| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include "pp_debug.h" |
| #include <linux/delay.h> |
| #include <linux/fb.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <asm/div64.h> |
| #include <drm/amdgpu_drm.h> |
| #include "ppatomctrl.h" |
| #include "atombios.h" |
| #include "pptable_v1_0.h" |
| #include "pppcielanes.h" |
| #include "amd_pcie_helpers.h" |
| #include "hardwaremanager.h" |
| #include "process_pptables_v1_0.h" |
| #include "cgs_common.h" |
| |
| #include "smu7_common.h" |
| |
| #include "hwmgr.h" |
| #include "smu7_hwmgr.h" |
| #include "smu_ucode_xfer_vi.h" |
| #include "smu7_powertune.h" |
| #include "smu7_dyn_defaults.h" |
| #include "smu7_thermal.h" |
| #include "smu7_clockpowergating.h" |
| #include "processpptables.h" |
| #include "pp_thermal.h" |
| #include "smu7_baco.h" |
| |
| #include "ivsrcid/ivsrcid_vislands30.h" |
| |
| #define MC_CG_ARB_FREQ_F0 0x0a |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| #define MC_CG_ARB_FREQ_F2 0x0c |
| #define MC_CG_ARB_FREQ_F3 0x0d |
| |
| #define MC_CG_SEQ_DRAMCONF_S0 0x05 |
| #define MC_CG_SEQ_DRAMCONF_S1 0x06 |
| #define MC_CG_SEQ_YCLK_SUSPEND 0x04 |
| #define MC_CG_SEQ_YCLK_RESUME 0x0a |
| |
| #define SMC_CG_IND_START 0xc0030000 |
| #define SMC_CG_IND_END 0xc0040000 |
| |
| #define MEM_FREQ_LOW_LATENCY 25000 |
| #define MEM_FREQ_HIGH_LATENCY 80000 |
| |
| #define MEM_LATENCY_HIGH 45 |
| #define MEM_LATENCY_LOW 35 |
| #define MEM_LATENCY_ERR 0xFFFF |
| |
| #define MC_SEQ_MISC0_GDDR5_SHIFT 28 |
| #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 |
| #define MC_SEQ_MISC0_GDDR5_VALUE 5 |
| |
| #define PCIE_BUS_CLK 10000 |
| #define TCLK (PCIE_BUS_CLK / 10) |
| |
| static struct profile_mode_setting smu7_profiling[7] = |
| {{0, 0, 0, 0, 0, 0, 0, 0}, |
| {1, 0, 100, 30, 1, 0, 100, 10}, |
| {1, 10, 0, 30, 0, 0, 0, 0}, |
| {0, 0, 0, 0, 1, 10, 16, 31}, |
| {1, 0, 11, 50, 1, 0, 100, 10}, |
| {1, 0, 5, 30, 0, 0, 0, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0}, |
| }; |
| |
| #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310) |
| |
| #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280 |
| #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L |
| #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L |
| #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005 |
| #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006 |
| |
| /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ |
| enum DPM_EVENT_SRC { |
| DPM_EVENT_SRC_ANALOG = 0, |
| DPM_EVENT_SRC_EXTERNAL = 1, |
| DPM_EVENT_SRC_DIGITAL = 2, |
| DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, |
| DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 |
| }; |
| |
| static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic); |
| static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask); |
| |
| static struct smu7_power_state *cast_phw_smu7_power_state( |
| struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (struct smu7_power_state *)hw_ps; |
| } |
| |
| static const struct smu7_power_state *cast_const_phw_smu7_power_state( |
| const struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL); |
| |
| return (const struct smu7_power_state *)hw_ps; |
| } |
| |
| /** |
| * Find the MC microcode version and store it in the HwMgr struct |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr) |
| { |
| cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); |
| |
| hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); |
| |
| return 0; |
| } |
| |
| static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t speedCntl = 0; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, |
| ixPCIE_LC_SPEED_CNTL); |
| return((uint16_t)PHM_GET_FIELD(speedCntl, |
| PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); |
| } |
| |
| static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t link_width; |
| |
| /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ |
| link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); |
| |
| PP_ASSERT_WITH_CODE((7 >= link_width), |
| "Invalid PCIe lane width!", return 0); |
| |
| return decode_pcie_lane_width(link_width); |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param pHwMgr the address of the powerplay hardware manager. |
| * @return always PP_Result_OK |
| */ |
| static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->chip_id == CHIP_VEGAM) { |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0); |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0); |
| } |
| |
| if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL); |
| |
| return 0; |
| } |
| |
| /** |
| * Checks if we want to support voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| */ |
| static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr) |
| { |
| const struct smu7_hwmgr *data = |
| (const struct smu7_hwmgr *)(hwmgr->backend); |
| |
| return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control); |
| } |
| |
| /** |
| * Enable voltage control |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr) |
| { |
| /* enable voltage control */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); |
| |
| return 0; |
| } |
| |
| static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table, |
| struct phm_clock_voltage_dependency_table *voltage_dependency_table |
| ) |
| { |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE((NULL != voltage_table), |
| "Voltage Dependency Table empty.", return -EINVAL;); |
| |
| voltage_table->mask_low = 0; |
| voltage_table->phase_delay = 0; |
| voltage_table->count = voltage_dependency_table->count; |
| |
| for (i = 0; i < voltage_dependency_table->count; i++) { |
| voltage_table->entries[i].value = |
| voltage_dependency_table->entries[i].v; |
| voltage_table->entries[i].smio_low = 0; |
| } |
| |
| return 0; |
| } |
| |
| |
| /** |
| * Create Voltage Tables. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| int result = 0; |
| uint32_t tmp; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->mvdd_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve MVDD table.", |
| return result); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| if (hwmgr->pp_table_version == PP_TABLE_V1) |
| result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), |
| table_info->vdd_dep_on_mclk); |
| else if (hwmgr->pp_table_version == PP_TABLE_V0) |
| result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table), |
| hwmgr->dyn_state.mvdd_dependency_on_mclk); |
| |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 MVDD table from dependency table.", |
| return result;); |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, |
| &(data->vddci_voltage_table)); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve VDDCI table.", |
| return result); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| if (hwmgr->pp_table_version == PP_TABLE_V1) |
| result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), |
| table_info->vdd_dep_on_mclk); |
| else if (hwmgr->pp_table_version == PP_TABLE_V0) |
| result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table), |
| hwmgr->dyn_state.vddci_dependency_on_mclk); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDCI table from dependency table.", |
| return result); |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { |
| /* VDDGFX has only SVI2 voltage control */ |
| result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table), |
| table_info->vddgfx_lookup_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); |
| } |
| |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { |
| result = atomctrl_get_voltage_table_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, |
| &data->vddc_voltage_table); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve VDDC table.", return result;); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V0) |
| result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table, |
| hwmgr->dyn_state.vddc_dependency_on_mclk); |
| else if (hwmgr->pp_table_version == PP_TABLE_V1) |
| result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), |
| table_info->vddc_lookup_table); |
| |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to retrieve SVI2 VDDC table from dependency table.", return result;); |
| } |
| |
| tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC); |
| PP_ASSERT_WITH_CODE( |
| (data->vddc_voltage_table.count <= tmp), |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(tmp, |
| &(data->vddc_voltage_table))); |
| |
| tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); |
| PP_ASSERT_WITH_CODE( |
| (data->vddgfx_voltage_table.count <= tmp), |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(tmp, |
| &(data->vddgfx_voltage_table))); |
| |
| tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI); |
| PP_ASSERT_WITH_CODE( |
| (data->vddci_voltage_table.count <= tmp), |
| "Too many voltage values for VDDCI. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(tmp, |
| &(data->vddci_voltage_table))); |
| |
| tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD); |
| PP_ASSERT_WITH_CODE( |
| (data->mvdd_voltage_table.count <= tmp), |
| "Too many voltage values for MVDD. Trimming to fit state table.", |
| phm_trim_voltage_table_to_fit_state_table(tmp, |
| &(data->mvdd_voltage_table))); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs static screed detection parameters |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_program_static_screen_threshold_parameters( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /* Set static screen threshold unit */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, |
| data->static_screen_threshold_unit); |
| /* Set static screen threshold */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, |
| data->static_screen_threshold); |
| |
| return 0; |
| } |
| |
| /** |
| * Setup display gap for glitch free memory clock switching. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t display_gap = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL); |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP, DISPLAY_GAP_IGNORE); |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, |
| DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs activity state transition voting clients |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int i; |
| |
| /* Clear reset for voting clients before enabling DPM */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); |
| |
| for (i = 0; i < 8; i++) |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0 + i * 4, |
| data->voting_rights_clients[i]); |
| return 0; |
| } |
| |
| static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| |
| /* Reset voting clients before disabling DPM */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); |
| |
| for (i = 0; i < 8; i++) |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0); |
| |
| return 0; |
| } |
| |
| /* Copy one arb setting to another and then switch the active set. |
| * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. |
| */ |
| static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, |
| uint32_t arb_src, uint32_t arb_dest) |
| { |
| uint32_t mc_arb_dram_timing; |
| uint32_t mc_arb_dram_timing2; |
| uint32_t burst_time; |
| uint32_t mc_cg_config; |
| |
| switch (arb_src) { |
| case MC_CG_ARB_FREQ_F0: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); |
| mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); |
| burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| switch (arb_dest) { |
| case MC_CG_ARB_FREQ_F0: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); |
| break; |
| case MC_CG_ARB_FREQ_F1: |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); |
| cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); |
| mc_cg_config |= 0x0000000F; |
| cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); |
| PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); |
| |
| return 0; |
| } |
| |
| static int smu7_reset_to_default(struct pp_hwmgr *hwmgr) |
| { |
| return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL); |
| } |
| |
| /** |
| * Initial switch from ARB F0->F1 |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| * This function is to be called from the SetPowerState table. |
| */ |
| static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) |
| { |
| return smu7_copy_and_switch_arb_sets(hwmgr, |
| MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); |
| } |
| |
| static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t tmp; |
| |
| tmp = (cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, ixSMC_SCRATCH9) & |
| 0x0000ff00) >> 8; |
| |
| if (tmp == MC_CG_ARB_FREQ_F0) |
| return 0; |
| |
| return smu7_copy_and_switch_arb_sets(hwmgr, |
| tmp, MC_CG_ARB_FREQ_F0); |
| } |
| |
| static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = NULL; |
| |
| uint32_t i, max_entry; |
| uint32_t tmp; |
| |
| PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || |
| data->use_pcie_power_saving_levels), "No pcie performance levels!", |
| return -EINVAL); |
| |
| if (table_info != NULL) |
| pcie_table = table_info->pcie_table; |
| |
| if (data->use_pcie_performance_levels && |
| !data->use_pcie_power_saving_levels) { |
| data->pcie_gen_power_saving = data->pcie_gen_performance; |
| data->pcie_lane_power_saving = data->pcie_lane_performance; |
| } else if (!data->use_pcie_performance_levels && |
| data->use_pcie_power_saving_levels) { |
| data->pcie_gen_performance = data->pcie_gen_power_saving; |
| data->pcie_lane_performance = data->pcie_lane_power_saving; |
| } |
| tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK); |
| phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, |
| tmp, |
| MAX_REGULAR_DPM_NUMBER); |
| |
| if (pcie_table != NULL) { |
| /* max_entry is used to make sure we reserve one PCIE level |
| * for boot level (fix for A+A PSPP issue). |
| * If PCIE table from PPTable have ULV entry + 8 entries, |
| * then ignore the last entry.*/ |
| max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count; |
| for (i = 1; i < max_entry; i++) { |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| pcie_table->entries[i].gen_speed), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| pcie_table->entries[i].lane_width)); |
| } |
| data->dpm_table.pcie_speed_table.count = max_entry - 1; |
| smum_update_smc_table(hwmgr, SMU_BIF_TABLE); |
| } else { |
| /* Hardcode Pcie Table */ |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| |
| data->dpm_table.pcie_speed_table.count = 6; |
| } |
| /* Populate last level for boot PCIE level, but do not increment count. */ |
| if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { |
| for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Max_PCIEGen), |
| data->vbios_boot_state.pcie_lane_bootup_value); |
| } else { |
| phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, |
| data->dpm_table.pcie_speed_table.count, |
| get_pcie_gen_support(data->pcie_gen_cap, |
| PP_Min_PCIEGen), |
| get_pcie_lane_support(data->pcie_lane_cap, |
| PP_Max_PCIELane)); |
| } |
| return 0; |
| } |
| |
| static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); |
| |
| phm_reset_single_dpm_table( |
| &data->dpm_table.sclk_table, |
| smum_get_mac_definition(hwmgr, |
| SMU_MAX_LEVELS_GRAPHICS), |
| MAX_REGULAR_DPM_NUMBER); |
| phm_reset_single_dpm_table( |
| &data->dpm_table.mclk_table, |
| smum_get_mac_definition(hwmgr, |
| SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER); |
| |
| phm_reset_single_dpm_table( |
| &data->dpm_table.vddc_table, |
| smum_get_mac_definition(hwmgr, |
| SMU_MAX_LEVELS_VDDC), |
| MAX_REGULAR_DPM_NUMBER); |
| phm_reset_single_dpm_table( |
| &data->dpm_table.vddci_table, |
| smum_get_mac_definition(hwmgr, |
| SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER); |
| |
| phm_reset_single_dpm_table( |
| &data->dpm_table.mvdd_table, |
| smum_get_mac_definition(hwmgr, |
| SMU_MAX_LEVELS_MVDD), |
| MAX_REGULAR_DPM_NUMBER); |
| return 0; |
| } |
| /* |
| * This function is to initialize all DPM state tables |
| * for SMU7 based on the dependency table. |
| * Dynamic state patching function will then trim these |
| * state tables to the allowed range based |
| * on the power policy or external client requests, |
| * such as UVD request, etc. |
| */ |
| |
| static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = |
| hwmgr->dyn_state.vddc_dependency_on_sclk; |
| struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = |
| hwmgr->dyn_state.vddc_dependency_on_mclk; |
| struct phm_cac_leakage_table *std_voltage_table = |
| hwmgr->dyn_state.cac_leakage_table; |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, |
| "SCLK dependency table is missing. This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, |
| "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, |
| "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); |
| |
| |
| /* Initialize Sclk DPM table based on allow Sclk values*/ |
| data->dpm_table.sclk_table.count = 0; |
| |
| for (i = 0; i < allowed_vdd_sclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != |
| allowed_vdd_sclk_table->entries[i].clk) { |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = |
| allowed_vdd_sclk_table->entries[i].clk; |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0; |
| data->dpm_table.sclk_table.count++; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, |
| "MCLK dependency table is missing. This table is mandatory", return -EINVAL); |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mclk_table.count = 0; |
| for (i = 0; i < allowed_vdd_mclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != |
| allowed_vdd_mclk_table->entries[i].clk) { |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = |
| allowed_vdd_mclk_table->entries[i].clk; |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0; |
| data->dpm_table.mclk_table.count++; |
| } |
| } |
| |
| /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ |
| for (i = 0; i < allowed_vdd_sclk_table->count; i++) { |
| data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; |
| data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; |
| /* param1 is for corresponding std voltage */ |
| data->dpm_table.vddc_table.dpm_levels[i].enabled = true; |
| } |
| |
| data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; |
| allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; |
| |
| if (NULL != allowed_vdd_mclk_table) { |
| /* Initialize Vddci DPM table based on allow Mclk values */ |
| for (i = 0; i < allowed_vdd_mclk_table->count; i++) { |
| data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; |
| data->dpm_table.vddci_table.dpm_levels[i].enabled = true; |
| } |
| data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count; |
| } |
| |
| allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; |
| |
| if (NULL != allowed_vdd_mclk_table) { |
| /* |
| * Initialize MVDD DPM table based on allow Mclk |
| * values |
| */ |
| for (i = 0; i < allowed_vdd_mclk_table->count; i++) { |
| data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; |
| data->dpm_table.mvdd_table.dpm_levels[i].enabled = true; |
| } |
| data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; |
| |
| if (table_info == NULL) |
| return -EINVAL; |
| |
| dep_sclk_table = table_info->vdd_dep_on_sclk; |
| dep_mclk_table = table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, |
| "SCLK dependency table is missing.", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, |
| "SCLK dependency table count is 0.", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, |
| "MCLK dependency table is missing.", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, |
| "MCLK dependency table count is 0", |
| return -EINVAL); |
| |
| /* Initialize Sclk DPM table based on allow Sclk values */ |
| data->dpm_table.sclk_table.count = 0; |
| for (i = 0; i < dep_sclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != |
| dep_sclk_table->entries[i].clk) { |
| |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = |
| dep_sclk_table->entries[i].clk; |
| |
| data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.sclk_table.count++; |
| } |
| } |
| if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk; |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mclk_table.count = 0; |
| for (i = 0; i < dep_mclk_table->count; i++) { |
| if (i == 0 || data->dpm_table.mclk_table.dpm_levels |
| [data->dpm_table.mclk_table.count - 1].value != |
| dep_mclk_table->entries[i].clk) { |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = |
| dep_mclk_table->entries[i].clk; |
| data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = |
| (i == 0) ? true : false; |
| data->dpm_table.mclk_table.count++; |
| } |
| } |
| |
| if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk; |
| return 0; |
| } |
| |
| static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; |
| struct phm_odn_performance_level *entries; |
| |
| if (table_info == NULL) |
| return -EINVAL; |
| |
| dep_sclk_table = table_info->vdd_dep_on_sclk; |
| dep_mclk_table = table_info->vdd_dep_on_mclk; |
| |
| odn_table->odn_core_clock_dpm_levels.num_of_pl = |
| data->golden_dpm_table.sclk_table.count; |
| entries = odn_table->odn_core_clock_dpm_levels.entries; |
| for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) { |
| entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value; |
| entries[i].enabled = true; |
| entries[i].vddc = dep_sclk_table->entries[i].vddc; |
| } |
| |
| smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table, |
| (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk)); |
| |
| odn_table->odn_memory_clock_dpm_levels.num_of_pl = |
| data->golden_dpm_table.mclk_table.count; |
| entries = odn_table->odn_memory_clock_dpm_levels.entries; |
| for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) { |
| entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value; |
| entries[i].enabled = true; |
| entries[i].vddc = dep_mclk_table->entries[i].vddc; |
| } |
| |
| smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table, |
| (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk)); |
| |
| return 0; |
| } |
| |
| static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t min_vddc = 0; |
| uint32_t max_vddc = 0; |
| |
| if (!table_info) |
| return; |
| |
| dep_sclk_table = table_info->vdd_dep_on_sclk; |
| |
| atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc); |
| |
| if (min_vddc == 0 || min_vddc > 2000 |
| || min_vddc > dep_sclk_table->entries[0].vddc) |
| min_vddc = dep_sclk_table->entries[0].vddc; |
| |
| if (max_vddc == 0 || max_vddc > 2000 |
| || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc) |
| max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc; |
| |
| data->odn_dpm_table.min_vddc = min_vddc; |
| data->odn_dpm_table.max_vddc = max_vddc; |
| } |
| |
| static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; |
| |
| if (table_info == NULL) |
| return; |
| |
| for (i = 0; i < data->dpm_table.sclk_table.count; i++) { |
| if (odn_table->odn_core_clock_dpm_levels.entries[i].clock != |
| data->dpm_table.sclk_table.dpm_levels[i].value) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| break; |
| } |
| } |
| |
| for (i = 0; i < data->dpm_table.mclk_table.count; i++) { |
| if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock != |
| data->dpm_table.mclk_table.dpm_levels[i].value) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| break; |
| } |
| } |
| |
| dep_table = table_info->vdd_dep_on_mclk; |
| odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk); |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; |
| return; |
| } |
| } |
| |
| dep_table = table_info->vdd_dep_on_sclk; |
| odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk); |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; |
| return; |
| } |
| } |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { |
| data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC; |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; |
| } |
| } |
| |
| static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| smu7_reset_dpm_tables(hwmgr); |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) |
| smu7_setup_dpm_tables_v1(hwmgr); |
| else if (hwmgr->pp_table_version == PP_TABLE_V0) |
| smu7_setup_dpm_tables_v0(hwmgr); |
| |
| smu7_setup_default_pcie_table(hwmgr); |
| |
| /* save a copy of the default DPM table */ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), |
| sizeof(struct smu7_dpm_table)); |
| |
| /* initialize ODN table */ |
| if (hwmgr->od_enabled) { |
| if (data->odn_dpm_table.max_vddc) { |
| smu7_check_dpm_table_updated(hwmgr); |
| } else { |
| smu7_setup_voltage_range_from_vbios(hwmgr); |
| smu7_odn_initial_default_setting(hwmgr); |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) |
| { |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot)) |
| return smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_EnableVRHotGPIOInterrupt, |
| NULL); |
| |
| return 0; |
| } |
| |
| static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| SCLK_PWRMGT_OFF, 0); |
| return 0; |
| } |
| |
| static int smu7_enable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->ulv_supported) |
| return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL); |
| |
| return 0; |
| } |
| |
| static int smu7_disable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->ulv_supported) |
| return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL); |
| |
| return 0; |
| } |
| |
| static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) { |
| if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to enable Master Deep Sleep switch failed!", |
| return -EINVAL); |
| } else { |
| if (smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_MASTER_DeepSleep_OFF, |
| NULL)) { |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to disable Master Deep Sleep switch failed!", |
| return -EINVAL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep)) { |
| if (smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_MASTER_DeepSleep_OFF, |
| NULL)) { |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to disable Master Deep Sleep switch failed!", |
| return -EINVAL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t soft_register_value = 0; |
| uint32_t handshake_disables_offset = data->soft_regs_start |
| + smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, HandshakeDisables); |
| |
| soft_register_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, handshake_disables_offset); |
| soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| handshake_disables_offset, soft_register_value); |
| return 0; |
| } |
| |
| static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t soft_register_value = 0; |
| uint32_t handshake_disables_offset = data->soft_regs_start |
| + smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, HandshakeDisables); |
| |
| soft_register_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, handshake_disables_offset); |
| soft_register_value |= smum_get_mac_definition(hwmgr, |
| SMU_UVD_MCLK_HANDSHAKE_DISABLE); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| handshake_disables_offset, soft_register_value); |
| return 0; |
| } |
| |
| static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /* enable SCLK dpm */ |
| if (!data->sclk_dpm_key_disabled) { |
| if (hwmgr->chip_id == CHIP_VEGAM) |
| smu7_disable_sclk_vce_handshake(hwmgr); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)), |
| "Failed to enable SCLK DPM during DPM Start Function!", |
| return -EINVAL); |
| } |
| |
| /* enable MCLK dpm */ |
| if (0 == data->mclk_dpm_key_disabled) { |
| if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK)) |
| smu7_disable_handshake_uvd(hwmgr); |
| |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_MCLKDPM_Enable, |
| NULL)), |
| "Failed to enable MCLK DPM during DPM Start Function!", |
| return -EINVAL); |
| |
| if (hwmgr->chip_family != CHIP_VEGAM) |
| PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); |
| |
| |
| if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005); |
| udelay(10); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005); |
| } else { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); |
| udelay(10); |
| if (hwmgr->chip_id == CHIP_VEGAM) { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009); |
| } else { |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_start_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /*enable general power management */ |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| GLOBAL_PWRMGT_EN, 1); |
| |
| /* enable sclk deep sleep */ |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| DYNAMIC_PM_EN, 1); |
| |
| /* prepare for PCIE DPM */ |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, SMU_SoftRegisters, |
| VoltageChangeTimeout), 0x1000); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, |
| SWRST_COMMAND_1, RESETLC, 0x0); |
| |
| if (hwmgr->chip_family == AMDGPU_FAMILY_CI) |
| cgs_write_register(hwmgr->device, 0x1488, |
| (cgs_read_register(hwmgr->device, 0x1488) & ~0x1)); |
| |
| if (smu7_enable_sclk_mclk_dpm(hwmgr)) { |
| pr_err("Failed to enable Sclk DPM and Mclk DPM!"); |
| return -EINVAL; |
| } |
| |
| /* enable PCIE dpm */ |
| if (0 == data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_PCIeDPM_Enable, |
| NULL)), |
| "Failed to enable pcie DPM during DPM Start Function!", |
| return -EINVAL); |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_Falcon_QuickTransition)) { |
| PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_EnableACDCGPIOInterrupt, |
| NULL)), |
| "Failed to enable AC DC GPIO Interrupt!", |
| ); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /* disable SCLK dpm */ |
| if (!data->sclk_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to disable SCLK DPM when DPM is disabled", |
| return 0); |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL); |
| } |
| |
| /* disable MCLK dpm */ |
| if (!data->mclk_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to disable MCLK DPM when DPM is disabled", |
| return 0); |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_stop_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /* disable general power management */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| GLOBAL_PWRMGT_EN, 0); |
| /* disable sclk deep sleep */ |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, |
| DYNAMIC_PM_EN, 0); |
| |
| /* disable PCIE dpm */ |
| if (!data->pcie_dpm_key_disabled) { |
| PP_ASSERT_WITH_CODE( |
| (smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_PCIeDPM_Disable, |
| NULL) == 0), |
| "Failed to disable pcie DPM during DPM Stop Function!", |
| return -EINVAL); |
| } |
| |
| smu7_disable_sclk_mclk_dpm(hwmgr); |
| |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to disable voltage DPM when DPM is disabled", |
| return 0); |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL); |
| |
| return 0; |
| } |
| |
| static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) |
| { |
| bool protection; |
| enum DPM_EVENT_SRC src; |
| |
| switch (sources) { |
| default: |
| pr_err("Unknown throttling event sources."); |
| fallthrough; |
| case 0: |
| protection = false; |
| /* src is unused */ |
| break; |
| case (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External): |
| protection = true; |
| src = DPM_EVENT_SRC_EXTERNAL; |
| break; |
| case (1 << PHM_AutoThrottleSource_External) | |
| (1 << PHM_AutoThrottleSource_Thermal): |
| protection = true; |
| src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; |
| break; |
| } |
| /* Order matters - don't enable thermal protection for the wrong source. */ |
| if (protection) { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, |
| DPM_EVENT_SRC, src); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, |
| !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)); |
| } else |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, |
| THERMAL_PROTECTION_DIS, 1); |
| } |
| |
| static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, |
| PHM_AutoThrottleSource source) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (!(data->active_auto_throttle_sources & (1 << source))) { |
| data->active_auto_throttle_sources |= 1 << source; |
| smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); |
| } |
| return 0; |
| } |
| |
| static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) |
| { |
| return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); |
| } |
| |
| static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, |
| PHM_AutoThrottleSource source) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->active_auto_throttle_sources & (1 << source)) { |
| data->active_auto_throttle_sources &= ~(1 << source); |
| smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); |
| } |
| return 0; |
| } |
| |
| static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) |
| { |
| return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); |
| } |
| |
| static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| data->pcie_performance_request = true; |
| |
| return 0; |
| } |
| |
| static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result = 0; |
| int result = 0; |
| |
| if (smu7_voltage_control(hwmgr)) { |
| tmp_result = smu7_enable_voltage_control(hwmgr); |
| PP_ASSERT_WITH_CODE(tmp_result == 0, |
| "Failed to enable voltage control!", |
| result = tmp_result); |
| |
| tmp_result = smu7_construct_voltage_tables(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to construct voltage tables!", |
| result = tmp_result); |
| } |
| smum_initialize_mc_reg_table(hwmgr); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EngineSpreadSpectrumSupport)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); |
| |
| tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program static screen threshold parameters!", |
| result = tmp_result); |
| |
| tmp_result = smu7_enable_display_gap(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable display gap!", result = tmp_result); |
| |
| tmp_result = smu7_program_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to program voting clients!", result = tmp_result); |
| |
| tmp_result = smum_process_firmware_header(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to process firmware header!", result = tmp_result); |
| |
| if (hwmgr->chip_id != CHIP_VEGAM) { |
| tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize switch from ArbF0 to F1!", |
| result = tmp_result); |
| } |
| |
| result = smu7_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(0 == result, |
| "Failed to setup default DPM tables!", return result); |
| |
| tmp_result = smum_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to initialize SMC table!", result = tmp_result); |
| |
| tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable VR hot GPIO interrupt!", result = tmp_result); |
| |
| smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL); |
| |
| tmp_result = smu7_enable_sclk_control(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SCLK control!", result = tmp_result); |
| |
| tmp_result = smu7_enable_smc_voltage_controller(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable voltage control!", result = tmp_result); |
| |
| tmp_result = smu7_enable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ULV!", result = tmp_result); |
| |
| tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = smu7_enable_didt_config(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to enable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = smu7_start_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to start DPM!", result = tmp_result); |
| |
| tmp_result = smu7_enable_smc_cac(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable SMC CAC!", result = tmp_result); |
| |
| tmp_result = smu7_enable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable power containment!", result = tmp_result); |
| |
| tmp_result = smu7_power_control_set_level(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to power control set level!", result = tmp_result); |
| |
| tmp_result = smu7_enable_thermal_auto_throttle(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable thermal auto throttle!", result = tmp_result); |
| |
| tmp_result = smu7_pcie_performance_request(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "pcie performance request failed!", result = tmp_result); |
| |
| return 0; |
| } |
| |
| static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| if (!hwmgr->avfs_supported) |
| return 0; |
| |
| if (enable) { |
| if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { |
| PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( |
| hwmgr, PPSMC_MSG_EnableAvfs, NULL), |
| "Failed to enable AVFS!", |
| return -EINVAL); |
| } |
| } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { |
| PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( |
| hwmgr, PPSMC_MSG_DisableAvfs, NULL), |
| "Failed to disable AVFS!", |
| return -EINVAL); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_update_avfs(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (!hwmgr->avfs_supported) |
| return 0; |
| |
| if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { |
| smu7_avfs_control(hwmgr, false); |
| } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| smu7_avfs_control(hwmgr, false); |
| smu7_avfs_control(hwmgr, true); |
| } else { |
| smu7_avfs_control(hwmgr, true); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ThermalController)) |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); |
| |
| tmp_result = smu7_disable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable power containment!", result = tmp_result); |
| |
| tmp_result = smu7_disable_smc_cac(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable SMC CAC!", result = tmp_result); |
| |
| tmp_result = smu7_disable_didt_config(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable DIDT!", result = tmp_result); |
| |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); |
| |
| tmp_result = smu7_disable_thermal_auto_throttle(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable thermal auto throttle!", result = tmp_result); |
| |
| tmp_result = smu7_avfs_control(hwmgr, false); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable AVFS!", result = tmp_result); |
| |
| tmp_result = smu7_stop_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to stop DPM!", result = tmp_result); |
| |
| tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable deep sleep master switch!", result = tmp_result); |
| |
| tmp_result = smu7_disable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable ULV!", result = tmp_result); |
| |
| tmp_result = smu7_clear_voting_clients(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to clear voting clients!", result = tmp_result); |
| |
| tmp_result = smu7_reset_to_default(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to reset to default!", result = tmp_result); |
| |
| tmp_result = smu7_force_switch_to_arbf0(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to force to switch arbf0!", result = tmp_result); |
| |
| return result; |
| } |
| |
| static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| data->dll_default_on = false; |
| data->mclk_dpm0_activity_target = 0xa; |
| data->vddc_vddgfx_delta = 300; |
| data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT; |
| data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT; |
| data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0; |
| data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1; |
| data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2; |
| data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3; |
| data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4; |
| data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5; |
| data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6; |
| data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7; |
| |
| data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; |
| data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; |
| data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; |
| /* need to set voltage control types before EVV patching */ |
| data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE; |
| data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE; |
| data->enable_tdc_limit_feature = true; |
| data->enable_pkg_pwr_tracking_feature = true; |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false; |
| data->current_profile_setting.bupdate_sclk = 1; |
| data->current_profile_setting.sclk_up_hyst = 0; |
| data->current_profile_setting.sclk_down_hyst = 100; |
| data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT; |
| data->current_profile_setting.bupdate_mclk = 1; |
| if (adev->gmc.vram_width == 256) { |
| data->current_profile_setting.mclk_up_hyst = 10; |
| data->current_profile_setting.mclk_down_hyst = 60; |
| data->current_profile_setting.mclk_activity = 25; |
| } else if (adev->gmc.vram_width == 128) { |
| data->current_profile_setting.mclk_up_hyst = 5; |
| data->current_profile_setting.mclk_down_hyst = 16; |
| data->current_profile_setting.mclk_activity = 20; |
| } else if (adev->gmc.vram_width == 64) { |
| data->current_profile_setting.mclk_up_hyst = 3; |
| data->current_profile_setting.mclk_down_hyst = 16; |
| data->current_profile_setting.mclk_activity = 20; |
| } |
| hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D]; |
| hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; |
| hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; |
| |
| if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) { |
| uint8_t tmp1, tmp2; |
| uint16_t tmp3 = 0; |
| atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2, |
| &tmp3); |
| tmp3 = (tmp3 >> 5) & 0x3; |
| data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3; |
| } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { |
| data->vddc_phase_shed_control = 1; |
| } else { |
| data->vddc_phase_shed_control = 0; |
| } |
| |
| if (hwmgr->chip_id == CHIP_HAWAII) { |
| data->thermal_temp_setting.temperature_low = 94500; |
| data->thermal_temp_setting.temperature_high = 95000; |
| data->thermal_temp_setting.temperature_shutdown = 104000; |
| } else { |
| data->thermal_temp_setting.temperature_low = 99500; |
| data->thermal_temp_setting.temperature_high = 100000; |
| data->thermal_temp_setting.temperature_shutdown = 104000; |
| } |
| |
| data->fast_watermark_threshold = 100; |
| if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) |
| data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; |
| else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) |
| data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDGFX)) { |
| if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { |
| data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl)) { |
| if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) |
| data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) |
| data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDGFX); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI)) { |
| if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
| data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; |
| else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) |
| data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| |
| if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableMVDDControl); |
| |
| if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK) |
| && (table_info->cac_dtp_table->usClockStretchAmount != 0)) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| |
| data->pcie_gen_performance.max = PP_PCIEGen1; |
| data->pcie_gen_performance.min = PP_PCIEGen3; |
| data->pcie_gen_power_saving.max = PP_PCIEGen1; |
| data->pcie_gen_power_saving.min = PP_PCIEGen3; |
| data->pcie_lane_performance.max = 0; |
| data->pcie_lane_performance.min = 16; |
| data->pcie_lane_power_saving.max = 0; |
| data->pcie_lane_power_saving.min = 16; |
| |
| |
| if (adev->pg_flags & AMD_PG_SUPPORT_UVD) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDPowerGating); |
| if (adev->pg_flags & AMD_PG_SUPPORT_VCE) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_VCEPowerGating); |
| } |
| |
| /** |
| * Get Leakage VDDC based on leakage ID. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint16_t vv_id; |
| uint16_t vddc = 0; |
| uint16_t vddgfx = 0; |
| uint16_t i, j; |
| uint32_t sclk = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL; |
| |
| |
| for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { |
| vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| |
| if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| if ((hwmgr->pp_table_version == PP_TABLE_V1) |
| && !phm_get_sclk_for_voltage_evv(hwmgr, |
| table_info->vddgfx_lookup_table, vv_id, &sclk)) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| sclk_table = table_info->vdd_dep_on_sclk; |
| |
| for (j = 1; j < sclk_table->count; j++) { |
| if (sclk_table->entries[j].clk == sclk && |
| sclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| if (0 == atomctrl_get_voltage_evv_on_sclk |
| (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, |
| vv_id, &vddgfx)) { |
| /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ |
| PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL); |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddgfx != 0 && vddgfx != vv_id) { |
| data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; |
| data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id; |
| data->vddcgfx_leakage.count++; |
| } |
| } else { |
| pr_info("Error retrieving EVV voltage value!\n"); |
| } |
| } |
| } else { |
| if ((hwmgr->pp_table_version == PP_TABLE_V0) |
| || !phm_get_sclk_for_voltage_evv(hwmgr, |
| table_info->vddc_lookup_table, vv_id, &sclk)) { |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| if (table_info == NULL) |
| return -EINVAL; |
| sclk_table = table_info->vdd_dep_on_sclk; |
| |
| for (j = 1; j < sclk_table->count; j++) { |
| if (sclk_table->entries[j].clk == sclk && |
| sclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| |
| if (phm_get_voltage_evv_on_sclk(hwmgr, |
| VOLTAGE_TYPE_VDDC, |
| sclk, vv_id, &vddc) == 0) { |
| if (vddc >= 2000 || vddc == 0) |
| return -EINVAL; |
| } else { |
| pr_debug("failed to retrieving EVV voltage!\n"); |
| continue; |
| } |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddc != 0 && vddc != vv_id) { |
| data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc); |
| data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; |
| data->vddc_leakage.count++; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint16_t *voltage, struct smu7_leakage_voltage *leakage_table) |
| { |
| uint32_t index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (index = 0; index < leakage_table->count; index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (leakage_table->leakage_id[index] == *voltage) { |
| *voltage = leakage_table->actual_voltage[index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); |
| } |
| |
| /** |
| * Patch voltage lookup table by EVV leakages. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to voltage lookup table |
| * @param pointer to leakage table |
| * @return always 0 |
| */ |
| static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| struct smu7_leakage_voltage *leakage_table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < lookup_table->count; i++) |
| smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, |
| &lookup_table->entries[i].us_vdd, leakage_table); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_clock_voltage_limits_with_vddc_leakage( |
| struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table, |
| uint16_t *vddc) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); |
| hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = |
| table_info->max_clock_voltage_on_dc.vddc; |
| return 0; |
| } |
| |
| static int smu7_patch_voltage_dependency_tables_with_lookup_table( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entry_id; |
| uint8_t voltage_id; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = |
| table_info->vdd_dep_on_mclk; |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| |
| if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { |
| voltage_id = sclk_table->entries[entry_id].vddInd; |
| sclk_table->entries[entry_id].vddgfx = |
| table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd; |
| } |
| } else { |
| for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { |
| voltage_id = sclk_table->entries[entry_id].vddInd; |
| sclk_table->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| } |
| } |
| |
| for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { |
| voltage_id = mclk_table->entries[entry_id].vddInd; |
| mclk_table->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| } |
| |
| for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { |
| voltage_id = mm_table->entries[entry_id].vddcInd; |
| mm_table->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| } |
| |
| return 0; |
| |
| } |
| |
| static int phm_add_voltage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *look_up_table, |
| phm_ppt_v1_voltage_lookup_record *record) |
| { |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE((NULL != look_up_table), |
| "Lookup Table empty.", return -EINVAL); |
| PP_ASSERT_WITH_CODE((0 != look_up_table->count), |
| "Lookup Table empty.", return -EINVAL); |
| |
| i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); |
| PP_ASSERT_WITH_CODE((i >= look_up_table->count), |
| "Lookup Table is full.", return -EINVAL); |
| |
| /* This is to avoid entering duplicate calculated records. */ |
| for (i = 0; i < look_up_table->count; i++) { |
| if (look_up_table->entries[i].us_vdd == record->us_vdd) { |
| if (look_up_table->entries[i].us_calculated == 1) |
| return 0; |
| break; |
| } |
| } |
| |
| look_up_table->entries[i].us_calculated = 1; |
| look_up_table->entries[i].us_vdd = record->us_vdd; |
| look_up_table->entries[i].us_cac_low = record->us_cac_low; |
| look_up_table->entries[i].us_cac_mid = record->us_cac_mid; |
| look_up_table->entries[i].us_cac_high = record->us_cac_high; |
| /* Only increment the count when we're appending, not replacing duplicate entry. */ |
| if (i == look_up_table->count) |
| look_up_table->count++; |
| |
| return 0; |
| } |
| |
| |
| static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entry_id; |
| struct phm_ppt_v1_voltage_lookup_record v_record; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; |
| phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; |
| |
| if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { |
| if (sclk_table->entries[entry_id].vdd_offset & (1 << 15)) |
| v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + |
| sclk_table->entries[entry_id].vdd_offset - 0xFFFF; |
| else |
| v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + |
| sclk_table->entries[entry_id].vdd_offset; |
| |
| sclk_table->entries[entry_id].vddc = |
| v_record.us_cac_low = v_record.us_cac_mid = |
| v_record.us_cac_high = v_record.us_vdd; |
| |
| phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); |
| } |
| |
| for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { |
| if (mclk_table->entries[entry_id].vdd_offset & (1 << 15)) |
| v_record.us_vdd = mclk_table->entries[entry_id].vddc + |
| mclk_table->entries[entry_id].vdd_offset - 0xFFFF; |
| else |
| v_record.us_vdd = mclk_table->entries[entry_id].vddc + |
| mclk_table->entries[entry_id].vdd_offset; |
| |
| mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low = |
| v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; |
| phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entry_id; |
| struct phm_ppt_v1_voltage_lookup_record v_record; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; |
| |
| if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| for (entry_id = 0; entry_id < mm_table->count; entry_id++) { |
| if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15)) |
| v_record.us_vdd = mm_table->entries[entry_id].vddc + |
| mm_table->entries[entry_id].vddgfx_offset - 0xFFFF; |
| else |
| v_record.us_vdd = mm_table->entries[entry_id].vddc + |
| mm_table->entries[entry_id].vddgfx_offset; |
| |
| /* Add the calculated VDDGFX to the VDDGFX lookup table */ |
| mm_table->entries[entry_id].vddgfx = v_record.us_cac_low = |
| v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; |
| phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| uint32_t table_size, i, j; |
| table_size = lookup_table->count; |
| |
| PP_ASSERT_WITH_CODE(0 != lookup_table->count, |
| "Lookup table is empty", return -EINVAL); |
| |
| /* Sorting voltages */ |
| for (i = 0; i < table_size - 1; i++) { |
| for (j = i + 1; j > 0; j--) { |
| if (lookup_table->entries[j].us_vdd < |
| lookup_table->entries[j - 1].us_vdd) { |
| swap(lookup_table->entries[j - 1], |
| lookup_table->entries[j]); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| int tmp_result; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { |
| tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, |
| table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); |
| if (tmp_result != 0) |
| result = tmp_result; |
| |
| smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, |
| &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage)); |
| } else { |
| |
| tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, |
| table_info->vddc_lookup_table, &(data->vddc_leakage)); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, |
| &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); |
| if (tmp_result) |
| result = tmp_result; |
| } |
| |
| tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = smu7_calc_voltage_dependency_tables(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); |
| if (tmp_result) |
| result = tmp_result; |
| |
| return result; |
| } |
| |
| static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, |
| "VDD dependency on SCLK table is missing.", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, |
| "VDD dependency on SCLK table has to have is missing.", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, |
| "VDD dependency on MCLK table is missing", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, |
| "VDD dependency on MCLK table has to have is missing.", |
| return -EINVAL); |
| |
| table_info->max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| table_info->max_clock_voltage_on_ac.vddci = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; |
| |
| return 0; |
| } |
| |
| static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table; |
| uint32_t i; |
| uint32_t hw_revision, sub_vendor_id, sub_sys_id; |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| if (table_info != NULL) { |
| dep_mclk_table = table_info->vdd_dep_on_mclk; |
| lookup_table = table_info->vddc_lookup_table; |
| } else |
| return 0; |
| |
| hw_revision = adev->pdev->revision; |
| sub_sys_id = adev->pdev->subsystem_device; |
| sub_vendor_id = adev->pdev->subsystem_vendor; |
| |
| if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 && |
| ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) || |
| (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) || |
| (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) { |
| if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) |
| return 0; |
| |
| for (i = 0; i < lookup_table->count; i++) { |
| if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { |
| dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; |
| return 0; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr) |
| { |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; |
| uint32_t temp_reg; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { |
| temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); |
| switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { |
| case 0: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); |
| break; |
| case 1: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); |
| break; |
| case 2: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); |
| break; |
| case 3: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); |
| break; |
| case 4: |
| temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); |
| break; |
| default: |
| break; |
| } |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); |
| } |
| |
| if (table_info == NULL) |
| return 0; |
| |
| if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && |
| hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = |
| (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; |
| |
| table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? |
| (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0; |
| |
| table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; |
| table_info->cac_dtp_table->usOperatingTempStep = 1; |
| table_info->cac_dtp_table->usOperatingTempHyst = 1; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; |
| |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = |
| table_info->cac_dtp_table->usOperatingTempMinLimit; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = |
| table_info->cac_dtp_table->usOperatingTempMaxLimit; |
| |
| hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = |
| table_info->cac_dtp_table->usDefaultTargetOperatingTemp; |
| |
| hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = |
| table_info->cac_dtp_table->usOperatingTempStep; |
| |
| hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = |
| table_info->cac_dtp_table->usTargetOperatingTemp; |
| if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ODFuzzyFanControlSupport); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint32_t *voltage, struct smu7_leakage_voltage *leakage_table) |
| { |
| uint32_t index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (index = 0; index < leakage_table->count; index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (leakage_table->leakage_id[index] == *voltage) { |
| *voltage = leakage_table->actual_voltage[index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); |
| } |
| |
| |
| static int smu7_patch_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_vddci(struct pp_hwmgr *hwmgr, |
| struct phm_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddci_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_vce_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| |
| static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_uvd_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, |
| struct phm_phase_shedding_limits_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_samu_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_acp_clock_voltage_dependency_table *tab) |
| { |
| uint16_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) |
| for (i = 0; i < tab->count; i++) |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, |
| &data->vddc_leakage); |
| |
| return 0; |
| } |
| |
| static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr, |
| struct phm_clock_and_voltage_limits *tab) |
| { |
| uint32_t vddc, vddci; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) { |
| vddc = tab->vddc; |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, |
| &data->vddc_leakage); |
| tab->vddc = vddc; |
| vddci = tab->vddci; |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci, |
| &data->vddci_leakage); |
| tab->vddci = vddci; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) |
| { |
| uint32_t i; |
| uint32_t vddc; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (tab) { |
| for (i = 0; i < tab->count; i++) { |
| vddc = (uint32_t)(tab->entries[i].Vddc); |
| smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); |
| tab->entries[i].Vddc = (uint16_t)vddc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) |
| { |
| int tmp; |
| |
| tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); |
| if (tmp) |
| return -EINVAL; |
| |
| tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); |
| if (tmp) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| |
| static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; |
| struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; |
| struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, |
| "VDDC dependency on SCLK table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, |
| "VDDC dependency on SCLK table has to have is missing. This table is mandatory", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, |
| "VDDC dependency on MCLK table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, |
| "VDD dependency on MCLK table has to have is missing. This table is mandatory", |
| return -EINVAL); |
| |
| data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v; |
| data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; |
| |
| if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { |
| data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v; |
| data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; |
| } |
| |
| if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1) |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; |
| |
| return 0; |
| } |
| |
| static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); |
| hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; |
| kfree(hwmgr->backend); |
| hwmgr->backend = NULL; |
| |
| return 0; |
| } |
| |
| static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int i; |
| |
| if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) { |
| for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { |
| virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci, |
| virtual_voltage_id, |
| efuse_voltage_id) == 0) { |
| if (vddc != 0 && vddc != virtual_voltage_id) { |
| data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; |
| data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; |
| data->vddc_leakage.count++; |
| } |
| if (vddci != 0 && vddci != virtual_voltage_id) { |
| data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci; |
| data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id; |
| data->vddci_leakage.count++; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data; |
| int result = 0; |
| |
| data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->backend = data; |
| smu7_patch_voltage_workaround(hwmgr); |
| smu7_init_dpm_defaults(hwmgr); |
| |
| /* Get leakage voltage based on leakage ID. */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EVV)) { |
| result = smu7_get_evv_voltages(hwmgr); |
| if (result) { |
| pr_info("Get EVV Voltage Failed. Abort Driver loading!\n"); |
| return -EINVAL; |
| } |
| } else { |
| smu7_get_elb_voltages(hwmgr); |
| } |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) { |
| smu7_complete_dependency_tables(hwmgr); |
| smu7_set_private_data_based_on_pptable_v1(hwmgr); |
| } else if (hwmgr->pp_table_version == PP_TABLE_V0) { |
| smu7_patch_dependency_tables_with_leakage(hwmgr); |
| smu7_set_private_data_based_on_pptable_v0(hwmgr); |
| } |
| |
| /* Initalize Dynamic State Adjustment Rule Settings */ |
| result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); |
| |
| if (0 == result) { |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| data->is_tlu_enabled = false; |
| |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| SMU7_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| data->pcie_gen_cap = adev->pm.pcie_gen_mask; |
| if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) |
| data->pcie_spc_cap = 20; |
| data->pcie_lane_cap = adev->pm.pcie_mlw_mask; |
| |
| hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ |
| /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ |
| hwmgr->platform_descriptor.clockStep.engineClock = 500; |
| hwmgr->platform_descriptor.clockStep.memoryClock = 500; |
| smu7_thermal_parameter_init(hwmgr); |
| } else { |
| /* Ignore return value in here, we are cleaning up a mess. */ |
| smu7_hwmgr_backend_fini(hwmgr); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t level, tmp; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, level, |
| NULL); |
| } |
| } |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level), |
| NULL); |
| } |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| |
| if (level) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level), |
| NULL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) |
| phm_apply_dal_min_voltage_request(hwmgr); |
| /* TO DO for v0 iceland and Ci*/ |
| |
| if (!data->sclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask, |
| NULL); |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask, |
| NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (!smum_is_dpm_running(hwmgr)) |
| return -EINVAL; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_PCIeDPM_UnForceLevel, |
| NULL); |
| } |
| |
| return smu7_upload_dpm_level_enable_mask(hwmgr); |
| } |
| |
| static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = |
| (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t level; |
| |
| if (!data->sclk_dpm_key_disabled) |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| (1 << level), |
| NULL); |
| |
| } |
| |
| if (!data->mclk_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| (1 << level), |
| NULL); |
| } |
| } |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { |
| level = phm_get_lowest_enabled_level(hwmgr, |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| (level), |
| NULL); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, |
| uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask) |
| { |
| uint32_t percentage; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; |
| int32_t tmp_mclk; |
| int32_t tmp_sclk; |
| int32_t count; |
| |
| if (golden_dpm_table->mclk_table.count < 1) |
| return -EINVAL; |
| |
| percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / |
| golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; |
| |
| if (golden_dpm_table->mclk_table.count == 1) { |
| percentage = 70; |
| tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; |
| *mclk_mask = golden_dpm_table->mclk_table.count - 1; |
| } else { |
| tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; |
| *mclk_mask = golden_dpm_table->mclk_table.count - 2; |
| } |
| |
| tmp_sclk = tmp_mclk * percentage / 100; |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V0) { |
| for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; |
| count >= 0; count--) { |
| if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { |
| tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk; |
| *sclk_mask = count; |
| break; |
| } |
| } |
| if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| *sclk_mask = 0; |
| tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; |
| } else if (hwmgr->pp_table_version == PP_TABLE_V1) { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { |
| if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { |
| tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; |
| *sclk_mask = count; |
| break; |
| } |
| } |
| if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| *sclk_mask = 0; |
| tmp_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) |
| *mclk_mask = 0; |
| else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| *mclk_mask = golden_dpm_table->mclk_table.count - 1; |
| |
| *pcie_mask = data->dpm_table.pcie_speed_table.count - 1; |
| hwmgr->pstate_sclk = tmp_sclk; |
| hwmgr->pstate_mclk = tmp_mclk; |
| |
| return 0; |
| } |
| |
| static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| uint32_t sclk_mask = 0; |
| uint32_t mclk_mask = 0; |
| uint32_t pcie_mask = 0; |
| |
| if (hwmgr->pstate_sclk == 0) |
| smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = smu7_force_dpm_highest(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = smu7_force_dpm_lowest(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = smu7_unforce_dpm_levels(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
| ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); |
| if (ret) |
| return ret; |
| smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); |
| smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); |
| smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask); |
| break; |
| case AMD_DPM_FORCED_LEVEL_MANUAL: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: |
| default: |
| break; |
| } |
| |
| if (!ret) { |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); |
| else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr); |
| } |
| return ret; |
| } |
| |
| static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr) |
| { |
| return sizeof(struct smu7_power_state); |
| } |
| |
| static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr, |
| uint32_t vblank_time_us) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t switch_limit_us; |
| |
| switch (hwmgr->chip_id) { |
| case CHIP_POLARIS10: |
| case CHIP_POLARIS11: |
| case CHIP_POLARIS12: |
| if (hwmgr->is_kicker) |
| switch_limit_us = data->is_memory_gddr5 ? 450 : 150; |
| else |
| switch_limit_us = data->is_memory_gddr5 ? 190 : 150; |
| break; |
| case CHIP_VEGAM: |
| switch_limit_us = 30; |
| break; |
| default: |
| switch_limit_us = data->is_memory_gddr5 ? 450 : 150; |
| break; |
| } |
| |
| if (vblank_time_us < switch_limit_us) |
| return true; |
| else |
| return false; |
| } |
| |
| static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *request_ps, |
| const struct pp_power_state *current_ps) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| struct smu7_power_state *smu7_ps = |
| cast_phw_smu7_power_state(&request_ps->hardware); |
| uint32_t sclk; |
| uint32_t mclk; |
| struct PP_Clocks minimum_clocks = {0}; |
| bool disable_mclk_switching; |
| bool disable_mclk_switching_for_frame_lock; |
| const struct phm_clock_and_voltage_limits *max_limits; |
| uint32_t i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int32_t count; |
| int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
| |
| data->battery_state = (PP_StateUILabel_Battery == |
| request_ps->classification.ui_label); |
| |
| PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2, |
| "VI should always have 2 performance levels", |
| ); |
| |
| max_limits = adev->pm.ac_power ? |
| &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
| &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
| |
| /* Cap clock DPM tables at DC MAX if it is in DC. */ |
| if (!adev->pm.ac_power) { |
| for (i = 0; i < smu7_ps->performance_level_count; i++) { |
| if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk) |
| smu7_ps->performance_levels[i].memory_clock = max_limits->mclk; |
| if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk) |
| smu7_ps->performance_levels[i].engine_clock = max_limits->sclk; |
| } |
| } |
| |
| minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; |
| minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
| stable_pstate_sclk = (max_limits->sclk * 75) / 100; |
| |
| for (count = table_info->vdd_dep_on_sclk->count - 1; |
| count >= 0; count--) { |
| if (stable_pstate_sclk >= |
| table_info->vdd_dep_on_sclk->entries[count].clk) { |
| stable_pstate_sclk = |
| table_info->vdd_dep_on_sclk->entries[count].clk; |
| break; |
| } |
| } |
| |
| if (count < 0) |
| stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
| |
| stable_pstate_mclk = max_limits->mclk; |
| |
| minimum_clocks.engineClock = stable_pstate_sclk; |
| minimum_clocks.memoryClock = stable_pstate_mclk; |
| } |
| |
| disable_mclk_switching_for_frame_lock = phm_cap_enabled( |
| hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); |
| |
| |
| if (hwmgr->display_config->num_display == 0) |
| disable_mclk_switching = false; |
| else |
| disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && |
| !hwmgr->display_config->multi_monitor_in_sync) || |
| disable_mclk_switching_for_frame_lock || |
| smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time); |
| |
| sclk = smu7_ps->performance_levels[0].engine_clock; |
| mclk = smu7_ps->performance_levels[0].memory_clock; |
| |
| if (disable_mclk_switching) |
| mclk = smu7_ps->performance_levels |
| [smu7_ps->performance_level_count - 1].memory_clock; |
| |
| if (sclk < minimum_clocks.engineClock) |
| sclk = (minimum_clocks.engineClock > max_limits->sclk) ? |
| max_limits->sclk : minimum_clocks.engineClock; |
| |
| if (mclk < minimum_clocks.memoryClock) |
| mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? |
| max_limits->mclk : minimum_clocks.memoryClock; |
| |
| smu7_ps->performance_levels[0].engine_clock = sclk; |
| smu7_ps->performance_levels[0].memory_clock = mclk; |
| |
| smu7_ps->performance_levels[1].engine_clock = |
| (smu7_ps->performance_levels[1].engine_clock >= |
| smu7_ps->performance_levels[0].engine_clock) ? |
| smu7_ps->performance_levels[1].engine_clock : |
| smu7_ps->performance_levels[0].engine_clock; |
| |
| if (disable_mclk_switching) { |
| if (mclk < smu7_ps->performance_levels[1].memory_clock) |
| mclk = smu7_ps->performance_levels[1].memory_clock; |
| |
| smu7_ps->performance_levels[0].memory_clock = mclk; |
| smu7_ps->performance_levels[1].memory_clock = mclk; |
| } else { |
| if (smu7_ps->performance_levels[1].memory_clock < |
| smu7_ps->performance_levels[0].memory_clock) |
| smu7_ps->performance_levels[1].memory_clock = |
| smu7_ps->performance_levels[0].memory_clock; |
| } |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) { |
| for (i = 0; i < smu7_ps->performance_level_count; i++) { |
| smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk; |
| smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk; |
| smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; |
| smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; |
| } |
| } |
| return 0; |
| } |
| |
| |
| static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct smu7_power_state *smu7_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| smu7_ps = cast_phw_smu7_power_state(&ps->hardware); |
| |
| if (low) |
| return smu7_ps->performance_levels[0].memory_clock; |
| else |
| return smu7_ps->performance_levels |
| [smu7_ps->performance_level_count-1].memory_clock; |
| } |
| |
| static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct smu7_power_state *smu7_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| smu7_ps = cast_phw_smu7_power_state(&ps->hardware); |
| |
| if (low) |
| return smu7_ps->performance_levels[0].engine_clock; |
| else |
| return smu7_ps->performance_levels |
| [smu7_ps->performance_level_count-1].engine_clock; |
| } |
| |
| static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *hw_ps) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps; |
| ATOM_FIRMWARE_INFO_V2_2 *fw_info; |
| uint16_t size; |
| uint8_t frev, crev; |
| int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); |
| |
| /* First retrieve the Boot clocks and VDDC from the firmware info table. |
| * We assume here that fw_info is unchanged if this call fails. |
| */ |
| fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index, |
| &size, &frev, &crev); |
| if (!fw_info) |
| /* During a test, there is no firmware info table. */ |
| return 0; |
| |
| /* Patch the state. */ |
| data->vbios_boot_state.sclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultEngineClock); |
| data->vbios_boot_state.mclk_bootup_value = |
| le32_to_cpu(fw_info->ulDefaultMemoryClock); |
| data->vbios_boot_state.mvdd_bootup_value = |
| le16_to_cpu(fw_info->usBootUpMVDDCVoltage); |
| data->vbios_boot_state.vddc_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCVoltage); |
| data->vbios_boot_state.vddci_bootup_value = |
| le16_to_cpu(fw_info->usBootUpVDDCIVoltage); |
| data->vbios_boot_state.pcie_gen_bootup_value = |
| smu7_get_current_pcie_speed(hwmgr); |
| |
| data->vbios_boot_state.pcie_lane_bootup_value = |
| (uint16_t)smu7_get_current_pcie_lane_number(hwmgr); |
| |
| /* set boot power state */ |
| ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; |
| ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; |
| ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; |
| ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; |
| |
| return 0; |
| } |
| |
| static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| unsigned long ret = 0; |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V0) { |
| result = pp_tables_get_num_of_entries(hwmgr, &ret); |
| return result ? 0 : ret; |
| } else if (hwmgr->pp_table_version == PP_TABLE_V1) { |
| result = get_number_of_powerplay_table_entries_v1_0(hwmgr); |
| return result; |
| } |
| return 0; |
| } |
| |
| static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr, |
| void *state, struct pp_power_state *power_state, |
| void *pp_table, uint32_t classification_flag) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_power_state *smu7_power_state = |
| (struct smu7_power_state *)(&(power_state->hardware)); |
| struct smu7_performance_level *performance_level; |
| ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; |
| ATOM_Tonga_POWERPLAYTABLE *powerplay_table = |
| (ATOM_Tonga_POWERPLAYTABLE *)pp_table; |
| PPTable_Generic_SubTable_Header *sclk_dep_table = |
| (PPTable_Generic_SubTable_Header *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); |
| |
| ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = |
| (ATOM_Tonga_MCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| |
| /* The following fields are not initialized here: id orderedList allStatesList */ |
| power_state->classification.ui_label = |
| (le16_to_cpu(state_entry->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> |
| ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| power_state->classification.flags = classification_flag; |
| /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ |
| |
| power_state->classification.temporary_state = false; |
| power_state->classification.to_be_deleted = false; |
| |
| power_state->validation.disallowOnDC = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_DISALLOW_ON_DC)); |
| |
| power_state->pcie.lanes = 0; |
| |
| power_state->display.disableFrameModulation = false; |
| power_state->display.limitRefreshrate = false; |
| power_state->display.enableVariBright = |
| (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Tonga_ENABLE_VARIBRIGHT)); |
| |
| power_state->validation.supportedPowerLevels = 0; |
| power_state->uvd_clocks.VCLK = 0; |
| power_state->uvd_clocks.DCLK = 0; |
| power_state->temperatures.min = 0; |
| power_state->temperatures.max = 0; |
| |
| performance_level = &(smu7_power_state->performance_levels |
| [smu7_power_state->performance_level_count++]); |
| |
| PP_ASSERT_WITH_CODE( |
| (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), |
| "Performance levels exceeds SMC limit!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE( |
| (smu7_power_state->performance_level_count <= |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit!", |
| return -EINVAL); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexLow].ulMclk; |
| if (sclk_dep_table->ucRevId == 0) |
| performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexLow].ulSclk; |
| else if (sclk_dep_table->ucRevId == 1) |
| performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexLow].ulSclk; |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenLow); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneLow); |
| |
| performance_level = &(smu7_power_state->performance_levels |
| [smu7_power_state->performance_level_count++]); |
| performance_level->memory_clock = mclk_dep_table->entries |
| [state_entry->ucMemoryClockIndexHigh].ulMclk; |
| |
| if (sclk_dep_table->ucRevId == 0) |
| performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexHigh].ulSclk; |
| else if (sclk_dep_table->ucRevId == 1) |
| performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries |
| [state_entry->ucEngineClockIndexHigh].ulSclk; |
| |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, |
| state_entry->ucPCIEGenHigh); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, |
| state_entry->ucPCIELaneHigh); |
| |
| return 0; |
| } |
| |
| static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| int result; |
| struct smu7_power_state *ps; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| state->hardware.magic = PHM_VIslands_Magic; |
| |
| ps = (struct smu7_power_state *)(&state->hardware); |
| |
| result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state, |
| smu7_get_pp_table_entry_callback_func_v1); |
| |
| /* This is the earliest time we have all the dependency table and the VBIOS boot state |
| * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state |
| * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state |
| */ |
| if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { |
| if (dep_mclk_table->entries[0].clk != |
| data->vbios_boot_state.mclk_bootup_value) |
| pr_debug("Single MCLK entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot MCLK level"); |
| if (dep_mclk_table->entries[0].vddci != |
| data->vbios_boot_state.vddci_bootup_value) |
| pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot VDDCI level"); |
| } |
| |
| /* set DC compatible flag if this state supports DC */ |
| if (!state->validation.disallowOnDC) |
| ps->dc_compatible = true; |
| |
| if (state->classification.flags & PP_StateClassificationFlag_ACPI) |
| data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; |
| |
| ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
| ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
| |
| if (!result) { |
| uint32_t i; |
| |
| switch (state->classification.ui_label) { |
| case PP_StateUILabel_Performance: |
| data->use_pcie_performance_levels = true; |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_performance.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_performance.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_performance.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.max = |
| ps->performance_levels[i].pcie_lane; |
| if (data->pcie_lane_performance.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| case PP_StateUILabel_Battery: |
| data->use_pcie_power_saving_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_power_saving.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_power_saving.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_power_saving.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_power_saving.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *power_state, |
| unsigned int index, const void *clock_info) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state); |
| const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; |
| struct smu7_performance_level *performance_level; |
| uint32_t engine_clock, memory_clock; |
| uint16_t pcie_gen_from_bios; |
| |
| engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; |
| memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; |
| |
| if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) |
| data->highest_mclk = memory_clock; |
| |
| PP_ASSERT_WITH_CODE( |
| (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), |
| "Performance levels exceeds SMC limit!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE( |
| (ps->performance_level_count < |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit, Skip!", |
| return 0); |
| |
| performance_level = &(ps->performance_levels |
| [ps->performance_level_count++]); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->memory_clock = memory_clock; |
| performance_level->engine_clock = engine_clock; |
| |
| pcie_gen_from_bios = visland_clk_info->ucPCIEGen; |
| |
| performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); |
| performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); |
| |
| return 0; |
| } |
| |
| static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| int result; |
| struct smu7_power_state *ps; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_clock_voltage_dependency_table *dep_mclk_table = |
| hwmgr->dyn_state.vddci_dependency_on_mclk; |
| |
| memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); |
| |
| state->hardware.magic = PHM_VIslands_Magic; |
| |
| ps = (struct smu7_power_state *)(&state->hardware); |
| |
| result = pp_tables_get_entry(hwmgr, entry_index, state, |
| smu7_get_pp_table_entry_callback_func_v0); |
| |
| /* |
| * This is the earliest time we have all the dependency table |
| * and the VBIOS boot state as |
| * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot |
| * state if there is only one VDDCI/MCLK level, check if it's |
| * the same as VBIOS boot state |
| */ |
| if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { |
| if (dep_mclk_table->entries[0].clk != |
| data->vbios_boot_state.mclk_bootup_value) |
| pr_debug("Single MCLK entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot MCLK level"); |
| if (dep_mclk_table->entries[0].v != |
| data->vbios_boot_state.vddci_bootup_value) |
| pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " |
| "does not match VBIOS boot VDDCI level"); |
| } |
| |
| /* set DC compatible flag if this state supports DC */ |
| if (!state->validation.disallowOnDC) |
| ps->dc_compatible = true; |
| |
| if (state->classification.flags & PP_StateClassificationFlag_ACPI) |
| data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; |
| |
| ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
| ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
| |
| if (!result) { |
| uint32_t i; |
| |
| switch (state->classification.ui_label) { |
| case PP_StateUILabel_Performance: |
| data->use_pcie_performance_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_performance.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_performance.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_performance.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_performance.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_performance.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_performance.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| case PP_StateUILabel_Battery: |
| data->use_pcie_power_saving_levels = true; |
| |
| for (i = 0; i < ps->performance_level_count; i++) { |
| if (data->pcie_gen_power_saving.max < |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.max = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_gen_power_saving.min > |
| ps->performance_levels[i].pcie_gen) |
| data->pcie_gen_power_saving.min = |
| ps->performance_levels[i].pcie_gen; |
| |
| if (data->pcie_lane_power_saving.max < |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.max = |
| ps->performance_levels[i].pcie_lane; |
| |
| if (data->pcie_lane_power_saving.min > |
| ps->performance_levels[i].pcie_lane) |
| data->pcie_lane_power_saving.min = |
| ps->performance_levels[i].pcie_lane; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| if (hwmgr->pp_table_version == PP_TABLE_V0) |
| return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state); |
| else if (hwmgr->pp_table_version == PP_TABLE_V1) |
| return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state); |
| |
| return 0; |
| } |
| |
| static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| int i; |
| u32 tmp = 0; |
| |
| if (!query) |
| return -EINVAL; |
| |
| /* |
| * PPSMC_MSG_GetCurrPkgPwr is not supported on: |
| * - Hawaii |
| * - Bonaire |
| * - Fiji |
| * - Tonga |
| */ |
| if ((adev->asic_type != CHIP_HAWAII) && |
| (adev->asic_type != CHIP_BONAIRE) && |
| (adev->asic_type != CHIP_FIJI) && |
| (adev->asic_type != CHIP_TONGA)) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp); |
| *query = tmp; |
| |
| if (tmp != 0) |
| return 0; |
| } |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_PM_STATUS_95, 0); |
| |
| for (i = 0; i < 10; i++) { |
| msleep(500); |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL); |
| tmp = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, |
| ixSMU_PM_STATUS_95); |
| if (tmp != 0) |
| break; |
| } |
| *query = tmp; |
| |
| return 0; |
| } |
| |
| static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, |
| void *value, int *size) |
| { |
| uint32_t sclk, mclk, activity_percent; |
| uint32_t offset, val_vid; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| /* size must be at least 4 bytes for all sensors */ |
| if (*size < 4) |
| return -EINVAL; |
| |
| switch (idx) { |
| case AMDGPU_PP_SENSOR_GFX_SCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk); |
| *((uint32_t *)value) = sclk; |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_GFX_MCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk); |
| *((uint32_t *)value) = mclk; |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| case AMDGPU_PP_SENSOR_MEM_LOAD: |
| offset = data->soft_regs_start + smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, |
| (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ? |
| AverageGraphicsActivity: |
| AverageMemoryActivity); |
| |
| activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); |
| activity_percent += 0x80; |
| activity_percent >>= 8; |
| *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_GPU_TEMP: |
| *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr); |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_UVD_POWER: |
| *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_VCE_POWER: |
| *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; |
| *size = 4; |
| return 0; |
| case AMDGPU_PP_SENSOR_GPU_POWER: |
| return smu7_get_gpu_power(hwmgr, (uint32_t *)value); |
| case AMDGPU_PP_SENSOR_VDDGFX: |
| if ((data->vr_config & VRCONF_VDDGFX_MASK) == |
| (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT)) |
| val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID); |
| else |
| val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID); |
| |
| *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid); |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct smu7_power_state *smu7_ps = |
| cast_const_phw_smu7_power_state(states->pnew_state); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| uint32_t sclk = smu7_ps->performance_levels |
| [smu7_ps->performance_level_count - 1].engine_clock; |
| struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| uint32_t mclk = smu7_ps->performance_levels |
| [smu7_ps->performance_level_count - 1].memory_clock; |
| struct PP_Clocks min_clocks = {0}; |
| uint32_t i; |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (sclk == sclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= sclk_table->count) { |
| if (sclk > sclk_table->dpm_levels[i-1].value) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| sclk_table->dpm_levels[i-1].value = sclk; |
| } |
| } else { |
| /* TODO: Check SCLK in DAL's minimum clocks |
| * in case DeepSleep divider update is required. |
| */ |
| if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && |
| (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK || |
| data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; |
| } |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (mclk == mclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= mclk_table->count) { |
| if (mclk > mclk_table->dpm_levels[i-1].value) { |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| mclk_table->dpm_levels[i-1].value = mclk; |
| } |
| } |
| |
| if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
| data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; |
| |
| return 0; |
| } |
| |
| static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr, |
| const struct smu7_power_state *smu7_ps) |
| { |
| uint32_t i; |
| uint32_t sclk, max_sclk = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| |
| for (i = 0; i < smu7_ps->performance_level_count; i++) { |
| sclk = smu7_ps->performance_levels[i].engine_clock; |
| if (max_sclk < sclk) |
| max_sclk = sclk; |
| } |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) |
| return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? |
| dpm_table->pcie_speed_table.dpm_levels |
| [dpm_table->pcie_speed_table.count - 1].value : |
| dpm_table->pcie_speed_table.dpm_levels[i].value); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_request_link_speed_change_before_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| const struct smu7_power_state *smu7_nps = |
| cast_const_phw_smu7_power_state(states->pnew_state); |
| const struct smu7_power_state *polaris10_cps = |
| cast_const_phw_smu7_power_state(states->pcurrent_state); |
| |
| uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps); |
| uint16_t current_link_speed; |
| |
| if (data->force_pcie_gen == PP_PCIEGenInvalid) |
| current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps); |
| else |
| current_link_speed = data->force_pcie_gen; |
| |
| data->force_pcie_gen = PP_PCIEGenInvalid; |
| data->pspp_notify_required = false; |
| |
| if (target_link_speed > current_link_speed) { |
| switch (target_link_speed) { |
| #ifdef CONFIG_ACPI |
| case PP_PCIEGen3: |
| if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false)) |
| break; |
| data->force_pcie_gen = PP_PCIEGen2; |
| if (current_link_speed == PP_PCIEGen2) |
| break; |
| fallthrough; |
| case PP_PCIEGen2: |
| if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false)) |
| break; |
| fallthrough; |
| #endif |
| default: |
| data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr); |
| break; |
| } |
| } else { |
| if (target_link_speed < current_link_speed) |
| data->pspp_notify_required = true; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to freeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_SCLKDPM_FreezeLevel, |
| NULL), |
| "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", |
| return -EINVAL); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| DPMTABLE_OD_UPDATE_MCLK)) { |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to freeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_MCLKDPM_FreezeLevel, |
| NULL), |
| "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", |
| return -EINVAL); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_populate_and_upload_sclk_mclk_dpm_levels( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| uint32_t count; |
| struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); |
| struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| for (count = 0; count < dpm_table->sclk_table.count; count++) { |
| dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled; |
| dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock; |
| } |
| } |
| |
| if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| for (count = 0; count < dpm_table->mclk_table.count; count++) { |
| dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled; |
| dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock; |
| } |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { |
| result = smum_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { |
| /*populate MCLK dpm table to SMU7 */ |
| result = smum_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| return result; |
| } |
| |
| static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
| struct smu7_single_dpm_table *dpm_table, |
| uint32_t low_limit, uint32_t high_limit) |
| { |
| uint32_t i; |
| |
| /* force the trim if mclk_switching is disabled to prevent flicker */ |
| bool force_trim = (low_limit == high_limit); |
| for (i = 0; i < dpm_table->count; i++) { |
| /*skip the trim if od is enabled*/ |
| if ((!hwmgr->od_enabled || force_trim) |
| && (dpm_table->dpm_levels[i].value < low_limit |
| || dpm_table->dpm_levels[i].value > high_limit)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr, |
| const struct smu7_power_state *smu7_ps) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t high_limit_count; |
| |
| PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1), |
| "power state did not have any performance level", |
| return -EINVAL); |
| |
| high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1; |
| |
| smu7_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.sclk_table), |
| smu7_ps->performance_levels[0].engine_clock, |
| smu7_ps->performance_levels[high_limit_count].engine_clock); |
| |
| smu7_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.mclk_table), |
| smu7_ps->performance_levels[0].memory_clock, |
| smu7_ps->performance_levels[high_limit_count].memory_clock); |
| |
| return 0; |
| } |
| |
| static int smu7_generate_dpm_level_enable_mask( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| const struct smu7_power_state *smu7_ps = |
| cast_const_phw_smu7_power_state(states->pnew_state); |
| |
| |
| result = smu7_trim_dpm_states(hwmgr, smu7_ps); |
| if (result) |
| return result; |
| |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); |
| |
| return 0; |
| } |
| |
| static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (0 == data->need_update_smu7_dpm_table) |
| return 0; |
| |
| if ((0 == data->sclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { |
| |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to Unfreeze SCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_SCLKDPM_UnfreezeLevel, |
| NULL), |
| "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -EINVAL); |
| } |
| |
| if ((0 == data->mclk_dpm_key_disabled) && |
| (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { |
| |
| PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), |
| "Trying to Unfreeze MCLK DPM when DPM is disabled", |
| ); |
| PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_MCLKDPM_UnfreezeLevel, |
| NULL), |
| "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", |
| return -EINVAL); |
| } |
| |
| data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; |
| |
| return 0; |
| } |
| |
| static int smu7_notify_link_speed_change_after_state_change( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| const struct smu7_power_state *smu7_ps = |
| cast_const_phw_smu7_power_state(states->pnew_state); |
| uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps); |
| uint8_t request; |
| |
| if (data->pspp_notify_required) { |
| if (target_link_speed == PP_PCIEGen3) |
| request = PCIE_PERF_REQ_GEN3; |
| else if (target_link_speed == PP_PCIEGen2) |
| request = PCIE_PERF_REQ_GEN2; |
| else |
| request = PCIE_PERF_REQ_GEN1; |
| |
| if (request == PCIE_PERF_REQ_GEN1 && |
| smu7_get_current_pcie_speed(hwmgr) > 0) |
| return 0; |
| |
| #ifdef CONFIG_ACPI |
| if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) { |
| if (PP_PCIEGen2 == target_link_speed) |
| pr_info("PSPP request to switch to Gen2 from Gen3 Failed!"); |
| else |
| pr_info("PSPP request to switch to Gen1 from Gen2 Failed!"); |
| } |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) { |
| if (hwmgr->chip_id == CHIP_VEGAM) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2, |
| NULL); |
| else |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2, |
| NULL); |
| } |
| return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL; |
| } |
| |
| static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int tmp_result, result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to find DPM states clocks in DPM table!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| smu7_request_link_speed_change_before_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to request link speed change before state change!", |
| result = tmp_result); |
| } |
| |
| tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to freeze SCLK MCLK DPM!", result = tmp_result); |
| |
| tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to populate and upload SCLK MCLK DPM levels!", |
| result = tmp_result); |
| |
| /* |
| * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. |
| * That effectively disables AVFS feature. |
| */ |
| if (hwmgr->hardcode_pp_table != NULL) |
| data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; |
| |
| tmp_result = smu7_update_avfs(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update avfs voltages!", |
| result = tmp_result); |
| |
| tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to generate DPM level enabled mask!", |
| result = tmp_result); |
| |
| tmp_result = smum_update_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to update SCLK threshold!", |
| result = tmp_result); |
| |
| tmp_result = smu7_notify_smc_display(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify smc display settings!", |
| result = tmp_result); |
| |
| tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to unfreeze SCLK MCLK DPM!", |
| result = tmp_result); |
| |
| tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to upload DPM level enabled mask!", |
| result = tmp_result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PCIEPerformanceRequest)) { |
| tmp_result = |
| smu7_notify_link_speed_change_after_state_change(hwmgr, input); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to notify link speed change after state change!", |
| result = tmp_result); |
| } |
| data->apply_optimized_settings = false; |
| return result; |
| } |
| |
| static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm, |
| NULL); |
| } |
| |
| static int |
| smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) |
| { |
| PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; |
| |
| return (smum_send_msg_to_smc(hwmgr, msg, NULL) == 0) ? 0 : -1; |
| } |
| |
| static int |
| smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) |
| { |
| if (hwmgr->display_config->num_display > 1 && |
| !hwmgr->display_config->multi_monitor_in_sync) |
| smu7_notify_smc_display_change(hwmgr, false); |
| |
| return 0; |
| } |
| |
| /** |
| * Programs the display gap |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always OK |
| */ |
| static int smu7_program_display_gap(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); |
| uint32_t display_gap2; |
| uint32_t pre_vbi_time_in_us; |
| uint32_t frame_time_in_us; |
| uint32_t ref_clock, refresh_rate; |
| |
| display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); |
| |
| ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
| refresh_rate = hwmgr->display_config->vrefresh; |
| |
| if (0 == refresh_rate) |
| refresh_rate = 60; |
| |
| frame_time_in_us = 1000000 / refresh_rate; |
| |
| pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time; |
| |
| data->frame_time_x2 = frame_time_in_us * 2 / 100; |
| |
| if (data->frame_time_x2 < 280) { |
| pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2); |
| data->frame_time_x2 = 280; |
| } |
| |
| display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, |
| PreVBlankGap), 0x64); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, |
| VBlankTimeout), |
| (frame_time_in_us - pre_vbi_time_in_us)); |
| |
| return 0; |
| } |
| |
| static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| return smu7_program_display_gap(hwmgr); |
| } |
| |
| /** |
| * Set maximum target operating fan output RPM |
| * |
| * @param hwmgr: the address of the powerplay hardware manager. |
| * @param usMaxFanRpm: max operating fan RPM value. |
| * @return The response that came from the SMC. |
| */ |
| static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) |
| { |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; |
| |
| return smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm, |
| NULL); |
| } |
| |
| static const struct amdgpu_irq_src_funcs smu7_irq_funcs = { |
| .process = phm_irq_process, |
| }; |
| |
| static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr) |
| { |
| struct amdgpu_irq_src *source = |
| kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); |
| |
| if (!source) |
| return -ENOMEM; |
| |
| source->funcs = &smu7_irq_funcs; |
| |
| amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), |
| AMDGPU_IRQ_CLIENTID_LEGACY, |
| VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH, |
| source); |
| amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), |
| AMDGPU_IRQ_CLIENTID_LEGACY, |
| VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW, |
| source); |
| |
| /* Register CTF(GPIO_19) interrupt */ |
| amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), |
| AMDGPU_IRQ_CLIENTID_LEGACY, |
| VISLANDS30_IV_SRCID_GPIO_19, |
| source); |
| |
| return 0; |
| } |
| |
| static bool |
| smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| bool is_update_required = false; |
| |
| if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
| is_update_required = true; |
| |
| if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh) |
| is_update_required = true; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { |
| if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr && |
| (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK || |
| hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) |
| is_update_required = true; |
| } |
| return is_update_required; |
| } |
| |
| static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1, |
| const struct smu7_performance_level *pl2) |
| { |
| return ((pl1->memory_clock == pl2->memory_clock) && |
| (pl1->engine_clock == pl2->engine_clock) && |
| (pl1->pcie_gen == pl2->pcie_gen) && |
| (pl1->pcie_lane == pl2->pcie_lane)); |
| } |
| |
| static int smu7_check_states_equal(struct pp_hwmgr *hwmgr, |
| const struct pp_hw_power_state *pstate1, |
| const struct pp_hw_power_state *pstate2, bool *equal) |
| { |
| const struct smu7_power_state *psa; |
| const struct smu7_power_state *psb; |
| int i; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (pstate1 == NULL || pstate2 == NULL || equal == NULL) |
| return -EINVAL; |
| |
| psa = cast_const_phw_smu7_power_state(pstate1); |
| psb = cast_const_phw_smu7_power_state(pstate2); |
| /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
| if (psa->performance_level_count != psb->performance_level_count) { |
| *equal = false; |
| return 0; |
| } |
| |
| for (i = 0; i < psa->performance_level_count; i++) { |
| if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
| /* If we have found even one performance level pair that is different the states are different. */ |
| *equal = false; |
| return 0; |
| } |
| } |
| |
| /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
| *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); |
| *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); |
| *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
| /* For OD call, set value based on flag */ |
| *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | |
| DPMTABLE_OD_UPDATE_MCLK | |
| DPMTABLE_OD_UPDATE_VDDC)); |
| |
| return 0; |
| } |
| |
| static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t tmp; |
| |
| /* Read MC indirect register offset 0x9F bits [3:0] to see |
| * if VBIOS has already loaded a full version of MC ucode |
| * or not. |
| */ |
| |
| smu7_get_mc_microcode_version(hwmgr); |
| |
| data->need_long_memory_training = false; |
| |
| cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, |
| ixMC_IO_DEBUG_UP_13); |
| tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); |
| |
| if (tmp & (1 << 23)) { |
| data->mem_latency_high = MEM_LATENCY_HIGH; |
| data->mem_latency_low = MEM_LATENCY_LOW; |
| if ((hwmgr->chip_id == CHIP_POLARIS10) || |
| (hwmgr->chip_id == CHIP_POLARIS11) || |
| (hwmgr->chip_id == CHIP_POLARIS12)) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL); |
| } else { |
| data->mem_latency_high = 330; |
| data->mem_latency_low = 330; |
| if ((hwmgr->chip_id == CHIP_POLARIS10) || |
| (hwmgr->chip_id == CHIP_POLARIS11) || |
| (hwmgr->chip_id == CHIP_POLARIS12)) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| data->clock_registers.vCG_SPLL_FUNC_CNTL = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); |
| data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); |
| data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = |
| cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); |
| data->clock_registers.vDLL_CNTL = |
| cgs_read_register(hwmgr->device, mmDLL_CNTL); |
| data->clock_registers.vMCLK_PWRMGT_CNTL = |
| cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); |
| data->clock_registers.vMPLL_AD_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); |
| data->clock_registers.vMPLL_DQ_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); |
| data->clock_registers.vMPLL_FUNC_CNTL = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); |
| data->clock_registers.vMPLL_FUNC_CNTL_1 = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); |
| data->clock_registers.vMPLL_FUNC_CNTL_2 = |
| cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); |
| data->clock_registers.vMPLL_SS1 = |
| cgs_read_register(hwmgr->device, mmMPLL_SS1); |
| data->clock_registers.vMPLL_SS2 = |
| cgs_read_register(hwmgr->device, mmMPLL_SS2); |
| return 0; |
| |
| } |
| |
| /** |
| * Find out if memory is GDDR5. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_get_memory_type(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5); |
| |
| return 0; |
| } |
| |
| /** |
| * Enables Dynamic Power Management by SMC |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr) |
| { |
| PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| GENERAL_PWRMGT, STATIC_PM_EN, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * Initialize PowerGating States for different engines |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| data->uvd_power_gated = false; |
| data->vce_power_gated = false; |
| |
| return 0; |
| } |
| |
| static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| data->low_sclk_interrupt_threshold = 0; |
| return 0; |
| } |
| |
| static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| smu7_check_mc_firmware(hwmgr); |
| |
| tmp_result = smu7_read_clock_registers(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to read clock registers!", result = tmp_result); |
| |
| tmp_result = smu7_get_memory_type(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get memory type!", result = tmp_result); |
| |
| tmp_result = smu7_enable_acpi_power_management(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to enable ACPI power management!", result = tmp_result); |
| |
| tmp_result = smu7_init_power_gate_state(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init power gate state!", result = tmp_result); |
| |
| tmp_result = smu7_get_mc_microcode_version(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to get MC microcode version!", result = tmp_result); |
| |
| tmp_result = smu7_init_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == tmp_result), |
| "Failed to init sclk threshold!", result = tmp_result); |
| |
| return result; |
| } |
| |
| static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (mask == 0) |
| return -EINVAL; |
| |
| switch (type) { |
| case PP_SCLK: |
| if (!data->sclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask, |
| NULL); |
| break; |
| case PP_MCLK: |
| if (!data->mclk_dpm_key_disabled) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_MCLKDPM_SetEnabledMask, |
| data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask, |
| NULL); |
| break; |
| case PP_PCIE: |
| { |
| uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; |
| |
| if (!data->pcie_dpm_key_disabled) { |
| if (fls(tmp) != ffs(tmp)) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel, |
| NULL); |
| else |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_PCIeDPM_ForceLevel, |
| fls(tmp) - 1, |
| NULL); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, char *buf) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); |
| struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); |
| struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); |
| int i, now, size = 0; |
| uint32_t clock, pcie_speed; |
| |
| switch (type) { |
| case PP_SCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock); |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (clock > sclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < sclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, sclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_MCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock); |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (clock > mclk_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < mclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, mclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_PCIE: |
| pcie_speed = smu7_get_current_pcie_speed(hwmgr); |
| for (i = 0; i < pcie_table->count; i++) { |
| if (pcie_speed != pcie_table->dpm_levels[i].value) |
| continue; |
| break; |
| } |
| now = i; |
| |
| for (i = 0; i < pcie_table->count; i++) |
| size += sprintf(buf + size, "%d: %s %s\n", i, |
| (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" : |
| (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" : |
| (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "", |
| (i == now) ? "*" : ""); |
| break; |
| case OD_SCLK: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_SCLK"); |
| for (i = 0; i < odn_sclk_table->num_of_pl; i++) |
| size += sprintf(buf + size, "%d: %10uMHz %10umV\n", |
| i, odn_sclk_table->entries[i].clock/100, |
| odn_sclk_table->entries[i].vddc); |
| } |
| break; |
| case OD_MCLK: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_MCLK"); |
| for (i = 0; i < odn_mclk_table->num_of_pl; i++) |
| size += sprintf(buf + size, "%d: %10uMHz %10umV\n", |
| i, odn_mclk_table->entries[i].clock/100, |
| odn_mclk_table->entries[i].vddc); |
| } |
| break; |
| case OD_RANGE: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_RANGE"); |
| size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", |
| data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.engineClock/100); |
| size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", |
| data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); |
| size += sprintf(buf + size, "VDDC: %7umV %11umV\n", |
| data->odn_dpm_table.min_vddc, |
| data->odn_dpm_table.max_vddc); |
| } |
| break; |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
| { |
| switch (mode) { |
| case AMD_FAN_CTRL_NONE: |
| smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); |
| break; |
| case AMD_FAN_CTRL_MANUAL: |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl)) |
| smu7_fan_ctrl_stop_smc_fan_control(hwmgr); |
| break; |
| case AMD_FAN_CTRL_AUTO: |
| if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode)) |
| smu7_fan_ctrl_start_smc_fan_control(hwmgr); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL; |
| } |
| |
| static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct smu7_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.sclk_table); |
| int value = sclk_table->dpm_levels[sclk_table->count - 1].value; |
| int golden_value = golden_sclk_table->dpm_levels |
| [golden_sclk_table->count - 1].value; |
| |
| value -= golden_value; |
| value = DIV_ROUND_UP(value * 100, golden_value); |
| |
| return value; |
| } |
| |
| static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.sclk_table); |
| struct pp_power_state *ps; |
| struct smu7_power_state *smu7_ps; |
| |
| if (value > 20) |
| value = 20; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| smu7_ps = cast_phw_smu7_power_state(&ps->hardware); |
| |
| smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock = |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * |
| value / 100 + |
| golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; |
| |
| return 0; |
| } |
| |
| static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| struct smu7_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mclk_table); |
| int value = mclk_table->dpm_levels[mclk_table->count - 1].value; |
| int golden_value = golden_mclk_table->dpm_levels |
| [golden_mclk_table->count - 1].value; |
| |
| value -= golden_value; |
| value = DIV_ROUND_UP(value * 100, golden_value); |
| |
| return value; |
| } |
| |
| static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mclk_table); |
| struct pp_power_state *ps; |
| struct smu7_power_state *smu7_ps; |
| |
| if (value > 20) |
| value = 20; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| smu7_ps = cast_phw_smu7_power_state(&ps->hardware); |
| |
| smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock = |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * |
| value / 100 + |
| golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; |
| |
| return 0; |
| } |
| |
| |
| static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL; |
| struct phm_clock_voltage_dependency_table *sclk_table; |
| int i; |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) { |
| if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL) |
| return -EINVAL; |
| dep_sclk_table = table_info->vdd_dep_on_sclk; |
| for (i = 0; i < dep_sclk_table->count; i++) |
| clocks->clock[i] = dep_sclk_table->entries[i].clk * 10; |
| clocks->count = dep_sclk_table->count; |
| } else if (hwmgr->pp_table_version == PP_TABLE_V0) { |
| sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; |
| for (i = 0; i < sclk_table->count; i++) |
| clocks->clock[i] = sclk_table->entries[i].clk * 10; |
| clocks->count = sclk_table->count; |
| } |
| |
| return 0; |
| } |
| |
| static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY) |
| return data->mem_latency_high; |
| else if (clk >= MEM_FREQ_HIGH_LATENCY) |
| return data->mem_latency_low; |
| else |
| return MEM_LATENCY_ERR; |
| } |
| |
| static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) |
| { |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; |
| int i; |
| struct phm_clock_voltage_dependency_table *mclk_table; |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) { |
| if (table_info == NULL) |
| return -EINVAL; |
| dep_mclk_table = table_info->vdd_dep_on_mclk; |
| for (i = 0; i < dep_mclk_table->count; i++) { |
| clocks->clock[i] = dep_mclk_table->entries[i].clk * 10; |
| clocks->latency[i] = smu7_get_mem_latency(hwmgr, |
| dep_mclk_table->entries[i].clk); |
| } |
| clocks->count = dep_mclk_table->count; |
| } else if (hwmgr->pp_table_version == PP_TABLE_V0) { |
| mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; |
| for (i = 0; i < mclk_table->count; i++) |
| clocks->clock[i] = mclk_table->entries[i].clk * 10; |
| clocks->count = mclk_table->count; |
| } |
| return 0; |
| } |
| |
| static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, |
| struct amd_pp_clocks *clocks) |
| { |
| switch (type) { |
| case amd_pp_sys_clock: |
| smu7_get_sclks(hwmgr, clocks); |
| break; |
| case amd_pp_mem_clock: |
| smu7_get_mclks(hwmgr, clocks); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, |
| uint32_t virtual_addr_low, |
| uint32_t virtual_addr_hi, |
| uint32_t mc_addr_low, |
| uint32_t mc_addr_hi, |
| uint32_t size) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, DRAM_LOG_ADDR_H), |
| mc_addr_hi); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, DRAM_LOG_ADDR_L), |
| mc_addr_low); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H), |
| virtual_addr_hi); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L), |
| virtual_addr_low); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| data->soft_regs_start + |
| smum_get_offsetof(hwmgr, |
| SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE), |
| size); |
| return 0; |
| } |
| |
| static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr, |
| struct amd_pp_simple_clock_info *clocks) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); |
| struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); |
| |
| if (clocks == NULL) |
| return -EINVAL; |
| |
| clocks->memory_max_clock = mclk_table->count > 1 ? |
| mclk_table->dpm_levels[mclk_table->count-1].value : |
| mclk_table->dpm_levels[0].value; |
| clocks->engine_max_clock = sclk_table->count > 1 ? |
| sclk_table->dpm_levels[sclk_table->count-1].value : |
| sclk_table->dpm_levels[0].value; |
| return 0; |
| } |
| |
| static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, |
| struct PP_TemperatureRange *thermal_data) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| |
| memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); |
| |
| if (hwmgr->pp_table_version == PP_TABLE_V1) |
| thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| else if (hwmgr->pp_table_version == PP_TABLE_V0) |
| thermal_data->max = data->thermal_temp_setting.temperature_shutdown * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| return 0; |
| } |
| |
| static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| uint32_t clk, |
| uint32_t voltage) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) { |
| pr_info("OD voltage is out of range [%d - %d] mV\n", |
| data->odn_dpm_table.min_vddc, |
| data->odn_dpm_table.max_vddc); |
| return false; |
| } |
| |
| if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { |
| if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk || |
| hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { |
| pr_info("OD engine clock is out of range [%d - %d] MHz\n", |
| data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.engineClock/100); |
| return false; |
| } |
| } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { |
| if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk || |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { |
| pr_info("OD memory clock is out of range [%d - %d] MHz\n", |
| data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| long *input, uint32_t size) |
| { |
| uint32_t i; |
| struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL; |
| struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| uint32_t input_clk; |
| uint32_t input_vol; |
| uint32_t input_level; |
| |
| PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", |
| return -EINVAL); |
| |
| if (!hwmgr->od_enabled) { |
| pr_info("OverDrive feature not enabled\n"); |
| return -EINVAL; |
| } |
| |
| if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { |
| podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels; |
| podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk; |
| PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), |
| "Failed to get ODN SCLK and Voltage tables", |
| return -EINVAL); |
| } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { |
| podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels; |
| podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk; |
| |
| PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), |
| "Failed to get ODN MCLK and Voltage tables", |
| return -EINVAL); |
| } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { |
| smu7_odn_initial_default_setting(hwmgr); |
| return 0; |
| } else if (PP_OD_COMMIT_DPM_TABLE == type) { |
| smu7_check_dpm_table_updated(hwmgr); |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < size; i += 3) { |
| if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) { |
| pr_info("invalid clock voltage input \n"); |
| return 0; |
| } |
| input_level = input[i]; |
| input_clk = input[i+1] * 100; |
| input_vol = input[i+2]; |
| |
| if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { |
| podn_dpm_table_in_backend->entries[input_level].clock = input_clk; |
| podn_vdd_dep_in_backend->entries[input_level].clk = input_clk; |
| podn_dpm_table_in_backend->entries[input_level].vddc = input_vol; |
| podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol; |
| podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol; |
| } else { |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t i, size = 0; |
| uint32_t len; |
| |
| static const char *profile_name[7] = {"BOOTUP_DEFAULT", |
| "3D_FULL_SCREEN", |
| "POWER_SAVING", |
| "VIDEO", |
| "VR", |
| "COMPUTE", |
| "CUSTOM"}; |
| |
| static const char *title[8] = {"NUM", |
| "MODE_NAME", |
| "SCLK_UP_HYST", |
| "SCLK_DOWN_HYST", |
| "SCLK_ACTIVE_LEVEL", |
| "MCLK_UP_HYST", |
| "MCLK_DOWN_HYST", |
| "MCLK_ACTIVE_LEVEL"}; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| size += sprintf(buf + size, "%s %16s %16s %16s %16s %16s %16s %16s\n", |
| title[0], title[1], title[2], title[3], |
| title[4], title[5], title[6], title[7]); |
| |
| len = ARRAY_SIZE(smu7_profiling); |
| |
| for (i = 0; i < len; i++) { |
| if (i == hwmgr->power_profile_mode) { |
| size += sprintf(buf + size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n", |
| i, profile_name[i], "*", |
| data->current_profile_setting.sclk_up_hyst, |
| data->current_profile_setting.sclk_down_hyst, |
| data->current_profile_setting.sclk_activity, |
| data->current_profile_setting.mclk_up_hyst, |
| data->current_profile_setting.mclk_down_hyst, |
| data->current_profile_setting.mclk_activity); |
| continue; |
| } |
| if (smu7_profiling[i].bupdate_sclk) |
| size += sprintf(buf + size, "%3d %16s: %8d %16d %16d ", |
| i, profile_name[i], smu7_profiling[i].sclk_up_hyst, |
| smu7_profiling[i].sclk_down_hyst, |
| smu7_profiling[i].sclk_activity); |
| else |
| size += sprintf(buf + size, "%3d %16s: %8s %16s %16s ", |
| i, profile_name[i], "-", "-", "-"); |
| |
| if (smu7_profiling[i].bupdate_mclk) |
| size += sprintf(buf + size, "%16d %16d %16d\n", |
| smu7_profiling[i].mclk_up_hyst, |
| smu7_profiling[i].mclk_down_hyst, |
| smu7_profiling[i].mclk_activity); |
| else |
| size += sprintf(buf + size, "%16s %16s %16s\n", |
| "-", "-", "-"); |
| } |
| |
| return size; |
| } |
| |
| static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr, |
| enum PP_SMC_POWER_PROFILE requst) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t tmp, level; |
| |
| if (requst == PP_SMC_POWER_PROFILE_COMPUTE) { |
| if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { |
| level = 0; |
| tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; |
| while (tmp >>= 1) |
| level++; |
| if (level > 0) |
| smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1)); |
| } |
| } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { |
| smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask); |
| } |
| } |
| |
| static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct profile_mode_setting tmp; |
| enum PP_SMC_POWER_PROFILE mode; |
| |
| if (input == NULL) |
| return -EINVAL; |
| |
| mode = input[size]; |
| switch (mode) { |
| case PP_SMC_POWER_PROFILE_CUSTOM: |
| if (size < 8 && size != 0) |
| return -EINVAL; |
| /* If only CUSTOM is passed in, use the saved values. Check |
| * that we actually have a CUSTOM profile by ensuring that |
| * the "use sclk" or the "use mclk" bits are set |
| */ |
| tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM]; |
| if (size == 0) { |
| if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0) |
| return -EINVAL; |
| } else { |
| tmp.bupdate_sclk = input[0]; |
| tmp.sclk_up_hyst = input[1]; |
| tmp.sclk_down_hyst = input[2]; |
| tmp.sclk_activity = input[3]; |
| tmp.bupdate_mclk = input[4]; |
| tmp.mclk_up_hyst = input[5]; |
| tmp.mclk_down_hyst = input[6]; |
| tmp.mclk_activity = input[7]; |
| smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp; |
| } |
| if (!smum_update_dpm_settings(hwmgr, &tmp)) { |
| memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting)); |
| hwmgr->power_profile_mode = mode; |
| } |
| break; |
| case PP_SMC_POWER_PROFILE_FULLSCREEN3D: |
| case PP_SMC_POWER_PROFILE_POWERSAVING: |
| case PP_SMC_POWER_PROFILE_VIDEO: |
| case PP_SMC_POWER_PROFILE_VR: |
| case PP_SMC_POWER_PROFILE_COMPUTE: |
| if (mode == hwmgr->power_profile_mode) |
| return 0; |
| |
| memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting)); |
| if (!smum_update_dpm_settings(hwmgr, &tmp)) { |
| if (tmp.bupdate_sclk) { |
| data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk; |
| data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst; |
| data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst; |
| data->current_profile_setting.sclk_activity = tmp.sclk_activity; |
| } |
| if (tmp.bupdate_mclk) { |
| data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk; |
| data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst; |
| data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst; |
| data->current_profile_setting.mclk_activity = tmp.mclk_activity; |
| } |
| smu7_patch_compute_profile_mode(hwmgr, mode); |
| hwmgr->power_profile_mode = mode; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, |
| PHM_PerformanceLevelDesignation designation, uint32_t index, |
| PHM_PerformanceLevel *level) |
| { |
| const struct smu7_power_state *ps; |
| uint32_t i; |
| |
| if (level == NULL || hwmgr == NULL || state == NULL) |
| return -EINVAL; |
| |
| ps = cast_const_phw_smu7_power_state(state); |
| |
| i = index > ps->performance_level_count - 1 ? |
| ps->performance_level_count - 1 : index; |
| |
| level->coreClock = ps->performance_levels[i].engine_clock; |
| level->memory_clock = ps->performance_levels[i].memory_clock; |
| |
| return 0; |
| } |
| |
| static int smu7_power_off_asic(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| |
| result = smu7_disable_dpm_tasks(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "[disable_dpm_tasks] Failed to disable DPM!", |
| ); |
| |
| return result; |
| } |
| |
| static const struct pp_hwmgr_func smu7_hwmgr_funcs = { |
| .backend_init = &smu7_hwmgr_backend_init, |
| .backend_fini = &smu7_hwmgr_backend_fini, |
| .asic_setup = &smu7_setup_asic_task, |
| .dynamic_state_management_enable = &smu7_enable_dpm_tasks, |
| .apply_state_adjust_rules = smu7_apply_state_adjust_rules, |
| .force_dpm_level = &smu7_force_dpm_level, |
| .power_state_set = smu7_set_power_state_tasks, |
| .get_power_state_size = smu7_get_power_state_size, |
| .get_mclk = smu7_dpm_get_mclk, |
| .get_sclk = smu7_dpm_get_sclk, |
| .patch_boot_state = smu7_dpm_patch_boot_state, |
| .get_pp_table_entry = smu7_get_pp_table_entry, |
| .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries, |
| .powerdown_uvd = smu7_powerdown_uvd, |
| .powergate_uvd = smu7_powergate_uvd, |
| .powergate_vce = smu7_powergate_vce, |
| .disable_clock_power_gating = smu7_disable_clock_power_gating, |
| .update_clock_gatings = smu7_update_clock_gatings, |
| .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment, |
| .display_config_changed = smu7_display_configuration_changed_task, |
| .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output, |
| .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output, |
| .stop_thermal_controller = smu7_thermal_stop_thermal_controller, |
| .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent, |
| .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent, |
| .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default, |
| .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm, |
| .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm, |
| .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller, |
| .register_irq_handlers = smu7_register_irq_handlers, |
| .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration, |
| .check_states_equal = smu7_check_states_equal, |
| .set_fan_control_mode = smu7_set_fan_control_mode, |
| .get_fan_control_mode = smu7_get_fan_control_mode, |
| .force_clock_level = smu7_force_clock_level, |
| .print_clock_levels = smu7_print_clock_levels, |
| .powergate_gfx = smu7_powergate_gfx, |
| .get_sclk_od = smu7_get_sclk_od, |
| .set_sclk_od = smu7_set_sclk_od, |
| .get_mclk_od = smu7_get_mclk_od, |
| .set_mclk_od = smu7_set_mclk_od, |
| .get_clock_by_type = smu7_get_clock_by_type, |
| .read_sensor = smu7_read_sensor, |
| .dynamic_state_management_disable = smu7_disable_dpm_tasks, |
| .avfs_control = smu7_avfs_control, |
| .disable_smc_firmware_ctf = smu7_thermal_disable_alert, |
| .start_thermal_controller = smu7_start_thermal_controller, |
| .notify_cac_buffer_info = smu7_notify_cac_buffer_info, |
| .get_max_high_clocks = smu7_get_max_high_clocks, |
| .get_thermal_temperature_range = smu7_get_thermal_temperature_range, |
| .odn_edit_dpm_table = smu7_odn_edit_dpm_table, |
| .set_power_limit = smu7_set_power_limit, |
| .get_power_profile_mode = smu7_get_power_profile_mode, |
| .set_power_profile_mode = smu7_set_power_profile_mode, |
| .get_performance_level = smu7_get_performance_level, |
| .get_asic_baco_capability = smu7_baco_get_capability, |
| .get_asic_baco_state = smu7_baco_get_state, |
| .set_asic_baco_state = smu7_baco_set_state, |
| .power_off_asic = smu7_power_off_asic, |
| }; |
| |
| uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock, |
| uint32_t clock_insr) |
| { |
| uint8_t i; |
| uint32_t temp; |
| uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); |
| |
| PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); |
| for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { |
| temp = clock >> i; |
| |
| if (temp >= min || i == 0) |
| break; |
| } |
| return i; |
| } |
| |
| int smu7_init_function_pointers(struct pp_hwmgr *hwmgr) |
| { |
| hwmgr->hwmgr_func = &smu7_hwmgr_funcs; |
| if (hwmgr->pp_table_version == PP_TABLE_V0) |
| hwmgr->pptable_func = &pptable_funcs; |
| else if (hwmgr->pp_table_version == PP_TABLE_V1) |
| hwmgr->pptable_func = &pptable_v1_0_funcs; |
| |
| return 0; |
| } |