_suspend, |
| .restore = nvme_simple_resume, |
| }; |
| #endif /* CONFIG_PM_SLEEP */ |
| |
| static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| /* |
| * A frozen channel requires a reset. When detected, this method will |
| * shutdown the controller to quiesce. The controller will be restarted |
| * after the slot reset through driver's slot_reset callback. |
| */ |
| switch (state) { |
| case pci_channel_io_normal: |
| return PCI_ERS_RESULT_CAN_RECOVER; |
| case pci_channel_io_frozen: |
| dev_warn(dev->ctrl.device, |
| "frozen state error detected, reset controller\n"); |
| nvme_dev_disable(dev, false); |
| return PCI_ERS_RESULT_NEED_RESET; |
| case pci_channel_io_perm_failure: |
| dev_warn(dev->ctrl.device, |
| "failure state error detected, request disconnect\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| dev_info(dev->ctrl.device, "restart after slot reset\n"); |
| pci_restore_state(pdev); |
| nvme_reset_ctrl(&dev->ctrl); |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| static void nvme_error_resume(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| flush_work(&dev->ctrl.reset_work); |
| } |
| |
| static const struct pci_error_handlers nvme_err_handler = { |
| .error_detected = nvme_error_detected, |
| .slot_reset = nvme_slot_reset, |
| .resume = nvme_error_resume, |
| .reset_prepare = nvme_reset_prepare, |
| .reset_done = nvme_reset_done, |
| }; |
| |
| static const struct pci_device_id nvme_id_table[] = { |
| { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */ |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DEALLOCATE_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */ |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DEALLOCATE_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */ |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DEALLOCATE_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */ |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DEALLOCATE_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */ |
| .driver_data = NVME_QUIRK_NO_DEEPEST_PS | |
| NVME_QUIRK_MEDIUM_PRIO_SQ | |
| NVME_QUIRK_NO_TEMP_THRESH_CHANGE | |
| NVME_QUIRK_DISABLE_WRITE_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */ |
| .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, |
| { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ |
| .driver_data = NVME_QUIRK_IDENTIFY_CNS | |
| NVME_QUIRK_DISABLE_WRITE_ZEROES, }, |
| { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */ |
| .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, }, |
| { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */ |
| .driver_data = NVME_QUIRK_LIGHTNVM, }, |
| { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */ |
| .driver_data = NVME_QUIRK_LIGHTNVM, }, |
| { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */ |
| .driver_data = NVME_QUIRK_LIGHTNVM, }, |
| { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */ |
| .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, }, |
| { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */ |
| .driver_data = NVME_QUIRK_NO_DEEPEST_PS | |
| NVME_QUIRK_IGNORE_DEV_SUBNQN, }, |
| { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */ |
| .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, |
| { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */ |
| .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, }, |
| { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001), |
| .driver_data = NVME_QUIRK_SINGLE_VECTOR }, |
| { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005), |
| .driver_data = NVME_QUIRK_SINGLE_VECTOR | |
| NVME_QUIRK_128_BYTES_SQES | |
| NVME_QUIRK_SHARED_TAGS }, |
| |
| { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, nvme_id_table); |
| |
| static struct pci_driver nvme_driver = { |
| .name = "nvme", |
| .id_table = nvme_id_table, |
| .probe = nvme_probe, |
| .remove = nvme_remove, |
| .shutdown = nvme_shutdown, |
| #ifdef CONFIG_PM_SLEEP |
| .driver = { |
| .pm = &nvme_dev_pm_ops, |
| }, |
| #endif |
| .sriov_configure = pci_sriov_configure_simple, |
| .err_handler = &nvme_err_handler, |
| }; |
| |
| static int __init nvme_init(void) |
| { |
| BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); |
| BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2); |
| |
| return pci_register_driver(&nvme_driver); |
| } |
| |
| static void __exit nvme_exit(void) |
| { |
| pci_unregister_driver(&nvme_driver); |
| flush_workqueue(nvme_wq); |
| } |
| |
| MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.0"); |
| module_init(nvme_init); |
| module_exit(nvme_exit); |