| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Common EFI (Extensible Firmware Interface) support functions |
| * Based on Extensible Firmware Interface Specification version 1.0 |
| * |
| * Copyright (C) 1999 VA Linux Systems |
| * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> |
| * Copyright (C) 1999-2002 Hewlett-Packard Co. |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * Copyright (C) 2005-2008 Intel Co. |
| * Fenghua Yu <fenghua.yu@intel.com> |
| * Bibo Mao <bibo.mao@intel.com> |
| * Chandramouli Narayanan <mouli@linux.intel.com> |
| * Huang Ying <ying.huang@intel.com> |
| * Copyright (C) 2013 SuSE Labs |
| * Borislav Petkov <bp@suse.de> - runtime services VA mapping |
| * |
| * Copied from efi_32.c to eliminate the duplicated code between EFI |
| * 32/64 support code. --ying 2007-10-26 |
| * |
| * All EFI Runtime Services are not implemented yet as EFI only |
| * supports physical mode addressing on SoftSDV. This is to be fixed |
| * in a future version. --drummond 1999-07-20 |
| * |
| * Implemented EFI runtime services and virtual mode calls. --davidm |
| * |
| * Goutham Rao: <goutham.rao@intel.com> |
| * Skip non-WB memory and ignore empty memory ranges. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/efi.h> |
| #include <linux/efi-bgrt.h> |
| #include <linux/export.h> |
| #include <linux/memblock.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/uaccess.h> |
| #include <linux/time.h> |
| #include <linux/io.h> |
| #include <linux/reboot.h> |
| #include <linux/bcd.h> |
| |
| #include <asm/setup.h> |
| #include <asm/efi.h> |
| #include <asm/e820/api.h> |
| #include <asm/time.h> |
| #include <asm/tlbflush.h> |
| #include <asm/x86_init.h> |
| #include <asm/uv/uv.h> |
| |
| static unsigned long efi_systab_phys __initdata; |
| static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR; |
| static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR; |
| static unsigned long efi_runtime, efi_nr_tables; |
| |
| unsigned long efi_fw_vendor, efi_config_table; |
| |
| static const efi_config_table_type_t arch_tables[] __initconst = { |
| {EFI_PROPERTIES_TABLE_GUID, &prop_phys, "PROP" }, |
| {UGA_IO_PROTOCOL_GUID, &uga_phys, "UGA" }, |
| #ifdef CONFIG_X86_UV |
| {UV_SYSTEM_TABLE_GUID, &uv_systab_phys, "UVsystab" }, |
| #endif |
| {}, |
| }; |
| |
| static const unsigned long * const efi_tables[] = { |
| &efi.acpi, |
| &efi.acpi20, |
| &efi.smbios, |
| &efi.smbios3, |
| &uga_phys, |
| #ifdef CONFIG_X86_UV |
| &uv_systab_phys, |
| #endif |
| &efi_fw_vendor, |
| &efi_runtime, |
| &efi_config_table, |
| &efi.esrt, |
| &prop_phys, |
| &efi_mem_attr_table, |
| #ifdef CONFIG_EFI_RCI2_TABLE |
| &rci2_table_phys, |
| #endif |
| &efi.tpm_log, |
| &efi.tpm_final_log, |
| &efi_rng_seed, |
| #ifdef CONFIG_LOAD_UEFI_KEYS |
| &efi.mokvar_table, |
| #endif |
| #ifdef CONFIG_EFI_COCO_SECRET |
| &efi.coco_secret, |
| #endif |
| #ifdef CONFIG_UNACCEPTED_MEMORY |
| &efi.unaccepted, |
| #endif |
| }; |
| |
| u64 efi_setup; /* efi setup_data physical address */ |
| |
| static int add_efi_memmap __initdata; |
| static int __init setup_add_efi_memmap(char *arg) |
| { |
| add_efi_memmap = 1; |
| return 0; |
| } |
| early_param("add_efi_memmap", setup_add_efi_memmap); |
| |
| /* |
| * Tell the kernel about the EFI memory map. This might include |
| * more than the max 128 entries that can fit in the passed in e820 |
| * legacy (zeropage) memory map, but the kernel's e820 table can hold |
| * E820_MAX_ENTRIES. |
| */ |
| |
| static void __init do_add_efi_memmap(void) |
| { |
| efi_memory_desc_t *md; |
| |
| if (!efi_enabled(EFI_MEMMAP)) |
| return; |
| |
| for_each_efi_memory_desc(md) { |
| unsigned long long start = md->phys_addr; |
| unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; |
| int e820_type; |
| |
| switch (md->type) { |
| case EFI_LOADER_CODE: |
| case EFI_LOADER_DATA: |
| case EFI_BOOT_SERVICES_CODE: |
| case EFI_BOOT_SERVICES_DATA: |
| case EFI_CONVENTIONAL_MEMORY: |
| if (efi_soft_reserve_enabled() |
| && (md->attribute & EFI_MEMORY_SP)) |
| e820_type = E820_TYPE_SOFT_RESERVED; |
| else if (md->attribute & EFI_MEMORY_WB) |
| e820_type = E820_TYPE_RAM; |
| else |
| e820_type = E820_TYPE_RESERVED; |
| break; |
| case EFI_ACPI_RECLAIM_MEMORY: |
| e820_type = E820_TYPE_ACPI; |
| break; |
| case EFI_ACPI_MEMORY_NVS: |
| e820_type = E820_TYPE_NVS; |
| break; |
| case EFI_UNUSABLE_MEMORY: |
| e820_type = E820_TYPE_UNUSABLE; |
| break; |
| case EFI_PERSISTENT_MEMORY: |
| e820_type = E820_TYPE_PMEM; |
| break; |
| default: |
| /* |
| * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE |
| * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO |
| * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE |
| */ |
| e820_type = E820_TYPE_RESERVED; |
| break; |
| } |
| |
| e820__range_add(start, size, e820_type); |
| } |
| e820__update_table(e820_table); |
| } |
| |
| /* |
| * Given add_efi_memmap defaults to 0 and there is no alternative |
| * e820 mechanism for soft-reserved memory, import the full EFI memory |
| * map if soft reservations are present and enabled. Otherwise, the |
| * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is |
| * the efi=nosoftreserve option. |
| */ |
| static bool do_efi_soft_reserve(void) |
| { |
| efi_memory_desc_t *md; |
| |
| if (!efi_enabled(EFI_MEMMAP)) |
| return false; |
| |
| if (!efi_soft_reserve_enabled()) |
| return false; |
| |
| for_each_efi_memory_desc(md) |
| if (md->type == EFI_CONVENTIONAL_MEMORY && |
| (md->attribute & EFI_MEMORY_SP)) |
| return true; |
| return false; |
| } |
| |
| int __init efi_memblock_x86_reserve_range(void) |
| { |
| struct efi_info *e = &boot_params.efi_info; |
| struct efi_memory_map_data data; |
| phys_addr_t pmap; |
| int rv; |
| |
| if (efi_enabled(EFI_PARAVIRT)) |
| return 0; |
| |
| /* Can't handle firmware tables above 4GB on i386 */ |
| if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) { |
| pr_err("Memory map is above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32)); |
| |
| data.phys_map = pmap; |
| data.size = e->efi_memmap_size; |
| data.desc_size = e->efi_memdesc_size; |
| data.desc_version = e->efi_memdesc_version; |
| |
| if (!efi_enabled(EFI_PARAVIRT)) { |
| rv = efi_memmap_init_early(&data); |
| if (rv) |
| return rv; |
| } |
| |
| if (add_efi_memmap || do_efi_soft_reserve()) |
| do_add_efi_memmap(); |
| |
| efi_fake_memmap_early(); |
| |
| WARN(efi.memmap.desc_version != 1, |
| "Unexpected EFI_MEMORY_DESCRIPTOR version %ld", |
| efi.memmap.desc_version); |
| |
| memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size); |
| set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags); |
| |
| return 0; |
| } |
| |
| #define OVERFLOW_ADDR_SHIFT (64 - EFI_PAGE_SHIFT) |
| #define OVERFLOW_ADDR_MASK (U64_MAX << OVERFLOW_ADDR_SHIFT) |
| #define U64_HIGH_BIT (~(U64_MAX >> 1)) |
| |
| static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i) |
| { |
| u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1; |
| u64 end_hi = 0; |
| char buf[64]; |
| |
| if (md->num_pages == 0) { |
| end = 0; |
| } else if (md->num_pages > EFI_PAGES_MAX || |
| EFI_PAGES_MAX - md->num_pages < |
| (md->phys_addr >> EFI_PAGE_SHIFT)) { |
| end_hi = (md->num_pages & OVERFLOW_ADDR_MASK) |
| >> OVERFLOW_ADDR_SHIFT; |
| |
| if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT)) |
| end_hi += 1; |
| } else { |
| return true; |
| } |
| |
| pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n"); |
| |
| if (end_hi) { |
| pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n", |
| i, efi_md_typeattr_format(buf, sizeof(buf), md), |
| md->phys_addr, end_hi, end); |
| } else { |
| pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n", |
| i, efi_md_typeattr_format(buf, sizeof(buf), md), |
| md->phys_addr, end); |
| } |
| return false; |
| } |
| |
| static void __init efi_clean_memmap(void) |
| { |
| efi_memory_desc_t *out = efi.memmap.map; |
| const efi_memory_desc_t *in = out; |
| const efi_memory_desc_t *end = efi.memmap.map_end; |
| int i, n_removal; |
| |
| for (i = n_removal = 0; in < end; i++) { |
| if (efi_memmap_entry_valid(in, i)) { |
| if (out != in) |
| memcpy(out, in, efi.memmap.desc_size); |
| out = (void *)out + efi.memmap.desc_size; |
| } else { |
| n_removal++; |
| } |
| in = (void *)in + efi.memmap.desc_size; |
| } |
| |
| if (n_removal > 0) { |
| struct efi_memory_map_data data = { |
| .phys_map = efi.memmap.phys_map, |
| .desc_version = efi.memmap.desc_version, |
| .desc_size = efi.memmap.desc_size, |
| .size = efi.memmap.desc_size * (efi.memmap.nr_map - n_removal), |
| .flags = 0, |
| }; |
| |
| pr_warn("Removing %d invalid memory map entries.\n", n_removal); |
| efi_memmap_install(&data); |
| } |
| } |
| |
| /* |
| * Firmware can use EfiMemoryMappedIO to request that MMIO regions be |
| * mapped by the OS so they can be accessed by EFI runtime services, but |
| * should have no other significance to the OS (UEFI r2.10, sec 7.2). |
| * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO |
| * regions to E820_TYPE_RESERVED entries, which prevent Linux from |
| * allocating space from them (see remove_e820_regions()). |
| * |
| * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and |
| * PCI host bridge windows, which means Linux can't allocate BAR space for |
| * hot-added devices. |
| * |
| * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this |
| * problem. |
| * |
| * Retain small EfiMemoryMappedIO regions because on some platforms, these |
| * describe non-window space that's included in host bridge _CRS. If we |
| * assign that space to PCI devices, they don't work. |
| */ |
| static void __init efi_remove_e820_mmio(void) |
| { |
| efi_memory_desc_t *md; |
| u64 size, start, end; |
| int i = 0; |
| |
| for_each_efi_memory_desc(md) { |
| if (md->type == EFI_MEMORY_MAPPED_IO) { |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| start = md->phys_addr; |
| end = start + size - 1; |
| if (size >= 256*1024) { |
| pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n", |
| i, start, end, size >> 20); |
| e820__range_remove(start, size, |
| E820_TYPE_RESERVED, 1); |
| } else { |
| pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n", |
| i, start, end, size >> 10); |
| } |
| } |
| i++; |
| } |
| } |
| |
| void __init efi_print_memmap(void) |
| { |
| efi_memory_desc_t *md; |
| int i = 0; |
| |
| for_each_efi_memory_desc(md) { |
| char buf[64]; |
| |
| pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", |
| i++, efi_md_typeattr_format(buf, sizeof(buf), md), |
| md->phys_addr, |
| md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, |
| (md->num_pages >> (20 - EFI_PAGE_SHIFT))); |
| } |
| } |
| |
| static int __init efi_systab_init(unsigned long phys) |
| { |
| int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t) |
| : sizeof(efi_system_table_32_t); |
| const efi_table_hdr_t *hdr; |
| bool over4g = false; |
| void *p; |
| int ret; |
| |
| hdr = p = early_memremap_ro(phys, size); |
| if (p == NULL) { |
| pr_err("Couldn't map the system table!\n"); |
| return -ENOMEM; |
| } |
| |
| ret = efi_systab_check_header(hdr); |
| if (ret) { |
| early_memunmap(p, size); |
| return ret; |
| } |
| |
| if (efi_enabled(EFI_64BIT)) { |
| const efi_system_table_64_t *systab64 = p; |
| |
| efi_runtime = systab64->runtime; |
| over4g = systab64->runtime > U32_MAX; |
| |
| if (efi_setup) { |
| struct efi_setup_data *data; |
| |
| data = early_memremap_ro(efi_setup, sizeof(*data)); |
| if (!data) { |
| early_memunmap(p, size); |
| return -ENOMEM; |
| } |
| |
| efi_fw_vendor = (unsigned long)data->fw_vendor; |
| efi_config_table = (unsigned long)data->tables; |
| |
| over4g |= data->fw_vendor > U32_MAX || |
| data->tables > U32_MAX; |
| |
| early_memunmap(data, sizeof(*data)); |
| } else { |
| efi_fw_vendor = systab64->fw_vendor; |
| efi_config_table = systab64->tables; |
| |
| over4g |= systab64->fw_vendor > U32_MAX || |
| systab64->tables > U32_MAX; |
| } |
| efi_nr_tables = systab64->nr_tables; |
| } else { |
| const efi_system_table_32_t *systab32 = p; |
| |
| efi_fw_vendor = systab32->fw_vendor; |
| efi_runtime = systab32->runtime; |
| efi_config_table = systab32->tables; |
| efi_nr_tables = systab32->nr_tables; |
| } |
| |
| efi.runtime_version = hdr->revision; |
| |
| efi_systab_report_header(hdr, efi_fw_vendor); |
| early_memunmap(p, size); |
| |
| if (IS_ENABLED(CONFIG_X86_32) && over4g) { |
| pr_err("EFI data located above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __init efi_config_init(const efi_config_table_type_t *arch_tables) |
| { |
| void *config_tables; |
| int sz, ret; |
| |
| if (efi_nr_tables == 0) |
| return 0; |
| |
| if (efi_enabled(EFI_64BIT)) |
| sz = sizeof(efi_config_table_64_t); |
| else |
| sz = sizeof(efi_config_table_32_t); |
| |
| /* |
| * Let's see what config tables the firmware passed to us. |
| */ |
| config_tables = early_memremap(efi_config_table, efi_nr_tables * sz); |
| if (config_tables == NULL) { |
| pr_err("Could not map Configuration table!\n"); |
| return -ENOMEM; |
| } |
| |
| ret = efi_config_parse_tables(config_tables, efi_nr_tables, |
| arch_tables); |
| |
| early_memunmap(config_tables, efi_nr_tables * sz); |
| return ret; |
| } |
| |
| void __init efi_init(void) |
| { |
| if (IS_ENABLED(CONFIG_X86_32) && |
| (boot_params.efi_info.efi_systab_hi || |
| boot_params.efi_info.efi_memmap_hi)) { |
| pr_info("Table located above 4GB, disabling EFI.\n"); |
| return; |
| } |
| |
| efi_systab_phys = boot_params.efi_info.efi_systab | |
| ((__u64)boot_params.efi_info.efi_systab_hi << 32); |
| |
| if (efi_systab_init(efi_systab_phys)) |
| return; |
| |
| if (efi_reuse_config(efi_config_table, efi_nr_tables)) |
| return; |
| |
| if (efi_config_init(arch_tables)) |
| return; |
| |
| /* |
| * Note: We currently don't support runtime services on an EFI |
| * that doesn't match the kernel 32/64-bit mode. |
| */ |
| |
| if (!efi_runtime_supported()) |
| pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n"); |
| |
| if (!efi_runtime_supported() || efi_runtime_disabled()) { |
| efi_memmap_unmap(); |
| return; |
| } |
| |
| /* Parse the EFI Properties table if it exists */ |
| if (prop_phys != EFI_INVALID_TABLE_ADDR) { |
| efi_properties_table_t *tbl; |
| |
| tbl = early_memremap_ro(prop_phys, sizeof(*tbl)); |
| if (tbl == NULL) { |
| pr_err("Could not map Properties table!\n"); |
| } else { |
| if (tbl->memory_protection_attribute & |
| EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) |
| set_bit(EFI_NX_PE_DATA, &efi.flags); |
| |
| early_memunmap(tbl, sizeof(*tbl)); |
| } |
| } |
| |
| set_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| efi_clean_memmap(); |
| |
| efi_remove_e820_mmio(); |
| |
| if (efi_enabled(EFI_DBG)) |
| efi_print_memmap(); |
| } |
| |
| /* Merge contiguous regions of the same type and attribute */ |
| static void __init efi_merge_regions(void) |
| { |
| efi_memory_desc_t *md, *prev_md = NULL; |
| |
| for_each_efi_memory_desc(md) { |
| u64 prev_size; |
| |
| if (!prev_md) { |
| prev_md = md; |
| continue; |
| } |
| |
| if (prev_md->type != md->type || |
| prev_md->attribute != md->attribute) { |
| prev_md = md; |
| continue; |
| } |
| |
| prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; |
| |
| if (md->phys_addr == (prev_md->phys_addr + prev_size)) { |
| prev_md->num_pages += md->num_pages; |
| md->type = EFI_RESERVED_TYPE; |
| md->attribute = 0; |
| continue; |
| } |
| prev_md = md; |
| } |
| } |
| |
| static void *realloc_pages(void *old_memmap, int old_shift) |
| { |
| void *ret; |
| |
| ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); |
| if (!ret) |
| goto out; |
| |
| /* |
| * A first-time allocation doesn't have anything to copy. |
| */ |
| if (!old_memmap) |
| return ret; |
| |
| memcpy(ret, old_memmap, PAGE_SIZE << old_shift); |
| |
| out: |
| free_pages((unsigned long)old_memmap, old_shift); |
| return ret; |
| } |
| |
| /* |
| * Iterate the EFI memory map in reverse order because the regions |
| * will be mapped top-down. The end result is the same as if we had |
| * mapped things forward, but doesn't require us to change the |
| * existing implementation of efi_map_region(). |
| */ |
| static inline void *efi_map_next_entry_reverse(void *entry) |
| { |
| /* Initial call */ |
| if (!entry) |
| return efi.memmap.map_end - efi.memmap.desc_size; |
| |
| entry -= efi.memmap.desc_size; |
| if (entry < efi.memmap.map) |
| return NULL; |
| |
| return entry; |
| } |
| |
| /* |
| * efi_map_next_entry - Return the next EFI memory map descriptor |
| * @entry: Previous EFI memory map descriptor |
| * |
| * This is a helper function to iterate over the EFI memory map, which |
| * we do in different orders depending on the current configuration. |
| * |
| * To begin traversing the memory map @entry must be %NULL. |
| * |
| * Returns %NULL when we reach the end of the memory map. |
| */ |
| static void *efi_map_next_entry(void *entry) |
| { |
| if (efi_enabled(EFI_64BIT)) { |
| /* |
| * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE |
| * config table feature requires us to map all entries |
| * in the same order as they appear in the EFI memory |
| * map. That is to say, entry N must have a lower |
| * virtual address than entry N+1. This is because the |
| * firmware toolchain leaves relative references in |
| * the code/data sections, which are split and become |
| * separate EFI memory regions. Mapping things |
| * out-of-order leads to the firmware accessing |
| * unmapped addresses. |
| * |
| * Since we need to map things this way whether or not |
| * the kernel actually makes use of |
| * EFI_PROPERTIES_TABLE, let's just switch to this |
| * scheme by default for 64-bit. |
| */ |
| return efi_map_next_entry_reverse(entry); |
| } |
| |
| /* Initial call */ |
| if (!entry) |
| return efi.memmap.map; |
| |
| entry += efi.memmap.desc_size; |
| if (entry >= efi.memmap.map_end) |
| return NULL; |
| |
| return entry; |
| } |
| |
| static bool should_map_region(efi_memory_desc_t *md) |
| { |
| /* |
| * Runtime regions always require runtime mappings (obviously). |
| */ |
| if (md->attribute & EFI_MEMORY_RUNTIME) |
| return true; |
| |
| /* |
| * 32-bit EFI doesn't suffer from the bug that requires us to |
| * reserve boot services regions, and mixed mode support |
| * doesn't exist for 32-bit kernels. |
| */ |
| if (IS_ENABLED(CONFIG_X86_32)) |
| return false; |
| |
| /* |
| * EFI specific purpose memory may be reserved by default |
| * depending on kernel config and boot options. |
| */ |
| if (md->type == EFI_CONVENTIONAL_MEMORY && |
| efi_soft_reserve_enabled() && |
| (md->attribute & EFI_MEMORY_SP)) |
| return false; |
| |
| /* |
| * Map all of RAM so that we can access arguments in the 1:1 |
| * mapping when making EFI runtime calls. |
| */ |
| if (efi_is_mixed()) { |
| if (md->type == EFI_CONVENTIONAL_MEMORY || |
| md->type == EFI_LOADER_DATA || |
| md->type == EFI_LOADER_CODE) |
| return true; |
| } |
| |
| /* |
| * Map boot services regions as a workaround for buggy |
| * firmware that accesses them even when they shouldn't. |
| * |
| * See efi_{reserve,free}_boot_services(). |
| */ |
| if (md->type == EFI_BOOT_SERVICES_CODE || |
| md->type == EFI_BOOT_SERVICES_DATA) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * Map the efi memory ranges of the runtime services and update new_mmap with |
| * virtual addresses. |
| */ |
| static void * __init efi_map_regions(int *count, int *pg_shift) |
| { |
| void *p, *new_memmap = NULL; |
| unsigned long left = 0; |
| unsigned long desc_size; |
| efi_memory_desc_t *md; |
| |
| desc_size = efi.memmap.desc_size; |
| |
| p = NULL; |
| while ((p = efi_map_next_entry(p))) { |
| md = p; |
| |
| if (!should_map_region(md)) |
| continue; |
| |
| efi_map_region(md); |
| |
| if (left < desc_size) { |
| new_memmap = realloc_pages(new_memmap, *pg_shift); |
| if (!new_memmap) |
| return NULL; |
| |
| left += PAGE_SIZE << *pg_shift; |
| (*pg_shift)++; |
| } |
| |
| memcpy(new_memmap + (*count * desc_size), md, desc_size); |
| |
| left -= desc_size; |
| (*count)++; |
| } |
| |
| return new_memmap; |
| } |
| |
| static void __init kexec_enter_virtual_mode(void) |
| { |
| #ifdef CONFIG_KEXEC_CORE |
| efi_memory_desc_t *md; |
| unsigned int num_pages; |
| |
| /* |
| * We don't do virtual mode, since we don't do runtime services, on |
| * non-native EFI. |
| */ |
| if (efi_is_mixed()) { |
| efi_memmap_unmap(); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| return; |
| } |
| |
| if (efi_alloc_page_tables()) { |
| pr_err("Failed to allocate EFI page tables\n"); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| return; |
| } |
| |
| /* |
| * Map efi regions which were passed via setup_data. The virt_addr is a |
| * fixed addr which was used in first kernel of a kexec boot. |
| */ |
| for_each_efi_memory_desc(md) |
| efi_map_region_fixed(md); /* FIXME: add error handling */ |
| |
| /* |
| * Unregister the early EFI memmap from efi_init() and install |
| * the new EFI memory map. |
| */ |
| efi_memmap_unmap(); |
| |
| if (efi_memmap_init_late(efi.memmap.phys_map, |
| efi.memmap.desc_size * efi.memmap.nr_map)) { |
| pr_err("Failed to remap late EFI memory map\n"); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| return; |
| } |
| |
| num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE); |
| num_pages >>= PAGE_SHIFT; |
| |
| if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) { |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| return; |
| } |
| |
| efi_sync_low_kernel_mappings(); |
| efi_native_runtime_setup(); |
| #endif |
| } |
| |
| /* |
| * This function will switch the EFI runtime services to virtual mode. |
| * Essentially, we look through the EFI memmap and map every region that |
| * has the runtime attribute bit set in its memory descriptor into the |
| * efi_pgd page table. |
| * |
| * The new method does a pagetable switch in a preemption-safe manner |
| * so that we're in a different address space when calling a runtime |
| * function. For function arguments passing we do copy the PUDs of the |
| * kernel page table into efi_pgd prior to each call. |
| * |
| * Specially for kexec boot, efi runtime maps in previous kernel should |
| * be passed in via setup_data. In that case runtime ranges will be mapped |
| * to the same virtual addresses as the first kernel, see |
| * kexec_enter_virtual_mode(). |
| */ |
| static void __init __efi_enter_virtual_mode(void) |
| { |
| int count = 0, pg_shift = 0; |
| void *new_memmap = NULL; |
| efi_status_t status; |
| unsigned long pa; |
| |
| if (efi_alloc_page_tables()) { |
| pr_err("Failed to allocate EFI page tables\n"); |
| goto err; |
| } |
| |
| efi_merge_regions(); |
| new_memmap = efi_map_regions(&count, &pg_shift); |
| if (!new_memmap) { |
| pr_err("Error reallocating memory, EFI runtime non-functional!\n"); |
| goto err; |
| } |
| |
| pa = __pa(new_memmap); |
| |
| /* |
| * Unregister the early EFI memmap from efi_init() and install |
| * the new EFI memory map that we are about to pass to the |
| * firmware via SetVirtualAddressMap(). |
| */ |
| efi_memmap_unmap(); |
| |
| if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) { |
| pr_err("Failed to remap late EFI memory map\n"); |
| goto err; |
| } |
| |
| if (efi_enabled(EFI_DBG)) { |
| pr_info("EFI runtime memory map:\n"); |
| efi_print_memmap(); |
| } |
| |
| if (efi_setup_page_tables(pa, 1 << pg_shift)) |
| goto err; |
| |
| efi_sync_low_kernel_mappings(); |
| |
| status = efi_set_virtual_address_map(efi.memmap.desc_size * count, |
| efi.memmap.desc_size, |
| efi.memmap.desc_version, |
| (efi_memory_desc_t *)pa, |
| efi_systab_phys); |
| if (status != EFI_SUCCESS) { |
| pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n", |
| status); |
| goto err; |
| } |
| |
| efi_check_for_embedded_firmwares(); |
| efi_free_boot_services(); |
| |
| if (!efi_is_mixed()) |
| efi_native_runtime_setup(); |
| else |
| efi_thunk_runtime_setup(); |
| |
| /* |
| * Apply more restrictive page table mapping attributes now that |
| * SVAM() has been called and the firmware has performed all |
| * necessary relocation fixups for the new virtual addresses. |
| */ |
| efi_runtime_update_mappings(); |
| |
| /* clean DUMMY object */ |
| efi_delete_dummy_variable(); |
| return; |
| |
| err: |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| } |
| |
| void __init efi_enter_virtual_mode(void) |
| { |
| if (efi_enabled(EFI_PARAVIRT)) |
| return; |
| |
| efi.runtime = (efi_runtime_services_t *)efi_runtime; |
| |
| if (efi_setup) |
| kexec_enter_virtual_mode(); |
| else |
| __efi_enter_virtual_mode(); |
| |
| efi_dump_pagetable(); |
| } |
| |
| bool efi_is_table_address(unsigned long phys_addr) |
| { |
| unsigned int i; |
| |
| if (phys_addr == EFI_INVALID_TABLE_ADDR) |
| return false; |
| |
| for (i = 0; i < ARRAY_SIZE(efi_tables); i++) |
| if (*(efi_tables[i]) == phys_addr) |
| return true; |
| |
| return false; |
| } |
| |
| char *efi_systab_show_arch(char *str) |
| { |
| if (uga_phys != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "UGA=0x%lx\n", uga_phys); |
| return str; |
| } |
| |
| #define EFI_FIELD(var) efi_ ## var |
| |
| #define EFI_ATTR_SHOW(name) \ |
| static ssize_t name##_show(struct kobject *kobj, \ |
| struct kobj_attribute *attr, char *buf) \ |
| { \ |
| return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ |
| } |
| |
| EFI_ATTR_SHOW(fw_vendor); |
| EFI_ATTR_SHOW(runtime); |
| EFI_ATTR_SHOW(config_table); |
| |
| struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); |
| struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); |
| struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); |
| |
| umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n) |
| { |
| if (attr == &efi_attr_fw_vendor.attr) { |
| if (efi_enabled(EFI_PARAVIRT) || |
| efi_fw_vendor == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } else if (attr == &efi_attr_runtime.attr) { |
| if (efi_runtime == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } else if (attr == &efi_attr_config_table.attr) { |
| if (efi_config_table == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| } |
| return attr->mode; |
| } |
| |
| enum efi_secureboot_mode __x86_ima_efi_boot_mode(void) |
| { |
| return boot_params.secure_boot; |
| } |