| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright(c) 2007 Atheros Corporation. All rights reserved. |
| * |
| * Derived from Intel e1000 driver |
| * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. |
| */ |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/mii.h> |
| #include <linux/crc32.h> |
| |
| #include "atl1c.h" |
| |
| /* |
| * check_eeprom_exist |
| * return 1 if eeprom exist |
| */ |
| int atl1c_check_eeprom_exist(struct atl1c_hw *hw) |
| { |
| u32 data; |
| |
| AT_READ_REG(hw, REG_TWSI_DEBUG, &data); |
| if (data & TWSI_DEBUG_DEV_EXIST) |
| return 1; |
| |
| AT_READ_REG(hw, REG_MASTER_CTRL, &data); |
| if (data & MASTER_CTRL_OTP_SEL) |
| return 1; |
| return 0; |
| } |
| |
| void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr) |
| { |
| u32 value; |
| /* |
| * 00-0B-6A-F6-00-DC |
| * 0: 6AF600DC 1: 000B |
| * low dword |
| */ |
| value = mac_addr[2] << 24 | |
| mac_addr[3] << 16 | |
| mac_addr[4] << 8 | |
| mac_addr[5]; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); |
| /* hight dword */ |
| value = mac_addr[0] << 8 | |
| mac_addr[1]; |
| AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); |
| } |
| |
| /* read mac address from hardware register */ |
| static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr) |
| { |
| u32 addr[2]; |
| |
| AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]); |
| AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]); |
| |
| *(u32 *) ð_addr[2] = htonl(addr[0]); |
| *(u16 *) ð_addr[0] = htons((u16)addr[1]); |
| |
| return is_valid_ether_addr(eth_addr); |
| } |
| |
| /* |
| * atl1c_get_permanent_address |
| * return 0 if get valid mac address, |
| */ |
| static int atl1c_get_permanent_address(struct atl1c_hw *hw) |
| { |
| u32 i; |
| u32 otp_ctrl_data; |
| u32 twsi_ctrl_data; |
| u16 phy_data; |
| bool raise_vol = false; |
| |
| /* MAC-address from BIOS is the 1st priority */ |
| if (atl1c_read_current_addr(hw, hw->perm_mac_addr)) |
| return 0; |
| |
| /* init */ |
| AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); |
| if (atl1c_check_eeprom_exist(hw)) { |
| if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) { |
| /* Enable OTP CLK */ |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) { |
| otp_ctrl_data |= OTP_CTRL_CLK_EN; |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| msleep(1); |
| } |
| } |
| /* raise voltage temporally for l2cb */ |
| if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { |
| atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data); |
| phy_data &= ~ANACTRL_HB_EN; |
| atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data); |
| atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); |
| phy_data |= VOLT_CTRL_SWLOWEST; |
| atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); |
| udelay(20); |
| raise_vol = true; |
| } |
| |
| AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); |
| twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; |
| AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); |
| for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { |
| msleep(10); |
| AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); |
| if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) |
| break; |
| } |
| if (i >= AT_TWSI_EEPROM_TIMEOUT) |
| return -1; |
| } |
| /* Disable OTP_CLK */ |
| if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) { |
| otp_ctrl_data &= ~OTP_CTRL_CLK_EN; |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| msleep(1); |
| } |
| if (raise_vol) { |
| atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data); |
| phy_data |= ANACTRL_HB_EN; |
| atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data); |
| atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); |
| phy_data &= ~VOLT_CTRL_SWLOWEST; |
| atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); |
| udelay(20); |
| } |
| |
| if (atl1c_read_current_addr(hw, hw->perm_mac_addr)) |
| return 0; |
| |
| return -1; |
| } |
| |
| bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value) |
| { |
| int i; |
| bool ret = false; |
| u32 otp_ctrl_data; |
| u32 control; |
| u32 data; |
| |
| if (offset & 3) |
| return ret; /* address do not align */ |
| |
| AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) |
| AT_WRITE_REG(hw, REG_OTP_CTRL, |
| (otp_ctrl_data | OTP_CTRL_CLK_EN)); |
| |
| AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0); |
| control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT; |
| AT_WRITE_REG(hw, REG_EEPROM_CTRL, control); |
| |
| for (i = 0; i < 10; i++) { |
| udelay(100); |
| AT_READ_REG(hw, REG_EEPROM_CTRL, &control); |
| if (control & EEPROM_CTRL_RW) |
| break; |
| } |
| if (control & EEPROM_CTRL_RW) { |
| AT_READ_REG(hw, REG_EEPROM_CTRL, &data); |
| AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value); |
| data = data & 0xFFFF; |
| *p_value = swab32((data << 16) | (*p_value >> 16)); |
| ret = true; |
| } |
| if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) |
| AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); |
| |
| return ret; |
| } |
| /* |
| * Reads the adapter's MAC address from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| int atl1c_read_mac_addr(struct atl1c_hw *hw) |
| { |
| int err = 0; |
| |
| err = atl1c_get_permanent_address(hw); |
| if (err) |
| eth_random_addr(hw->perm_mac_addr); |
| |
| memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); |
| return err; |
| } |
| |
| /* |
| * atl1c_hash_mc_addr |
| * purpose |
| * set hash value for a multicast address |
| * hash calcu processing : |
| * 1. calcu 32bit CRC for multicast address |
| * 2. reverse crc with MSB to LSB |
| */ |
| u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr) |
| { |
| u32 crc32; |
| u32 value = 0; |
| int i; |
| |
| crc32 = ether_crc_le(6, mc_addr); |
| for (i = 0; i < 32; i++) |
| value |= (((crc32 >> i) & 1) << (31 - i)); |
| |
| return value; |
| } |
| |
| /* |
| * Sets the bit in the multicast table corresponding to the hash value. |
| * hw - Struct containing variables accessed by shared code |
| * hash_value - Multicast address hash value |
| */ |
| void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value) |
| { |
| u32 hash_bit, hash_reg; |
| u32 mta; |
| |
| /* |
| * The HASH Table is a register array of 2 32-bit registers. |
| * It is treated like an array of 64 bits. We want to set |
| * bit BitArray[hash_value]. So we figure out what register |
| * the bit is in, read it, OR in the new bit, then write |
| * back the new value. The register is determined by the |
| * upper bit of the hash value and the bit within that |
| * register are determined by the lower 5 bits of the value. |
| */ |
| hash_reg = (hash_value >> 31) & 0x1; |
| hash_bit = (hash_value >> 26) & 0x1F; |
| |
| mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); |
| |
| mta |= (1 << hash_bit); |
| |
| AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); |
| } |
| |
| /* |
| * wait mdio module be idle |
| * return true: idle |
| * false: still busy |
| */ |
| bool atl1c_wait_mdio_idle(struct atl1c_hw *hw) |
| { |
| u32 val; |
| int i; |
| |
| for (i = 0; i < MDIO_MAX_AC_TO; i++) { |
| AT_READ_REG(hw, REG_MDIO_CTRL, &val); |
| if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START))) |
| break; |
| udelay(10); |
| } |
| |
| return i != MDIO_MAX_AC_TO; |
| } |
| |
| void atl1c_stop_phy_polling(struct atl1c_hw *hw) |
| { |
| if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) |
| return; |
| |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, 0); |
| atl1c_wait_mdio_idle(hw); |
| } |
| |
| void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel) |
| { |
| u32 val; |
| |
| if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) |
| return; |
| |
| val = MDIO_CTRL_SPRES_PRMBL | |
| FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | |
| FIELDX(MDIO_CTRL_REG, 1) | |
| MDIO_CTRL_START | |
| MDIO_CTRL_OP_READ; |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| atl1c_wait_mdio_idle(hw); |
| val |= MDIO_CTRL_AP_EN; |
| val &= ~MDIO_CTRL_START; |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| udelay(30); |
| } |
| |
| |
| /* |
| * atl1c_read_phy_core |
| * core function to read register in PHY via MDIO control register. |
| * ext: extension register (see IEEE 802.3) |
| * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0) |
| * reg: reg to read |
| */ |
| int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev, |
| u16 reg, u16 *phy_data) |
| { |
| u32 val; |
| u16 clk_sel = MDIO_CTRL_CLK_25_4; |
| |
| atl1c_stop_phy_polling(hw); |
| |
| *phy_data = 0; |
| |
| /* only l2c_b2 & l1d_2 could use slow clock */ |
| if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) && |
| hw->hibernate) |
| clk_sel = MDIO_CTRL_CLK_25_128; |
| if (ext) { |
| val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg); |
| AT_WRITE_REG(hw, REG_MDIO_EXTN, val); |
| val = MDIO_CTRL_SPRES_PRMBL | |
| FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | |
| MDIO_CTRL_START | |
| MDIO_CTRL_MODE_EXT | |
| MDIO_CTRL_OP_READ; |
| } else { |
| val = MDIO_CTRL_SPRES_PRMBL | |
| FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | |
| FIELDX(MDIO_CTRL_REG, reg) | |
| MDIO_CTRL_START | |
| MDIO_CTRL_OP_READ; |
| } |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| |
| if (!atl1c_wait_mdio_idle(hw)) |
| return -1; |
| |
| AT_READ_REG(hw, REG_MDIO_CTRL, &val); |
| *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA); |
| |
| atl1c_start_phy_polling(hw, clk_sel); |
| |
| return 0; |
| } |
| |
| /* |
| * atl1c_write_phy_core |
| * core function to write to register in PHY via MDIO control register. |
| * ext: extension register (see IEEE 802.3) |
| * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0) |
| * reg: reg to write |
| */ |
| int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev, |
| u16 reg, u16 phy_data) |
| { |
| u32 val; |
| u16 clk_sel = MDIO_CTRL_CLK_25_4; |
| |
| atl1c_stop_phy_polling(hw); |
| |
| |
| /* only l2c_b2 & l1d_2 could use slow clock */ |
| if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) && |
| hw->hibernate) |
| clk_sel = MDIO_CTRL_CLK_25_128; |
| |
| if (ext) { |
| val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg); |
| AT_WRITE_REG(hw, REG_MDIO_EXTN, val); |
| val = MDIO_CTRL_SPRES_PRMBL | |
| FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | |
| FIELDX(MDIO_CTRL_DATA, phy_data) | |
| MDIO_CTRL_START | |
| MDIO_CTRL_MODE_EXT; |
| } else { |
| val = MDIO_CTRL_SPRES_PRMBL | |
| FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) | |
| FIELDX(MDIO_CTRL_DATA, phy_data) | |
| FIELDX(MDIO_CTRL_REG, reg) | |
| MDIO_CTRL_START; |
| } |
| AT_WRITE_REG(hw, REG_MDIO_CTRL, val); |
| |
| if (!atl1c_wait_mdio_idle(hw)) |
| return -1; |
| |
| atl1c_start_phy_polling(hw, clk_sel); |
| |
| return 0; |
| } |
| |
| /* |
| * Reads the value from a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| */ |
| int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) |
| { |
| return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data); |
| } |
| |
| /* |
| * Writes a value to a PHY register |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| */ |
| int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data) |
| { |
| return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data); |
| } |
| |
| /* read from PHY extension register */ |
| int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr, |
| u16 reg_addr, u16 *phy_data) |
| { |
| return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data); |
| } |
| |
| /* write to PHY extension register */ |
| int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr, |
| u16 reg_addr, u16 phy_data) |
| { |
| return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data); |
| } |
| |
| int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) |
| { |
| int err; |
| |
| err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr); |
| if (unlikely(err)) |
| return err; |
| else |
| err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data); |
| |
| return err; |
| } |
| |
| int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data) |
| { |
| int err; |
| |
| err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr); |
| if (unlikely(err)) |
| return err; |
| else |
| err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data); |
| |
| return err; |
| } |
| |
| /* |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| */ |
| static int atl1c_phy_setup_adv(struct atl1c_hw *hw) |
| { |
| u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL; |
| u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP & |
| ~GIGA_CR_1000T_SPEED_MASK; |
| |
| if (hw->autoneg_advertised & ADVERTISED_10baseT_Half) |
| mii_adv_data |= ADVERTISE_10HALF; |
| if (hw->autoneg_advertised & ADVERTISED_10baseT_Full) |
| mii_adv_data |= ADVERTISE_10FULL; |
| if (hw->autoneg_advertised & ADVERTISED_100baseT_Half) |
| mii_adv_data |= ADVERTISE_100HALF; |
| if (hw->autoneg_advertised & ADVERTISED_100baseT_Full) |
| mii_adv_data |= ADVERTISE_100FULL; |
| |
| if (hw->autoneg_advertised & ADVERTISED_Autoneg) |
| mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL; |
| |
| if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) { |
| if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half) |
| mii_giga_ctrl_data |= ADVERTISE_1000HALF; |
| if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full) |
| mii_giga_ctrl_data |= ADVERTISE_1000FULL; |
| if (hw->autoneg_advertised & ADVERTISED_Autoneg) |
| mii_giga_ctrl_data |= ADVERTISE_1000HALF | |
| ADVERTISE_1000FULL; |
| } |
| |
| if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 || |
| atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0) |
| return -1; |
| return 0; |
| } |
| |
| void atl1c_phy_disable(struct atl1c_hw *hw) |
| { |
| atl1c_power_saving(hw, 0); |
| } |
| |
| |
| int atl1c_phy_reset(struct atl1c_hw *hw) |
| { |
| struct atl1c_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| u16 phy_data; |
| u32 phy_ctrl_data, lpi_ctrl; |
| int err; |
| |
| /* reset PHY core */ |
| AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data); |
| phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ | |
| GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS); |
| phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST; |
| if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) |
| phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE); |
| else |
| phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE); |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); |
| AT_WRITE_FLUSH(hw); |
| udelay(10); |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET); |
| AT_WRITE_FLUSH(hw); |
| udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */ |
| |
| /* switch clock */ |
| if (hw->nic_type == athr_l2c_b) { |
| atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data); |
| atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD, |
| phy_data & ~CFGLPSPD_RSTCNT_CLK125SW); |
| } |
| |
| /* tx-half amplitude issue fix */ |
| if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { |
| atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data); |
| phy_data |= CABLE1TH_DET_EN; |
| atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data); |
| } |
| |
| /* clear bit3 of dbgport 3B to lower voltage */ |
| if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) { |
| if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) { |
| atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data); |
| phy_data &= ~VOLT_CTRL_SWLOWEST; |
| atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data); |
| } |
| /* power saving config */ |
| phy_data = |
| hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ? |
| L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF; |
| atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data); |
| /* hib */ |
| atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, |
| SYSMODCTRL_IECHOADJ_DEF); |
| } else { |
| /* disable pws */ |
| atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data); |
| atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, |
| phy_data & ~LEGCYPS_EN); |
| /* disable hibernate */ |
| atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data); |
| atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG, |
| phy_data & HIBNEG_PSHIB_EN); |
| } |
| /* disable AZ(EEE) by default */ |
| if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 || |
| hw->nic_type == athr_l2c_b2) { |
| AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl); |
| AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN); |
| atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0); |
| atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3, |
| L2CB_CLDCTRL3); |
| } |
| |
| /* other debug port to set */ |
| atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF); |
| atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF); |
| atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF); |
| /* UNH-IOL test issue, set bit7 */ |
| atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG, |
| TST100BTCFG_DEF | TST100BTCFG_LITCH_EN); |
| |
| /* set phy interrupt mask */ |
| phy_data = IER_LINK_UP | IER_LINK_DOWN; |
| err = atl1c_write_phy_reg(hw, MII_IER, phy_data); |
| if (err) { |
| if (netif_msg_hw(adapter)) |
| dev_err(&pdev->dev, |
| "Error enable PHY linkChange Interrupt\n"); |
| return err; |
| } |
| return 0; |
| } |
| |
| int atl1c_phy_init(struct atl1c_hw *hw) |
| { |
| struct atl1c_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| int ret_val; |
| u16 mii_bmcr_data = BMCR_RESET; |
| |
| if (hw->nic_type == athr_mt) { |
| hw->phy_configured = true; |
| return 0; |
| } |
| |
| if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) || |
| (atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) { |
| dev_err(&pdev->dev, "Error get phy ID\n"); |
| return -1; |
| } |
| switch (hw->media_type) { |
| case MEDIA_TYPE_AUTO_SENSOR: |
| ret_val = atl1c_phy_setup_adv(hw); |
| if (ret_val) { |
| if (netif_msg_link(adapter)) |
| dev_err(&pdev->dev, |
| "Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART; |
| break; |
| case MEDIA_TYPE_100M_FULL: |
| mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX; |
| break; |
| case MEDIA_TYPE_100M_HALF: |
| mii_bmcr_data |= BMCR_SPEED100; |
| break; |
| case MEDIA_TYPE_10M_FULL: |
| mii_bmcr_data |= BMCR_FULLDPLX; |
| break; |
| case MEDIA_TYPE_10M_HALF: |
| break; |
| default: |
| if (netif_msg_link(adapter)) |
| dev_err(&pdev->dev, "Wrong Media type %d\n", |
| hw->media_type); |
| return -1; |
| } |
| |
| ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); |
| if (ret_val) |
| return ret_val; |
| hw->phy_configured = true; |
| |
| return 0; |
| } |
| |
| bool atl1c_get_link_status(struct atl1c_hw *hw) |
| { |
| u16 phy_data; |
| |
| if (hw->nic_type == athr_mt) { |
| u32 spd; |
| |
| AT_READ_REG(hw, REG_MT_SPEED, &spd); |
| return !!spd; |
| } |
| |
| /* MII_BMSR must be read twice */ |
| atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); |
| atl1c_read_phy_reg(hw, MII_BMSR, &phy_data); |
| return !!(phy_data & BMSR_LSTATUS); |
| } |
| |
| /* |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| */ |
| int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex) |
| { |
| int err; |
| u16 phy_data; |
| |
| if (hw->nic_type == athr_mt) { |
| u32 spd; |
| |
| AT_READ_REG(hw, REG_MT_SPEED, &spd); |
| *speed = spd; |
| *duplex = FULL_DUPLEX; |
| return 0; |
| } |
| |
| /* Read PHY Specific Status Register (17) */ |
| err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data); |
| if (err) |
| return err; |
| |
| if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED)) |
| return -1; |
| |
| switch (phy_data & GIGA_PSSR_SPEED) { |
| case GIGA_PSSR_1000MBS: |
| *speed = SPEED_1000; |
| break; |
| case GIGA_PSSR_100MBS: |
| *speed = SPEED_100; |
| break; |
| case GIGA_PSSR_10MBS: |
| *speed = SPEED_10; |
| break; |
| default: |
| return -1; |
| } |
| |
| if (phy_data & GIGA_PSSR_DPLX) |
| *duplex = FULL_DUPLEX; |
| else |
| *duplex = HALF_DUPLEX; |
| |
| return 0; |
| } |
| |
| /* select one link mode to get lower power consumption */ |
| int atl1c_phy_to_ps_link(struct atl1c_hw *hw) |
| { |
| struct atl1c_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| int ret = 0; |
| u16 autoneg_advertised = ADVERTISED_10baseT_Half; |
| u16 save_autoneg_advertised; |
| u16 mii_lpa_data; |
| u16 speed = SPEED_0; |
| u16 duplex = FULL_DUPLEX; |
| int i; |
| |
| if (atl1c_get_link_status(hw)) { |
| atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data); |
| if (mii_lpa_data & LPA_10FULL) |
| autoneg_advertised = ADVERTISED_10baseT_Full; |
| else if (mii_lpa_data & LPA_10HALF) |
| autoneg_advertised = ADVERTISED_10baseT_Half; |
| else if (mii_lpa_data & LPA_100HALF) |
| autoneg_advertised = ADVERTISED_100baseT_Half; |
| else if (mii_lpa_data & LPA_100FULL) |
| autoneg_advertised = ADVERTISED_100baseT_Full; |
| |
| save_autoneg_advertised = hw->autoneg_advertised; |
| hw->phy_configured = false; |
| hw->autoneg_advertised = autoneg_advertised; |
| if (atl1c_restart_autoneg(hw) != 0) { |
| dev_dbg(&pdev->dev, "phy autoneg failed\n"); |
| ret = -1; |
| } |
| hw->autoneg_advertised = save_autoneg_advertised; |
| |
| if (mii_lpa_data) { |
| for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) { |
| mdelay(100); |
| if (atl1c_get_link_status(hw)) { |
| if (atl1c_get_speed_and_duplex(hw, &speed, |
| &duplex) != 0) |
| dev_dbg(&pdev->dev, |
| "get speed and duplex failed\n"); |
| break; |
| } |
| } |
| } |
| } else { |
| speed = SPEED_10; |
| duplex = HALF_DUPLEX; |
| } |
| adapter->link_speed = speed; |
| adapter->link_duplex = duplex; |
| |
| return ret; |
| } |
| |
| int atl1c_restart_autoneg(struct atl1c_hw *hw) |
| { |
| int err = 0; |
| u16 mii_bmcr_data = BMCR_RESET; |
| |
| err = atl1c_phy_setup_adv(hw); |
| if (err) |
| return err; |
| mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART; |
| |
| return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); |
| } |
| |
| int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc) |
| { |
| struct atl1c_adapter *adapter = hw->adapter; |
| struct pci_dev *pdev = adapter->pdev; |
| u32 master_ctrl, mac_ctrl, phy_ctrl; |
| u32 wol_ctrl, speed; |
| u16 phy_data; |
| |
| wol_ctrl = 0; |
| speed = adapter->link_speed == SPEED_1000 ? |
| MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100; |
| |
| AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl); |
| AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl); |
| AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl); |
| |
| master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS; |
| mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed); |
| mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN); |
| if (adapter->link_duplex == FULL_DUPLEX) |
| mac_ctrl |= MAC_CTRL_DUPLX; |
| phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS); |
| phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE | |
| GPHY_CTRL_HIB_EN; |
| if (!wufc) { /* without WoL */ |
| master_ctrl |= MASTER_CTRL_CLK_SEL_DIS; |
| phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW; |
| AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl); |
| AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl); |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl); |
| AT_WRITE_REG(hw, REG_WOL_CTRL, 0); |
| hw->phy_configured = false; /* re-init PHY when resume */ |
| return 0; |
| } |
| phy_ctrl |= GPHY_CTRL_EXT_RESET; |
| if (wufc & AT_WUFC_MAG) { |
| mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN; |
| wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN; |
| if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11) |
| wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN; |
| } |
| if (wufc & AT_WUFC_LNKC) { |
| wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN; |
| if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) { |
| dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n", |
| atl1c_driver_name); |
| } |
| } |
| /* clear PHY interrupt */ |
| atl1c_read_phy_reg(hw, MII_ISR, &phy_data); |
| |
| dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n", |
| atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl); |
| AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl); |
| AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl); |
| AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl); |
| AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl); |
| |
| return 0; |
| } |
| |
| |
| /* configure phy after Link change Event */ |
| void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed) |
| { |
| u16 phy_val; |
| bool adj_thresh = false; |
| |
| if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 || |
| hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2) |
| adj_thresh = true; |
| |
| if (link_speed != SPEED_0) { /* link up */ |
| /* az with brcm, half-amp */ |
| if (hw->nic_type == athr_l1d_2) { |
| atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6, |
| &phy_val); |
| phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN); |
| phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ? |
| AZ_ANADECT_LONG : AZ_ANADECT_DEF; |
| atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val); |
| } |
| /* threshold adjust */ |
| if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) { |
| atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP); |
| atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, |
| L1D_SYSMODCTRL_IECHOADJ_DEF); |
| } |
| } else { /* link down */ |
| if (adj_thresh && hw->msi_lnkpatch) { |
| atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL, |
| SYSMODCTRL_IECHOADJ_DEF); |
| atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, |
| L1D_MSE16DB_DOWN); |
| } |
| } |
| } |