| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // regmap based irq_chip |
| // |
| // Copyright 2011 Wolfson Microelectronics plc |
| // |
| // Author: Mark Brown <broonie@opensource.wolfsonmicro.com> |
| |
| #include <linux/device.h> |
| #include <linux/export.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/irqdomain.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| |
| #include "internal.h" |
| |
| struct regmap_irq_chip_data { |
| struct mutex lock; |
| struct irq_chip irq_chip; |
| |
| struct regmap *map; |
| const struct regmap_irq_chip *chip; |
| |
| int irq_base; |
| struct irq_domain *domain; |
| |
| int irq; |
| int wake_count; |
| |
| void *status_reg_buf; |
| unsigned int *main_status_buf; |
| unsigned int *status_buf; |
| unsigned int *mask_buf; |
| unsigned int *mask_buf_def; |
| unsigned int *wake_buf; |
| unsigned int *type_buf; |
| unsigned int *type_buf_def; |
| |
| unsigned int irq_reg_stride; |
| unsigned int type_reg_stride; |
| |
| bool clear_status:1; |
| }; |
| |
| static inline const |
| struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, |
| int irq) |
| { |
| return &data->chip->irqs[irq]; |
| } |
| |
| static void regmap_irq_lock(struct irq_data *data) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| |
| mutex_lock(&d->lock); |
| } |
| |
| static int regmap_irq_update_bits(struct regmap_irq_chip_data *d, |
| unsigned int reg, unsigned int mask, |
| unsigned int val) |
| { |
| if (d->chip->mask_writeonly) |
| return regmap_write_bits(d->map, reg, mask, val); |
| else |
| return regmap_update_bits(d->map, reg, mask, val); |
| } |
| |
| static void regmap_irq_sync_unlock(struct irq_data *data) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| struct regmap *map = d->map; |
| int i, ret; |
| u32 reg; |
| u32 unmask_offset; |
| u32 val; |
| |
| if (d->chip->runtime_pm) { |
| ret = pm_runtime_get_sync(map->dev); |
| if (ret < 0) |
| dev_err(map->dev, "IRQ sync failed to resume: %d\n", |
| ret); |
| } |
| |
| if (d->clear_status) { |
| for (i = 0; i < d->chip->num_regs; i++) { |
| reg = d->chip->status_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| |
| ret = regmap_read(map, reg, &val); |
| if (ret) |
| dev_err(d->map->dev, |
| "Failed to clear the interrupt status bits\n"); |
| } |
| |
| d->clear_status = false; |
| } |
| |
| /* |
| * If there's been a change in the mask write it back to the |
| * hardware. We rely on the use of the regmap core cache to |
| * suppress pointless writes. |
| */ |
| for (i = 0; i < d->chip->num_regs; i++) { |
| if (!d->chip->mask_base) |
| continue; |
| |
| reg = d->chip->mask_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| if (d->chip->mask_invert) { |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], ~d->mask_buf[i]); |
| } else if (d->chip->unmask_base) { |
| /* set mask with mask_base register */ |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], ~d->mask_buf[i]); |
| if (ret < 0) |
| dev_err(d->map->dev, |
| "Failed to sync unmasks in %x\n", |
| reg); |
| unmask_offset = d->chip->unmask_base - |
| d->chip->mask_base; |
| /* clear mask with unmask_base register */ |
| ret = regmap_irq_update_bits(d, |
| reg + unmask_offset, |
| d->mask_buf_def[i], |
| d->mask_buf[i]); |
| } else { |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], d->mask_buf[i]); |
| } |
| if (ret != 0) |
| dev_err(d->map->dev, "Failed to sync masks in %x\n", |
| reg); |
| |
| reg = d->chip->wake_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| if (d->wake_buf) { |
| if (d->chip->wake_invert) |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], |
| ~d->wake_buf[i]); |
| else |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], |
| d->wake_buf[i]); |
| if (ret != 0) |
| dev_err(d->map->dev, |
| "Failed to sync wakes in %x: %d\n", |
| reg, ret); |
| } |
| |
| if (!d->chip->init_ack_masked) |
| continue; |
| /* |
| * Ack all the masked interrupts unconditionally, |
| * OR if there is masked interrupt which hasn't been Acked, |
| * it'll be ignored in irq handler, then may introduce irq storm |
| */ |
| if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { |
| reg = d->chip->ack_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| /* some chips ack by write 0 */ |
| if (d->chip->ack_invert) |
| ret = regmap_write(map, reg, ~d->mask_buf[i]); |
| else |
| ret = regmap_write(map, reg, d->mask_buf[i]); |
| if (d->chip->clear_ack) { |
| if (d->chip->ack_invert && !ret) |
| ret = regmap_write(map, reg, |
| d->mask_buf[i]); |
| else if (!ret) |
| ret = regmap_write(map, reg, |
| ~d->mask_buf[i]); |
| } |
| if (ret != 0) |
| dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", |
| reg, ret); |
| } |
| } |
| |
| /* Don't update the type bits if we're using mask bits for irq type. */ |
| if (!d->chip->type_in_mask) { |
| for (i = 0; i < d->chip->num_type_reg; i++) { |
| if (!d->type_buf_def[i]) |
| continue; |
| reg = d->chip->type_base + |
| (i * map->reg_stride * d->type_reg_stride); |
| if (d->chip->type_invert) |
| ret = regmap_irq_update_bits(d, reg, |
| d->type_buf_def[i], ~d->type_buf[i]); |
| else |
| ret = regmap_irq_update_bits(d, reg, |
| d->type_buf_def[i], d->type_buf[i]); |
| if (ret != 0) |
| dev_err(d->map->dev, "Failed to sync type in %x\n", |
| reg); |
| } |
| } |
| |
| if (d->chip->runtime_pm) |
| pm_runtime_put(map->dev); |
| |
| /* If we've changed our wakeup count propagate it to the parent */ |
| if (d->wake_count < 0) |
| for (i = d->wake_count; i < 0; i++) |
| irq_set_irq_wake(d->irq, 0); |
| else if (d->wake_count > 0) |
| for (i = 0; i < d->wake_count; i++) |
| irq_set_irq_wake(d->irq, 1); |
| |
| d->wake_count = 0; |
| |
| mutex_unlock(&d->lock); |
| } |
| |
| static void regmap_irq_enable(struct irq_data *data) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| struct regmap *map = d->map; |
| const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); |
| unsigned int mask, type; |
| |
| type = irq_data->type.type_falling_val | irq_data->type.type_rising_val; |
| |
| /* |
| * The type_in_mask flag means that the underlying hardware uses |
| * separate mask bits for rising and falling edge interrupts, but |
| * we want to make them into a single virtual interrupt with |
| * configurable edge. |
| * |
| * If the interrupt we're enabling defines the falling or rising |
| * masks then instead of using the regular mask bits for this |
| * interrupt, use the value previously written to the type buffer |
| * at the corresponding offset in regmap_irq_set_type(). |
| */ |
| if (d->chip->type_in_mask && type) |
| mask = d->type_buf[irq_data->reg_offset / map->reg_stride]; |
| else |
| mask = irq_data->mask; |
| |
| if (d->chip->clear_on_unmask) |
| d->clear_status = true; |
| |
| d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask; |
| } |
| |
| static void regmap_irq_disable(struct irq_data *data) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| struct regmap *map = d->map; |
| const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); |
| |
| d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; |
| } |
| |
| static int regmap_irq_set_type(struct irq_data *data, unsigned int type) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| struct regmap *map = d->map; |
| const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); |
| int reg; |
| const struct regmap_irq_type *t = &irq_data->type; |
| |
| if ((t->types_supported & type) != type) |
| return 0; |
| |
| reg = t->type_reg_offset / map->reg_stride; |
| |
| if (t->type_reg_mask) |
| d->type_buf[reg] &= ~t->type_reg_mask; |
| else |
| d->type_buf[reg] &= ~(t->type_falling_val | |
| t->type_rising_val | |
| t->type_level_low_val | |
| t->type_level_high_val); |
| switch (type) { |
| case IRQ_TYPE_EDGE_FALLING: |
| d->type_buf[reg] |= t->type_falling_val; |
| break; |
| |
| case IRQ_TYPE_EDGE_RISING: |
| d->type_buf[reg] |= t->type_rising_val; |
| break; |
| |
| case IRQ_TYPE_EDGE_BOTH: |
| d->type_buf[reg] |= (t->type_falling_val | |
| t->type_rising_val); |
| break; |
| |
| case IRQ_TYPE_LEVEL_HIGH: |
| d->type_buf[reg] |= t->type_level_high_val; |
| break; |
| |
| case IRQ_TYPE_LEVEL_LOW: |
| d->type_buf[reg] |= t->type_level_low_val; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) |
| { |
| struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); |
| struct regmap *map = d->map; |
| const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); |
| |
| if (on) { |
| if (d->wake_buf) |
| d->wake_buf[irq_data->reg_offset / map->reg_stride] |
| &= ~irq_data->mask; |
| d->wake_count++; |
| } else { |
| if (d->wake_buf) |
| d->wake_buf[irq_data->reg_offset / map->reg_stride] |
| |= irq_data->mask; |
| d->wake_count--; |
| } |
| |
| return 0; |
| } |
| |
| static const struct irq_chip regmap_irq_chip = { |
| .irq_bus_lock = regmap_irq_lock, |
| .irq_bus_sync_unlock = regmap_irq_sync_unlock, |
| .irq_disable = regmap_irq_disable, |
| .irq_enable = regmap_irq_enable, |
| .irq_set_type = regmap_irq_set_type, |
| .irq_set_wake = regmap_irq_set_wake, |
| }; |
| |
| static inline int read_sub_irq_data(struct regmap_irq_chip_data *data, |
| unsigned int b) |
| { |
| const struct regmap_irq_chip *chip = data->chip; |
| struct regmap *map = data->map; |
| struct regmap_irq_sub_irq_map *subreg; |
| int i, ret = 0; |
| |
| if (!chip->sub_reg_offsets) { |
| /* Assume linear mapping */ |
| ret = regmap_read(map, chip->status_base + |
| (b * map->reg_stride * data->irq_reg_stride), |
| &data->status_buf[b]); |
| } else { |
| subreg = &chip->sub_reg_offsets[b]; |
| for (i = 0; i < subreg->num_regs; i++) { |
| unsigned int offset = subreg->offset[i]; |
| |
| ret = regmap_read(map, chip->status_base + offset, |
| &data->status_buf[offset]); |
| if (ret) |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static irqreturn_t regmap_irq_thread(int irq, void *d) |
| { |
| struct regmap_irq_chip_data *data = d; |
| const struct regmap_irq_chip *chip = data->chip; |
| struct regmap *map = data->map; |
| int ret, i; |
| bool handled = false; |
| u32 reg; |
| |
| if (chip->handle_pre_irq) |
| chip->handle_pre_irq(chip->irq_drv_data); |
| |
| if (chip->runtime_pm) { |
| ret = pm_runtime_get_sync(map->dev); |
| if (ret < 0) { |
| dev_err(map->dev, "IRQ thread failed to resume: %d\n", |
| ret); |
| goto exit; |
| } |
| } |
| |
| /* |
| * Read only registers with active IRQs if the chip has 'main status |
| * register'. Else read in the statuses, using a single bulk read if |
| * possible in order to reduce the I/O overheads. |
| */ |
| |
| if (chip->num_main_regs) { |
| unsigned int max_main_bits; |
| unsigned long size; |
| |
| size = chip->num_regs * sizeof(unsigned int); |
| |
| max_main_bits = (chip->num_main_status_bits) ? |
| chip->num_main_status_bits : chip->num_regs; |
| /* Clear the status buf as we don't read all status regs */ |
| memset(data->status_buf, 0, size); |
| |
| /* We could support bulk read for main status registers |
| * but I don't expect to see devices with really many main |
| * status registers so let's only support single reads for the |
| * sake of simplicity. and add bulk reads only if needed |
| */ |
| for (i = 0; i < chip->num_main_regs; i++) { |
| ret = regmap_read(map, chip->main_status + |
| (i * map->reg_stride |
| * data->irq_reg_stride), |
| &data->main_status_buf[i]); |
| if (ret) { |
| dev_err(map->dev, |
| "Failed to read IRQ status %d\n", |
| ret); |
| goto exit; |
| } |
| } |
| |
| /* Read sub registers with active IRQs */ |
| for (i = 0; i < chip->num_main_regs; i++) { |
| unsigned int b; |
| const unsigned long mreg = data->main_status_buf[i]; |
| |
| for_each_set_bit(b, &mreg, map->format.val_bytes * 8) { |
| if (i * map->format.val_bytes * 8 + b > |
| max_main_bits) |
| break; |
| ret = read_sub_irq_data(data, b); |
| |
| if (ret != 0) { |
| dev_err(map->dev, |
| "Failed to read IRQ status %d\n", |
| ret); |
| goto exit; |
| } |
| } |
| |
| } |
| } else if (!map->use_single_read && map->reg_stride == 1 && |
| data->irq_reg_stride == 1) { |
| |
| u8 *buf8 = data->status_reg_buf; |
| u16 *buf16 = data->status_reg_buf; |
| u32 *buf32 = data->status_reg_buf; |
| |
| BUG_ON(!data->status_reg_buf); |
| |
| ret = regmap_bulk_read(map, chip->status_base, |
| data->status_reg_buf, |
| chip->num_regs); |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to read IRQ status: %d\n", |
| ret); |
| goto exit; |
| } |
| |
| for (i = 0; i < data->chip->num_regs; i++) { |
| switch (map->format.val_bytes) { |
| case 1: |
| data->status_buf[i] = buf8[i]; |
| break; |
| case 2: |
| data->status_buf[i] = buf16[i]; |
| break; |
| case 4: |
| data->status_buf[i] = buf32[i]; |
| break; |
| default: |
| BUG(); |
| goto exit; |
| } |
| } |
| |
| } else { |
| for (i = 0; i < data->chip->num_regs; i++) { |
| ret = regmap_read(map, chip->status_base + |
| (i * map->reg_stride |
| * data->irq_reg_stride), |
| &data->status_buf[i]); |
| |
| if (ret != 0) { |
| dev_err(map->dev, |
| "Failed to read IRQ status: %d\n", |
| ret); |
| goto exit; |
| } |
| } |
| } |
| |
| /* |
| * Ignore masked IRQs and ack if we need to; we ack early so |
| * there is no race between handling and acknowleding the |
| * interrupt. We assume that typically few of the interrupts |
| * will fire simultaneously so don't worry about overhead from |
| * doing a write per register. |
| */ |
| for (i = 0; i < data->chip->num_regs; i++) { |
| data->status_buf[i] &= ~data->mask_buf[i]; |
| |
| if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { |
| reg = chip->ack_base + |
| (i * map->reg_stride * data->irq_reg_stride); |
| if (chip->ack_invert) |
| ret = regmap_write(map, reg, |
| ~data->status_buf[i]); |
| else |
| ret = regmap_write(map, reg, |
| data->status_buf[i]); |
| if (chip->clear_ack) { |
| if (chip->ack_invert && !ret) |
| ret = regmap_write(map, reg, |
| data->status_buf[i]); |
| else if (!ret) |
| ret = regmap_write(map, reg, |
| ~data->status_buf[i]); |
| } |
| if (ret != 0) |
| dev_err(map->dev, "Failed to ack 0x%x: %d\n", |
| reg, ret); |
| } |
| } |
| |
| for (i = 0; i < chip->num_irqs; i++) { |
| if (data->status_buf[chip->irqs[i].reg_offset / |
| map->reg_stride] & chip->irqs[i].mask) { |
| handle_nested_irq(irq_find_mapping(data->domain, i)); |
| handled = true; |
| } |
| } |
| |
| exit: |
| if (chip->runtime_pm) |
| pm_runtime_put(map->dev); |
| |
| if (chip->handle_post_irq) |
| chip->handle_post_irq(chip->irq_drv_data); |
| |
| if (handled) |
| return IRQ_HANDLED; |
| else |
| return IRQ_NONE; |
| } |
| |
| static int regmap_irq_map(struct irq_domain *h, unsigned int virq, |
| irq_hw_number_t hw) |
| { |
| struct regmap_irq_chip_data *data = h->host_data; |
| |
| irq_set_chip_data(virq, data); |
| irq_set_chip(virq, &data->irq_chip); |
| irq_set_nested_thread(virq, 1); |
| irq_set_parent(virq, data->irq); |
| irq_set_noprobe(virq); |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops regmap_domain_ops = { |
| .map = regmap_irq_map, |
| .xlate = irq_domain_xlate_onetwocell, |
| }; |
| |
| /** |
| * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling |
| * |
| * @fwnode: The firmware node where the IRQ domain should be added to. |
| * @map: The regmap for the device. |
| * @irq: The IRQ the device uses to signal interrupts. |
| * @irq_flags: The IRQF_ flags to use for the primary interrupt. |
| * @irq_base: Allocate at specific IRQ number if irq_base > 0. |
| * @chip: Configuration for the interrupt controller. |
| * @data: Runtime data structure for the controller, allocated on success. |
| * |
| * Returns 0 on success or an errno on failure. |
| * |
| * In order for this to be efficient the chip really should use a |
| * register cache. The chip driver is responsible for restoring the |
| * register values used by the IRQ controller over suspend and resume. |
| */ |
| int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode, |
| struct regmap *map, int irq, |
| int irq_flags, int irq_base, |
| const struct regmap_irq_chip *chip, |
| struct regmap_irq_chip_data **data) |
| { |
| struct regmap_irq_chip_data *d; |
| int i; |
| int ret = -ENOMEM; |
| int num_type_reg; |
| u32 reg; |
| u32 unmask_offset; |
| |
| if (chip->num_regs <= 0) |
| return -EINVAL; |
| |
| if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack)) |
| return -EINVAL; |
| |
| for (i = 0; i < chip->num_irqs; i++) { |
| if (chip->irqs[i].reg_offset % map->reg_stride) |
| return -EINVAL; |
| if (chip->irqs[i].reg_offset / map->reg_stride >= |
| chip->num_regs) |
| return -EINVAL; |
| } |
| |
| if (irq_base) { |
| irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); |
| if (irq_base < 0) { |
| dev_warn(map->dev, "Failed to allocate IRQs: %d\n", |
| irq_base); |
| return irq_base; |
| } |
| } |
| |
| d = kzalloc(sizeof(*d), GFP_KERNEL); |
| if (!d) |
| return -ENOMEM; |
| |
| if (chip->num_main_regs) { |
| d->main_status_buf = kcalloc(chip->num_main_regs, |
| sizeof(unsigned int), |
| GFP_KERNEL); |
| |
| if (!d->main_status_buf) |
| goto err_alloc; |
| } |
| |
| d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!d->status_buf) |
| goto err_alloc; |
| |
| d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!d->mask_buf) |
| goto err_alloc; |
| |
| d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!d->mask_buf_def) |
| goto err_alloc; |
| |
| if (chip->wake_base) { |
| d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!d->wake_buf) |
| goto err_alloc; |
| } |
| |
| num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg; |
| if (num_type_reg) { |
| d->type_buf_def = kcalloc(num_type_reg, |
| sizeof(unsigned int), GFP_KERNEL); |
| if (!d->type_buf_def) |
| goto err_alloc; |
| |
| d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int), |
| GFP_KERNEL); |
| if (!d->type_buf) |
| goto err_alloc; |
| } |
| |
| d->irq_chip = regmap_irq_chip; |
| d->irq_chip.name = chip->name; |
| d->irq = irq; |
| d->map = map; |
| d->chip = chip; |
| d->irq_base = irq_base; |
| |
| if (chip->irq_reg_stride) |
| d->irq_reg_stride = chip->irq_reg_stride; |
| else |
| d->irq_reg_stride = 1; |
| |
| if (chip->type_reg_stride) |
| d->type_reg_stride = chip->type_reg_stride; |
| else |
| d->type_reg_stride = 1; |
| |
| if (!map->use_single_read && map->reg_stride == 1 && |
| d->irq_reg_stride == 1) { |
| d->status_reg_buf = kmalloc_array(chip->num_regs, |
| map->format.val_bytes, |
| GFP_KERNEL); |
| if (!d->status_reg_buf) |
| goto err_alloc; |
| } |
| |
| mutex_init(&d->lock); |
| |
| for (i = 0; i < chip->num_irqs; i++) |
| d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] |
| |= chip->irqs[i].mask; |
| |
| /* Mask all the interrupts by default */ |
| for (i = 0; i < chip->num_regs; i++) { |
| d->mask_buf[i] = d->mask_buf_def[i]; |
| if (!chip->mask_base) |
| continue; |
| |
| reg = chip->mask_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| if (chip->mask_invert) |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf[i], ~d->mask_buf[i]); |
| else if (d->chip->unmask_base) { |
| unmask_offset = d->chip->unmask_base - |
| d->chip->mask_base; |
| ret = regmap_irq_update_bits(d, |
| reg + unmask_offset, |
| d->mask_buf[i], |
| d->mask_buf[i]); |
| } else |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf[i], d->mask_buf[i]); |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", |
| reg, ret); |
| goto err_alloc; |
| } |
| |
| if (!chip->init_ack_masked) |
| continue; |
| |
| /* Ack masked but set interrupts */ |
| reg = chip->status_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| ret = regmap_read(map, reg, &d->status_buf[i]); |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to read IRQ status: %d\n", |
| ret); |
| goto err_alloc; |
| } |
| |
| if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { |
| reg = chip->ack_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| if (chip->ack_invert) |
| ret = regmap_write(map, reg, |
| ~(d->status_buf[i] & d->mask_buf[i])); |
| else |
| ret = regmap_write(map, reg, |
| d->status_buf[i] & d->mask_buf[i]); |
| if (chip->clear_ack) { |
| if (chip->ack_invert && !ret) |
| ret = regmap_write(map, reg, |
| (d->status_buf[i] & |
| d->mask_buf[i])); |
| else if (!ret) |
| ret = regmap_write(map, reg, |
| ~(d->status_buf[i] & |
| d->mask_buf[i])); |
| } |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to ack 0x%x: %d\n", |
| reg, ret); |
| goto err_alloc; |
| } |
| } |
| } |
| |
| /* Wake is disabled by default */ |
| if (d->wake_buf) { |
| for (i = 0; i < chip->num_regs; i++) { |
| d->wake_buf[i] = d->mask_buf_def[i]; |
| reg = chip->wake_base + |
| (i * map->reg_stride * d->irq_reg_stride); |
| |
| if (chip->wake_invert) |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], |
| 0); |
| else |
| ret = regmap_irq_update_bits(d, reg, |
| d->mask_buf_def[i], |
| d->wake_buf[i]); |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", |
| reg, ret); |
| goto err_alloc; |
| } |
| } |
| } |
| |
| if (chip->num_type_reg && !chip->type_in_mask) { |
| for (i = 0; i < chip->num_type_reg; ++i) { |
| reg = chip->type_base + |
| (i * map->reg_stride * d->type_reg_stride); |
| |
| ret = regmap_read(map, reg, &d->type_buf_def[i]); |
| |
| if (d->chip->type_invert) |
| d->type_buf_def[i] = ~d->type_buf_def[i]; |
| |
| if (ret) { |
| dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n", |
| reg, ret); |
| goto err_alloc; |
| } |
| } |
| } |
| |
| if (irq_base) |
| d->domain = irq_domain_add_legacy(to_of_node(fwnode), |
| chip->num_irqs, irq_base, |
| 0, ®map_domain_ops, d); |
| else |
| d->domain = irq_domain_add_linear(to_of_node(fwnode), |
| chip->num_irqs, |
| ®map_domain_ops, d); |
| if (!d->domain) { |
| dev_err(map->dev, "Failed to create IRQ domain\n"); |
| ret = -ENOMEM; |
| goto err_alloc; |
| } |
| |
| ret = request_threaded_irq(irq, NULL, regmap_irq_thread, |
| irq_flags | IRQF_ONESHOT, |
| chip->name, d); |
| if (ret != 0) { |
| dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", |
| irq, chip->name, ret); |
| goto err_domain; |
| } |
| |
| *data = d; |
| |
| return 0; |
| |
| err_domain: |
| /* Should really dispose of the domain but... */ |
| err_alloc: |
| kfree(d->type_buf); |
| kfree(d->type_buf_def); |
| kfree(d->wake_buf); |
| kfree(d->mask_buf_def); |
| kfree(d->mask_buf); |
| kfree(d->status_buf); |
| kfree(d->status_reg_buf); |
| kfree(d); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode); |
| |
| /** |
| * regmap_add_irq_chip() - Use standard regmap IRQ controller handling |
| * |
| * @map: The regmap for the device. |
| * @irq: The IRQ the device uses to signal interrupts. |
| * @irq_flags: The IRQF_ flags to use for the primary interrupt. |
| * @irq_base: Allocate at specific IRQ number if irq_base > 0. |
| * @chip: Configuration for the interrupt controller. |
| * @data: Runtime data structure for the controller, allocated on success. |
| * |
| * Returns 0 on success or an errno on failure. |
| * |
| * This is the same as regmap_add_irq_chip_fwnode, except that the firmware |
| * node of the regmap is used. |
| */ |
| int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, |
| int irq_base, const struct regmap_irq_chip *chip, |
| struct regmap_irq_chip_data **data) |
| { |
| return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq, |
| irq_flags, irq_base, chip, data); |
| } |
| EXPORT_SYMBOL_GPL(regmap_add_irq_chip); |
| |
| /** |
| * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip |
| * |
| * @irq: Primary IRQ for the device |
| * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip() |
| * |
| * This function also disposes of all mapped IRQs on the chip. |
| */ |
| void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) |
| { |
| unsigned int virq; |
| int hwirq; |
| |
| if (!d) |
| return; |
| |
| free_irq(irq, d); |
| |
| /* Dispose all virtual irq from irq domain before removing it */ |
| for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { |
| /* Ignore hwirq if holes in the IRQ list */ |
| if (!d->chip->irqs[hwirq].mask) |
| continue; |
| |
| /* |
| * Find the virtual irq of hwirq on chip and if it is |
| * there then dispose it |
| */ |
| virq = irq_find_mapping(d->domain, hwirq); |
| if (virq) |
| irq_dispose_mapping(virq); |
| } |
| |
| irq_domain_remove(d->domain); |
| kfree(d->type_buf); |
| kfree(d->type_buf_def); |
| kfree(d->wake_buf); |
| kfree(d->mask_buf_def); |
| kfree(d->mask_buf); |
| kfree(d->status_reg_buf); |
| kfree(d->status_buf); |
| kfree(d); |
| } |
| EXPORT_SYMBOL_GPL(regmap_del_irq_chip); |
| |
| static void devm_regmap_irq_chip_release(struct device *dev, void *res) |
| { |
| struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; |
| |
| regmap_del_irq_chip(d->irq, d); |
| } |
| |
| static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) |
| |
| { |
| struct regmap_irq_chip_data **r = res; |
| |
| if (!r || !*r) { |
| WARN_ON(!r || !*r); |
| return 0; |
| } |
| return *r == data; |
| } |
| |
| /** |
| * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode() |
| * |
| * @dev: The device pointer on which irq_chip belongs to. |
| * @fwnode: The firmware node where the IRQ domain should be added to. |
| * @map: The regmap for the device. |
| * @irq: The IRQ the device uses to signal interrupts |
| * @irq_flags: The IRQF_ flags to use for the primary interrupt. |
| * @irq_base: Allocate at specific IRQ number if irq_base > 0. |
| * @chip: Configuration for the interrupt controller. |
| * @data: Runtime data structure for the controller, allocated on success |
| * |
| * Returns 0 on success or an errno on failure. |
| * |
| * The ®map_irq_chip_data will be automatically released when the device is |
| * unbound. |
| */ |
| int devm_regmap_add_irq_chip_fwnode(struct device *dev, |
| struct fwnode_handle *fwnode, |
| struct regmap *map, int irq, |
| int irq_flags, int irq_base, |
| const struct regmap_irq_chip *chip, |
| struct regmap_irq_chip_data **data) |
| { |
| struct regmap_irq_chip_data **ptr, *d; |
| int ret; |
| |
| ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), |
| GFP_KERNEL); |
| if (!ptr) |
| return -ENOMEM; |
| |
| ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base, |
| chip, &d); |
| if (ret < 0) { |
| devres_free(ptr); |
| return ret; |
| } |
| |
| *ptr = d; |
| devres_add(dev, ptr); |
| *data = d; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode); |
| |
| /** |
| * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip() |
| * |
| * @dev: The device pointer on which irq_chip belongs to. |
| * @map: The regmap for the device. |
| * @irq: The IRQ the device uses to signal interrupts |
| * @irq_flags: The IRQF_ flags to use for the primary interrupt. |
| * @irq_base: Allocate at specific IRQ number if irq_base > 0. |
| * @chip: Configuration for the interrupt controller. |
| * @data: Runtime data structure for the controller, allocated on success |
| * |
| * Returns 0 on success or an errno on failure. |
| * |
| * The ®map_irq_chip_data will be automatically released when the device is |
| * unbound. |
| */ |
| int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, |
| int irq_flags, int irq_base, |
| const struct regmap_irq_chip *chip, |
| struct regmap_irq_chip_data **data) |
| { |
| return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map, |
| irq, irq_flags, irq_base, chip, |
| data); |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); |
| |
| /** |
| * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip() |
| * |
| * @dev: Device for which which resource was allocated. |
| * @irq: Primary IRQ for the device. |
| * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip(). |
| * |
| * A resource managed version of regmap_del_irq_chip(). |
| */ |
| void devm_regmap_del_irq_chip(struct device *dev, int irq, |
| struct regmap_irq_chip_data *data) |
| { |
| int rc; |
| |
| WARN_ON(irq != data->irq); |
| rc = devres_release(dev, devm_regmap_irq_chip_release, |
| devm_regmap_irq_chip_match, data); |
| |
| if (rc != 0) |
| WARN_ON(rc); |
| } |
| EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); |
| |
| /** |
| * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip |
| * |
| * @data: regmap irq controller to operate on. |
| * |
| * Useful for drivers to request their own IRQs. |
| */ |
| int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) |
| { |
| WARN_ON(!data->irq_base); |
| return data->irq_base; |
| } |
| EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); |
| |
| /** |
| * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ |
| * |
| * @data: regmap irq controller to operate on. |
| * @irq: index of the interrupt requested in the chip IRQs. |
| * |
| * Useful for drivers to request their own IRQs. |
| */ |
| int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) |
| { |
| /* Handle holes in the IRQ list */ |
| if (!data->chip->irqs[irq].mask) |
| return -EINVAL; |
| |
| return irq_create_mapping(data->domain, irq); |
| } |
| EXPORT_SYMBOL_GPL(regmap_irq_get_virq); |
| |
| /** |
| * regmap_irq_get_domain() - Retrieve the irq_domain for the chip |
| * |
| * @data: regmap_irq controller to operate on. |
| * |
| * Useful for drivers to request their own IRQs and for integration |
| * with subsystems. For ease of integration NULL is accepted as a |
| * domain, allowing devices to just call this even if no domain is |
| * allocated. |
| */ |
| struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) |
| { |
| if (data) |
| return data->domain; |
| else |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(regmap_irq_get_domain); |