blob: 4ea3c6718ed49dec8d0119b7d6cf5e66e63a05ab [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2022 ROHM Semiconductors
*
* ROHM/KIONIX KX022A accelerometer driver
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "kionix-kx022a.h"
/*
* The KX022A has FIFO which can store 43 samples of HiRes data from 2
* channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to
* 258 bytes of sample data. The quirk to know is that the amount of bytes in
* the FIFO is advertised via 8 bit register (max value 255). The thing to note
* is that full 258 bytes of data is indicated using the max value 255.
*/
#define KX022A_FIFO_LENGTH 43
#define KX022A_FIFO_FULL_VALUE 255
#define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC)
#define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC)
/* 3 axis, 2 bytes of data for each of the axis */
#define KX022A_FIFO_SAMPLES_SIZE_BYTES 6
#define KX022A_FIFO_MAX_BYTES \
(KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES)
enum {
KX022A_STATE_SAMPLE,
KX022A_STATE_FIFO,
};
/* Regmap configs */
static const struct regmap_range kx022a_volatile_ranges[] = {
{
.range_min = KX022A_REG_XHP_L,
.range_max = KX022A_REG_COTR,
}, {
.range_min = KX022A_REG_TSCP,
.range_max = KX022A_REG_INT_REL,
}, {
/* The reset bit will be cleared by sensor */
.range_min = KX022A_REG_CNTL2,
.range_max = KX022A_REG_CNTL2,
}, {
.range_min = KX022A_REG_BUF_STATUS_1,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_volatile_regs = {
.yes_ranges = &kx022a_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges),
};
static const struct regmap_range kx022a_precious_ranges[] = {
{
.range_min = KX022A_REG_INT_REL,
.range_max = KX022A_REG_INT_REL,
},
};
static const struct regmap_access_table kx022a_precious_regs = {
.yes_ranges = &kx022a_precious_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges),
};
/*
* The HW does not set WHO_AM_I reg as read-only but we don't want to write it
* so we still include it in the read-only ranges.
*/
static const struct regmap_range kx022a_read_only_ranges[] = {
{
.range_min = KX022A_REG_XHP_L,
.range_max = KX022A_REG_INT_REL,
}, {
.range_min = KX022A_REG_BUF_STATUS_1,
.range_max = KX022A_REG_BUF_STATUS_2,
}, {
.range_min = KX022A_REG_BUF_READ,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_ro_regs = {
.no_ranges = &kx022a_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges),
};
static const struct regmap_range kx022a_write_only_ranges[] = {
{
.range_min = KX022A_REG_BTS_WUF_TH,
.range_max = KX022A_REG_BTS_WUF_TH,
}, {
.range_min = KX022A_REG_MAN_WAKE,
.range_max = KX022A_REG_MAN_WAKE,
}, {
.range_min = KX022A_REG_SELF_TEST,
.range_max = KX022A_REG_SELF_TEST,
}, {
.range_min = KX022A_REG_BUF_CLEAR,
.range_max = KX022A_REG_BUF_CLEAR,
},
};
static const struct regmap_access_table kx022a_wo_regs = {
.no_ranges = &kx022a_write_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges),
};
static const struct regmap_range kx022a_noinc_read_ranges[] = {
{
.range_min = KX022A_REG_BUF_READ,
.range_max = KX022A_REG_BUF_READ,
},
};
static const struct regmap_access_table kx022a_nir_regs = {
.yes_ranges = &kx022a_noinc_read_ranges[0],
.n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges),
};
const struct regmap_config kx022a_regmap = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &kx022a_volatile_regs,
.rd_table = &kx022a_wo_regs,
.wr_table = &kx022a_ro_regs,
.rd_noinc_table = &kx022a_nir_regs,
.precious_table = &kx022a_precious_regs,
.max_register = KX022A_MAX_REGISTER,
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_NS_GPL(kx022a_regmap, IIO_KX022A);
struct kx022a_data {
struct regmap *regmap;
struct iio_trigger *trig;
struct device *dev;
struct iio_mount_matrix orientation;
int64_t timestamp, old_timestamp;
int irq;
int inc_reg;
int ien_reg;
unsigned int state;
unsigned int odr_ns;
bool trigger_enabled;
/*
* Prevent toggling the sensor stby/active state (PC1 bit) in the
* middle of a configuration, or when the fifo is enabled. Also,
* protect the data stored/retrieved from this structure from
* concurrent accesses.
*/
struct mutex mutex;
u8 watermark;
/* 3 x 16bit accel data + timestamp */
__le16 buffer[8] __aligned(IIO_DMA_MINALIGN);
struct {
__le16 channels[3];
s64 ts __aligned(8);
} scan;
};
static const struct iio_mount_matrix *
kx022a_get_mount_matrix(const struct iio_dev *idev,
const struct iio_chan_spec *chan)
{
struct kx022a_data *data = iio_priv(idev);
return &data->orientation;
}
enum {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_MAX
};
static const unsigned long kx022a_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0
};
static const struct iio_chan_spec_ext_info kx022a_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix),
{ }
};
#define KX022A_ACCEL_CHAN(axis, index) \
{ \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.ext_info = kx022a_ext_info, \
.address = KX022A_REG_##axis##OUT_L, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec kx022a_channels[] = {
KX022A_ACCEL_CHAN(X, 0),
KX022A_ACCEL_CHAN(Y, 1),
KX022A_ACCEL_CHAN(Z, 2),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
/*
* The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the
* Linux CPUs can handle without dropping samples. Also, the low power mode is
* not available for higher sample rates. Thus, the driver only supports 200 Hz
* and slower ODRs. The slowest is 0.78 Hz.
*/
static const int kx022a_accel_samp_freq_table[][2] = {
{ 0, 780000 },
{ 1, 563000 },
{ 3, 125000 },
{ 6, 250000 },
{ 12, 500000 },
{ 25, 0 },
{ 50, 0 },
{ 100, 0 },
{ 200, 0 },
};
static const unsigned int kx022a_odrs[] = {
1282051282,
639795266,
320 * MEGA,
160 * MEGA,
80 * MEGA,
40 * MEGA,
20 * MEGA,
10 * MEGA,
5 * MEGA,
};
/*
* range is typically +-2G/4G/8G/16G, distributed over the amount of bits.
* The scale table can be calculated using
* (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
* => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed
* in low-power mode(?) )
* => +/-2G => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro)
* => +/-2G - 598.550415
* +/-4G - 1197.10083
* +/-8G - 2394.20166
* +/-16G - 4788.40332
*/
static const int kx022a_scale_table[][2] = {
{ 598, 550415 },
{ 1197, 100830 },
{ 2394, 201660 },
{ 4788, 403320 },
};
static int kx022a_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (const int *)kx022a_accel_samp_freq_table;
*length = ARRAY_SIZE(kx022a_accel_samp_freq_table) *
ARRAY_SIZE(kx022a_accel_samp_freq_table[0]);
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)kx022a_scale_table;
*length = ARRAY_SIZE(kx022a_scale_table) *
ARRAY_SIZE(kx022a_scale_table[0]);
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
#define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC)
static void kx022a_reg2freq(unsigned int val, int *val1, int *val2)
{
*val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0];
*val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1];
}
static void kx022a_reg2scale(unsigned int val, unsigned int *val1,
unsigned int *val2)
{
val &= KX022A_MASK_GSEL;
val >>= KX022A_GSEL_SHIFT;
*val1 = kx022a_scale_table[val][0];
*val2 = kx022a_scale_table[val][1];
}
static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on)
{
int ret;
if (on)
ret = regmap_set_bits(data->regmap, KX022A_REG_CNTL,
KX022A_MASK_PC1);
else
ret = regmap_clear_bits(data->regmap, KX022A_REG_CNTL,
KX022A_MASK_PC1);
if (ret)
dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret);
return ret;
}
static int kx022a_turn_off_lock(struct kx022a_data *data)
{
int ret;
mutex_lock(&data->mutex);
ret = kx022a_turn_on_off_unlocked(data, false);
if (ret)
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_turn_on_unlock(struct kx022a_data *data)
{
int ret;
ret = kx022a_turn_on_off_unlocked(data, true);
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_write_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct kx022a_data *data = iio_priv(idev);
int ret, n;
/*
* We should not allow changing scale or frequency when FIFO is running
* as it will mess the timestamp/scale for samples existing in the
* buffer. If this turns out to be an issue we can later change logic
* to internally flush the fifo before reconfiguring so the samples in
* fifo keep matching the freq/scale settings. (Such setup could cause
* issues if users trust the watermark to be reached within known
* time-limit).
*/
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
n = ARRAY_SIZE(kx022a_accel_samp_freq_table);
while (n--)
if (val == kx022a_accel_samp_freq_table[n][0] &&
val2 == kx022a_accel_samp_freq_table[n][1])
break;
if (n < 0) {
ret = -EINVAL;
goto unlock_out;
}
ret = kx022a_turn_off_lock(data);
if (ret)
break;
ret = regmap_update_bits(data->regmap,
KX022A_REG_ODCNTL,
KX022A_MASK_ODR, n);
data->odr_ns = kx022a_odrs[n];
kx022a_turn_on_unlock(data);
break;
case IIO_CHAN_INFO_SCALE:
n = ARRAY_SIZE(kx022a_scale_table);
while (n-- > 0)
if (val == kx022a_scale_table[n][0] &&
val2 == kx022a_scale_table[n][1])
break;
if (n < 0) {
ret = -EINVAL;
goto unlock_out;
}
ret = kx022a_turn_off_lock(data);
if (ret)
break;
ret = regmap_update_bits(data->regmap, KX022A_REG_CNTL,
KX022A_MASK_GSEL,
n << KX022A_GSEL_SHIFT);
kx022a_turn_on_unlock(data);
break;
default:
ret = -EINVAL;
break;
}
unlock_out:
iio_device_release_direct_mode(idev);
return ret;
}
static int kx022a_fifo_set_wmi(struct kx022a_data *data)
{
u8 threshold;
threshold = data->watermark;
return regmap_update_bits(data->regmap, KX022A_REG_BUF_CNTL1,
KX022A_MASK_WM_TH, threshold);
}
static int kx022a_get_axis(struct kx022a_data *data,
struct iio_chan_spec const *chan,
int *val)
{
int ret;
ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0],
sizeof(__le16));
if (ret)
return ret;
*val = le16_to_cpu(data->buffer[0]);
return IIO_VAL_INT;
}
static int kx022a_read_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct kx022a_data *data = iio_priv(idev);
unsigned int regval;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
mutex_lock(&data->mutex);
ret = kx022a_get_axis(data, chan, val);
mutex_unlock(&data->mutex);
iio_device_release_direct_mode(idev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = regmap_read(data->regmap, KX022A_REG_ODCNTL, &regval);
if (ret)
return ret;
if ((regval & KX022A_MASK_ODR) >
ARRAY_SIZE(kx022a_accel_samp_freq_table)) {
dev_err(data->dev, "Invalid ODR\n");
return -EINVAL;
}
kx022a_reg2freq(regval, val, val2);
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
ret = regmap_read(data->regmap, KX022A_REG_CNTL, &regval);
if (ret < 0)
return ret;
kx022a_reg2scale(regval, val, val2);
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
};
static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val)
{
struct kx022a_data *data = iio_priv(idev);
if (val > KX022A_FIFO_LENGTH)
val = KX022A_FIFO_LENGTH;
mutex_lock(&data->mutex);
data->watermark = val;
mutex_unlock(&data->mutex);
return 0;
}
static ssize_t hwfifo_enabled_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *idev = dev_to_iio_dev(dev);
struct kx022a_data *data = iio_priv(idev);
bool state;
mutex_lock(&data->mutex);
state = data->state;
mutex_unlock(&data->mutex);
return sysfs_emit(buf, "%d\n", state);
}
static ssize_t hwfifo_watermark_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *idev = dev_to_iio_dev(dev);
struct kx022a_data *data = iio_priv(idev);
int wm;
mutex_lock(&data->mutex);
wm = data->watermark;
mutex_unlock(&data->mutex);
return sysfs_emit(buf, "%d\n", wm);
}
static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
static const struct iio_dev_attr *kx022a_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL
};
static int kx022a_drop_fifo_contents(struct kx022a_data *data)
{
/*
* We must clear the old time-stamp to avoid computing the timestamps
* based on samples acquired when buffer was last enabled.
*
* We don't need to protect the timestamp as long as we are only
* called from fifo-disable where we can guarantee the sensor is not
* triggering interrupts and where the mutex is locked to prevent the
* user-space access.
*/
data->timestamp = 0;
return regmap_write(data->regmap, KX022A_REG_BUF_CLEAR, 0x0);
}
static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples,
bool irq)
{
struct kx022a_data *data = iio_priv(idev);
struct device *dev = regmap_get_device(data->regmap);
__le16 buffer[KX022A_FIFO_LENGTH * 3];
uint64_t sample_period;
int count, fifo_bytes;
bool renable = false;
int64_t tstamp;
int ret, i;
ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes);
if (ret) {
dev_err(dev, "Error reading buffer status\n");
return ret;
}
/* Let's not overflow if we for some reason get bogus value from i2c */
if (fifo_bytes == KX022A_FIFO_FULL_VALUE)
fifo_bytes = KX022A_FIFO_MAX_BYTES;
if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES)
dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n");
count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES;
if (!count)
return 0;
/*
* If we are being called from IRQ handler we know the stored timestamp
* is fairly accurate for the last stored sample. Otherwise, if we are
* called as a result of a read operation from userspace and hence
* before the watermark interrupt was triggered, take a timestamp
* now. We can fall anywhere in between two samples so the error in this
* case is at most one sample period.
*/
if (!irq) {
/*
* We need to have the IRQ disabled or we risk of messing-up
* the timestamps. If we are ran from IRQ, then the
* IRQF_ONESHOT has us covered - but if we are ran by the
* user-space read we need to disable the IRQ to be on a safe
* side. We do this usng synchronous disable so that if the
* IRQ thread is being ran on other CPU we wait for it to be
* finished.
*/
disable_irq(data->irq);
renable = true;
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns(idev);
}
/*
* Approximate timestamps for each of the sample based on the sampling
* frequency, timestamp for last sample and number of samples.
*
* We'd better not use the current bandwidth settings to compute the
* sample period. The real sample rate varies with the device and
* small variation adds when we store a large number of samples.
*
* To avoid this issue we compute the actual sample period ourselves
* based on the timestamp delta between the last two flush operations.
*/
if (data->old_timestamp) {
sample_period = data->timestamp - data->old_timestamp;
do_div(sample_period, count);
} else {
sample_period = data->odr_ns;
}
tstamp = data->timestamp - (count - 1) * sample_period;
if (samples && count > samples) {
/*
* Here we leave some old samples to the buffer. We need to
* adjust the timestamp to match the first sample in the buffer
* or we will miscalculate the sample_period at next round.
*/
data->timestamp -= (count - samples) * sample_period;
count = samples;
}
fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES;
ret = regmap_noinc_read(data->regmap, KX022A_REG_BUF_READ,
&buffer[0], fifo_bytes);
if (ret)
goto renable_out;
for (i = 0; i < count; i++) {
__le16 *sam = &buffer[i * 3];
__le16 *chs;
int bit;
chs = &data->scan.channels[0];
for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX)
chs[bit] = sam[bit];
iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
tstamp += sample_period;
}
ret = count;
renable_out:
if (renable)
enable_irq(data->irq);
return ret;
}
static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples)
{
struct kx022a_data *data = iio_priv(idev);
int ret;
mutex_lock(&data->mutex);
ret = __kx022a_fifo_flush(idev, samples, false);
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_info kx022a_info = {
.read_raw = &kx022a_read_raw,
.write_raw = &kx022a_write_raw,
.read_avail = &kx022a_read_avail,
.validate_trigger = iio_validate_own_trigger,
.hwfifo_set_watermark = kx022a_set_watermark,
.hwfifo_flush_to_buffer = kx022a_fifo_flush,
};
static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en)
{
if (en)
return regmap_set_bits(data->regmap, KX022A_REG_CNTL,
KX022A_MASK_DRDY);
return regmap_clear_bits(data->regmap, KX022A_REG_CNTL,
KX022A_MASK_DRDY);
}
static int kx022a_prepare_irq_pin(struct kx022a_data *data)
{
/* Enable IRQ1 pin. Set polarity to active low */
int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL |
KX022A_MASK_ITYP;
int val = KX022A_MASK_IEN | KX022A_IPOL_LOW |
KX022A_ITYP_LEVEL;
int ret;
ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val);
if (ret)
return ret;
/* We enable WMI to IRQ pin only at buffer_enable */
mask = KX022A_MASK_INS2_DRDY;
return regmap_set_bits(data->regmap, data->ien_reg, mask);
}
static int kx022a_fifo_disable(struct kx022a_data *data)
{
int ret = 0;
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI);
if (ret)
goto unlock_out;
ret = regmap_clear_bits(data->regmap, KX022A_REG_BUF_CNTL2,
KX022A_MASK_BUF_EN);
if (ret)
goto unlock_out;
data->state &= ~KX022A_STATE_FIFO;
kx022a_drop_fifo_contents(data);
return kx022a_turn_on_unlock(data);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_buffer_predisable(struct iio_dev *idev)
{
struct kx022a_data *data = iio_priv(idev);
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return kx022a_fifo_disable(data);
}
static int kx022a_fifo_enable(struct kx022a_data *data)
{
int ret;
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
/* Update watermark to HW */
ret = kx022a_fifo_set_wmi(data);
if (ret)
goto unlock_out;
/* Enable buffer */
ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2,
KX022A_MASK_BUF_EN);
if (ret)
goto unlock_out;
data->state |= KX022A_STATE_FIFO;
ret = regmap_set_bits(data->regmap, data->ien_reg,
KX022A_MASK_WMI);
if (ret)
goto unlock_out;
return kx022a_turn_on_unlock(data);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_buffer_postenable(struct iio_dev *idev)
{
struct kx022a_data *data = iio_priv(idev);
/*
* If we use data-ready trigger, then the IRQ masks should be handled by
* trigger enable and the hardware buffer is not used but we just update
* results to the IIO fifo when data-ready triggers.
*/
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return kx022a_fifo_enable(data);
}
static const struct iio_buffer_setup_ops kx022a_buffer_ops = {
.postenable = kx022a_buffer_postenable,
.predisable = kx022a_buffer_predisable,
};
static irqreturn_t kx022a_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct kx022a_data *data = iio_priv(idev);
int ret;
ret = regmap_bulk_read(data->regmap, KX022A_REG_XOUT_L, data->buffer,
KX022A_FIFO_SAMPLES_SIZE_BYTES);
if (ret < 0)
goto err_read;
iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp);
err_read:
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
/* Get timestamps and wake the thread if we need to read data */
static irqreturn_t kx022a_irq_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct kx022a_data *data = iio_priv(idev);
data->old_timestamp = data->timestamp;
data->timestamp = iio_get_time_ns(idev);
if (data->state & KX022A_STATE_FIFO || data->trigger_enabled)
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
/*
* WMI and data-ready IRQs are acked when results are read. If we add
* TILT/WAKE or other IRQs - then we may need to implement the acking
* (which is racy).
*/
static irqreturn_t kx022a_irq_thread_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct kx022a_data *data = iio_priv(idev);
irqreturn_t ret = IRQ_NONE;
mutex_lock(&data->mutex);
if (data->trigger_enabled) {
iio_trigger_poll_nested(data->trig);
ret = IRQ_HANDLED;
}
if (data->state & KX022A_STATE_FIFO) {
int ok;
ok = __kx022a_fifo_flush(idev, KX022A_FIFO_LENGTH, true);
if (ok > 0)
ret = IRQ_HANDLED;
}
mutex_unlock(&data->mutex);
return ret;
}
static int kx022a_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct kx022a_data *data = iio_trigger_get_drvdata(trig);
int ret = 0;
mutex_lock(&data->mutex);
if (data->trigger_enabled == state)
goto unlock_out;
if (data->state & KX022A_STATE_FIFO) {
dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
ret = -EBUSY;
goto unlock_out;
}
ret = kx022a_turn_on_off_unlocked(data, false);
if (ret)
goto unlock_out;
data->trigger_enabled = state;
ret = kx022a_set_drdy_irq(data, state);
if (ret)
goto unlock_out;
ret = kx022a_turn_on_off_unlocked(data, true);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops kx022a_trigger_ops = {
.set_trigger_state = kx022a_trigger_set_state,
};
static int kx022a_chip_init(struct kx022a_data *data)
{
int ret, val;
/* Reset the senor */
ret = regmap_write(data->regmap, KX022A_REG_CNTL2, KX022A_MASK_SRST);
if (ret)
return ret;
/*
* I've seen I2C read failures if we poll too fast after the sensor
* reset. Slight delay gives I2C block the time to recover.
*/
msleep(1);
ret = regmap_read_poll_timeout(data->regmap, KX022A_REG_CNTL2, val,
!(val & KX022A_MASK_SRST),
KX022A_SOFT_RESET_WAIT_TIME_US,
KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US);
if (ret) {
dev_err(data->dev, "Sensor reset %s\n",
val & KX022A_MASK_SRST ? "timeout" : "fail#");
return ret;
}
ret = regmap_reinit_cache(data->regmap, &kx022a_regmap);
if (ret) {
dev_err(data->dev, "Failed to reinit reg cache\n");
return ret;
}
/* set data res 16bit */
ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2,
KX022A_MASK_BRES16);
if (ret) {
dev_err(data->dev, "Failed to set data resolution\n");
return ret;
}
return kx022a_prepare_irq_pin(data);
}
int kx022a_probe_internal(struct device *dev)
{
static const char * const regulator_names[] = {"io-vdd", "vdd"};
struct iio_trigger *indio_trig;
struct fwnode_handle *fwnode;
struct kx022a_data *data;
struct regmap *regmap;
unsigned int chip_id;
struct iio_dev *idev;
int ret, irq;
char *name;
regmap = dev_get_regmap(dev, NULL);
if (!regmap) {
dev_err(dev, "no regmap\n");
return -EINVAL;
}
fwnode = dev_fwnode(dev);
if (!fwnode)
return -ENODEV;
idev = devm_iio_device_alloc(dev, sizeof(*data));
if (!idev)
return -ENOMEM;
data = iio_priv(idev);
/*
* VDD is the analog and digital domain voltage supply and
* IO_VDD is the digital I/O voltage supply.
*/
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names),
regulator_names);
if (ret && ret != -ENODEV)
return dev_err_probe(dev, ret, "failed to enable regulator\n");
ret = regmap_read(regmap, KX022A_REG_WHO, &chip_id);
if (ret)
return dev_err_probe(dev, ret, "Failed to access sensor\n");
if (chip_id != KX022A_ID) {
dev_err(dev, "unsupported device 0x%x\n", chip_id);
return -EINVAL;
}
irq = fwnode_irq_get_byname(fwnode, "INT1");
if (irq > 0) {
data->inc_reg = KX022A_REG_INC1;
data->ien_reg = KX022A_REG_INC4;
} else {
irq = fwnode_irq_get_byname(fwnode, "INT2");
if (irq < 0)
return dev_err_probe(dev, irq, "No suitable IRQ\n");
data->inc_reg = KX022A_REG_INC5;
data->ien_reg = KX022A_REG_INC6;
}
data->regmap = regmap;
data->dev = dev;
data->irq = irq;
data->odr_ns = KX022A_DEFAULT_PERIOD_NS;
mutex_init(&data->mutex);
idev->channels = kx022a_channels;
idev->num_channels = ARRAY_SIZE(kx022a_channels);
idev->name = "kx022-accel";
idev->info = &kx022a_info;
idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
idev->available_scan_masks = kx022a_scan_masks;
/* Read the mounting matrix, if present */
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return ret;
/* The sensor must be turned off for configuration */
ret = kx022a_turn_off_lock(data);
if (ret)
return ret;
ret = kx022a_chip_init(data);
if (ret) {
mutex_unlock(&data->mutex);
return ret;
}
ret = kx022a_turn_on_unlock(data);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup_ext(dev, idev,
&iio_pollfunc_store_time,
kx022a_trigger_handler,
IIO_BUFFER_DIRECTION_IN,
&kx022a_buffer_ops,
kx022a_fifo_attributes);
if (ret)
return dev_err_probe(data->dev, ret,
"iio_triggered_buffer_setup_ext FAIL\n");
indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name,
iio_device_id(idev));
if (!indio_trig)
return -ENOMEM;
data->trig = indio_trig;
indio_trig->ops = &kx022a_trigger_ops;
iio_trigger_set_drvdata(indio_trig, data);
/*
* No need to check for NULL. request_threaded_irq() defaults to
* dev_name() should the alloc fail.
*/
name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a",
dev_name(data->dev));
ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler,
&kx022a_irq_thread_handler,
IRQF_ONESHOT, name, idev);
if (ret)
return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
ret = devm_iio_trigger_register(dev, indio_trig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
ret = devm_iio_device_register(data->dev, idev);
if (ret < 0)
return dev_err_probe(dev, ret,
"Unable to register iio device\n");
return ret;
}
EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A);
MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver");
MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
MODULE_LICENSE("GPL");