| /* |
| * Compressed RAM block device |
| * |
| * Copyright (C) 2008, 2009, 2010 Nitin Gupta |
| * 2012, 2013 Minchan Kim |
| * |
| * This code is released using a dual license strategy: BSD/GPL |
| * You can choose the licence that better fits your requirements. |
| * |
| * Released under the terms of 3-clause BSD License |
| * Released under the terms of GNU General Public License Version 2.0 |
| * |
| */ |
| |
| #define KMSG_COMPONENT "zram" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/buffer_head.h> |
| #include <linux/device.h> |
| #include <linux/highmem.h> |
| #include <linux/slab.h> |
| #include <linux/backing-dev.h> |
| #include <linux/string.h> |
| #include <linux/vmalloc.h> |
| #include <linux/err.h> |
| #include <linux/idr.h> |
| #include <linux/sysfs.h> |
| #include <linux/debugfs.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/part_stat.h> |
| |
| #include "zram_drv.h" |
| |
| static DEFINE_IDR(zram_index_idr); |
| /* idr index must be protected */ |
| static DEFINE_MUTEX(zram_index_mutex); |
| |
| static int zram_major; |
| static const char *default_compressor = CONFIG_ZRAM_DEF_COMP; |
| |
| /* Module params (documentation at end) */ |
| static unsigned int num_devices = 1; |
| /* |
| * Pages that compress to sizes equals or greater than this are stored |
| * uncompressed in memory. |
| */ |
| static size_t huge_class_size; |
| |
| static const struct block_device_operations zram_devops; |
| |
| static void zram_free_page(struct zram *zram, size_t index); |
| static int zram_read_page(struct zram *zram, struct page *page, u32 index, |
| struct bio *parent); |
| |
| static int zram_slot_trylock(struct zram *zram, u32 index) |
| { |
| return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static void zram_slot_lock(struct zram *zram, u32 index) |
| { |
| bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static void zram_slot_unlock(struct zram *zram, u32 index) |
| { |
| bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags); |
| } |
| |
| static inline bool init_done(struct zram *zram) |
| { |
| return zram->disksize; |
| } |
| |
| static inline struct zram *dev_to_zram(struct device *dev) |
| { |
| return (struct zram *)dev_to_disk(dev)->private_data; |
| } |
| |
| static unsigned long zram_get_handle(struct zram *zram, u32 index) |
| { |
| return zram->table[index].handle; |
| } |
| |
| static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle) |
| { |
| zram->table[index].handle = handle; |
| } |
| |
| /* flag operations require table entry bit_spin_lock() being held */ |
| static bool zram_test_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| return zram->table[index].flags & BIT(flag); |
| } |
| |
| static void zram_set_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| zram->table[index].flags |= BIT(flag); |
| } |
| |
| static void zram_clear_flag(struct zram *zram, u32 index, |
| enum zram_pageflags flag) |
| { |
| zram->table[index].flags &= ~BIT(flag); |
| } |
| |
| static inline void zram_set_element(struct zram *zram, u32 index, |
| unsigned long element) |
| { |
| zram->table[index].element = element; |
| } |
| |
| static unsigned long zram_get_element(struct zram *zram, u32 index) |
| { |
| return zram->table[index].element; |
| } |
| |
| static size_t zram_get_obj_size(struct zram *zram, u32 index) |
| { |
| return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1); |
| } |
| |
| static void zram_set_obj_size(struct zram *zram, |
| u32 index, size_t size) |
| { |
| unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT; |
| |
| zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size; |
| } |
| |
| static inline bool zram_allocated(struct zram *zram, u32 index) |
| { |
| return zram_get_obj_size(zram, index) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_WB); |
| } |
| |
| #if PAGE_SIZE != 4096 |
| static inline bool is_partial_io(struct bio_vec *bvec) |
| { |
| return bvec->bv_len != PAGE_SIZE; |
| } |
| #define ZRAM_PARTIAL_IO 1 |
| #else |
| static inline bool is_partial_io(struct bio_vec *bvec) |
| { |
| return false; |
| } |
| #endif |
| |
| static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio) |
| { |
| prio &= ZRAM_COMP_PRIORITY_MASK; |
| /* |
| * Clear previous priority value first, in case if we recompress |
| * further an already recompressed page |
| */ |
| zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK << |
| ZRAM_COMP_PRIORITY_BIT1); |
| zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1); |
| } |
| |
| static inline u32 zram_get_priority(struct zram *zram, u32 index) |
| { |
| u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1; |
| |
| return prio & ZRAM_COMP_PRIORITY_MASK; |
| } |
| |
| static inline void update_used_max(struct zram *zram, |
| const unsigned long pages) |
| { |
| unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages); |
| |
| do { |
| if (cur_max >= pages) |
| return; |
| } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages, |
| &cur_max, pages)); |
| } |
| |
| static inline void zram_fill_page(void *ptr, unsigned long len, |
| unsigned long value) |
| { |
| WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long))); |
| memset_l(ptr, value, len / sizeof(unsigned long)); |
| } |
| |
| static bool page_same_filled(void *ptr, unsigned long *element) |
| { |
| unsigned long *page; |
| unsigned long val; |
| unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1; |
| |
| page = (unsigned long *)ptr; |
| val = page[0]; |
| |
| if (val != page[last_pos]) |
| return false; |
| |
| for (pos = 1; pos < last_pos; pos++) { |
| if (val != page[pos]) |
| return false; |
| } |
| |
| *element = val; |
| |
| return true; |
| } |
| |
| static ssize_t initstate_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u32 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| val = init_done(zram); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static ssize_t disksize_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize); |
| } |
| |
| static ssize_t mem_limit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 limit; |
| char *tmp; |
| struct zram *zram = dev_to_zram(dev); |
| |
| limit = memparse(buf, &tmp); |
| if (buf == tmp) /* no chars parsed, invalid input */ |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT; |
| up_write(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t mem_used_max_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int err; |
| unsigned long val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| err = kstrtoul(buf, 10, &val); |
| if (err || val != 0) |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| atomic_long_set(&zram->stats.max_used_pages, |
| zs_get_total_pages(zram->mem_pool)); |
| } |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| /* |
| * Mark all pages which are older than or equal to cutoff as IDLE. |
| * Callers should hold the zram init lock in read mode |
| */ |
| static void mark_idle(struct zram *zram, ktime_t cutoff) |
| { |
| int is_idle = 1; |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| int index; |
| |
| for (index = 0; index < nr_pages; index++) { |
| /* |
| * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race. |
| * See the comment in writeback_store. |
| */ |
| zram_slot_lock(zram, index); |
| if (zram_allocated(zram, index) && |
| !zram_test_flag(zram, index, ZRAM_UNDER_WB)) { |
| #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time); |
| #endif |
| if (is_idle) |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| } |
| zram_slot_unlock(zram, index); |
| } |
| } |
| |
| static ssize_t idle_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ktime_t cutoff_time = 0; |
| ssize_t rv = -EINVAL; |
| |
| if (!sysfs_streq(buf, "all")) { |
| /* |
| * If it did not parse as 'all' try to treat it as an integer |
| * when we have memory tracking enabled. |
| */ |
| u64 age_sec; |
| |
| if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec)) |
| cutoff_time = ktime_sub(ktime_get_boottime(), |
| ns_to_ktime(age_sec * NSEC_PER_SEC)); |
| else |
| goto out; |
| } |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) |
| goto out_unlock; |
| |
| /* |
| * A cutoff_time of 0 marks everything as idle, this is the |
| * "all" behavior. |
| */ |
| mark_idle(zram, cutoff_time); |
| rv = len; |
| |
| out_unlock: |
| up_read(&zram->init_lock); |
| out: |
| return rv; |
| } |
| |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| static ssize_t writeback_limit_enable_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| u64 val; |
| ssize_t ret = -EINVAL; |
| |
| if (kstrtoull(buf, 10, &val)) |
| return ret; |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| zram->wb_limit_enable = val; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| ret = len; |
| |
| return ret; |
| } |
| |
| static ssize_t writeback_limit_enable_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| bool val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| val = zram->wb_limit_enable; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%d\n", val); |
| } |
| |
| static ssize_t writeback_limit_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| u64 val; |
| ssize_t ret = -EINVAL; |
| |
| if (kstrtoull(buf, 10, &val)) |
| return ret; |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| zram->bd_wb_limit = val; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| ret = len; |
| |
| return ret; |
| } |
| |
| static ssize_t writeback_limit_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| u64 val; |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| spin_lock(&zram->wb_limit_lock); |
| val = zram->bd_wb_limit; |
| spin_unlock(&zram->wb_limit_lock); |
| up_read(&zram->init_lock); |
| |
| return scnprintf(buf, PAGE_SIZE, "%llu\n", val); |
| } |
| |
| static void reset_bdev(struct zram *zram) |
| { |
| if (!zram->backing_dev) |
| return; |
| |
| bdev_release(zram->bdev_handle); |
| /* hope filp_close flush all of IO */ |
| filp_close(zram->backing_dev, NULL); |
| zram->backing_dev = NULL; |
| zram->bdev_handle = NULL; |
| zram->disk->fops = &zram_devops; |
| kvfree(zram->bitmap); |
| zram->bitmap = NULL; |
| } |
| |
| static ssize_t backing_dev_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct file *file; |
| struct zram *zram = dev_to_zram(dev); |
| char *p; |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| file = zram->backing_dev; |
| if (!file) { |
| memcpy(buf, "none\n", 5); |
| up_read(&zram->init_lock); |
| return 5; |
| } |
| |
| p = file_path(file, buf, PAGE_SIZE - 1); |
| if (IS_ERR(p)) { |
| ret = PTR_ERR(p); |
| goto out; |
| } |
| |
| ret = strlen(p); |
| memmove(buf, p, ret); |
| buf[ret++] = '\n'; |
| out: |
| up_read(&zram->init_lock); |
| return ret; |
| } |
| |
| static ssize_t backing_dev_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| char *file_name; |
| size_t sz; |
| struct file *backing_dev = NULL; |
| struct inode *inode; |
| struct address_space *mapping; |
| unsigned int bitmap_sz; |
| unsigned long nr_pages, *bitmap = NULL; |
| struct bdev_handle *bdev_handle = NULL; |
| int err; |
| struct zram *zram = dev_to_zram(dev); |
| |
| file_name = kmalloc(PATH_MAX, GFP_KERNEL); |
| if (!file_name) |
| return -ENOMEM; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Can't setup backing device for initialized device\n"); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| strscpy(file_name, buf, PATH_MAX); |
| /* ignore trailing newline */ |
| sz = strlen(file_name); |
| if (sz > 0 && file_name[sz - 1] == '\n') |
| file_name[sz - 1] = 0x00; |
| |
| backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0); |
| if (IS_ERR(backing_dev)) { |
| err = PTR_ERR(backing_dev); |
| backing_dev = NULL; |
| goto out; |
| } |
| |
| mapping = backing_dev->f_mapping; |
| inode = mapping->host; |
| |
| /* Support only block device in this moment */ |
| if (!S_ISBLK(inode->i_mode)) { |
| err = -ENOTBLK; |
| goto out; |
| } |
| |
| bdev_handle = bdev_open_by_dev(inode->i_rdev, |
| BLK_OPEN_READ | BLK_OPEN_WRITE, zram, NULL); |
| if (IS_ERR(bdev_handle)) { |
| err = PTR_ERR(bdev_handle); |
| bdev_handle = NULL; |
| goto out; |
| } |
| |
| nr_pages = i_size_read(inode) >> PAGE_SHIFT; |
| bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long); |
| bitmap = kvzalloc(bitmap_sz, GFP_KERNEL); |
| if (!bitmap) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| reset_bdev(zram); |
| |
| zram->bdev_handle = bdev_handle; |
| zram->backing_dev = backing_dev; |
| zram->bitmap = bitmap; |
| zram->nr_pages = nr_pages; |
| up_write(&zram->init_lock); |
| |
| pr_info("setup backing device %s\n", file_name); |
| kfree(file_name); |
| |
| return len; |
| out: |
| kvfree(bitmap); |
| |
| if (bdev_handle) |
| bdev_release(bdev_handle); |
| |
| if (backing_dev) |
| filp_close(backing_dev, NULL); |
| |
| up_write(&zram->init_lock); |
| |
| kfree(file_name); |
| |
| return err; |
| } |
| |
| static unsigned long alloc_block_bdev(struct zram *zram) |
| { |
| unsigned long blk_idx = 1; |
| retry: |
| /* skip 0 bit to confuse zram.handle = 0 */ |
| blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx); |
| if (blk_idx == zram->nr_pages) |
| return 0; |
| |
| if (test_and_set_bit(blk_idx, zram->bitmap)) |
| goto retry; |
| |
| atomic64_inc(&zram->stats.bd_count); |
| return blk_idx; |
| } |
| |
| static void free_block_bdev(struct zram *zram, unsigned long blk_idx) |
| { |
| int was_set; |
| |
| was_set = test_and_clear_bit(blk_idx, zram->bitmap); |
| WARN_ON_ONCE(!was_set); |
| atomic64_dec(&zram->stats.bd_count); |
| } |
| |
| static void read_from_bdev_async(struct zram *zram, struct page *page, |
| unsigned long entry, struct bio *parent) |
| { |
| struct bio *bio; |
| |
| bio = bio_alloc(zram->bdev_handle->bdev, 1, parent->bi_opf, GFP_NOIO); |
| bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9); |
| __bio_add_page(bio, page, PAGE_SIZE, 0); |
| bio_chain(bio, parent); |
| submit_bio(bio); |
| } |
| |
| #define PAGE_WB_SIG "page_index=" |
| |
| #define PAGE_WRITEBACK 0 |
| #define HUGE_WRITEBACK (1<<0) |
| #define IDLE_WRITEBACK (1<<1) |
| #define INCOMPRESSIBLE_WRITEBACK (1<<2) |
| |
| static ssize_t writeback_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| unsigned long index = 0; |
| struct bio bio; |
| struct bio_vec bio_vec; |
| struct page *page; |
| ssize_t ret = len; |
| int mode, err; |
| unsigned long blk_idx = 0; |
| |
| if (sysfs_streq(buf, "idle")) |
| mode = IDLE_WRITEBACK; |
| else if (sysfs_streq(buf, "huge")) |
| mode = HUGE_WRITEBACK; |
| else if (sysfs_streq(buf, "huge_idle")) |
| mode = IDLE_WRITEBACK | HUGE_WRITEBACK; |
| else if (sysfs_streq(buf, "incompressible")) |
| mode = INCOMPRESSIBLE_WRITEBACK; |
| else { |
| if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1)) |
| return -EINVAL; |
| |
| if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) || |
| index >= nr_pages) |
| return -EINVAL; |
| |
| nr_pages = 1; |
| mode = PAGE_WRITEBACK; |
| } |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| ret = -EINVAL; |
| goto release_init_lock; |
| } |
| |
| if (!zram->backing_dev) { |
| ret = -ENODEV; |
| goto release_init_lock; |
| } |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) { |
| ret = -ENOMEM; |
| goto release_init_lock; |
| } |
| |
| for (; nr_pages != 0; index++, nr_pages--) { |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable && !zram->bd_wb_limit) { |
| spin_unlock(&zram->wb_limit_lock); |
| ret = -EIO; |
| break; |
| } |
| spin_unlock(&zram->wb_limit_lock); |
| |
| if (!blk_idx) { |
| blk_idx = alloc_block_bdev(zram); |
| if (!blk_idx) { |
| ret = -ENOSPC; |
| break; |
| } |
| } |
| |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index)) |
| goto next; |
| |
| if (zram_test_flag(zram, index, ZRAM_WB) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_UNDER_WB)) |
| goto next; |
| |
| if (mode & IDLE_WRITEBACK && |
| !zram_test_flag(zram, index, ZRAM_IDLE)) |
| goto next; |
| if (mode & HUGE_WRITEBACK && |
| !zram_test_flag(zram, index, ZRAM_HUGE)) |
| goto next; |
| if (mode & INCOMPRESSIBLE_WRITEBACK && |
| !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) |
| goto next; |
| |
| /* |
| * Clearing ZRAM_UNDER_WB is duty of caller. |
| * IOW, zram_free_page never clear it. |
| */ |
| zram_set_flag(zram, index, ZRAM_UNDER_WB); |
| /* Need for hugepage writeback racing */ |
| zram_set_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| if (zram_read_page(zram, page, index, NULL)) { |
| zram_slot_lock(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| continue; |
| } |
| |
| bio_init(&bio, zram->bdev_handle->bdev, &bio_vec, 1, |
| REQ_OP_WRITE | REQ_SYNC); |
| bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9); |
| __bio_add_page(&bio, page, PAGE_SIZE, 0); |
| |
| /* |
| * XXX: A single page IO would be inefficient for write |
| * but it would be not bad as starter. |
| */ |
| err = submit_bio_wait(&bio); |
| if (err) { |
| zram_slot_lock(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram_slot_unlock(zram, index); |
| /* |
| * BIO errors are not fatal, we continue and simply |
| * attempt to writeback the remaining objects (pages). |
| * At the same time we need to signal user-space that |
| * some writes (at least one, but also could be all of |
| * them) were not successful and we do so by returning |
| * the most recent BIO error. |
| */ |
| ret = err; |
| continue; |
| } |
| |
| atomic64_inc(&zram->stats.bd_writes); |
| /* |
| * We released zram_slot_lock so need to check if the slot was |
| * changed. If there is freeing for the slot, we can catch it |
| * easily by zram_allocated. |
| * A subtle case is the slot is freed/reallocated/marked as |
| * ZRAM_IDLE again. To close the race, idle_store doesn't |
| * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB. |
| * Thus, we could close the race by checking ZRAM_IDLE bit. |
| */ |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index) || |
| !zram_test_flag(zram, index, ZRAM_IDLE)) { |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| goto next; |
| } |
| |
| zram_free_page(zram, index); |
| zram_clear_flag(zram, index, ZRAM_UNDER_WB); |
| zram_set_flag(zram, index, ZRAM_WB); |
| zram_set_element(zram, index, blk_idx); |
| blk_idx = 0; |
| atomic64_inc(&zram->stats.pages_stored); |
| spin_lock(&zram->wb_limit_lock); |
| if (zram->wb_limit_enable && zram->bd_wb_limit > 0) |
| zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12); |
| spin_unlock(&zram->wb_limit_lock); |
| next: |
| zram_slot_unlock(zram, index); |
| } |
| |
| if (blk_idx) |
| free_block_bdev(zram, blk_idx); |
| __free_page(page); |
| release_init_lock: |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| struct zram_work { |
| struct work_struct work; |
| struct zram *zram; |
| unsigned long entry; |
| struct page *page; |
| int error; |
| }; |
| |
| static void zram_sync_read(struct work_struct *work) |
| { |
| struct zram_work *zw = container_of(work, struct zram_work, work); |
| struct bio_vec bv; |
| struct bio bio; |
| |
| bio_init(&bio, zw->zram->bdev_handle->bdev, &bv, 1, REQ_OP_READ); |
| bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9); |
| __bio_add_page(&bio, zw->page, PAGE_SIZE, 0); |
| zw->error = submit_bio_wait(&bio); |
| } |
| |
| /* |
| * Block layer want one ->submit_bio to be active at a time, so if we use |
| * chained IO with parent IO in same context, it's a deadlock. To avoid that, |
| * use a worker thread context. |
| */ |
| static int read_from_bdev_sync(struct zram *zram, struct page *page, |
| unsigned long entry) |
| { |
| struct zram_work work; |
| |
| work.page = page; |
| work.zram = zram; |
| work.entry = entry; |
| |
| INIT_WORK_ONSTACK(&work.work, zram_sync_read); |
| queue_work(system_unbound_wq, &work.work); |
| flush_work(&work.work); |
| destroy_work_on_stack(&work.work); |
| |
| return work.error; |
| } |
| |
| static int read_from_bdev(struct zram *zram, struct page *page, |
| unsigned long entry, struct bio *parent) |
| { |
| atomic64_inc(&zram->stats.bd_reads); |
| if (!parent) { |
| if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO))) |
| return -EIO; |
| return read_from_bdev_sync(zram, page, entry); |
| } |
| read_from_bdev_async(zram, page, entry, parent); |
| return 0; |
| } |
| #else |
| static inline void reset_bdev(struct zram *zram) {}; |
| static int read_from_bdev(struct zram *zram, struct page *page, |
| unsigned long entry, struct bio *parent) |
| { |
| return -EIO; |
| } |
| |
| static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {}; |
| #endif |
| |
| #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| |
| static struct dentry *zram_debugfs_root; |
| |
| static void zram_debugfs_create(void) |
| { |
| zram_debugfs_root = debugfs_create_dir("zram", NULL); |
| } |
| |
| static void zram_debugfs_destroy(void) |
| { |
| debugfs_remove_recursive(zram_debugfs_root); |
| } |
| |
| static void zram_accessed(struct zram *zram, u32 index) |
| { |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| zram->table[index].ac_time = ktime_get_boottime(); |
| } |
| |
| static ssize_t read_block_state(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| char *kbuf; |
| ssize_t index, written = 0; |
| struct zram *zram = file->private_data; |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| struct timespec64 ts; |
| |
| kbuf = kvmalloc(count, GFP_KERNEL); |
| if (!kbuf) |
| return -ENOMEM; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| kvfree(kbuf); |
| return -EINVAL; |
| } |
| |
| for (index = *ppos; index < nr_pages; index++) { |
| int copied; |
| |
| zram_slot_lock(zram, index); |
| if (!zram_allocated(zram, index)) |
| goto next; |
| |
| ts = ktime_to_timespec64(zram->table[index].ac_time); |
| copied = snprintf(kbuf + written, count, |
| "%12zd %12lld.%06lu %c%c%c%c%c%c\n", |
| index, (s64)ts.tv_sec, |
| ts.tv_nsec / NSEC_PER_USEC, |
| zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.', |
| zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.', |
| zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.', |
| zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.', |
| zram_get_priority(zram, index) ? 'r' : '.', |
| zram_test_flag(zram, index, |
| ZRAM_INCOMPRESSIBLE) ? 'n' : '.'); |
| |
| if (count <= copied) { |
| zram_slot_unlock(zram, index); |
| break; |
| } |
| written += copied; |
| count -= copied; |
| next: |
| zram_slot_unlock(zram, index); |
| *ppos += 1; |
| } |
| |
| up_read(&zram->init_lock); |
| if (copy_to_user(buf, kbuf, written)) |
| written = -EFAULT; |
| kvfree(kbuf); |
| |
| return written; |
| } |
| |
| static const struct file_operations proc_zram_block_state_op = { |
| .open = simple_open, |
| .read = read_block_state, |
| .llseek = default_llseek, |
| }; |
| |
| static void zram_debugfs_register(struct zram *zram) |
| { |
| if (!zram_debugfs_root) |
| return; |
| |
| zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name, |
| zram_debugfs_root); |
| debugfs_create_file("block_state", 0400, zram->debugfs_dir, |
| zram, &proc_zram_block_state_op); |
| } |
| |
| static void zram_debugfs_unregister(struct zram *zram) |
| { |
| debugfs_remove_recursive(zram->debugfs_dir); |
| } |
| #else |
| static void zram_debugfs_create(void) {}; |
| static void zram_debugfs_destroy(void) {}; |
| static void zram_accessed(struct zram *zram, u32 index) |
| { |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| }; |
| static void zram_debugfs_register(struct zram *zram) {}; |
| static void zram_debugfs_unregister(struct zram *zram) {}; |
| #endif |
| |
| /* |
| * We switched to per-cpu streams and this attr is not needed anymore. |
| * However, we will keep it around for some time, because: |
| * a) we may revert per-cpu streams in the future |
| * b) it's visible to user space and we need to follow our 2 years |
| * retirement rule; but we already have a number of 'soon to be |
| * altered' attrs, so max_comp_streams need to wait for the next |
| * layoff cycle. |
| */ |
| static ssize_t max_comp_streams_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus()); |
| } |
| |
| static ssize_t max_comp_streams_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| return len; |
| } |
| |
| static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg) |
| { |
| /* Do not free statically defined compression algorithms */ |
| if (zram->comp_algs[prio] != default_compressor) |
| kfree(zram->comp_algs[prio]); |
| |
| zram->comp_algs[prio] = alg; |
| } |
| |
| static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf) |
| { |
| ssize_t sz; |
| |
| down_read(&zram->init_lock); |
| sz = zcomp_available_show(zram->comp_algs[prio], buf); |
| up_read(&zram->init_lock); |
| |
| return sz; |
| } |
| |
| static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf) |
| { |
| char *compressor; |
| size_t sz; |
| |
| sz = strlen(buf); |
| if (sz >= CRYPTO_MAX_ALG_NAME) |
| return -E2BIG; |
| |
| compressor = kstrdup(buf, GFP_KERNEL); |
| if (!compressor) |
| return -ENOMEM; |
| |
| /* ignore trailing newline */ |
| if (sz > 0 && compressor[sz - 1] == '\n') |
| compressor[sz - 1] = 0x00; |
| |
| if (!zcomp_available_algorithm(compressor)) { |
| kfree(compressor); |
| return -EINVAL; |
| } |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| up_write(&zram->init_lock); |
| kfree(compressor); |
| pr_info("Can't change algorithm for initialized device\n"); |
| return -EBUSY; |
| } |
| |
| comp_algorithm_set(zram, prio, compressor); |
| up_write(&zram->init_lock); |
| return 0; |
| } |
| |
| static ssize_t comp_algorithm_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf); |
| } |
| |
| static ssize_t comp_algorithm_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, |
| size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| int ret; |
| |
| ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf); |
| return ret ? ret : len; |
| } |
| |
| #ifdef CONFIG_ZRAM_MULTI_COMP |
| static ssize_t recomp_algorithm_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t sz = 0; |
| u32 prio; |
| |
| for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) { |
| if (!zram->comp_algs[prio]) |
| continue; |
| |
| sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio); |
| sz += __comp_algorithm_show(zram, prio, buf + sz); |
| } |
| |
| return sz; |
| } |
| |
| static ssize_t recomp_algorithm_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, |
| size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| int prio = ZRAM_SECONDARY_COMP; |
| char *args, *param, *val; |
| char *alg = NULL; |
| int ret; |
| |
| args = skip_spaces(buf); |
| while (*args) { |
| args = next_arg(args, ¶m, &val); |
| |
| if (!val || !*val) |
| return -EINVAL; |
| |
| if (!strcmp(param, "algo")) { |
| alg = val; |
| continue; |
| } |
| |
| if (!strcmp(param, "priority")) { |
| ret = kstrtoint(val, 10, &prio); |
| if (ret) |
| return ret; |
| continue; |
| } |
| } |
| |
| if (!alg) |
| return -EINVAL; |
| |
| if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS) |
| return -EINVAL; |
| |
| ret = __comp_algorithm_store(zram, prio, alg); |
| return ret ? ret : len; |
| } |
| #endif |
| |
| static ssize_t compact_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| up_read(&zram->init_lock); |
| return -EINVAL; |
| } |
| |
| zs_compact(zram->mem_pool); |
| up_read(&zram->init_lock); |
| |
| return len; |
| } |
| |
| static ssize_t io_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu 0 %8llu\n", |
| (u64)atomic64_read(&zram->stats.failed_reads), |
| (u64)atomic64_read(&zram->stats.failed_writes), |
| (u64)atomic64_read(&zram->stats.notify_free)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static ssize_t mm_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| struct zs_pool_stats pool_stats; |
| u64 orig_size, mem_used = 0; |
| long max_used; |
| ssize_t ret; |
| |
| memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats)); |
| |
| down_read(&zram->init_lock); |
| if (init_done(zram)) { |
| mem_used = zs_get_total_pages(zram->mem_pool); |
| zs_pool_stats(zram->mem_pool, &pool_stats); |
| } |
| |
| orig_size = atomic64_read(&zram->stats.pages_stored); |
| max_used = atomic_long_read(&zram->stats.max_used_pages); |
| |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n", |
| orig_size << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.compr_data_size), |
| mem_used << PAGE_SHIFT, |
| zram->limit_pages << PAGE_SHIFT, |
| max_used << PAGE_SHIFT, |
| (u64)atomic64_read(&zram->stats.same_pages), |
| atomic_long_read(&pool_stats.pages_compacted), |
| (u64)atomic64_read(&zram->stats.huge_pages), |
| (u64)atomic64_read(&zram->stats.huge_pages_since)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12))) |
| static ssize_t bd_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "%8llu %8llu %8llu\n", |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_count)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)), |
| FOUR_K((u64)atomic64_read(&zram->stats.bd_writes))); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| #endif |
| |
| static ssize_t debug_stat_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| int version = 1; |
| struct zram *zram = dev_to_zram(dev); |
| ssize_t ret; |
| |
| down_read(&zram->init_lock); |
| ret = scnprintf(buf, PAGE_SIZE, |
| "version: %d\n%8llu %8llu\n", |
| version, |
| (u64)atomic64_read(&zram->stats.writestall), |
| (u64)atomic64_read(&zram->stats.miss_free)); |
| up_read(&zram->init_lock); |
| |
| return ret; |
| } |
| |
| static DEVICE_ATTR_RO(io_stat); |
| static DEVICE_ATTR_RO(mm_stat); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| static DEVICE_ATTR_RO(bd_stat); |
| #endif |
| static DEVICE_ATTR_RO(debug_stat); |
| |
| static void zram_meta_free(struct zram *zram, u64 disksize) |
| { |
| size_t num_pages = disksize >> PAGE_SHIFT; |
| size_t index; |
| |
| /* Free all pages that are still in this zram device */ |
| for (index = 0; index < num_pages; index++) |
| zram_free_page(zram, index); |
| |
| zs_destroy_pool(zram->mem_pool); |
| vfree(zram->table); |
| } |
| |
| static bool zram_meta_alloc(struct zram *zram, u64 disksize) |
| { |
| size_t num_pages; |
| |
| num_pages = disksize >> PAGE_SHIFT; |
| zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table))); |
| if (!zram->table) |
| return false; |
| |
| zram->mem_pool = zs_create_pool(zram->disk->disk_name); |
| if (!zram->mem_pool) { |
| vfree(zram->table); |
| return false; |
| } |
| |
| if (!huge_class_size) |
| huge_class_size = zs_huge_class_size(zram->mem_pool); |
| return true; |
| } |
| |
| /* |
| * To protect concurrent access to the same index entry, |
| * caller should hold this table index entry's bit_spinlock to |
| * indicate this index entry is accessing. |
| */ |
| static void zram_free_page(struct zram *zram, size_t index) |
| { |
| unsigned long handle; |
| |
| #ifdef CONFIG_ZRAM_MEMORY_TRACKING |
| zram->table[index].ac_time = 0; |
| #endif |
| if (zram_test_flag(zram, index, ZRAM_IDLE)) |
| zram_clear_flag(zram, index, ZRAM_IDLE); |
| |
| if (zram_test_flag(zram, index, ZRAM_HUGE)) { |
| zram_clear_flag(zram, index, ZRAM_HUGE); |
| atomic64_dec(&zram->stats.huge_pages); |
| } |
| |
| if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) |
| zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE); |
| |
| zram_set_priority(zram, index, 0); |
| |
| if (zram_test_flag(zram, index, ZRAM_WB)) { |
| zram_clear_flag(zram, index, ZRAM_WB); |
| free_block_bdev(zram, zram_get_element(zram, index)); |
| goto out; |
| } |
| |
| /* |
| * No memory is allocated for same element filled pages. |
| * Simply clear same page flag. |
| */ |
| if (zram_test_flag(zram, index, ZRAM_SAME)) { |
| zram_clear_flag(zram, index, ZRAM_SAME); |
| atomic64_dec(&zram->stats.same_pages); |
| goto out; |
| } |
| |
| handle = zram_get_handle(zram, index); |
| if (!handle) |
| return; |
| |
| zs_free(zram->mem_pool, handle); |
| |
| atomic64_sub(zram_get_obj_size(zram, index), |
| &zram->stats.compr_data_size); |
| out: |
| atomic64_dec(&zram->stats.pages_stored); |
| zram_set_handle(zram, index, 0); |
| zram_set_obj_size(zram, index, 0); |
| WARN_ON_ONCE(zram->table[index].flags & |
| ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB)); |
| } |
| |
| /* |
| * Reads (decompresses if needed) a page from zspool (zsmalloc). |
| * Corresponding ZRAM slot should be locked. |
| */ |
| static int zram_read_from_zspool(struct zram *zram, struct page *page, |
| u32 index) |
| { |
| struct zcomp_strm *zstrm; |
| unsigned long handle; |
| unsigned int size; |
| void *src, *dst; |
| u32 prio; |
| int ret; |
| |
| handle = zram_get_handle(zram, index); |
| if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) { |
| unsigned long value; |
| void *mem; |
| |
| value = handle ? zram_get_element(zram, index) : 0; |
| mem = kmap_atomic(page); |
| zram_fill_page(mem, PAGE_SIZE, value); |
| kunmap_atomic(mem); |
| return 0; |
| } |
| |
| size = zram_get_obj_size(zram, index); |
| |
| if (size != PAGE_SIZE) { |
| prio = zram_get_priority(zram, index); |
| zstrm = zcomp_stream_get(zram->comps[prio]); |
| } |
| |
| src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO); |
| if (size == PAGE_SIZE) { |
| dst = kmap_atomic(page); |
| memcpy(dst, src, PAGE_SIZE); |
| kunmap_atomic(dst); |
| ret = 0; |
| } else { |
| dst = kmap_atomic(page); |
| ret = zcomp_decompress(zstrm, src, size, dst); |
| kunmap_atomic(dst); |
| zcomp_stream_put(zram->comps[prio]); |
| } |
| zs_unmap_object(zram->mem_pool, handle); |
| return ret; |
| } |
| |
| static int zram_read_page(struct zram *zram, struct page *page, u32 index, |
| struct bio *parent) |
| { |
| int ret; |
| |
| zram_slot_lock(zram, index); |
| if (!zram_test_flag(zram, index, ZRAM_WB)) { |
| /* Slot should be locked through out the function call */ |
| ret = zram_read_from_zspool(zram, page, index); |
| zram_slot_unlock(zram, index); |
| } else { |
| /* |
| * The slot should be unlocked before reading from the backing |
| * device. |
| */ |
| zram_slot_unlock(zram, index); |
| |
| ret = read_from_bdev(zram, page, zram_get_element(zram, index), |
| parent); |
| } |
| |
| /* Should NEVER happen. Return bio error if it does. */ |
| if (WARN_ON(ret < 0)) |
| pr_err("Decompression failed! err=%d, page=%u\n", ret, index); |
| |
| return ret; |
| } |
| |
| /* |
| * Use a temporary buffer to decompress the page, as the decompressor |
| * always expects a full page for the output. |
| */ |
| static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset) |
| { |
| struct page *page = alloc_page(GFP_NOIO); |
| int ret; |
| |
| if (!page) |
| return -ENOMEM; |
| ret = zram_read_page(zram, page, index, NULL); |
| if (likely(!ret)) |
| memcpy_to_bvec(bvec, page_address(page) + offset); |
| __free_page(page); |
| return ret; |
| } |
| |
| static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| if (is_partial_io(bvec)) |
| return zram_bvec_read_partial(zram, bvec, index, offset); |
| return zram_read_page(zram, bvec->bv_page, index, bio); |
| } |
| |
| static int zram_write_page(struct zram *zram, struct page *page, u32 index) |
| { |
| int ret = 0; |
| unsigned long alloced_pages; |
| unsigned long handle = -ENOMEM; |
| unsigned int comp_len = 0; |
| void *src, *dst, *mem; |
| struct zcomp_strm *zstrm; |
| unsigned long element = 0; |
| enum zram_pageflags flags = 0; |
| |
| mem = kmap_atomic(page); |
| if (page_same_filled(mem, &element)) { |
| kunmap_atomic(mem); |
| /* Free memory associated with this sector now. */ |
| flags = ZRAM_SAME; |
| atomic64_inc(&zram->stats.same_pages); |
| goto out; |
| } |
| kunmap_atomic(mem); |
| |
| compress_again: |
| zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); |
| src = kmap_atomic(page); |
| ret = zcomp_compress(zstrm, src, &comp_len); |
| kunmap_atomic(src); |
| |
| if (unlikely(ret)) { |
| zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); |
| pr_err("Compression failed! err=%d\n", ret); |
| zs_free(zram->mem_pool, handle); |
| return ret; |
| } |
| |
| if (comp_len >= huge_class_size) |
| comp_len = PAGE_SIZE; |
| /* |
| * handle allocation has 2 paths: |
| * a) fast path is executed with preemption disabled (for |
| * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear, |
| * since we can't sleep; |
| * b) slow path enables preemption and attempts to allocate |
| * the page with __GFP_DIRECT_RECLAIM bit set. we have to |
| * put per-cpu compression stream and, thus, to re-do |
| * the compression once handle is allocated. |
| * |
| * if we have a 'non-null' handle here then we are coming |
| * from the slow path and handle has already been allocated. |
| */ |
| if (IS_ERR_VALUE(handle)) |
| handle = zs_malloc(zram->mem_pool, comp_len, |
| __GFP_KSWAPD_RECLAIM | |
| __GFP_NOWARN | |
| __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (IS_ERR_VALUE(handle)) { |
| zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); |
| atomic64_inc(&zram->stats.writestall); |
| handle = zs_malloc(zram->mem_pool, comp_len, |
| GFP_NOIO | __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (IS_ERR_VALUE(handle)) |
| return PTR_ERR((void *)handle); |
| |
| if (comp_len != PAGE_SIZE) |
| goto compress_again; |
| /* |
| * If the page is not compressible, you need to acquire the |
| * lock and execute the code below. The zcomp_stream_get() |
| * call is needed to disable the cpu hotplug and grab the |
| * zstrm buffer back. It is necessary that the dereferencing |
| * of the zstrm variable below occurs correctly. |
| */ |
| zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]); |
| } |
| |
| alloced_pages = zs_get_total_pages(zram->mem_pool); |
| update_used_max(zram, alloced_pages); |
| |
| if (zram->limit_pages && alloced_pages > zram->limit_pages) { |
| zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); |
| zs_free(zram->mem_pool, handle); |
| return -ENOMEM; |
| } |
| |
| dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO); |
| |
| src = zstrm->buffer; |
| if (comp_len == PAGE_SIZE) |
| src = kmap_atomic(page); |
| memcpy(dst, src, comp_len); |
| if (comp_len == PAGE_SIZE) |
| kunmap_atomic(src); |
| |
| zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]); |
| zs_unmap_object(zram->mem_pool, handle); |
| atomic64_add(comp_len, &zram->stats.compr_data_size); |
| out: |
| /* |
| * Free memory associated with this sector |
| * before overwriting unused sectors. |
| */ |
| zram_slot_lock(zram, index); |
| zram_free_page(zram, index); |
| |
| if (comp_len == PAGE_SIZE) { |
| zram_set_flag(zram, index, ZRAM_HUGE); |
| atomic64_inc(&zram->stats.huge_pages); |
| atomic64_inc(&zram->stats.huge_pages_since); |
| } |
| |
| if (flags) { |
| zram_set_flag(zram, index, flags); |
| zram_set_element(zram, index, element); |
| } else { |
| zram_set_handle(zram, index, handle); |
| zram_set_obj_size(zram, index, comp_len); |
| } |
| zram_slot_unlock(zram, index); |
| |
| /* Update stats */ |
| atomic64_inc(&zram->stats.pages_stored); |
| return ret; |
| } |
| |
| /* |
| * This is a partial IO. Read the full page before writing the changes. |
| */ |
| static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| struct page *page = alloc_page(GFP_NOIO); |
| int ret; |
| |
| if (!page) |
| return -ENOMEM; |
| |
| ret = zram_read_page(zram, page, index, bio); |
| if (!ret) { |
| memcpy_from_bvec(page_address(page) + offset, bvec); |
| ret = zram_write_page(zram, page, index); |
| } |
| __free_page(page); |
| return ret; |
| } |
| |
| static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, |
| u32 index, int offset, struct bio *bio) |
| { |
| if (is_partial_io(bvec)) |
| return zram_bvec_write_partial(zram, bvec, index, offset, bio); |
| return zram_write_page(zram, bvec->bv_page, index); |
| } |
| |
| #ifdef CONFIG_ZRAM_MULTI_COMP |
| /* |
| * This function will decompress (unless it's ZRAM_HUGE) the page and then |
| * attempt to compress it using provided compression algorithm priority |
| * (which is potentially more effective). |
| * |
| * Corresponding ZRAM slot should be locked. |
| */ |
| static int zram_recompress(struct zram *zram, u32 index, struct page *page, |
| u32 threshold, u32 prio, u32 prio_max) |
| { |
| struct zcomp_strm *zstrm = NULL; |
| unsigned long handle_old; |
| unsigned long handle_new; |
| unsigned int comp_len_old; |
| unsigned int comp_len_new; |
| unsigned int class_index_old; |
| unsigned int class_index_new; |
| u32 num_recomps = 0; |
| void *src, *dst; |
| int ret; |
| |
| handle_old = zram_get_handle(zram, index); |
| if (!handle_old) |
| return -EINVAL; |
| |
| comp_len_old = zram_get_obj_size(zram, index); |
| /* |
| * Do not recompress objects that are already "small enough". |
| */ |
| if (comp_len_old < threshold) |
| return 0; |
| |
| ret = zram_read_from_zspool(zram, page, index); |
| if (ret) |
| return ret; |
| |
| class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old); |
| /* |
| * Iterate the secondary comp algorithms list (in order of priority) |
| * and try to recompress the page. |
| */ |
| for (; prio < prio_max; prio++) { |
| if (!zram->comps[prio]) |
| continue; |
| |
| /* |
| * Skip if the object is already re-compressed with a higher |
| * priority algorithm (or same algorithm). |
| */ |
| if (prio <= zram_get_priority(zram, index)) |
| continue; |
| |
| num_recomps++; |
| zstrm = zcomp_stream_get(zram->comps[prio]); |
| src = kmap_atomic(page); |
| ret = zcomp_compress(zstrm, src, &comp_len_new); |
| kunmap_atomic(src); |
| |
| if (ret) { |
| zcomp_stream_put(zram->comps[prio]); |
| return ret; |
| } |
| |
| class_index_new = zs_lookup_class_index(zram->mem_pool, |
| comp_len_new); |
| |
| /* Continue until we make progress */ |
| if (class_index_new >= class_index_old || |
| (threshold && comp_len_new >= threshold)) { |
| zcomp_stream_put(zram->comps[prio]); |
| continue; |
| } |
| |
| /* Recompression was successful so break out */ |
| break; |
| } |
| |
| /* |
| * We did not try to recompress, e.g. when we have only one |
| * secondary algorithm and the page is already recompressed |
| * using that algorithm |
| */ |
| if (!zstrm) |
| return 0; |
| |
| if (class_index_new >= class_index_old) { |
| /* |
| * Secondary algorithms failed to re-compress the page |
| * in a way that would save memory, mark the object as |
| * incompressible so that we will not try to compress |
| * it again. |
| * |
| * We need to make sure that all secondary algorithms have |
| * failed, so we test if the number of recompressions matches |
| * the number of active secondary algorithms. |
| */ |
| if (num_recomps == zram->num_active_comps - 1) |
| zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE); |
| return 0; |
| } |
| |
| /* Successful recompression but above threshold */ |
| if (threshold && comp_len_new >= threshold) |
| return 0; |
| |
| /* |
| * No direct reclaim (slow path) for handle allocation and no |
| * re-compression attempt (unlike in zram_write_bvec()) since |
| * we already have stored that object in zsmalloc. If we cannot |
| * alloc memory for recompressed object then we bail out and |
| * simply keep the old (existing) object in zsmalloc. |
| */ |
| handle_new = zs_malloc(zram->mem_pool, comp_len_new, |
| __GFP_KSWAPD_RECLAIM | |
| __GFP_NOWARN | |
| __GFP_HIGHMEM | |
| __GFP_MOVABLE); |
| if (IS_ERR_VALUE(handle_new)) { |
| zcomp_stream_put(zram->comps[prio]); |
| return PTR_ERR((void *)handle_new); |
| } |
| |
| dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO); |
| memcpy(dst, zstrm->buffer, comp_len_new); |
| zcomp_stream_put(zram->comps[prio]); |
| |
| zs_unmap_object(zram->mem_pool, handle_new); |
| |
| zram_free_page(zram, index); |
| zram_set_handle(zram, index, handle_new); |
| zram_set_obj_size(zram, index, comp_len_new); |
| zram_set_priority(zram, index, prio); |
| |
| atomic64_add(comp_len_new, &zram->stats.compr_data_size); |
| atomic64_inc(&zram->stats.pages_stored); |
| |
| return 0; |
| } |
| |
| #define RECOMPRESS_IDLE (1 << 0) |
| #define RECOMPRESS_HUGE (1 << 1) |
| |
| static ssize_t recompress_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t len) |
| { |
| u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS; |
| struct zram *zram = dev_to_zram(dev); |
| unsigned long nr_pages = zram->disksize >> PAGE_SHIFT; |
| char *args, *param, *val, *algo = NULL; |
| u32 mode = 0, threshold = 0; |
| unsigned long index; |
| struct page *page; |
| ssize_t ret; |
| |
| args = skip_spaces(buf); |
| while (*args) { |
| args = next_arg(args, ¶m, &val); |
| |
| if (!val || !*val) |
| return -EINVAL; |
| |
| if (!strcmp(param, "type")) { |
| if (!strcmp(val, "idle")) |
| mode = RECOMPRESS_IDLE; |
| if (!strcmp(val, "huge")) |
| mode = RECOMPRESS_HUGE; |
| if (!strcmp(val, "huge_idle")) |
| mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE; |
| continue; |
| } |
| |
| if (!strcmp(param, "threshold")) { |
| /* |
| * We will re-compress only idle objects equal or |
| * greater in size than watermark. |
| */ |
| ret = kstrtouint(val, 10, &threshold); |
| if (ret) |
| return ret; |
| continue; |
| } |
| |
| if (!strcmp(param, "algo")) { |
| algo = val; |
| continue; |
| } |
| } |
| |
| if (threshold >= huge_class_size) |
| return -EINVAL; |
| |
| down_read(&zram->init_lock); |
| if (!init_done(zram)) { |
| ret = -EINVAL; |
| goto release_init_lock; |
| } |
| |
| if (algo) { |
| bool found = false; |
| |
| for (; prio < ZRAM_MAX_COMPS; prio++) { |
| if (!zram->comp_algs[prio]) |
| continue; |
| |
| if (!strcmp(zram->comp_algs[prio], algo)) { |
| prio_max = min(prio + 1, ZRAM_MAX_COMPS); |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| ret = -EINVAL; |
| goto release_init_lock; |
| } |
| } |
| |
| page = alloc_page(GFP_KERNEL); |
| if (!page) { |
| ret = -ENOMEM; |
| goto release_init_lock; |
| } |
| |
| ret = len; |
| for (index = 0; index < nr_pages; index++) { |
| int err = 0; |
| |
| zram_slot_lock(zram, index); |
| |
| if (!zram_allocated(zram, index)) |
| goto next; |
| |
| if (mode & RECOMPRESS_IDLE && |
| !zram_test_flag(zram, index, ZRAM_IDLE)) |
| goto next; |
| |
| if (mode & RECOMPRESS_HUGE && |
| !zram_test_flag(zram, index, ZRAM_HUGE)) |
| goto next; |
| |
| if (zram_test_flag(zram, index, ZRAM_WB) || |
| zram_test_flag(zram, index, ZRAM_UNDER_WB) || |
| zram_test_flag(zram, index, ZRAM_SAME) || |
| zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE)) |
| goto next; |
| |
| err = zram_recompress(zram, index, page, threshold, |
| prio, prio_max); |
| next: |
| zram_slot_unlock(zram, index); |
| if (err) { |
| ret = err; |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| __free_page(page); |
| |
| release_init_lock: |
| up_read(&zram->init_lock); |
| return ret; |
| } |
| #endif |
| |
| static void zram_bio_discard(struct zram *zram, struct bio *bio) |
| { |
| size_t n = bio->bi_iter.bi_size; |
| u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| SECTOR_SHIFT; |
| |
| /* |
| * zram manages data in physical block size units. Because logical block |
| * size isn't identical with physical block size on some arch, we |
| * could get a discard request pointing to a specific offset within a |
| * certain physical block. Although we can handle this request by |
| * reading that physiclal block and decompressing and partially zeroing |
| * and re-compressing and then re-storing it, this isn't reasonable |
| * because our intent with a discard request is to save memory. So |
| * skipping this logical block is appropriate here. |
| */ |
| if (offset) { |
| if (n <= (PAGE_SIZE - offset)) |
| return; |
| |
| n -= (PAGE_SIZE - offset); |
| index++; |
| } |
| |
| while (n >= PAGE_SIZE) { |
| zram_slot_lock(zram, index); |
| zram_free_page(zram, index); |
| zram_slot_unlock(zram, index); |
| atomic64_inc(&zram->stats.notify_free); |
| index++; |
| n -= PAGE_SIZE; |
| } |
| |
| bio_endio(bio); |
| } |
| |
| static void zram_bio_read(struct zram *zram, struct bio *bio) |
| { |
| unsigned long start_time = bio_start_io_acct(bio); |
| struct bvec_iter iter = bio->bi_iter; |
| |
| do { |
| u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| SECTOR_SHIFT; |
| struct bio_vec bv = bio_iter_iovec(bio, iter); |
| |
| bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); |
| |
| if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) { |
| atomic64_inc(&zram->stats.failed_reads); |
| bio->bi_status = BLK_STS_IOERR; |
| break; |
| } |
| flush_dcache_page(bv.bv_page); |
| |
| zram_slot_lock(zram, index); |
| zram_accessed(zram, index); |
| zram_slot_unlock(zram, index); |
| |
| bio_advance_iter_single(bio, &iter, bv.bv_len); |
| } while (iter.bi_size); |
| |
| bio_end_io_acct(bio, start_time); |
| bio_endio(bio); |
| } |
| |
| static void zram_bio_write(struct zram *zram, struct bio *bio) |
| { |
| unsigned long start_time = bio_start_io_acct(bio); |
| struct bvec_iter iter = bio->bi_iter; |
| |
| do { |
| u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT; |
| u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) << |
| SECTOR_SHIFT; |
| struct bio_vec bv = bio_iter_iovec(bio, iter); |
| |
| bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset); |
| |
| if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) { |
| atomic64_inc(&zram->stats.failed_writes); |
| bio->bi_status = BLK_STS_IOERR; |
| break; |
| } |
| |
| zram_slot_lock(zram, index); |
| zram_accessed(zram, index); |
| zram_slot_unlock(zram, index); |
| |
| bio_advance_iter_single(bio, &iter, bv.bv_len); |
| } while (iter.bi_size); |
| |
| bio_end_io_acct(bio, start_time); |
| bio_endio(bio); |
| } |
| |
| /* |
| * Handler function for all zram I/O requests. |
| */ |
| static void zram_submit_bio(struct bio *bio) |
| { |
| struct zram *zram = bio->bi_bdev->bd_disk->private_data; |
| |
| switch (bio_op(bio)) { |
| case REQ_OP_READ: |
| zram_bio_read(zram, bio); |
| break; |
| case REQ_OP_WRITE: |
| zram_bio_write(zram, bio); |
| break; |
| case REQ_OP_DISCARD: |
| case REQ_OP_WRITE_ZEROES: |
| zram_bio_discard(zram, bio); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| bio_endio(bio); |
| } |
| } |
| |
| static void zram_slot_free_notify(struct block_device *bdev, |
| unsigned long index) |
| { |
| struct zram *zram; |
| |
| zram = bdev->bd_disk->private_data; |
| |
| atomic64_inc(&zram->stats.notify_free); |
| if (!zram_slot_trylock(zram, index)) { |
| atomic64_inc(&zram->stats.miss_free); |
| return; |
| } |
| |
| zram_free_page(zram, index); |
| zram_slot_unlock(zram, index); |
| } |
| |
| static void zram_destroy_comps(struct zram *zram) |
| { |
| u32 prio; |
| |
| for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { |
| struct zcomp *comp = zram->comps[prio]; |
| |
| zram->comps[prio] = NULL; |
| if (!comp) |
| continue; |
| zcomp_destroy(comp); |
| zram->num_active_comps--; |
| } |
| } |
| |
| static void zram_reset_device(struct zram *zram) |
| { |
| down_write(&zram->init_lock); |
| |
| zram->limit_pages = 0; |
| |
| if (!init_done(zram)) { |
| up_write(&zram->init_lock); |
| return; |
| } |
| |
| set_capacity_and_notify(zram->disk, 0); |
| part_stat_set_all(zram->disk->part0, 0); |
| |
| /* I/O operation under all of CPU are done so let's free */ |
| zram_meta_free(zram, zram->disksize); |
| zram->disksize = 0; |
| zram_destroy_comps(zram); |
| memset(&zram->stats, 0, sizeof(zram->stats)); |
| reset_bdev(zram); |
| |
| comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); |
| up_write(&zram->init_lock); |
| } |
| |
| static ssize_t disksize_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| u64 disksize; |
| struct zcomp *comp; |
| struct zram *zram = dev_to_zram(dev); |
| int err; |
| u32 prio; |
| |
| disksize = memparse(buf, NULL); |
| if (!disksize) |
| return -EINVAL; |
| |
| down_write(&zram->init_lock); |
| if (init_done(zram)) { |
| pr_info("Cannot change disksize for initialized device\n"); |
| err = -EBUSY; |
| goto out_unlock; |
| } |
| |
| disksize = PAGE_ALIGN(disksize); |
| if (!zram_meta_alloc(zram, disksize)) { |
| err = -ENOMEM; |
| goto out_unlock; |
| } |
| |
| for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) { |
| if (!zram->comp_algs[prio]) |
| continue; |
| |
| comp = zcomp_create(zram->comp_algs[prio]); |
| if (IS_ERR(comp)) { |
| pr_err("Cannot initialise %s compressing backend\n", |
| zram->comp_algs[prio]); |
| err = PTR_ERR(comp); |
| goto out_free_comps; |
| } |
| |
| zram->comps[prio] = comp; |
| zram->num_active_comps++; |
| } |
| zram->disksize = disksize; |
| set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT); |
| up_write(&zram->init_lock); |
| |
| return len; |
| |
| out_free_comps: |
| zram_destroy_comps(zram); |
| zram_meta_free(zram, disksize); |
| out_unlock: |
| up_write(&zram->init_lock); |
| return err; |
| } |
| |
| static ssize_t reset_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| int ret; |
| unsigned short do_reset; |
| struct zram *zram; |
| struct gendisk *disk; |
| |
| ret = kstrtou16(buf, 10, &do_reset); |
| if (ret) |
| return ret; |
| |
| if (!do_reset) |
| return -EINVAL; |
| |
| zram = dev_to_zram(dev); |
| disk = zram->disk; |
| |
| mutex_lock(&disk->open_mutex); |
| /* Do not reset an active device or claimed device */ |
| if (disk_openers(disk) || zram->claim) { |
| mutex_unlock(&disk->open_mutex); |
| return -EBUSY; |
| } |
| |
| /* From now on, anyone can't open /dev/zram[0-9] */ |
| zram->claim = true; |
| mutex_unlock(&disk->open_mutex); |
| |
| /* Make sure all the pending I/O are finished */ |
| sync_blockdev(disk->part0); |
| zram_reset_device(zram); |
| |
| mutex_lock(&disk->open_mutex); |
| zram->claim = false; |
| mutex_unlock(&disk->open_mutex); |
| |
| return len; |
| } |
| |
| static int zram_open(struct gendisk *disk, blk_mode_t mode) |
| { |
| struct zram *zram = disk->private_data; |
| |
| WARN_ON(!mutex_is_locked(&disk->open_mutex)); |
| |
| /* zram was claimed to reset so open request fails */ |
| if (zram->claim) |
| return -EBUSY; |
| return 0; |
| } |
| |
| static const struct block_device_operations zram_devops = { |
| .open = zram_open, |
| .submit_bio = zram_submit_bio, |
| .swap_slot_free_notify = zram_slot_free_notify, |
| .owner = THIS_MODULE |
| }; |
| |
| static DEVICE_ATTR_WO(compact); |
| static DEVICE_ATTR_RW(disksize); |
| static DEVICE_ATTR_RO(initstate); |
| static DEVICE_ATTR_WO(reset); |
| static DEVICE_ATTR_WO(mem_limit); |
| static DEVICE_ATTR_WO(mem_used_max); |
| static DEVICE_ATTR_WO(idle); |
| static DEVICE_ATTR_RW(max_comp_streams); |
| static DEVICE_ATTR_RW(comp_algorithm); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| static DEVICE_ATTR_RW(backing_dev); |
| static DEVICE_ATTR_WO(writeback); |
| static DEVICE_ATTR_RW(writeback_limit); |
| static DEVICE_ATTR_RW(writeback_limit_enable); |
| #endif |
| #ifdef CONFIG_ZRAM_MULTI_COMP |
| static DEVICE_ATTR_RW(recomp_algorithm); |
| static DEVICE_ATTR_WO(recompress); |
| #endif |
| |
| static struct attribute *zram_disk_attrs[] = { |
| &dev_attr_disksize.attr, |
| &dev_attr_initstate.attr, |
| &dev_attr_reset.attr, |
| &dev_attr_compact.attr, |
| &dev_attr_mem_limit.attr, |
| &dev_attr_mem_used_max.attr, |
| &dev_attr_idle.attr, |
| &dev_attr_max_comp_streams.attr, |
| &dev_attr_comp_algorithm.attr, |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| &dev_attr_backing_dev.attr, |
| &dev_attr_writeback.attr, |
| &dev_attr_writeback_limit.attr, |
| &dev_attr_writeback_limit_enable.attr, |
| #endif |
| &dev_attr_io_stat.attr, |
| &dev_attr_mm_stat.attr, |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| &dev_attr_bd_stat.attr, |
| #endif |
| &dev_attr_debug_stat.attr, |
| #ifdef CONFIG_ZRAM_MULTI_COMP |
| &dev_attr_recomp_algorithm.attr, |
| &dev_attr_recompress.attr, |
| #endif |
| NULL, |
| }; |
| |
| ATTRIBUTE_GROUPS(zram_disk); |
| |
| /* |
| * Allocate and initialize new zram device. the function returns |
| * '>= 0' device_id upon success, and negative value otherwise. |
| */ |
| static int zram_add(void) |
| { |
| struct zram *zram; |
| int ret, device_id; |
| |
| zram = kzalloc(sizeof(struct zram), GFP_KERNEL); |
| if (!zram) |
| return -ENOMEM; |
| |
| ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL); |
| if (ret < 0) |
| goto out_free_dev; |
| device_id = ret; |
| |
| init_rwsem(&zram->init_lock); |
| #ifdef CONFIG_ZRAM_WRITEBACK |
| spin_lock_init(&zram->wb_limit_lock); |
| #endif |
| |
| /* gendisk structure */ |
| zram->disk = blk_alloc_disk(NUMA_NO_NODE); |
| if (!zram->disk) { |
| pr_err("Error allocating disk structure for device %d\n", |
| device_id); |
| ret = -ENOMEM; |
| goto out_free_idr; |
| } |
| |
| zram->disk->major = zram_major; |
| zram->disk->first_minor = device_id; |
| zram->disk->minors = 1; |
| zram->disk->flags |= GENHD_FL_NO_PART; |
| zram->disk->fops = &zram_devops; |
| zram->disk->private_data = zram; |
| snprintf(zram->disk->disk_name, 16, "zram%d", device_id); |
| |
| /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */ |
| set_capacity(zram->disk, 0); |
| /* zram devices sort of resembles non-rotational disks */ |
| blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue); |
| blk_queue_flag_set(QUEUE_FLAG_SYNCHRONOUS, zram->disk->queue); |
| |
| /* |
| * To ensure that we always get PAGE_SIZE aligned |
| * and n*PAGE_SIZED sized I/O requests. |
| */ |
| blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE); |
| blk_queue_logical_block_size(zram->disk->queue, |
| ZRAM_LOGICAL_BLOCK_SIZE); |
| blk_queue_io_min(zram->disk->queue, PAGE_SIZE); |
| blk_queue_io_opt(zram->disk->queue, PAGE_SIZE); |
| zram->disk->queue->limits.discard_granularity = PAGE_SIZE; |
| blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX); |
| |
| /* |
| * zram_bio_discard() will clear all logical blocks if logical block |
| * size is identical with physical block size(PAGE_SIZE). But if it is |
| * different, we will skip discarding some parts of logical blocks in |
| * the part of the request range which isn't aligned to physical block |
| * size. So we can't ensure that all discarded logical blocks are |
| * zeroed. |
| */ |
| if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE) |
| blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX); |
| |
| blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue); |
| ret = device_add_disk(NULL, zram->disk, zram_disk_groups); |
| if (ret) |
| goto out_cleanup_disk; |
| |
| comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor); |
| |
| zram_debugfs_register(zram); |
| pr_info("Added device: %s\n", zram->disk->disk_name); |
| return device_id; |
| |
| out_cleanup_disk: |
| put_disk(zram->disk); |
| out_free_idr: |
| idr_remove(&zram_index_idr, device_id); |
| out_free_dev: |
| kfree(zram); |
| return ret; |
| } |
| |
| static int zram_remove(struct zram *zram) |
| { |
| bool claimed; |
| |
| mutex_lock(&zram->disk->open_mutex); |
| if (disk_openers(zram->disk)) { |
| mutex_unlock(&zram->disk->open_mutex); |
| return -EBUSY; |
| } |
| |
| claimed = zram->claim; |
| if (!claimed) |
| zram->claim = true; |
| mutex_unlock(&zram->disk->open_mutex); |
| |
| zram_debugfs_unregister(zram); |
| |
| if (claimed) { |
| /* |
| * If we were claimed by reset_store(), del_gendisk() will |
| * wait until reset_store() is done, so nothing need to do. |
| */ |
| ; |
| } else { |
| /* Make sure all the pending I/O are finished */ |
| sync_blockdev(zram->disk->part0); |
| zram_reset_device(zram); |
| } |
| |
| pr_info("Removed device: %s\n", zram->disk->disk_name); |
| |
| del_gendisk(zram->disk); |
| |
| /* del_gendisk drains pending reset_store */ |
| WARN_ON_ONCE(claimed && zram->claim); |
| |
| /* |
| * disksize_store() may be called in between zram_reset_device() |
| * and del_gendisk(), so run the last reset to avoid leaking |
| * anything allocated with disksize_store() |
| */ |
| zram_reset_device(zram); |
| |
| put_disk(zram->disk); |
| kfree(zram); |
| return 0; |
| } |
| |
| /* zram-control sysfs attributes */ |
| |
| /* |
| * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a |
| * sense that reading from this file does alter the state of your system -- it |
| * creates a new un-initialized zram device and returns back this device's |
| * device_id (or an error code if it fails to create a new device). |
| */ |
| static ssize_t hot_add_show(const struct class *class, |
| const struct class_attribute *attr, |
| char *buf) |
| { |
| int ret; |
| |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| |
| if (ret < 0) |
| return ret; |
| return scnprintf(buf, PAGE_SIZE, "%d\n", ret); |
| } |
| /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */ |
| static struct class_attribute class_attr_hot_add = |
| __ATTR(hot_add, 0400, hot_add_show, NULL); |
| |
| static ssize_t hot_remove_store(const struct class *class, |
| const struct class_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct zram *zram; |
| int ret, dev_id; |
| |
| /* dev_id is gendisk->first_minor, which is `int' */ |
| ret = kstrtoint(buf, 10, &dev_id); |
| if (ret) |
| return ret; |
| if (dev_id < 0) |
| return -EINVAL; |
| |
| mutex_lock(&zram_index_mutex); |
| |
| zram = idr_find(&zram_index_idr, dev_id); |
| if (zram) { |
| ret = zram_remove(zram); |
| if (!ret) |
| idr_remove(&zram_index_idr, dev_id); |
| } else { |
| ret = -ENODEV; |
| } |
| |
| mutex_unlock(&zram_index_mutex); |
| return ret ? ret : count; |
| } |
| static CLASS_ATTR_WO(hot_remove); |
| |
| static struct attribute *zram_control_class_attrs[] = { |
| &class_attr_hot_add.attr, |
| &class_attr_hot_remove.attr, |
| NULL, |
| }; |
| ATTRIBUTE_GROUPS(zram_control_class); |
| |
| static struct class zram_control_class = { |
| .name = "zram-control", |
| .class_groups = zram_control_class_groups, |
| }; |
| |
| static int zram_remove_cb(int id, void *ptr, void *data) |
| { |
| WARN_ON_ONCE(zram_remove(ptr)); |
| return 0; |
| } |
| |
| static void destroy_devices(void) |
| { |
| class_unregister(&zram_control_class); |
| idr_for_each(&zram_index_idr, &zram_remove_cb, NULL); |
| zram_debugfs_destroy(); |
| idr_destroy(&zram_index_idr); |
| unregister_blkdev(zram_major, "zram"); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| } |
| |
| static int __init zram_init(void) |
| { |
| int ret; |
| |
| BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > BITS_PER_LONG); |
| |
| ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare", |
| zcomp_cpu_up_prepare, zcomp_cpu_dead); |
| if (ret < 0) |
| return ret; |
| |
| ret = class_register(&zram_control_class); |
| if (ret) { |
| pr_err("Unable to register zram-control class\n"); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| return ret; |
| } |
| |
| zram_debugfs_create(); |
| zram_major = register_blkdev(0, "zram"); |
| if (zram_major <= 0) { |
| pr_err("Unable to get major number\n"); |
| class_unregister(&zram_control_class); |
| cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE); |
| return -EBUSY; |
| } |
| |
| while (num_devices != 0) { |
| mutex_lock(&zram_index_mutex); |
| ret = zram_add(); |
| mutex_unlock(&zram_index_mutex); |
| if (ret < 0) |
| goto out_error; |
| num_devices--; |
| } |
| |
| return 0; |
| |
| out_error: |
| destroy_devices(); |
| return ret; |
| } |
| |
| static void __exit zram_exit(void) |
| { |
| destroy_devices(); |
| } |
| |
| module_init(zram_init); |
| module_exit(zram_exit); |
| |
| module_param(num_devices, uint, 0); |
| MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices"); |
| |
| MODULE_LICENSE("Dual BSD/GPL"); |
| MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); |
| MODULE_DESCRIPTION("Compressed RAM Block Device"); |