blob: a97f691839e04f10a14e564cb667bb541904f27c [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"
struct qed_pi_info {
qed_int_comp_cb_t comp_cb;
void *cookie;
};
struct qed_sb_sp_info {
struct qed_sb_info sb_info;
/* per protocol index data */
struct qed_pi_info pi_info_arr[PIS_PER_SB];
};
enum qed_attention_type {
QED_ATTN_TYPE_ATTN,
QED_ATTN_TYPE_PARITY,
};
#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
struct aeu_invert_reg_bit {
char bit_name[30];
#define ATTENTION_PARITY (1 << 0)
#define ATTENTION_LENGTH_MASK (0x00000ff0)
#define ATTENTION_LENGTH_SHIFT (4)
#define ATTENTION_LENGTH(flags) (((flags) & ATTENTION_LENGTH_MASK) >> \
ATTENTION_LENGTH_SHIFT)
#define ATTENTION_SINGLE BIT(ATTENTION_LENGTH_SHIFT)
#define ATTENTION_PAR (ATTENTION_SINGLE | ATTENTION_PARITY)
#define ATTENTION_PAR_INT ((2 << ATTENTION_LENGTH_SHIFT) | \
ATTENTION_PARITY)
/* Multiple bits start with this offset */
#define ATTENTION_OFFSET_MASK (0x000ff000)
#define ATTENTION_OFFSET_SHIFT (12)
#define ATTENTION_BB_MASK (0x00700000)
#define ATTENTION_BB_SHIFT (20)
#define ATTENTION_BB(value) (value << ATTENTION_BB_SHIFT)
#define ATTENTION_BB_DIFFERENT BIT(23)
#define ATTENTION_CLEAR_ENABLE BIT(28)
unsigned int flags;
/* Callback to call if attention will be triggered */
int (*cb)(struct qed_hwfn *p_hwfn);
enum block_id block_index;
};
struct aeu_invert_reg {
struct aeu_invert_reg_bit bits[32];
};
#define MAX_ATTN_GRPS (8)
#define NUM_ATTN_REGS (9)
/* Specific HW attention callbacks */
static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
{
u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
/* This might occur on certain instances; Log it once then mask it */
DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
tmp);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
0xffffffff);
return 0;
}
#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS (0x1)
#define ATTENTION_INCORRECT_ACCESS_WR_MASK (0x1)
#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT (0)
#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK (0xf)
#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT (1)
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK (0x1)
#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT (5)
#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK (0xff)
#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT (6)
#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK (0xf)
#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT (14)
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK (0xff)
#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT (18)
static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
{
u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
PSWHST_REG_INCORRECT_ACCESS_VALID);
if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
u32 addr, data, length;
addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
PSWHST_REG_INCORRECT_ACCESS_DATA);
length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
PSWHST_REG_INCORRECT_ACCESS_LENGTH);
DP_INFO(p_hwfn->cdev,
"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
addr, length,
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
(u8) GET_FIELD(data,
ATTENTION_INCORRECT_ACCESS_VF_VALID),
(u8) GET_FIELD(data,
ATTENTION_INCORRECT_ACCESS_CLIENT),
(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
(u8) GET_FIELD(data,
ATTENTION_INCORRECT_ACCESS_BYTE_EN),
data);
}
return 0;
}
#define QED_GRC_ATTENTION_VALID_BIT (1 << 0)
#define QED_GRC_ATTENTION_ADDRESS_MASK (0x7fffff)
#define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
#define QED_GRC_ATTENTION_RDWR_BIT (1 << 23)
#define QED_GRC_ATTENTION_MASTER_MASK (0xf)
#define QED_GRC_ATTENTION_MASTER_SHIFT (24)
#define QED_GRC_ATTENTION_PF_MASK (0xf)
#define QED_GRC_ATTENTION_PF_SHIFT (0)
#define QED_GRC_ATTENTION_VF_MASK (0xff)
#define QED_GRC_ATTENTION_VF_SHIFT (4)
#define QED_GRC_ATTENTION_PRIV_MASK (0x3)
#define QED_GRC_ATTENTION_PRIV_SHIFT (14)
#define QED_GRC_ATTENTION_PRIV_VF (0)
static const char *attn_master_to_str(u8 master)
{
switch (master) {
case 1: return "PXP";
case 2: return "MCP";
case 3: return "MSDM";
case 4: return "PSDM";
case 5: return "YSDM";
case 6: return "USDM";
case 7: return "TSDM";
case 8: return "XSDM";
case 9: return "DBU";
case 10: return "DMAE";
default:
return "Unknown";
}
}
static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
{
u32 tmp, tmp2;
/* We've already cleared the timeout interrupt register, so we learn
* of interrupts via the validity register
*/
tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
goto out;
/* Read the GRC timeout information */
tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
DP_INFO(p_hwfn->cdev,
"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
tmp2, tmp,
(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
out:
/* Regardles of anything else, clean the validity bit */
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
return 0;
}
#define PGLUE_ATTENTION_VALID (1 << 29)
#define PGLUE_ATTENTION_RD_VALID (1 << 26)
#define PGLUE_ATTENTION_DETAILS_PFID_MASK (0xf)
#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT (20)
#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK (0x1)
#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT (19)
#define PGLUE_ATTENTION_DETAILS_VFID_MASK (0xff)
#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT (24)
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK (0x1)
#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT (21)
#define PGLUE_ATTENTION_DETAILS2_BME_MASK (0x1)
#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT (22)
#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK (0x1)
#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT (23)
#define PGLUE_ATTENTION_ICPL_VALID (1 << 23)
#define PGLUE_ATTENTION_ZLR_VALID (1 << 25)
#define PGLUE_ATTENTION_ILT_VALID (1 << 23)
int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
bool hw_init)
{
char msg[256];
u32 tmp;
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
if (tmp & PGLUE_ATTENTION_VALID) {
u32 addr_lo, addr_hi, details;
addr_lo = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
addr_hi = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
details = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_WR_DETAILS);
snprintf(msg, sizeof(msg),
"Illegal write by chip to [%08x:%08x] blocked.\n"
"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
addr_hi, addr_lo, details,
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
!!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
tmp,
!!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
!!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
!!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
if (hw_init)
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
else
DP_NOTICE(p_hwfn, "%s\n", msg);
}
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
if (tmp & PGLUE_ATTENTION_RD_VALID) {
u32 addr_lo, addr_hi, details;
addr_lo = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
addr_hi = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
details = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_TX_ERR_RD_DETAILS);
DP_NOTICE(p_hwfn,
"Illegal read by chip from [%08x:%08x] blocked.\n"
"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
addr_hi, addr_lo, details,
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
GET_FIELD(details,
PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
tmp,
GET_FIELD(tmp,
PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
GET_FIELD(tmp,
PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
GET_FIELD(tmp,
PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
}
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
if (hw_init)
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
else
DP_NOTICE(p_hwfn, "%s\n", msg);
}
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
u32 addr_hi, addr_lo;
addr_lo = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
addr_hi = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
tmp, addr_hi, addr_lo);
}
tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
if (tmp & PGLUE_ATTENTION_ILT_VALID) {
u32 addr_hi, addr_lo, details;
addr_lo = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
addr_hi = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
details = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_VF_ILT_ERR_DETAILS);
DP_NOTICE(p_hwfn,
"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
details, tmp, addr_hi, addr_lo);
}
/* Clear the indications */
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
return 0;
}
static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
{
return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
}
static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
{
qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
"FW assertion!\n");
/* Clear assert indications */
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
return -EINVAL;
}
static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
{
DP_INFO(p_hwfn, "General attention 35!\n");
return 0;
}
#define QED_DORQ_ATTENTION_REASON_MASK (0xfffff)
#define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
#define QED_DORQ_ATTENTION_SIZE_MASK (0x7f)
#define QED_DORQ_ATTENTION_SIZE_SHIFT (16)
#define QED_DB_REC_COUNT 1000
#define QED_DB_REC_INTERVAL 100
static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 count = QED_DB_REC_COUNT;
u32 usage = 1;
/* Flush any pending (e)dpms as they may never arrive */
qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
/* wait for usage to zero or count to run out. This is necessary since
* EDPM doorbell transactions can take multiple 64b cycles, and as such
* can "split" over the pci. Possibly, the doorbell drop can happen with
* half an EDPM in the queue and other half dropped. Another EDPM
* doorbell to the same address (from doorbell recovery mechanism or
* from the doorbelling entity) could have first half dropped and second
* half interpreted as continuation of the first. To prevent such
* malformed doorbells from reaching the device, flush the queue before
* releasing the overflow sticky indication.
*/
while (count-- && usage) {
usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
udelay(QED_DB_REC_INTERVAL);
}
/* should have been depleted by now */
if (usage) {
DP_NOTICE(p_hwfn->cdev,
"DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
return -EBUSY;
}
return 0;
}
int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 attn_ovfl, cur_ovfl;
int rc;
attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
&p_hwfn->db_recovery_info.overflow);
cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
if (!cur_ovfl && !attn_ovfl)
return 0;
DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
attn_ovfl, cur_ovfl);
if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
if (rc)
return rc;
}
/* Release overflow sticky indication (stop silently dropping everything) */
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
/* Repeat all last doorbells (doorbell drop recovery) */
qed_db_recovery_execute(p_hwfn);
return 0;
}
static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
{
struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
u32 overflow;
int rc;
overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
if (!overflow)
goto out;
/* Run PF doorbell recovery in next periodic handler */
set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
if (!p_hwfn->db_bar_no_edpm) {
rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
if (rc)
goto out;
}
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
out:
/* Schedule the handler even if overflow was not detected */
qed_periodic_db_rec_start(p_hwfn);
}
static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
{
u32 int_sts, first_drop_reason, details, address, all_drops_reason;
struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
if (int_sts == 0xdeadbeaf) {
DP_NOTICE(p_hwfn->cdev,
"DORQ is being reset, skipping int_sts handler\n");
return 0;
}
/* int_sts may be zero since all PFs were interrupted for doorbell
* overflow but another one already handled it. Can abort here. If
* This PF also requires overflow recovery we will be interrupted again.
* The masked almost full indication may also be set. Ignoring.
*/
if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
return 0;
DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
/* check if db_drop or overflow happened */
if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
/* Obtain data about db drop/overflow */
first_drop_reason = qed_rd(p_hwfn, p_ptt,
DORQ_REG_DB_DROP_REASON) &
QED_DORQ_ATTENTION_REASON_MASK;
details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
address = qed_rd(p_hwfn, p_ptt,
DORQ_REG_DB_DROP_DETAILS_ADDRESS);
all_drops_reason = qed_rd(p_hwfn, p_ptt,
DORQ_REG_DB_DROP_DETAILS_REASON);
/* Log info */
DP_NOTICE(p_hwfn->cdev,
"Doorbell drop occurred\n"
"Address\t\t0x%08x\t(second BAR address)\n"
"FID\t\t0x%04x\t\t(Opaque FID)\n"
"Size\t\t0x%04x\t\t(in bytes)\n"
"1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
"Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
address,
GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
first_drop_reason, all_drops_reason);
/* Clear the doorbell drop details and prepare for next drop */
qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
/* Mark interrupt as handled (note: even if drop was due to a different
* reason than overflow we mark as handled)
*/
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_INT_STS_WR,
DORQ_REG_INT_STS_DB_DROP |
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
/* If there are no indications other than drop indications, success */
if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
return 0;
}
/* Some other indication was present - non recoverable */
DP_INFO(p_hwfn, "DORQ fatal attention\n");
return -EINVAL;
}
static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
{
if (p_hwfn->cdev->recov_in_prog)
return 0;
p_hwfn->db_recovery_info.dorq_attn = true;
qed_dorq_attn_overflow(p_hwfn);
return qed_dorq_attn_int_sts(p_hwfn);
}
static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
{
if (p_hwfn->db_recovery_info.dorq_attn)
goto out;
/* Call DORQ callback if the attention was missed */
qed_dorq_attn_cb(p_hwfn);
out:
p_hwfn->db_recovery_info.dorq_attn = false;
}
/* Instead of major changes to the data-structure, we have a some 'special'
* identifiers for sources that changed meaning between adapters.
*/
enum aeu_invert_reg_special_type {
AEU_INVERT_REG_SPECIAL_CNIG_0,
AEU_INVERT_REG_SPECIAL_CNIG_1,
AEU_INVERT_REG_SPECIAL_CNIG_2,
AEU_INVERT_REG_SPECIAL_CNIG_3,
AEU_INVERT_REG_SPECIAL_MAX,
};
static struct aeu_invert_reg_bit
aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
};
/* Notice aeu_invert_reg must be defined in the same order of bits as HW; */
static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
{
{ /* After Invert 1 */
{"GPIO0 function%d",
(32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
}
},
{
{ /* After Invert 2 */
{"PGLUE config_space", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"PGLUE misc_flr", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"PGLUE B RBC", ATTENTION_PAR_INT,
qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
{"PGLUE misc_mctp", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
{"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
(1 << ATTENTION_OFFSET_SHIFT),
NULL, MAX_BLOCK_ID},
{"PCIE glue/PXP VPD %d",
(16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
}
},
{
{ /* After Invert 3 */
{"General Attention %d",
(32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
}
},
{
{ /* After Invert 4 */
{"General Attention 32", ATTENTION_SINGLE |
ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
MAX_BLOCK_ID},
{"General Attention %d",
(2 << ATTENTION_LENGTH_SHIFT) |
(33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
{"General Attention 35", ATTENTION_SINGLE |
ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
MAX_BLOCK_ID},
{"NWS Parity",
ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
NULL, BLOCK_NWS},
{"NWS Interrupt",
ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
NULL, BLOCK_NWS},
{"NWM Parity",
ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
NULL, BLOCK_NWM},
{"NWM Interrupt",
ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
NULL, BLOCK_NWM},
{"MCP CPU", ATTENTION_SINGLE,
qed_mcp_attn_cb, MAX_BLOCK_ID},
{"MCP Watchdog timer", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
{"AVS stop status ready", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
{"MSTAT per-path", ATTENTION_PAR_INT,
NULL, MAX_BLOCK_ID},
{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
NULL, MAX_BLOCK_ID},
{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
{"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
{"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
{"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
}
},
{
{ /* After Invert 5 */
{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
{"MCM", ATTENTION_PAR_INT, NULL, BLOCK_MCM},
{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
}
},
{
{ /* After Invert 6 */
{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
{"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
{"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
{"DORQ", ATTENTION_PAR_INT,
qed_dorq_attn_cb, BLOCK_DORQ},
{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
{"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
}
},
{
{ /* After Invert 7 */
{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
}
},
{
{ /* After Invert 8 */
{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
NULL, BLOCK_PSWRQ2},
{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
NULL, BLOCK_PSWWR2},
{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
NULL, BLOCK_PSWRD2},
{"PSWHST", ATTENTION_PAR_INT,
qed_pswhst_attn_cb, BLOCK_PSWHST},
{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
NULL, BLOCK_PSWHST2},
{"GRC", ATTENTION_PAR_INT,
qed_grc_attn_cb, BLOCK_GRC},
{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
NULL, BLOCK_PGLCS},
{"PERST_B assertion", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"PERST_B deassertion", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
NULL, MAX_BLOCK_ID},
}
},
{
{ /* After Invert 9 */
{"MCP Latched memory", ATTENTION_PAR,
NULL, MAX_BLOCK_ID},
{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
NULL, MAX_BLOCK_ID},
{"MCP Latched ump_tx", ATTENTION_PAR,
NULL, MAX_BLOCK_ID},
{"MCP Latched scratchpad", ATTENTION_PAR,
NULL, MAX_BLOCK_ID},
{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
NULL, MAX_BLOCK_ID},
}
},
};
static struct aeu_invert_reg_bit *
qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
struct aeu_invert_reg_bit *p_bit)
{
if (!QED_IS_BB(p_hwfn->cdev))
return p_bit;
if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
return p_bit;
return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
ATTENTION_BB_SHIFT];
}
static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
struct aeu_invert_reg_bit *p_bit)
{
return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
ATTENTION_PARITY);
}
#define ATTN_STATE_BITS (0xfff)
#define ATTN_BITS_MASKABLE (0x3ff)
struct qed_sb_attn_info {
/* Virtual & Physical address of the SB */
struct atten_status_block *sb_attn;
dma_addr_t sb_phys;
/* Last seen running index */
u16 index;
/* A mask of the AEU bits resulting in a parity error */
u32 parity_mask[NUM_ATTN_REGS];
/* A pointer to the attention description structure */
struct aeu_invert_reg *p_aeu_desc;
/* Previously asserted attentions, which are still unasserted */
u16 known_attn;
/* Cleanup address for the link's general hw attention */
u32 mfw_attn_addr;
};
static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
struct qed_sb_attn_info *p_sb_desc)
{
u16 rc = 0, index;
index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
if (p_sb_desc->index != index) {
p_sb_desc->index = index;
rc = QED_SB_ATT_IDX;
}
return rc;
}
/**
* qed_int_assertion() - Handle asserted attention bits.
*
* @p_hwfn: HW device data.
* @asserted_bits: Newly asserted bits.
*
* Return: Zero value.
*/
static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
{
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
u32 igu_mask;
/* Mask the source of the attention in the IGU */
igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"inner known ATTN state: 0x%04x --> 0x%04x\n",
sb_attn_sw->known_attn,
sb_attn_sw->known_attn | asserted_bits);
sb_attn_sw->known_attn |= asserted_bits;
/* Handle MCP events */
if (asserted_bits & 0x100) {
qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
/* Clean the MCP attention */
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
sb_attn_sw->mfw_attn_addr, 0);
}
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
((IGU_CMD_ATTN_BIT_SET_UPPER -
IGU_CMD_INT_ACK_BASE) << 3),
(u32)asserted_bits);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
asserted_bits);
return 0;
}
static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
enum block_id id,
enum dbg_attn_type type, bool b_clear)
{
struct dbg_attn_block_result attn_results;
enum dbg_status status;
memset(&attn_results, 0, sizeof(attn_results));
status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
b_clear, &attn_results);
if (status != DBG_STATUS_OK)
DP_NOTICE(p_hwfn,
"Failed to parse attention information [status: %s]\n",
qed_dbg_get_status_str(status));
else
qed_dbg_parse_attn(p_hwfn, &attn_results);
}
/**
* qed_int_deassertion_aeu_bit() - Handles the effects of a single
* cause of the attention.
*
* @p_hwfn: HW device data.
* @p_aeu: Descriptor of an AEU bit which caused the attention.
* @aeu_en_reg: Register offset of the AEU enable reg. which configured
* this bit to this group.
* @p_bit_name: AEU bit description for logging purposes.
* @bitmask: Index of this bit in the aeu_en_reg.
*
* Return: Zero on success, negative errno otherwise.
*/
static int
qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
struct aeu_invert_reg_bit *p_aeu,
u32 aeu_en_reg,
const char *p_bit_name, u32 bitmask)
{
bool b_fatal = false;
int rc = -EINVAL;
u32 val;
DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
p_bit_name, bitmask);
/* Call callback before clearing the interrupt status */
if (p_aeu->cb) {
DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
p_bit_name);
rc = p_aeu->cb(p_hwfn);
}
if (rc)
b_fatal = true;
/* Print HW block interrupt registers */
if (p_aeu->block_index != MAX_BLOCK_ID)
qed_int_attn_print(p_hwfn, p_aeu->block_index,
ATTN_TYPE_INTERRUPT, !b_fatal);
/* Reach assertion if attention is fatal */
if (b_fatal)
qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
"`%s': Fatal attention\n",
p_bit_name);
else /* If the attention is benign, no need to prevent it */
goto out;
/* Prevent this Attention from being asserted in the future */
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
p_bit_name);
/* Re-enable FW aassertion (Gen 32) interrupts */
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
MISC_REG_AEU_ENABLE4_IGU_OUT_0);
val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
out:
return rc;
}
/**
* qed_int_deassertion_parity() - Handle a single parity AEU source.
*
* @p_hwfn: HW device data.
* @p_aeu: Descriptor of an AEU bit which caused the parity.
* @aeu_en_reg: Address of the AEU enable register.
* @bit_index: Index (0-31) of an AEU bit.
*/
static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
struct aeu_invert_reg_bit *p_aeu,
u32 aeu_en_reg, u8 bit_index)
{
u32 block_id = p_aeu->block_index, mask, val;
DP_NOTICE(p_hwfn->cdev,
"%s parity attention is set [address 0x%08x, bit %d]\n",
p_aeu->bit_name, aeu_en_reg, bit_index);
if (block_id != MAX_BLOCK_ID) {
qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
/* In BB, there's a single parity bit for several blocks */
if (block_id == BLOCK_BTB) {
qed_int_attn_print(p_hwfn, BLOCK_OPTE,
ATTN_TYPE_PARITY, false);
qed_int_attn_print(p_hwfn, BLOCK_MCP,
ATTN_TYPE_PARITY, false);
}
}
/* Prevent this parity error from being re-asserted */
mask = ~BIT(bit_index);
val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
p_aeu->bit_name);
}
/**
* qed_int_deassertion() - Handle deassertion of previously asserted
* attentions.
*
* @p_hwfn: HW device data.
* @deasserted_bits: newly deasserted bits.
*
* Return: Zero value.
*/
static int qed_int_deassertion(struct qed_hwfn *p_hwfn,
u16 deasserted_bits)
{
struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
u8 i, j, k, bit_idx;
int rc = 0;
/* Read the attention registers in the AEU */
for (i = 0; i < NUM_ATTN_REGS; i++) {
aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
MISC_REG_AEU_AFTER_INVERT_1_IGU +
i * 0x4);
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Deasserted bits [%d]: %08x\n",
i, aeu_inv_arr[i]);
}
/* Find parity attentions first */
for (i = 0; i < NUM_ATTN_REGS; i++) {
struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
u32 parities;
aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
/* Skip register in which no parity bit is currently set */
parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
if (!parities)
continue;
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
!!(parities & BIT(bit_idx)))
qed_int_deassertion_parity(p_hwfn, p_bit,
aeu_en, bit_idx);
bit_idx += ATTENTION_LENGTH(p_bit->flags);
}
}
/* Find non-parity cause for attention and act */
for (k = 0; k < MAX_ATTN_GRPS; k++) {
struct aeu_invert_reg_bit *p_aeu;
/* Handle only groups whose attention is currently deasserted */
if (!(deasserted_bits & (1 << k)))
continue;
for (i = 0; i < NUM_ATTN_REGS; i++) {
u32 bits;
aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
i * sizeof(u32) +
k * sizeof(u32) * NUM_ATTN_REGS;
en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
bits = aeu_inv_arr[i] & en;
/* Skip if no bit from this group is currently set */
if (!bits)
continue;
/* Find all set bits from current register which belong
* to current group, making them responsible for the
* previous assertion.
*/
for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
long unsigned int bitmask;
u8 bit, bit_len;
p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
bit = bit_idx;
bit_len = ATTENTION_LENGTH(p_aeu->flags);
if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
/* Skip Parity */
bit++;
bit_len--;
}
bitmask = bits & (((1 << bit_len) - 1) << bit);
bitmask >>= bit;
if (bitmask) {
u32 flags = p_aeu->flags;
char bit_name[30];
u8 num;
num = (u8)find_first_bit(&bitmask,
bit_len);
/* Some bits represent more than a
* a single interrupt. Correctly print
* their name.
*/
if (ATTENTION_LENGTH(flags) > 2 ||
((flags & ATTENTION_PAR_INT) &&
ATTENTION_LENGTH(flags) > 1))
snprintf(bit_name, 30,
p_aeu->bit_name, num);
else
strlcpy(bit_name,
p_aeu->bit_name, 30);
/* We now need to pass bitmask in its
* correct position.
*/
bitmask <<= bit;
/* Handle source of the attention */
qed_int_deassertion_aeu_bit(p_hwfn,
p_aeu,
aeu_en,
bit_name,
bitmask);
}
bit_idx += ATTENTION_LENGTH(p_aeu->flags);
}
}
}
/* Handle missed DORQ attention */
qed_dorq_attn_handler(p_hwfn);
/* Clear IGU indication for the deasserted bits */
DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
((IGU_CMD_ATTN_BIT_CLR_UPPER -
IGU_CMD_INT_ACK_BASE) << 3),
~((u32)deasserted_bits));
/* Unmask deasserted attentions in IGU */
aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
/* Clear deassertion from inner state */
sb_attn_sw->known_attn &= ~deasserted_bits;
return rc;
}
static int qed_int_attentions(struct qed_hwfn *p_hwfn)
{
struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
u32 attn_bits = 0, attn_acks = 0;
u16 asserted_bits, deasserted_bits;
__le16 index;
int rc = 0;
/* Read current attention bits/acks - safeguard against attentions
* by guaranting work on a synchronized timeframe
*/
do {
index = p_sb_attn->sb_index;
/* finish reading index before the loop condition */
dma_rmb();
attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
} while (index != p_sb_attn->sb_index);
p_sb_attn->sb_index = index;
/* Attention / Deassertion are meaningful (and in correct state)
* only when they differ and consistent with known state - deassertion
* when previous attention & current ack, and assertion when current
* attention with no previous attention
*/
asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
~p_sb_attn_sw->known_attn;
deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
p_sb_attn_sw->known_attn;
if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
DP_INFO(p_hwfn,
"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
index, attn_bits, attn_acks, asserted_bits,
deasserted_bits, p_sb_attn_sw->known_attn);
} else if (asserted_bits == 0x100) {
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"MFW indication via attention\n");
} else {
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"MFW indication [deassertion]\n");
}
if (asserted_bits) {
rc = qed_int_assertion(p_hwfn, asserted_bits);
if (rc)
return rc;
}
if (deasserted_bits)
rc = qed_int_deassertion(p_hwfn, deasserted_bits);
return rc;
}
static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
void __iomem *igu_addr, u32 ack_cons)
{
u32 igu_ack;
igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
(1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
(IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
(IGU_SEG_ACCESS_ATTN <<
IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
DIRECT_REG_WR(igu_addr, igu_ack);
/* Both segments (interrupts & acks) are written to same place address;
* Need to guarantee all commands will be received (in-order) by HW.
*/
barrier();
}
void qed_int_sp_dpc(struct tasklet_struct *t)
{
struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
struct qed_pi_info *pi_info = NULL;
struct qed_sb_attn_info *sb_attn;
struct qed_sb_info *sb_info;
int arr_size;
u16 rc = 0;
if (!p_hwfn->p_sp_sb) {
DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
return;
}
sb_info = &p_hwfn->p_sp_sb->sb_info;
arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
if (!sb_info) {
DP_ERR(p_hwfn->cdev,
"Status block is NULL - cannot ack interrupts\n");
return;
}
if (!p_hwfn->p_sb_attn) {
DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
return;
}
sb_attn = p_hwfn->p_sb_attn;
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
p_hwfn, p_hwfn->my_id);
/* Disable ack for def status block. Required both for msix +
* inta in non-mask mode, in inta does no harm.
*/
qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
/* Gather Interrupts/Attentions information */
if (!sb_info->sb_virt) {
DP_ERR(p_hwfn->cdev,
"Interrupt Status block is NULL - cannot check for new interrupts!\n");
} else {
u32 tmp_index = sb_info->sb_ack;
rc = qed_sb_update_sb_idx(sb_info);
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
"Interrupt indices: 0x%08x --> 0x%08x\n",
tmp_index, sb_info->sb_ack);
}
if (!sb_attn || !sb_attn->sb_attn) {
DP_ERR(p_hwfn->cdev,
"Attentions Status block is NULL - cannot check for new attentions!\n");
} else {
u16 tmp_index = sb_attn->index;
rc |= qed_attn_update_idx(p_hwfn, sb_attn);
DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
"Attention indices: 0x%08x --> 0x%08x\n",
tmp_index, sb_attn->index);
}
/* Check if we expect interrupts at this time. if not just ack them */
if (!(rc & QED_SB_EVENT_MASK)) {
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
return;
}
/* Check the validity of the DPC ptt. If not ack interrupts and fail */
if (!p_hwfn->p_dpc_ptt) {
DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
return;
}
if (rc & QED_SB_ATT_IDX)
qed_int_attentions(p_hwfn);
if (rc & QED_SB_IDX) {
int pi;
/* Look for a free index */
for (pi = 0; pi < arr_size; pi++) {
pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
if (pi_info->comp_cb)
pi_info->comp_cb(p_hwfn, pi_info->cookie);
}
}
if (sb_attn && (rc & QED_SB_ATT_IDX))
/* This should be done before the interrupts are enabled,
* since otherwise a new attention will be generated.
*/
qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
}
static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
{
struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
if (!p_sb)
return;
if (p_sb->sb_attn)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
SB_ATTN_ALIGNED_SIZE(p_hwfn),
p_sb->sb_attn, p_sb->sb_phys);
kfree(p_sb);
p_hwfn->p_sb_attn = NULL;
}
static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
sb_info->index = 0;
sb_info->known_attn = 0;
/* Configure Attention Status Block in IGU */
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
}
static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
void *sb_virt_addr, dma_addr_t sb_phy_addr)
{
struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
int i, j, k;
sb_info->sb_attn = sb_virt_addr;
sb_info->sb_phys = sb_phy_addr;
/* Set the pointer to the AEU descriptors */
sb_info->p_aeu_desc = aeu_descs;
/* Calculate Parity Masks */
memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
for (i = 0; i < NUM_ATTN_REGS; i++) {
/* j is array index, k is bit index */
for (j = 0, k = 0; k < 32; j++) {
struct aeu_invert_reg_bit *p_aeu;
p_aeu = &aeu_descs[i].bits[j];
if (qed_int_is_parity_flag(p_hwfn, p_aeu))
sb_info->parity_mask[i] |= 1 << k;
k += ATTENTION_LENGTH(p_aeu->flags);
}
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Attn Mask [Reg %d]: 0x%08x\n",
i, sb_info->parity_mask[i]);
}
/* Set the address of cleanup for the mcp attention */
sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
MISC_REG_AEU_GENERAL_ATTN_0;
qed_int_sb_attn_setup(p_hwfn, p_ptt);
}
static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
struct qed_sb_attn_info *p_sb;
dma_addr_t p_phys = 0;
void *p_virt;
/* SB struct */
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
if (!p_sb)
return -ENOMEM;
/* SB ring */
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
SB_ATTN_ALIGNED_SIZE(p_hwfn),
&p_phys, GFP_KERNEL);
if (!p_virt) {
kfree(p_sb);
return -ENOMEM;
}
/* Attention setup */
p_hwfn->p_sb_attn = p_sb;
qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
return 0;
}
/* coalescing timeout = timeset << (timer_res + 1) */
#define QED_CAU_DEF_RX_USECS 24
#define QED_CAU_DEF_TX_USECS 48
void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
struct cau_sb_entry *p_sb_entry,
u8 pf_id, u16 vf_number, u8 vf_valid)
{
struct qed_dev *cdev = p_hwfn->cdev;
u32 cau_state, params = 0, data = 0;
u8 timer_res;
memset(p_sb_entry, 0, sizeof(*p_sb_entry));
SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
cau_state = CAU_HC_DISABLE_STATE;
if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
cau_state = CAU_HC_ENABLE_STATE;
if (!cdev->rx_coalesce_usecs)
cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
if (!cdev->tx_coalesce_usecs)
cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
}
/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
if (cdev->rx_coalesce_usecs <= 0x7F)
timer_res = 0;
else if (cdev->rx_coalesce_usecs <= 0xFF)
timer_res = 1;
else
timer_res = 2;
SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
if (cdev->tx_coalesce_usecs <= 0x7F)
timer_res = 0;
else if (cdev->tx_coalesce_usecs <= 0xFF)
timer_res = 1;
else
timer_res = 2;
SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
p_sb_entry->params = cpu_to_le32(params);
SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
p_sb_entry->data = cpu_to_le32(data);
}
static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 igu_sb_id,
u32 pi_index,
enum qed_coalescing_fsm coalescing_fsm,
u8 timeset)
{
u32 sb_offset, pi_offset;
u32 prod = 0;
if (IS_VF(p_hwfn->cdev))
return;
SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
else
SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
sb_offset = igu_sb_id * PIS_PER_SB;
pi_offset = sb_offset + pi_index;
if (p_hwfn->hw_init_done)
qed_wr(p_hwfn, p_ptt,
CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
else
STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
prod);
}
void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
dma_addr_t sb_phys,
u16 igu_sb_id, u16 vf_number, u8 vf_valid)
{
struct cau_sb_entry sb_entry;
qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
vf_number, vf_valid);
if (p_hwfn->hw_init_done) {
/* Wide-bus, initialize via DMAE */
u64 phys_addr = (u64)sb_phys;
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
CAU_REG_SB_ADDR_MEMORY +
igu_sb_id * sizeof(u64), 2, NULL);
qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
CAU_REG_SB_VAR_MEMORY +
igu_sb_id * sizeof(u64), 2, NULL);
} else {
/* Initialize Status Block Address */
STORE_RT_REG_AGG(p_hwfn,
CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
igu_sb_id * 2,
sb_phys);
STORE_RT_REG_AGG(p_hwfn,
CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
igu_sb_id * 2,
sb_entry);
}
/* Configure pi coalescing if set */
if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
u8 num_tc = p_hwfn->hw_info.num_hw_tc;
u8 timeset, timer_res;
u8 i;
/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
timer_res = 0;
else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
timer_res = 1;
else
timer_res = 2;
timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
QED_COAL_RX_STATE_MACHINE, timeset);
if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
timer_res = 0;
else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
timer_res = 1;
else
timer_res = 2;
timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
for (i = 0; i < num_tc; i++) {
qed_int_cau_conf_pi(p_hwfn, p_ptt,
igu_sb_id, TX_PI(i),
QED_COAL_TX_STATE_MACHINE,
timeset);
}
}
}
void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
{
/* zero status block and ack counter */
sb_info->sb_ack = 0;
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
if (IS_PF(p_hwfn->cdev))
qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
sb_info->igu_sb_id, 0, 0);
}
struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
{
struct qed_igu_block *p_block;
u16 igu_id;
for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
igu_id++) {
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
!(p_block->status & QED_IGU_STATUS_FREE))
continue;
if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
return p_block;
}
return NULL;
}
static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
{
struct qed_igu_block *p_block;
u16 igu_id;
for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
igu_id++) {
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
!p_block->is_pf ||
p_block->vector_number != vector_id)
continue;
return igu_id;
}
return QED_SB_INVALID_IDX;
}
u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
{
u16 igu_sb_id;
/* Assuming continuous set of IGU SBs dedicated for given PF */
if (sb_id == QED_SP_SB_ID)
igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
else if (IS_PF(p_hwfn->cdev))
igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
else
igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
if (sb_id == QED_SP_SB_ID)
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
else
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
return igu_sb_id;
}
int qed_int_sb_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_sb_info *sb_info,
void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
{
sb_info->sb_virt = sb_virt_addr;
sb_info->sb_phys = sb_phy_addr;
sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
if (sb_id != QED_SP_SB_ID) {
if (IS_PF(p_hwfn->cdev)) {
struct qed_igu_info *p_info;
struct qed_igu_block *p_block;
p_info = p_hwfn->hw_info.p_igu_info;
p_block = &p_info->entry[sb_info->igu_sb_id];
p_block->sb_info = sb_info;
p_block->status &= ~QED_IGU_STATUS_FREE;
p_info->usage.free_cnt--;
} else {
qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
}
}
sb_info->cdev = p_hwfn->cdev;
/* The igu address will hold the absolute address that needs to be
* written to for a specific status block
*/
if (IS_PF(p_hwfn->cdev)) {
sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
GTT_BAR0_MAP_REG_IGU_CMD +
(sb_info->igu_sb_id << 3);
} else {
sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
PXP_VF_BAR0_START_IGU +
((IGU_CMD_INT_ACK_BASE +
sb_info->igu_sb_id) << 3);
}
sb_info->flags |= QED_SB_INFO_INIT;
qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
return 0;
}
int qed_int_sb_release(struct qed_hwfn *p_hwfn,
struct qed_sb_info *sb_info, u16 sb_id)
{
struct qed_igu_block *p_block;
struct qed_igu_info *p_info;
if (!sb_info)
return 0;
/* zero status block and ack counter */
sb_info->sb_ack = 0;
memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
if (IS_VF(p_hwfn->cdev)) {
qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
return 0;
}
p_info = p_hwfn->hw_info.p_igu_info;
p_block = &p_info->entry[sb_info->igu_sb_id];
/* Vector 0 is reserved to Default SB */
if (!p_block->vector_number) {
DP_ERR(p_hwfn, "Do Not free sp sb using this function");
return -EINVAL;
}
/* Lose reference to client's SB info, and fix counters */
p_block->sb_info = NULL;
p_block->status |= QED_IGU_STATUS_FREE;
p_info->usage.free_cnt++;
return 0;
}
static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
{
struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
if (!p_sb)
return;
if (p_sb->sb_info.sb_virt)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
SB_ALIGNED_SIZE(p_hwfn),
p_sb->sb_info.sb_virt,
p_sb->sb_info.sb_phys);
kfree(p_sb);
p_hwfn->p_sp_sb = NULL;
}
static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_sb_sp_info *p_sb;
dma_addr_t p_phys = 0;
void *p_virt;
/* SB struct */
p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
if (!p_sb)
return -ENOMEM;
/* SB ring */
p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
SB_ALIGNED_SIZE(p_hwfn),
&p_phys, GFP_KERNEL);
if (!p_virt) {
kfree(p_sb);
return -ENOMEM;
}
/* Status Block setup */
p_hwfn->p_sp_sb = p_sb;
qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
p_phys, QED_SP_SB_ID);
memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
return 0;
}
int qed_int_register_cb(struct qed_hwfn *p_hwfn,
qed_int_comp_cb_t comp_cb,
void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
{
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
int rc = -ENOMEM;
u8 pi;
/* Look for a free index */
for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
if (p_sp_sb->pi_info_arr[pi].comp_cb)
continue;
p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
p_sp_sb->pi_info_arr[pi].cookie = cookie;
*sb_idx = pi;
*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
rc = 0;
break;
}
return rc;
}
int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
{
struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
return -ENOMEM;
p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
p_sp_sb->pi_info_arr[pi].cookie = NULL;
return 0;
}
u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
{
return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
}
void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
{
u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
p_hwfn->cdev->int_mode = int_mode;
switch (p_hwfn->cdev->int_mode) {
case QED_INT_MODE_INTA:
igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
break;
case QED_INT_MODE_MSI:
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
break;
case QED_INT_MODE_MSIX:
igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
break;
case QED_INT_MODE_POLL:
break;
}
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
}
static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
/* Configure AEU signal change to produce attentions */
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
/* Unmask AEU signals toward IGU */
qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
}
int
qed_int_igu_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
{
int rc = 0;
qed_int_igu_enable_attn(p_hwfn, p_ptt);
if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
rc = qed_slowpath_irq_req(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
return -EINVAL;
}
p_hwfn->b_int_requested = true;
}
/* Enable interrupt Generation */
qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
p_hwfn->b_int_enabled = 1;
return rc;
}
void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
p_hwfn->b_int_enabled = 0;
if (IS_VF(p_hwfn->cdev))
return;
qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
}
#define IGU_CLEANUP_SLEEP_LENGTH (1000)
static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 igu_sb_id,
bool cleanup_set, u16 opaque_fid)
{
u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
/* Set the data field */
SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
/* Set the control register */
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
barrier();
qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
/* calculate where to read the status bit from */
sb_bit = 1 << (igu_sb_id % 32);
sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
/* Now wait for the command to complete */
do {
val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
break;
usleep_range(5000, 10000);
} while (--sleep_cnt);
if (!sleep_cnt)
DP_NOTICE(p_hwfn,
"Timeout waiting for clear status 0x%08x [for sb %d]\n",
val, igu_sb_id);
}
void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 igu_sb_id, u16 opaque, bool b_set)
{
struct qed_igu_block *p_block;
int pi, i;
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
igu_sb_id,
p_block->function_id,
p_block->is_pf, p_block->vector_number);
/* Set */
if (b_set)
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
/* Clear */
qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
/* Wait for the IGU SB to cleanup */
for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
u32 val;
val = qed_rd(p_hwfn, p_ptt,
IGU_REG_WRITE_DONE_PENDING +
((igu_sb_id / 32) * 4));
if (val & BIT((igu_sb_id % 32)))
usleep_range(10, 20);
else
break;
}
if (i == IGU_CLEANUP_SLEEP_LENGTH)
DP_NOTICE(p_hwfn,
"Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
igu_sb_id);
/* Clear the CAU for the SB */
for (pi = 0; pi < 12; pi++)
qed_wr(p_hwfn, p_ptt,
CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
}
void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool b_set, bool b_slowpath)
{
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
struct qed_igu_block *p_block;
u16 igu_sb_id = 0;
u32 val = 0;
val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
for (igu_sb_id = 0;
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
p_block = &p_info->entry[igu_sb_id];
if (!(p_block->status & QED_IGU_STATUS_VALID) ||
!p_block->is_pf ||
(p_block->status & QED_IGU_STATUS_DSB))
continue;
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
p_hwfn->hw_info.opaque_fid,
b_set);
}
if (b_slowpath)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
p_info->igu_dsb_id,
p_hwfn->hw_info.opaque_fid,
b_set);
}
int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
struct qed_igu_block *p_block;
int pf_sbs, vf_sbs;
u16 igu_sb_id;
u32 val, rval;
if (!RESC_NUM(p_hwfn, QED_SB)) {
p_info->b_allow_pf_vf_change = false;
} else {
/* Use the numbers the MFW have provided -
* don't forget MFW accounts for the default SB as well.
*/
p_info->b_allow_pf_vf_change = true;
if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
DP_INFO(p_hwfn,
"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
RESC_NUM(p_hwfn, QED_SB) - 1,
p_info->usage.cnt);
p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
}
if (IS_PF_SRIOV(p_hwfn)) {
u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
if (vfs != p_info->usage.iov_cnt)
DP_VERBOSE(p_hwfn,
NETIF_MSG_INTR,
"0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
p_info->usage.iov_cnt, vfs);
/* At this point we know how many SBs we have totally
* in IGU + number of PF SBs. So we can validate that
* we'd have sufficient for VF.
*/
if (vfs > p_info->usage.free_cnt +
p_info->usage.free_cnt_iov - p_info->usage.cnt) {
DP_NOTICE(p_hwfn,
"Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
p_info->usage.free_cnt +
p_info->usage.free_cnt_iov,
p_info->usage.cnt, vfs);
return -EINVAL;
}
/* Currently cap the number of VFs SBs by the
* number of VFs.
*/
p_info->usage.iov_cnt = vfs;
}
}
/* Mark all SBs as free, now in the right PF/VFs division */
p_info->usage.free_cnt = p_info->usage.cnt;
p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
p_info->usage.orig = p_info->usage.cnt;
p_info->usage.iov_orig = p_info->usage.iov_cnt;
/* We now proceed to re-configure the IGU cam to reflect the initial
* configuration. We can start with the Default SB.
*/
pf_sbs = p_info->usage.cnt;
vf_sbs = p_info->usage.iov_cnt;
for (igu_sb_id = p_info->igu_dsb_id;
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
p_block = &p_info->entry[igu_sb_id];
val = 0;
if (!(p_block->status & QED_IGU_STATUS_VALID))
continue;
if (p_block->status & QED_IGU_STATUS_DSB) {
p_block->function_id = p_hwfn->rel_pf_id;
p_block->is_pf = 1;
p_block->vector_number = 0;
p_block->status = QED_IGU_STATUS_VALID |
QED_IGU_STATUS_PF |
QED_IGU_STATUS_DSB;
} else if (pf_sbs) {
pf_sbs--;
p_block->function_id = p_hwfn->rel_pf_id;
p_block->is_pf = 1;
p_block->vector_number = p_info->usage.cnt - pf_sbs;
p_block->status = QED_IGU_STATUS_VALID |
QED_IGU_STATUS_PF |
QED_IGU_STATUS_FREE;
} else if (vf_sbs) {
p_block->function_id =
p_hwfn->cdev->p_iov_info->first_vf_in_pf +
p_info->usage.iov_cnt - vf_sbs;
p_block->is_pf = 0;
p_block->vector_number = 0;
p_block->status = QED_IGU_STATUS_VALID |
QED_IGU_STATUS_FREE;
vf_sbs--;
} else {
p_block->function_id = 0;
p_block->is_pf = 0;
p_block->vector_number = 0;
}
SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
p_block->function_id);
SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
p_block->vector_number);
/* VF entries would be enabled when VF is initializaed */
SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
rval = qed_rd(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
if (rval != val) {
qed_wr(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY +
sizeof(u32) * igu_sb_id, val);
DP_VERBOSE(p_hwfn,
NETIF_MSG_INTR,
"IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
igu_sb_id,
p_block->function_id,
p_block->is_pf,
p_block->vector_number, rval, val);
}
}
return 0;
}
static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 igu_sb_id)
{
u32 val = qed_rd(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
struct qed_igu_block *p_block;
p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
/* Fill the block information */
p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
p_block->igu_sb_id = igu_sb_id;
}
int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_igu_info *p_igu_info;
struct qed_igu_block *p_block;
u32 min_vf = 0, max_vf = 0;
u16 igu_sb_id;
p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
if (!p_hwfn->hw_info.p_igu_info)
return -ENOMEM;
p_igu_info = p_hwfn->hw_info.p_igu_info;
/* Distinguish between existent and non-existent default SB */
p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
/* Find the range of VF ids whose SB belong to this PF */
if (p_hwfn->cdev->p_iov_info) {
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
min_vf = p_iov->first_vf_in_pf;
max_vf = p_iov->first_vf_in_pf + p_iov->total_vfs;
}
for (igu_sb_id = 0;
igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
/* Read current entry; Notice it might not belong to this PF */
qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
p_block = &p_igu_info->entry[igu_sb_id];
if ((p_block->is_pf) &&
(p_block->function_id == p_hwfn->rel_pf_id)) {
p_block->status = QED_IGU_STATUS_PF |
QED_IGU_STATUS_VALID |
QED_IGU_STATUS_FREE;
if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
p_igu_info->usage.cnt++;
} else if (!(p_block->is_pf) &&
(p_block->function_id >= min_vf) &&
(p_block->function_id < max_vf)) {
/* Available for VFs of this PF */
p_block->status = QED_IGU_STATUS_VALID |
QED_IGU_STATUS_FREE;
if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
p_igu_info->usage.iov_cnt++;
}
/* Mark the First entry belonging to the PF or its VFs
* as the default SB [we'll reset IGU prior to first usage].
*/
if ((p_block->status & QED_IGU_STATUS_VALID) &&
(p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
p_igu_info->igu_dsb_id = igu_sb_id;
p_block->status |= QED_IGU_STATUS_DSB;
}
/* limit number of prints by having each PF print only its
* entries with the exception of PF0 which would print
* everything.
*/
if ((p_block->status & QED_IGU_STATUS_VALID) ||
(p_hwfn->abs_pf_id == 0)) {
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
igu_sb_id, p_block->function_id,
p_block->is_pf, p_block->vector_number);
}
}
if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
DP_NOTICE(p_hwfn,
"IGU CAM returned invalid values igu_dsb_id=0x%x\n",
p_igu_info->igu_dsb_id);
return -EINVAL;
}
/* All non default SB are considered free at this point */
p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
"igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
p_igu_info->igu_dsb_id,
p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
return 0;
}
/**
* qed_int_igu_init_rt() - Initialize IGU runtime registers.
*
* @p_hwfn: HW device data.
*/
void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
{
u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
}
u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
{
u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
IGU_CMD_INT_ACK_BASE;
u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
IGU_CMD_INT_ACK_BASE;
u32 intr_status_hi = 0, intr_status_lo = 0;
u64 intr_status = 0;
intr_status_lo = REG_RD(p_hwfn,
GTT_BAR0_MAP_REG_IGU_CMD +
lsb_igu_cmd_addr * 8);
intr_status_hi = REG_RD(p_hwfn,
GTT_BAR0_MAP_REG_IGU_CMD +
msb_igu_cmd_addr * 8);
intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
return intr_status;
}
static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
{
tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
p_hwfn->b_sp_dpc_enabled = true;
}
int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
int rc = 0;
rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
if (rc)
return rc;
rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
return rc;
}
void qed_int_free(struct qed_hwfn *p_hwfn)
{
qed_int_sp_sb_free(p_hwfn);
qed_int_sb_attn_free(p_hwfn);
}
void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
qed_int_sb_attn_setup(p_hwfn, p_ptt);
qed_int_sp_dpc_setup(p_hwfn);
}
void qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
struct qed_sb_cnt_info *p_sb_cnt_info)
{
struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
if (!info || !p_sb_cnt_info)
return;
memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
}
void qed_int_disable_post_isr_release(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i)
cdev->hwfns[i].b_int_requested = false;
}
void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
{
cdev->attn_clr_en = clr_enable;
}
int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u8 timer_res, u16 sb_id, bool tx)
{
struct cau_sb_entry sb_entry;
u32 params;
int rc;
if (!p_hwfn->hw_init_done) {
DP_ERR(p_hwfn, "hardware not initialized yet\n");
return -EINVAL;
}
rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
sb_id * sizeof(u64),
(u64)(uintptr_t)&sb_entry, 2, NULL);
if (rc) {
DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
return rc;
}
params = le32_to_cpu(sb_entry.params);
if (tx)
SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
else
SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
sb_entry.params = cpu_to_le32(params);
rc = qed_dmae_host2grc(p_hwfn, p_ptt,
(u64)(uintptr_t)&sb_entry,
CAU_REG_SB_VAR_MEMORY +
sb_id * sizeof(u64), 2, NULL);
if (rc) {
DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
return rc;
}
return rc;
}