| /* |
| * Copyright 2016 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/fb.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| |
| #include "hwmgr.h" |
| #include "amd_powerplay.h" |
| #include "hardwaremanager.h" |
| #include "ppatomfwctrl.h" |
| #include "atomfirmware.h" |
| #include "cgs_common.h" |
| #include "vega10_powertune.h" |
| #include "smu9.h" |
| #include "smu9_driver_if.h" |
| #include "vega10_inc.h" |
| #include "soc15_common.h" |
| #include "pppcielanes.h" |
| #include "vega10_hwmgr.h" |
| #include "vega10_smumgr.h" |
| #include "vega10_processpptables.h" |
| #include "vega10_pptable.h" |
| #include "vega10_thermal.h" |
| #include "pp_debug.h" |
| #include "amd_pcie_helpers.h" |
| #include "ppinterrupt.h" |
| #include "pp_overdriver.h" |
| #include "pp_thermal.h" |
| #include "vega10_baco.h" |
| |
| #include "smuio/smuio_9_0_offset.h" |
| #include "smuio/smuio_9_0_sh_mask.h" |
| |
| #define HBM_MEMORY_CHANNEL_WIDTH 128 |
| |
| static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; |
| |
| #define mmDF_CS_AON0_DramBaseAddress0 0x0044 |
| #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 |
| |
| //DF_CS_AON0_DramBaseAddress0 |
| #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 |
| #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 |
| #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 |
| #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 |
| #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc |
| #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L |
| #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L |
| #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L |
| #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L |
| #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L |
| |
| typedef enum { |
| CLK_SMNCLK = 0, |
| CLK_SOCCLK, |
| CLK_MP0CLK, |
| CLK_MP1CLK, |
| CLK_LCLK, |
| CLK_DCEFCLK, |
| CLK_VCLK, |
| CLK_DCLK, |
| CLK_ECLK, |
| CLK_UCLK, |
| CLK_GFXCLK, |
| CLK_COUNT, |
| } CLOCK_ID_e; |
| |
| static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); |
| |
| static struct vega10_power_state *cast_phw_vega10_power_state( |
| struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL;); |
| |
| return (struct vega10_power_state *)hw_ps; |
| } |
| |
| static const struct vega10_power_state *cast_const_phw_vega10_power_state( |
| const struct pp_hw_power_state *hw_ps) |
| { |
| PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), |
| "Invalid Powerstate Type!", |
| return NULL;); |
| |
| return (const struct vega10_power_state *)hw_ps; |
| } |
| |
| static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->registry_data.sclk_dpm_key_disabled = |
| hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; |
| data->registry_data.socclk_dpm_key_disabled = |
| hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; |
| data->registry_data.mclk_dpm_key_disabled = |
| hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; |
| data->registry_data.pcie_dpm_key_disabled = |
| hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; |
| |
| data->registry_data.dcefclk_dpm_key_disabled = |
| hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; |
| |
| if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { |
| data->registry_data.power_containment_support = 1; |
| data->registry_data.enable_pkg_pwr_tracking_feature = 1; |
| data->registry_data.enable_tdc_limit_feature = 1; |
| } |
| |
| data->registry_data.clock_stretcher_support = |
| hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; |
| |
| data->registry_data.ulv_support = |
| hwmgr->feature_mask & PP_ULV_MASK ? true : false; |
| |
| data->registry_data.sclk_deep_sleep_support = |
| hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; |
| |
| data->registry_data.disable_water_mark = 0; |
| |
| data->registry_data.fan_control_support = 1; |
| data->registry_data.thermal_support = 1; |
| data->registry_data.fw_ctf_enabled = 1; |
| |
| data->registry_data.avfs_support = |
| hwmgr->feature_mask & PP_AVFS_MASK ? true : false; |
| data->registry_data.led_dpm_enabled = 1; |
| |
| data->registry_data.vr0hot_enabled = 1; |
| data->registry_data.vr1hot_enabled = 1; |
| data->registry_data.regulator_hot_gpio_support = 1; |
| |
| data->registry_data.didt_support = 1; |
| if (data->registry_data.didt_support) { |
| data->registry_data.didt_mode = 6; |
| data->registry_data.sq_ramping_support = 1; |
| data->registry_data.db_ramping_support = 0; |
| data->registry_data.td_ramping_support = 0; |
| data->registry_data.tcp_ramping_support = 0; |
| data->registry_data.dbr_ramping_support = 0; |
| data->registry_data.edc_didt_support = 1; |
| data->registry_data.gc_didt_support = 0; |
| data->registry_data.psm_didt_support = 0; |
| } |
| |
| data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; |
| data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; |
| |
| data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; |
| data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; |
| data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; |
| data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; |
| } |
| |
| static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkDeepSleep); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPatchPowerState); |
| |
| if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ControlVDDCI); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_EnableSMU7ThermalManagement); |
| |
| if (adev->pg_flags & AMD_PG_SUPPORT_UVD) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDPowerGating); |
| |
| if (adev->pg_flags & AMD_PG_SUPPORT_VCE) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_VCEPowerGating); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UnTabledHardwareInterface); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_FanSpeedInTableIsRPM); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ODFuzzyFanControlSupport); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DynamicPowerManagement); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMC); |
| |
| /* power tune caps */ |
| /* assume disabled */ |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtSupport); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SQRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TDRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_TCPRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DBRRamping); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_DiDtEDCEnable); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_GCEDC); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PSM); |
| |
| if (data->registry_data.didt_support) { |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); |
| if (data->registry_data.sq_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); |
| if (data->registry_data.db_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); |
| if (data->registry_data.td_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); |
| if (data->registry_data.tcp_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); |
| if (data->registry_data.dbr_ramping_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); |
| if (data->registry_data.edc_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); |
| if (data->registry_data.gc_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); |
| if (data->registry_data.psm_didt_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); |
| } |
| |
| if (data->registry_data.power_containment_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CAC); |
| |
| if (table_info->tdp_table->usClockStretchAmount && |
| data->registry_data.clock_stretcher_support) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM); |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_VCEDPM); |
| |
| return 0; |
| } |
| |
| static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct vega10_odn_vddc_lookup_table *od_lookup_table; |
| struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; |
| struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; |
| struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; |
| uint32_t i; |
| int result; |
| |
| result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); |
| if (!result) { |
| data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; |
| data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; |
| } |
| |
| od_lookup_table = &odn_table->vddc_lookup_table; |
| vddc_lookup_table = table_info->vddc_lookup_table; |
| |
| for (i = 0; i < vddc_lookup_table->count; i++) |
| od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; |
| |
| od_lookup_table->count = vddc_lookup_table->count; |
| |
| dep_table[0] = table_info->vdd_dep_on_sclk; |
| dep_table[1] = table_info->vdd_dep_on_mclk; |
| dep_table[2] = table_info->vdd_dep_on_socclk; |
| od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; |
| od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; |
| od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; |
| |
| for (i = 0; i < 3; i++) |
| smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); |
| |
| if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) |
| odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; |
| if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) |
| odn_table->min_vddc = dep_table[0]->entries[0].vddc; |
| |
| i = od_table[2]->count - 1; |
| od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock : |
| od_table[2]->entries[i].clk; |
| od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? |
| odn_table->max_vddc : |
| od_table[2]->entries[i].vddc; |
| |
| return 0; |
| } |
| |
| static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| int i; |
| uint32_t sub_vendor_id, hw_revision; |
| uint32_t top32, bottom32; |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| vega10_initialize_power_tune_defaults(hwmgr); |
| |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| data->smu_features[i].smu_feature_id = 0xffff; |
| data->smu_features[i].smu_feature_bitmap = 1 << i; |
| data->smu_features[i].enabled = false; |
| data->smu_features[i].supported = false; |
| } |
| |
| data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = |
| FEATURE_DPM_PREFETCHER_BIT; |
| data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = |
| FEATURE_DPM_GFXCLK_BIT; |
| data->smu_features[GNLD_DPM_UCLK].smu_feature_id = |
| FEATURE_DPM_UCLK_BIT; |
| data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = |
| FEATURE_DPM_SOCCLK_BIT; |
| data->smu_features[GNLD_DPM_UVD].smu_feature_id = |
| FEATURE_DPM_UVD_BIT; |
| data->smu_features[GNLD_DPM_VCE].smu_feature_id = |
| FEATURE_DPM_VCE_BIT; |
| data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = |
| FEATURE_DPM_MP0CLK_BIT; |
| data->smu_features[GNLD_DPM_LINK].smu_feature_id = |
| FEATURE_DPM_LINK_BIT; |
| data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = |
| FEATURE_DPM_DCEFCLK_BIT; |
| data->smu_features[GNLD_ULV].smu_feature_id = |
| FEATURE_ULV_BIT; |
| data->smu_features[GNLD_AVFS].smu_feature_id = |
| FEATURE_AVFS_BIT; |
| data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = |
| FEATURE_DS_GFXCLK_BIT; |
| data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = |
| FEATURE_DS_SOCCLK_BIT; |
| data->smu_features[GNLD_DS_LCLK].smu_feature_id = |
| FEATURE_DS_LCLK_BIT; |
| data->smu_features[GNLD_PPT].smu_feature_id = |
| FEATURE_PPT_BIT; |
| data->smu_features[GNLD_TDC].smu_feature_id = |
| FEATURE_TDC_BIT; |
| data->smu_features[GNLD_THERMAL].smu_feature_id = |
| FEATURE_THERMAL_BIT; |
| data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = |
| FEATURE_GFX_PER_CU_CG_BIT; |
| data->smu_features[GNLD_RM].smu_feature_id = |
| FEATURE_RM_BIT; |
| data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = |
| FEATURE_DS_DCEFCLK_BIT; |
| data->smu_features[GNLD_ACDC].smu_feature_id = |
| FEATURE_ACDC_BIT; |
| data->smu_features[GNLD_VR0HOT].smu_feature_id = |
| FEATURE_VR0HOT_BIT; |
| data->smu_features[GNLD_VR1HOT].smu_feature_id = |
| FEATURE_VR1HOT_BIT; |
| data->smu_features[GNLD_FW_CTF].smu_feature_id = |
| FEATURE_FW_CTF_BIT; |
| data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = |
| FEATURE_LED_DISPLAY_BIT; |
| data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = |
| FEATURE_FAN_CONTROL_BIT; |
| data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; |
| data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; |
| data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT; |
| |
| if (!data->registry_data.prefetcher_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_PREFETCHER].supported = true; |
| |
| if (!data->registry_data.sclk_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_GFXCLK].supported = true; |
| |
| if (!data->registry_data.mclk_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_UCLK].supported = true; |
| |
| if (!data->registry_data.socclk_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_SOCCLK].supported = true; |
| |
| if (PP_CAP(PHM_PlatformCaps_UVDDPM)) |
| data->smu_features[GNLD_DPM_UVD].supported = true; |
| |
| if (PP_CAP(PHM_PlatformCaps_VCEDPM)) |
| data->smu_features[GNLD_DPM_VCE].supported = true; |
| |
| if (!data->registry_data.pcie_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_LINK].supported = true; |
| |
| if (!data->registry_data.dcefclk_dpm_key_disabled) |
| data->smu_features[GNLD_DPM_DCEFCLK].supported = true; |
| |
| if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && |
| data->registry_data.sclk_deep_sleep_support) { |
| data->smu_features[GNLD_DS_GFXCLK].supported = true; |
| data->smu_features[GNLD_DS_SOCCLK].supported = true; |
| data->smu_features[GNLD_DS_LCLK].supported = true; |
| data->smu_features[GNLD_DS_DCEFCLK].supported = true; |
| } |
| |
| if (data->registry_data.enable_pkg_pwr_tracking_feature) |
| data->smu_features[GNLD_PPT].supported = true; |
| |
| if (data->registry_data.enable_tdc_limit_feature) |
| data->smu_features[GNLD_TDC].supported = true; |
| |
| if (data->registry_data.thermal_support) |
| data->smu_features[GNLD_THERMAL].supported = true; |
| |
| if (data->registry_data.fan_control_support) |
| data->smu_features[GNLD_FAN_CONTROL].supported = true; |
| |
| if (data->registry_data.fw_ctf_enabled) |
| data->smu_features[GNLD_FW_CTF].supported = true; |
| |
| if (data->registry_data.avfs_support) |
| data->smu_features[GNLD_AVFS].supported = true; |
| |
| if (data->registry_data.led_dpm_enabled) |
| data->smu_features[GNLD_LED_DISPLAY].supported = true; |
| |
| if (data->registry_data.vr1hot_enabled) |
| data->smu_features[GNLD_VR1HOT].supported = true; |
| |
| if (data->registry_data.vr0hot_enabled) |
| data->smu_features[GNLD_VR0HOT].supported = true; |
| |
| smum_send_msg_to_smc(hwmgr, |
| PPSMC_MSG_GetSmuVersion, |
| &hwmgr->smu_version); |
| /* ACG firmware has major version 5 */ |
| if ((hwmgr->smu_version & 0xff000000) == 0x5000000) |
| data->smu_features[GNLD_ACG].supported = true; |
| if (data->registry_data.didt_support) |
| data->smu_features[GNLD_DIDT].supported = true; |
| |
| hw_revision = adev->pdev->revision; |
| sub_vendor_id = adev->pdev->subsystem_vendor; |
| |
| if ((hwmgr->chip_id == 0x6862 || |
| hwmgr->chip_id == 0x6861 || |
| hwmgr->chip_id == 0x6868) && |
| (hw_revision == 0) && |
| (sub_vendor_id != 0x1002)) |
| data->smu_features[GNLD_PCC_LIMIT].supported = true; |
| |
| /* Get the SN to turn into a Unique ID */ |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); |
| |
| adev->unique_id = ((uint64_t)bottom32 << 32) | top32; |
| } |
| |
| #ifdef PPLIB_VEGA10_EVV_SUPPORT |
| static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| uint16_t virtual_voltage_id, int32_t *socclk) |
| { |
| uint8_t entry_id; |
| uint8_t voltage_id; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| |
| PP_ASSERT_WITH_CODE(lookup_table->count != 0, |
| "Lookup table is empty", |
| return -EINVAL); |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ |
| for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { |
| voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; |
| if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) |
| break; |
| } |
| |
| PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, |
| "Can't find requested voltage id in vdd_dep_on_socclk table!", |
| return -EINVAL); |
| |
| *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; |
| |
| return 0; |
| } |
| |
| #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 |
| /** |
| * Get Leakage VDDC based on leakage ID. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0. |
| */ |
| static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint16_t vv_id; |
| uint32_t vddc = 0; |
| uint16_t i, j; |
| uint32_t sclk = 0; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = |
| table_info->vdd_dep_on_socclk; |
| int result; |
| |
| for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { |
| vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; |
| |
| if (!vega10_get_socclk_for_voltage_evv(hwmgr, |
| table_info->vddc_lookup_table, vv_id, &sclk)) { |
| if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { |
| for (j = 1; j < socclk_table->count; j++) { |
| if (socclk_table->entries[j].clk == sclk && |
| socclk_table->entries[j].cks_enable == 0) { |
| sclk += 5000; |
| break; |
| } |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, |
| VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), |
| "Error retrieving EVV voltage value!", |
| continue); |
| |
| |
| /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ |
| PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), |
| "Invalid VDDC value", result = -EINVAL;); |
| |
| /* the voltage should not be zero nor equal to leakage ID */ |
| if (vddc != 0 && vddc != vv_id) { |
| data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); |
| data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; |
| data->vddc_leakage.count++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Change virtual leakage voltage to actual value. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to changing voltage |
| * @param pointer to leakage table |
| */ |
| static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, |
| uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) |
| { |
| uint32_t index; |
| |
| /* search for leakage voltage ID 0xff01 ~ 0xff08 */ |
| for (index = 0; index < leakage_table->count; index++) { |
| /* if this voltage matches a leakage voltage ID */ |
| /* patch with actual leakage voltage */ |
| if (leakage_table->leakage_id[index] == *voltage) { |
| *voltage = leakage_table->actual_voltage[index]; |
| break; |
| } |
| } |
| |
| if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) |
| pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); |
| } |
| |
| /** |
| * Patch voltage lookup table by EVV leakages. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pointer to voltage lookup table |
| * @param pointer to leakage table |
| * @return always 0 |
| */ |
| static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_voltage_lookup_table *lookup_table, |
| struct vega10_leakage_voltage *leakage_table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < lookup_table->count; i++) |
| vega10_patch_with_vdd_leakage(hwmgr, |
| &lookup_table->entries[i].us_vdd, leakage_table); |
| |
| return 0; |
| } |
| |
| static int vega10_patch_clock_voltage_limits_with_vddc_leakage( |
| struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, |
| uint16_t *vddc) |
| { |
| vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); |
| |
| return 0; |
| } |
| #endif |
| |
| static int vega10_patch_voltage_dependency_tables_with_lookup_table( |
| struct pp_hwmgr *hwmgr) |
| { |
| uint8_t entry_id, voltage_id; |
| unsigned i; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = |
| table_info->vdd_dep_on_mclk; |
| |
| for (i = 0; i < 6; i++) { |
| struct phm_ppt_v1_clock_voltage_dependency_table *vdt; |
| switch (i) { |
| case 0: vdt = table_info->vdd_dep_on_socclk; break; |
| case 1: vdt = table_info->vdd_dep_on_sclk; break; |
| case 2: vdt = table_info->vdd_dep_on_dcefclk; break; |
| case 3: vdt = table_info->vdd_dep_on_pixclk; break; |
| case 4: vdt = table_info->vdd_dep_on_dispclk; break; |
| case 5: vdt = table_info->vdd_dep_on_phyclk; break; |
| } |
| |
| for (entry_id = 0; entry_id < vdt->count; entry_id++) { |
| voltage_id = vdt->entries[entry_id].vddInd; |
| vdt->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| } |
| } |
| |
| for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { |
| voltage_id = mm_table->entries[entry_id].vddcInd; |
| mm_table->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| } |
| |
| for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { |
| voltage_id = mclk_table->entries[entry_id].vddInd; |
| mclk_table->entries[entry_id].vddc = |
| table_info->vddc_lookup_table->entries[voltage_id].us_vdd; |
| voltage_id = mclk_table->entries[entry_id].vddciInd; |
| mclk_table->entries[entry_id].vddci = |
| table_info->vddci_lookup_table->entries[voltage_id].us_vdd; |
| voltage_id = mclk_table->entries[entry_id].mvddInd; |
| mclk_table->entries[entry_id].mvdd = |
| table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; |
| } |
| |
| |
| return 0; |
| |
| } |
| |
| static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table) |
| { |
| uint32_t table_size, i, j; |
| |
| PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, |
| "Lookup table is empty", return -EINVAL); |
| |
| table_size = lookup_table->count; |
| |
| /* Sorting voltages */ |
| for (i = 0; i < table_size - 1; i++) { |
| for (j = i + 1; j > 0; j--) { |
| if (lookup_table->entries[j].us_vdd < |
| lookup_table->entries[j - 1].us_vdd) { |
| swap(lookup_table->entries[j - 1], |
| lookup_table->entries[j]); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| int tmp_result; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| #ifdef PPLIB_VEGA10_EVV_SUPPORT |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, |
| table_info->vddc_lookup_table, &(data->vddc_leakage)); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, |
| &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); |
| if (tmp_result) |
| result = tmp_result; |
| #endif |
| |
| tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); |
| if (tmp_result) |
| result = tmp_result; |
| |
| tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); |
| if (tmp_result) |
| result = tmp_result; |
| |
| return result; |
| } |
| |
| static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = |
| table_info->vdd_dep_on_socclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = |
| table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, |
| "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, |
| "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, |
| "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL); |
| PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, |
| "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL); |
| |
| table_info->max_clock_voltage_on_ac.sclk = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.mclk = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; |
| table_info->max_clock_voltage_on_ac.vddc = |
| allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; |
| table_info->max_clock_voltage_on_ac.vddci = |
| allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; |
| |
| hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = |
| table_info->max_clock_voltage_on_ac.sclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = |
| table_info->max_clock_voltage_on_ac.mclk; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = |
| table_info->max_clock_voltage_on_ac.vddc; |
| hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = |
| table_info->max_clock_voltage_on_ac.vddci; |
| |
| return 0; |
| } |
| |
| static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) |
| { |
| kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); |
| hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; |
| |
| kfree(hwmgr->backend); |
| hwmgr->backend = NULL; |
| |
| return 0; |
| } |
| |
| static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| struct vega10_hwmgr *data; |
| uint32_t config_telemetry = 0; |
| struct pp_atomfwctrl_voltage_table vol_table; |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->backend = data; |
| |
| hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; |
| hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; |
| hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; |
| |
| vega10_set_default_registry_data(hwmgr); |
| data->disable_dpm_mask = 0xff; |
| |
| /* need to set voltage control types before EVV patching */ |
| data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; |
| data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; |
| data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; |
| |
| /* VDDCR_SOC */ |
| if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { |
| if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, |
| VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, |
| &vol_table)) { |
| config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | |
| (vol_table.telemetry_offset & 0xff); |
| data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| } else { |
| kfree(hwmgr->backend); |
| hwmgr->backend = NULL; |
| PP_ASSERT_WITH_CODE(false, |
| "VDDCR_SOC is not SVID2!", |
| return -1); |
| } |
| |
| /* MVDDC */ |
| if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { |
| if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, |
| VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, |
| &vol_table)) { |
| config_telemetry |= |
| ((vol_table.telemetry_slope << 24) & 0xff000000) | |
| ((vol_table.telemetry_offset << 16) & 0xff0000); |
| data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; |
| } |
| } |
| |
| /* VDDCI_MEM */ |
| if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { |
| if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, |
| VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) |
| data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; |
| } |
| |
| data->config_telemetry = config_telemetry; |
| |
| vega10_set_features_platform_caps(hwmgr); |
| |
| vega10_init_dpm_defaults(hwmgr); |
| |
| #ifdef PPLIB_VEGA10_EVV_SUPPORT |
| /* Get leakage voltage based on leakage ID. */ |
| PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), |
| "Get EVV Voltage Failed. Abort Driver loading!", |
| return -1); |
| #endif |
| |
| /* Patch our voltage dependency table with actual leakage voltage |
| * We need to perform leakage translation before it's used by other functions |
| */ |
| vega10_complete_dependency_tables(hwmgr); |
| |
| /* Parse pptable data read from VBIOS */ |
| vega10_set_private_data_based_on_pptable(hwmgr); |
| |
| data->is_tlu_enabled = false; |
| |
| hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = |
| VEGA10_MAX_HARDWARE_POWERLEVELS; |
| hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; |
| hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; |
| |
| hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ |
| /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ |
| hwmgr->platform_descriptor.clockStep.engineClock = 500; |
| hwmgr->platform_descriptor.clockStep.memoryClock = 500; |
| |
| data->total_active_cus = adev->gfx.cu_info.number; |
| if (!hwmgr->not_vf) |
| return result; |
| |
| /* Setup default Overdrive Fan control settings */ |
| data->odn_fan_table.target_fan_speed = |
| hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; |
| data->odn_fan_table.target_temperature = |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.ucTargetTemperature; |
| data->odn_fan_table.min_performance_clock = |
| hwmgr->thermal_controller.advanceFanControlParameters. |
| ulMinFanSCLKAcousticLimit; |
| data->odn_fan_table.min_fan_limit = |
| hwmgr->thermal_controller. |
| advanceFanControlParameters.usFanPWMMinLimit * |
| hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; |
| |
| data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) & |
| DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> |
| DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; |
| PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number), |
| "Mem Channel Index Exceeded maximum!", |
| return -EINVAL); |
| |
| return result; |
| } |
| |
| static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->low_sclk_interrupt_threshold = 0; |
| |
| return 0; |
| } |
| |
| static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| |
| struct pp_atomfwctrl_voltage_table table; |
| uint8_t i, j; |
| uint32_t mask = 0; |
| uint32_t tmp; |
| int32_t ret = 0; |
| |
| ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, |
| VOLTAGE_OBJ_GPIO_LUT, &table); |
| |
| if (!ret) { |
| tmp = table.mask_low; |
| for (i = 0, j = 0; i < 32; i++) { |
| if (tmp & 1) { |
| mask |= (uint32_t)(i << (8 * j)); |
| if (++j >= 3) |
| break; |
| } |
| tmp >>= 1; |
| } |
| } |
| |
| pp_table->LedPin0 = (uint8_t)(mask & 0xff); |
| pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); |
| pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); |
| return 0; |
| } |
| |
| static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) |
| { |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), |
| "Failed to init sclk threshold!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), |
| "Failed to set up led dpm config!", |
| return -EINVAL); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_NumOfDisplays, |
| 0, |
| NULL); |
| |
| return 0; |
| } |
| |
| /** |
| * Remove repeated voltage values and create table with unique values. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param vol_table the pointer to changing voltage table |
| * @return 0 in success |
| */ |
| |
| static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, |
| struct pp_atomfwctrl_voltage_table *vol_table) |
| { |
| uint32_t i, j; |
| uint16_t vvalue; |
| bool found = false; |
| struct pp_atomfwctrl_voltage_table *table; |
| |
| PP_ASSERT_WITH_CODE(vol_table, |
| "Voltage Table empty.", return -EINVAL); |
| table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), |
| GFP_KERNEL); |
| |
| if (!table) |
| return -ENOMEM; |
| |
| table->mask_low = vol_table->mask_low; |
| table->phase_delay = vol_table->phase_delay; |
| |
| for (i = 0; i < vol_table->count; i++) { |
| vvalue = vol_table->entries[i].value; |
| found = false; |
| |
| for (j = 0; j < table->count; j++) { |
| if (vvalue == table->entries[j].value) { |
| found = true; |
| break; |
| } |
| } |
| |
| if (!found) { |
| table->entries[table->count].value = vvalue; |
| table->entries[table->count].smio_low = |
| vol_table->entries[i].smio_low; |
| table->count++; |
| } |
| } |
| |
| memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); |
| kfree(table); |
| |
| return 0; |
| } |
| |
| static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| struct pp_atomfwctrl_voltage_table *vol_table) |
| { |
| int i; |
| |
| PP_ASSERT_WITH_CODE(dep_table->count, |
| "Voltage Dependency Table empty.", |
| return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| vol_table->count = dep_table->count; |
| |
| for (i = 0; i < vol_table->count; i++) { |
| vol_table->entries[i].value = dep_table->entries[i].mvdd; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, |
| vol_table), |
| "Failed to trim MVDD Table!", |
| return -1); |
| |
| return 0; |
| } |
| |
| static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| struct pp_atomfwctrl_voltage_table *vol_table) |
| { |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE(dep_table->count, |
| "Voltage Dependency Table empty.", |
| return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| vol_table->count = dep_table->count; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| vol_table->entries[i].value = dep_table->entries[i].vddci; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), |
| "Failed to trim VDDCI table.", |
| return -1); |
| |
| return 0; |
| } |
| |
| static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, |
| phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| struct pp_atomfwctrl_voltage_table *vol_table) |
| { |
| int i; |
| |
| PP_ASSERT_WITH_CODE(dep_table->count, |
| "Voltage Dependency Table empty.", |
| return -EINVAL); |
| |
| vol_table->mask_low = 0; |
| vol_table->phase_delay = 0; |
| vol_table->count = dep_table->count; |
| |
| for (i = 0; i < vol_table->count; i++) { |
| vol_table->entries[i].value = dep_table->entries[i].vddc; |
| vol_table->entries[i].smio_low = 0; |
| } |
| |
| return 0; |
| } |
| |
| /* ---- Voltage Tables ---- |
| * If the voltage table would be bigger than |
| * what will fit into the state table on |
| * the SMC keep only the higher entries. |
| */ |
| static void vega10_trim_voltage_table_to_fit_state_table( |
| struct pp_hwmgr *hwmgr, |
| uint32_t max_vol_steps, |
| struct pp_atomfwctrl_voltage_table *vol_table) |
| { |
| unsigned int i, diff; |
| |
| if (vol_table->count <= max_vol_steps) |
| return; |
| |
| diff = vol_table->count - max_vol_steps; |
| |
| for (i = 0; i < max_vol_steps; i++) |
| vol_table->entries[i] = vol_table->entries[i + diff]; |
| |
| vol_table->count = max_vol_steps; |
| } |
| |
| /** |
| * Create Voltage Tables. |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @return always 0 |
| */ |
| static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| int result; |
| |
| if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || |
| data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { |
| result = vega10_get_mvdd_voltage_table(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| &(data->mvdd_voltage_table)); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to retrieve MVDDC table!", |
| return result); |
| } |
| |
| if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { |
| result = vega10_get_vddci_voltage_table(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| &(data->vddci_voltage_table)); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to retrieve VDDCI_MEM table!", |
| return result); |
| } |
| |
| if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || |
| data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { |
| result = vega10_get_vdd_voltage_table(hwmgr, |
| table_info->vdd_dep_on_sclk, |
| &(data->vddc_voltage_table)); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to retrieve VDDCR_SOC table!", |
| return result); |
| } |
| |
| PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, |
| "Too many voltage values for VDDC. Trimming to fit state table.", |
| vega10_trim_voltage_table_to_fit_state_table(hwmgr, |
| 16, &(data->vddc_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, |
| "Too many voltage values for VDDCI. Trimming to fit state table.", |
| vega10_trim_voltage_table_to_fit_state_table(hwmgr, |
| 16, &(data->vddci_voltage_table))); |
| |
| PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, |
| "Too many voltage values for MVDD. Trimming to fit state table.", |
| vega10_trim_voltage_table_to_fit_state_table(hwmgr, |
| 16, &(data->mvdd_voltage_table))); |
| |
| |
| return 0; |
| } |
| |
| /* |
| * @fn vega10_init_dpm_state |
| * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. |
| * |
| * @param dpm_state - the address of the DPM Table to initiailize. |
| * @return None. |
| */ |
| static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) |
| { |
| dpm_state->soft_min_level = 0xff; |
| dpm_state->soft_max_level = 0xff; |
| dpm_state->hard_min_level = 0xff; |
| dpm_state->hard_max_level = 0xff; |
| } |
| |
| static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, |
| struct vega10_single_dpm_table *dpm_table, |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) |
| { |
| int i; |
| |
| dpm_table->count = 0; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= |
| dep_table->entries[i].clk) { |
| dpm_table->dpm_levels[dpm_table->count].value = |
| dep_table->entries[i].clk; |
| dpm_table->dpm_levels[dpm_table->count].enabled = true; |
| dpm_table->count++; |
| } |
| } |
| } |
| static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *bios_pcie_table = |
| table_info->pcie_table; |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE(bios_pcie_table->count, |
| "Incorrect number of PCIE States from VBIOS!", |
| return -1); |
| |
| for (i = 0; i < NUM_LINK_LEVELS; i++) { |
| if (data->registry_data.pcieSpeedOverride) |
| pcie_table->pcie_gen[i] = |
| data->registry_data.pcieSpeedOverride; |
| else |
| pcie_table->pcie_gen[i] = |
| bios_pcie_table->entries[i].gen_speed; |
| |
| if (data->registry_data.pcieLaneOverride) |
| pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( |
| data->registry_data.pcieLaneOverride); |
| else |
| pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( |
| bios_pcie_table->entries[i].lane_width); |
| if (data->registry_data.pcieClockOverride) |
| pcie_table->lclk[i] = |
| data->registry_data.pcieClockOverride; |
| else |
| pcie_table->lclk[i] = |
| bios_pcie_table->entries[i].pcie_sclk; |
| } |
| |
| pcie_table->count = NUM_LINK_LEVELS; |
| |
| return 0; |
| } |
| |
| /* |
| * This function is to initialize all DPM state tables |
| * for SMU based on the dependency table. |
| * Dynamic state patching function will then trim these |
| * state tables to the allowed range based |
| * on the power policy or external client requests, |
| * such as UVD request, etc. |
| */ |
| static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct vega10_single_dpm_table *dpm_table; |
| uint32_t i; |
| |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = |
| table_info->vdd_dep_on_socclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = |
| table_info->vdd_dep_on_sclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = |
| table_info->vdd_dep_on_mclk; |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = |
| table_info->mm_dep_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = |
| table_info->vdd_dep_on_dcefclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = |
| table_info->vdd_dep_on_pixclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = |
| table_info->vdd_dep_on_dispclk; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = |
| table_info->vdd_dep_on_phyclk; |
| |
| PP_ASSERT_WITH_CODE(dep_soc_table, |
| "SOCCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, |
| "SOCCLK dependency table is empty. This table is mandatory", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(dep_gfx_table, |
| "GFXCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, |
| "GFXCLK dependency table is empty. This table is mandatory", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(dep_mclk_table, |
| "MCLK dependency table is missing. This table is mandatory", |
| return -EINVAL); |
| PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, |
| "MCLK dependency table has to have is missing. This table is mandatory", |
| return -EINVAL); |
| |
| /* Initialize Sclk DPM table based on allow Sclk values */ |
| dpm_table = &(data->dpm_table.soc_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_soc_table); |
| |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| dpm_table = &(data->dpm_table.gfx_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_gfx_table); |
| if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) |
| hwmgr->platform_descriptor.overdriveLimit.engineClock = |
| dpm_table->dpm_levels[dpm_table->count-1].value; |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* Initialize Mclk DPM table based on allow Mclk values */ |
| data->dpm_table.mem_table.count = 0; |
| dpm_table = &(data->dpm_table.mem_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_mclk_table); |
| if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock = |
| dpm_table->dpm_levels[dpm_table->count-1].value; |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| data->dpm_table.eclk_table.count = 0; |
| dpm_table = &(data->dpm_table.eclk_table); |
| for (i = 0; i < dep_mm_table->count; i++) { |
| if (i == 0 || dpm_table->dpm_levels |
| [dpm_table->count - 1].value <= |
| dep_mm_table->entries[i].eclk) { |
| dpm_table->dpm_levels[dpm_table->count].value = |
| dep_mm_table->entries[i].eclk; |
| dpm_table->dpm_levels[dpm_table->count].enabled = |
| (i == 0) ? true : false; |
| dpm_table->count++; |
| } |
| } |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| data->dpm_table.vclk_table.count = 0; |
| data->dpm_table.dclk_table.count = 0; |
| dpm_table = &(data->dpm_table.vclk_table); |
| for (i = 0; i < dep_mm_table->count; i++) { |
| if (i == 0 || dpm_table->dpm_levels |
| [dpm_table->count - 1].value <= |
| dep_mm_table->entries[i].vclk) { |
| dpm_table->dpm_levels[dpm_table->count].value = |
| dep_mm_table->entries[i].vclk; |
| dpm_table->dpm_levels[dpm_table->count].enabled = |
| (i == 0) ? true : false; |
| dpm_table->count++; |
| } |
| } |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| dpm_table = &(data->dpm_table.dclk_table); |
| for (i = 0; i < dep_mm_table->count; i++) { |
| if (i == 0 || dpm_table->dpm_levels |
| [dpm_table->count - 1].value <= |
| dep_mm_table->entries[i].dclk) { |
| dpm_table->dpm_levels[dpm_table->count].value = |
| dep_mm_table->entries[i].dclk; |
| dpm_table->dpm_levels[dpm_table->count].enabled = |
| (i == 0) ? true : false; |
| dpm_table->count++; |
| } |
| } |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| /* Assume there is no headless Vega10 for now */ |
| dpm_table = &(data->dpm_table.dcef_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_dcef_table); |
| |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| dpm_table = &(data->dpm_table.pixel_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_pix_table); |
| |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| dpm_table = &(data->dpm_table.display_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_disp_table); |
| |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| dpm_table = &(data->dpm_table.phy_table); |
| vega10_setup_default_single_dpm_table(hwmgr, |
| dpm_table, |
| dep_phy_table); |
| |
| vega10_init_dpm_state(&(dpm_table->dpm_state)); |
| |
| vega10_setup_default_pcie_table(hwmgr); |
| |
| /* Zero out the saved copy of the CUSTOM profile |
| * This will be checked when trying to set the profile |
| * and will require that new values be passed in |
| */ |
| data->custom_profile_mode[0] = 0; |
| data->custom_profile_mode[1] = 0; |
| data->custom_profile_mode[2] = 0; |
| data->custom_profile_mode[3] = 0; |
| |
| /* save a copy of the default DPM table */ |
| memcpy(&(data->golden_dpm_table), &(data->dpm_table), |
| sizeof(struct vega10_dpm_table)); |
| |
| return 0; |
| } |
| |
| /* |
| * @fn vega10_populate_ulv_state |
| * @brief Function to provide parameters for Utral Low Voltage state to SMC. |
| * |
| * @param hwmgr - the address of the hardware manager. |
| * @return Always 0. |
| */ |
| static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| |
| data->smc_state_table.pp_table.UlvOffsetVid = |
| (uint8_t)table_info->us_ulv_voltage_offset; |
| |
| data->smc_state_table.pp_table.UlvSmnclkDid = |
| (uint8_t)(table_info->us_ulv_smnclk_did); |
| data->smc_state_table.pp_table.UlvMp1clkDid = |
| (uint8_t)(table_info->us_ulv_mp1clk_did); |
| data->smc_state_table.pp_table.UlvGfxclkBypass = |
| (uint8_t)(table_info->us_ulv_gfxclk_bypass); |
| data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = |
| (uint8_t)(data->vddc_voltage_table.psi0_enable); |
| data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = |
| (uint8_t)(data->vddc_voltage_table.psi1_enable); |
| |
| return 0; |
| } |
| |
| static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, |
| uint32_t lclock, uint8_t *curr_lclk_did) |
| { |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( |
| hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, |
| lclock, ÷rs), |
| "Failed to get LCLK clock settings from VBIOS!", |
| return -1); |
| |
| *curr_lclk_did = dividers.ulDid; |
| |
| return 0; |
| } |
| |
| static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) |
| { |
| int result = -1; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega10_pcie_table *pcie_table = |
| &(data->dpm_table.pcie_table); |
| uint32_t i, j; |
| |
| for (i = 0; i < pcie_table->count; i++) { |
| pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; |
| pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; |
| |
| result = vega10_populate_single_lclk_level(hwmgr, |
| pcie_table->lclk[i], &(pp_table->LclkDid[i])); |
| if (result) { |
| pr_info("Populate LClock Level %d Failed!\n", i); |
| return result; |
| } |
| } |
| |
| j = i - 1; |
| while (i < NUM_LINK_LEVELS) { |
| pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; |
| pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; |
| |
| result = vega10_populate_single_lclk_level(hwmgr, |
| pcie_table->lclk[j], &(pp_table->LclkDid[i])); |
| if (result) { |
| pr_info("Populate LClock Level %d Failed!\n", i); |
| return result; |
| } |
| i++; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Populates single SMC GFXSCLK structure using the provided engine clock |
| * |
| * @param hwmgr the address of the hardware manager |
| * @param gfx_clock the GFX clock to use to populate the structure. |
| * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure. |
| */ |
| |
| static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, |
| uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, |
| uint32_t *acg_freq) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| uint32_t gfx_max_clock = |
| hwmgr->platform_descriptor.overdriveLimit.engineClock; |
| uint32_t i = 0; |
| |
| if (hwmgr->od_enabled) |
| dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
| &(data->odn_dpm_table.vdd_dep_on_sclk); |
| else |
| dep_on_sclk = table_info->vdd_dep_on_sclk; |
| |
| PP_ASSERT_WITH_CODE(dep_on_sclk, |
| "Invalid SOC_VDD-GFX_CLK Dependency Table!", |
| return -EINVAL); |
| |
| if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) |
| gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; |
| else { |
| for (i = 0; i < dep_on_sclk->count; i++) { |
| if (dep_on_sclk->entries[i].clk == gfx_clock) |
| break; |
| } |
| PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, |
| "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", |
| return -EINVAL); |
| } |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, |
| gfx_clock, ÷rs), |
| "Failed to get GFX Clock settings from VBIOS!", |
| return -EINVAL); |
| |
| /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ |
| current_gfxclk_level->FbMult = |
| cpu_to_le32(dividers.ulPll_fb_mult); |
| /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ |
| current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; |
| current_gfxclk_level->SsFbMult = |
| cpu_to_le32(dividers.ulPll_ss_fbsmult); |
| current_gfxclk_level->SsSlewFrac = |
| cpu_to_le16(dividers.usPll_ss_slew_frac); |
| current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); |
| |
| *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Populates single SMC SOCCLK structure using the provided clock. |
| * |
| * @param hwmgr - the address of the hardware manager. |
| * @param soc_clock - the SOC clock to use to populate the structure. |
| * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure. |
| * @return 0 on success.. |
| */ |
| static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, |
| uint32_t soc_clock, uint8_t *current_soc_did, |
| uint8_t *current_vol_index) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| uint32_t i; |
| |
| if (hwmgr->od_enabled) { |
| dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
| &data->odn_dpm_table.vdd_dep_on_socclk; |
| for (i = 0; i < dep_on_soc->count; i++) { |
| if (dep_on_soc->entries[i].clk >= soc_clock) |
| break; |
| } |
| } else { |
| dep_on_soc = table_info->vdd_dep_on_socclk; |
| for (i = 0; i < dep_on_soc->count; i++) { |
| if (dep_on_soc->entries[i].clk == soc_clock) |
| break; |
| } |
| } |
| |
| PP_ASSERT_WITH_CODE(dep_on_soc->count > i, |
| "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, |
| soc_clock, ÷rs), |
| "Failed to get SOC Clock settings from VBIOS!", |
| return -EINVAL); |
| |
| *current_soc_did = (uint8_t)dividers.ulDid; |
| *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); |
| return 0; |
| } |
| |
| /** |
| * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states |
| * |
| * @param hwmgr the address of the hardware manager |
| */ |
| static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); |
| int result = 0; |
| uint32_t i, j; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| result = vega10_populate_single_gfx_level(hwmgr, |
| dpm_table->dpm_levels[i].value, |
| &(pp_table->GfxclkLevel[i]), |
| &(pp_table->AcgFreqTable[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_GFXCLK_DPM_LEVELS) { |
| result = vega10_populate_single_gfx_level(hwmgr, |
| dpm_table->dpm_levels[j].value, |
| &(pp_table->GfxclkLevel[i]), |
| &(pp_table->AcgFreqTable[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| pp_table->GfxclkSlewRate = |
| cpu_to_le16(table_info->us_gfxclk_slew_rate); |
| |
| dpm_table = &(data->dpm_table.soc_table); |
| for (i = 0; i < dpm_table->count; i++) { |
| result = vega10_populate_single_soc_level(hwmgr, |
| dpm_table->dpm_levels[i].value, |
| &(pp_table->SocclkDid[i]), |
| &(pp_table->SocDpmVoltageIndex[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_SOCCLK_DPM_LEVELS) { |
| result = vega10_populate_single_soc_level(hwmgr, |
| dpm_table->dpm_levels[j].value, |
| &(pp_table->SocclkDid[i]), |
| &(pp_table->SocDpmVoltageIndex[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| return result; |
| } |
| |
| static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
| struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; |
| |
| uint8_t soc_vid = 0; |
| uint32_t i, max_vddc_level; |
| |
| if (hwmgr->od_enabled) |
| vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; |
| else |
| vddc_lookup_table = table_info->vddc_lookup_table; |
| |
| max_vddc_level = vddc_lookup_table->count; |
| for (i = 0; i < max_vddc_level; i++) { |
| soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); |
| pp_table->SocVid[i] = soc_vid; |
| } |
| while (i < MAX_REGULAR_DPM_NUMBER) { |
| pp_table->SocVid[i] = soc_vid; |
| i++; |
| } |
| } |
| |
| /** |
| * @brief Populates single SMC GFXCLK structure using the provided clock. |
| * |
| * @param hwmgr - the address of the hardware manager. |
| * @param mem_clock - the memory clock to use to populate the structure. |
| * @return 0 on success.. |
| */ |
| static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| uint32_t mem_clock, uint8_t *current_mem_vid, |
| PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| uint32_t mem_max_clock = |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock; |
| uint32_t i = 0; |
| |
| if (hwmgr->od_enabled) |
| dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) |
| &data->odn_dpm_table.vdd_dep_on_mclk; |
| else |
| dep_on_mclk = table_info->vdd_dep_on_mclk; |
| |
| PP_ASSERT_WITH_CODE(dep_on_mclk, |
| "Invalid SOC_VDD-UCLK Dependency Table!", |
| return -EINVAL); |
| |
| if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; |
| } else { |
| for (i = 0; i < dep_on_mclk->count; i++) { |
| if (dep_on_mclk->entries[i].clk == mem_clock) |
| break; |
| } |
| PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, |
| "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", |
| return -EINVAL); |
| } |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( |
| hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs), |
| "Failed to get UCLK settings from VBIOS!", |
| return -1); |
| |
| *current_mem_vid = |
| (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); |
| *current_mem_soc_vind = |
| (uint8_t)(dep_on_mclk->entries[i].vddInd); |
| current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); |
| current_memclk_level->Did = (uint8_t)(dividers.ulDid); |
| |
| PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, |
| "Invalid Divider ID!", |
| return -EINVAL); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states. |
| * |
| * @param pHwMgr - the address of the hardware manager. |
| * @return PP_Result_OK on success. |
| */ |
| static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega10_single_dpm_table *dpm_table = |
| &(data->dpm_table.mem_table); |
| int result = 0; |
| uint32_t i, j; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| result = vega10_populate_single_memory_level(hwmgr, |
| dpm_table->dpm_levels[i].value, |
| &(pp_table->MemVid[i]), |
| &(pp_table->UclkLevel[i]), |
| &(pp_table->MemSocVoltageIndex[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_UCLK_DPM_LEVELS) { |
| result = vega10_populate_single_memory_level(hwmgr, |
| dpm_table->dpm_levels[j].value, |
| &(pp_table->MemVid[i]), |
| &(pp_table->UclkLevel[i]), |
| &(pp_table->MemSocVoltageIndex[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); |
| pp_table->MemoryChannelWidth = |
| (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH * |
| channel_number[data->mem_channels]); |
| |
| pp_table->LowestUclkReservedForUlv = |
| (uint8_t)(data->lowest_uclk_reserved_for_ulv); |
| |
| return result; |
| } |
| |
| static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, |
| DSPCLK_e disp_clock) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *) |
| (hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
| uint32_t i; |
| uint16_t clk = 0, vddc = 0; |
| uint8_t vid = 0; |
| |
| switch (disp_clock) { |
| case DSPCLK_DCEFCLK: |
| dep_table = table_info->vdd_dep_on_dcefclk; |
| break; |
| case DSPCLK_DISPCLK: |
| dep_table = table_info->vdd_dep_on_dispclk; |
| break; |
| case DSPCLK_PIXCLK: |
| dep_table = table_info->vdd_dep_on_pixclk; |
| break; |
| case DSPCLK_PHYCLK: |
| dep_table = table_info->vdd_dep_on_phyclk; |
| break; |
| default: |
| return -1; |
| } |
| |
| PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, |
| "Number Of Entries Exceeded maximum!", |
| return -1); |
| |
| for (i = 0; i < dep_table->count; i++) { |
| clk = (uint16_t)(dep_table->entries[i].clk / 100); |
| vddc = table_info->vddc_lookup_table-> |
| entries[dep_table->entries[i].vddInd].us_vdd; |
| vid = (uint8_t)convert_to_vid(vddc); |
| pp_table->DisplayClockTable[disp_clock][i].Freq = |
| cpu_to_le16(clk); |
| pp_table->DisplayClockTable[disp_clock][i].Vid = |
| cpu_to_le16(vid); |
| } |
| |
| while (i < NUM_DSPCLK_LEVELS) { |
| pp_table->DisplayClockTable[disp_clock][i].Freq = |
| cpu_to_le16(clk); |
| pp_table->DisplayClockTable[disp_clock][i].Vid = |
| cpu_to_le16(vid); |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < DSPCLK_COUNT; i++) { |
| PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), |
| "Failed to populate Clock in DisplayClockTable!", |
| return -1); |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, |
| uint32_t eclock, uint8_t *current_eclk_did, |
| uint8_t *current_soc_vol) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = |
| table_info->mm_dep_table; |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, |
| eclock, ÷rs), |
| "Failed to get ECLK clock settings from VBIOS!", |
| return -1); |
| |
| *current_eclk_did = (uint8_t)dividers.ulDid; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].eclk == eclock) |
| *current_soc_vol = dep_table->entries[i].vddcInd; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); |
| int result = -EINVAL; |
| uint32_t i, j; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| result = vega10_populate_single_eclock_level(hwmgr, |
| dpm_table->dpm_levels[i].value, |
| &(pp_table->EclkDid[i]), |
| &(pp_table->VceDpmVoltageIndex[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_VCE_DPM_LEVELS) { |
| result = vega10_populate_single_eclock_level(hwmgr, |
| dpm_table->dpm_levels[j].value, |
| &(pp_table->EclkDid[i]), |
| &(pp_table->VceDpmVoltageIndex[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| return result; |
| } |
| |
| static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, |
| uint32_t vclock, uint8_t *current_vclk_did) |
| { |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, |
| vclock, ÷rs), |
| "Failed to get VCLK clock settings from VBIOS!", |
| return -EINVAL); |
| |
| *current_vclk_did = (uint8_t)dividers.ulDid; |
| |
| return 0; |
| } |
| |
| static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, |
| uint32_t dclock, uint8_t *current_dclk_did) |
| { |
| struct pp_atomfwctrl_clock_dividers_soc15 dividers; |
| |
| PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, |
| COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, |
| dclock, ÷rs), |
| "Failed to get DCLK clock settings from VBIOS!", |
| return -EINVAL); |
| |
| *current_dclk_did = (uint8_t)dividers.ulDid; |
| |
| return 0; |
| } |
| |
| static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct vega10_single_dpm_table *vclk_dpm_table = |
| &(data->dpm_table.vclk_table); |
| struct vega10_single_dpm_table *dclk_dpm_table = |
| &(data->dpm_table.dclk_table); |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = |
| table_info->mm_dep_table; |
| int result = -EINVAL; |
| uint32_t i, j; |
| |
| for (i = 0; i < vclk_dpm_table->count; i++) { |
| result = vega10_populate_single_vclock_level(hwmgr, |
| vclk_dpm_table->dpm_levels[i].value, |
| &(pp_table->VclkDid[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_UVD_DPM_LEVELS) { |
| result = vega10_populate_single_vclock_level(hwmgr, |
| vclk_dpm_table->dpm_levels[j].value, |
| &(pp_table->VclkDid[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| for (i = 0; i < dclk_dpm_table->count; i++) { |
| result = vega10_populate_single_dclock_level(hwmgr, |
| dclk_dpm_table->dpm_levels[i].value, |
| &(pp_table->DclkDid[i])); |
| if (result) |
| return result; |
| } |
| |
| j = i - 1; |
| while (i < NUM_UVD_DPM_LEVELS) { |
| result = vega10_populate_single_dclock_level(hwmgr, |
| dclk_dpm_table->dpm_levels[j].value, |
| &(pp_table->DclkDid[i])); |
| if (result) |
| return result; |
| i++; |
| } |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vclk == |
| vclk_dpm_table->dpm_levels[i].value && |
| dep_table->entries[i].dclk == |
| dclk_dpm_table->dpm_levels[i].value) |
| pp_table->UvdDpmVoltageIndex[i] = |
| dep_table->entries[i].vddcInd; |
| else |
| return -1; |
| } |
| |
| j = i - 1; |
| while (i < NUM_UVD_DPM_LEVELS) { |
| pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_sclk; |
| uint32_t i; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; |
| pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset |
| * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_sclk; |
| struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; |
| int result = 0; |
| uint32_t i; |
| |
| pp_table->MinVoltageVid = (uint8_t)0xff; |
| pp_table->MaxVoltageVid = (uint8_t)0; |
| |
| if (data->smu_features[GNLD_AVFS].supported) { |
| result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); |
| if (!result) { |
| pp_table->MinVoltageVid = (uint8_t) |
| convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); |
| pp_table->MaxVoltageVid = (uint8_t) |
| convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); |
| |
| pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); |
| pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); |
| pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); |
| pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); |
| pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); |
| pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); |
| pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); |
| |
| pp_table->BtcGbVdroopTableCksOff.a0 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); |
| pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; |
| pp_table->BtcGbVdroopTableCksOff.a1 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); |
| pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; |
| pp_table->BtcGbVdroopTableCksOff.a2 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); |
| pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; |
| |
| pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; |
| pp_table->BtcGbVdroopTableCksOn.a0 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); |
| pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; |
| pp_table->BtcGbVdroopTableCksOn.a1 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); |
| pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; |
| pp_table->BtcGbVdroopTableCksOn.a2 = |
| cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); |
| pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; |
| |
| pp_table->AvfsGbCksOn.m1 = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); |
| pp_table->AvfsGbCksOn.m2 = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); |
| pp_table->AvfsGbCksOn.b = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksonB); |
| pp_table->AvfsGbCksOn.m1_shift = 24; |
| pp_table->AvfsGbCksOn.m2_shift = 12; |
| pp_table->AvfsGbCksOn.b_shift = 0; |
| |
| pp_table->OverrideAvfsGbCksOn = |
| avfs_params.ucEnableGbFuseTableCkson; |
| pp_table->AvfsGbCksOff.m1 = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); |
| pp_table->AvfsGbCksOff.m2 = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); |
| pp_table->AvfsGbCksOff.b = |
| cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); |
| pp_table->AvfsGbCksOff.m1_shift = 24; |
| pp_table->AvfsGbCksOff.m2_shift = 12; |
| pp_table->AvfsGbCksOff.b_shift = 0; |
| |
| for (i = 0; i < dep_table->count; i++) |
| pp_table->StaticVoltageOffsetVid[i] = |
| convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); |
| |
| if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->disp_clk_quad_eqn_a) && |
| (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->disp_clk_quad_eqn_b)) { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = |
| (int32_t)data->disp_clk_quad_eqn_a; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = |
| (int32_t)data->disp_clk_quad_eqn_b; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = |
| (int32_t)data->disp_clk_quad_eqn_c; |
| } else { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = |
| (int32_t)avfs_params.ulDispclk2GfxclkM1; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = |
| (int32_t)avfs_params.ulDispclk2GfxclkM2; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = |
| (int32_t)avfs_params.ulDispclk2GfxclkB; |
| } |
| |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; |
| |
| if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->dcef_clk_quad_eqn_a) && |
| (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->dcef_clk_quad_eqn_b)) { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = |
| (int32_t)data->dcef_clk_quad_eqn_a; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = |
| (int32_t)data->dcef_clk_quad_eqn_b; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = |
| (int32_t)data->dcef_clk_quad_eqn_c; |
| } else { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = |
| (int32_t)avfs_params.ulDcefclk2GfxclkM1; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = |
| (int32_t)avfs_params.ulDcefclk2GfxclkM2; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = |
| (int32_t)avfs_params.ulDcefclk2GfxclkB; |
| } |
| |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; |
| |
| if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->pixel_clk_quad_eqn_a) && |
| (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->pixel_clk_quad_eqn_b)) { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = |
| (int32_t)data->pixel_clk_quad_eqn_a; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = |
| (int32_t)data->pixel_clk_quad_eqn_b; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = |
| (int32_t)data->pixel_clk_quad_eqn_c; |
| } else { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = |
| (int32_t)avfs_params.ulPixelclk2GfxclkM1; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = |
| (int32_t)avfs_params.ulPixelclk2GfxclkM2; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = |
| (int32_t)avfs_params.ulPixelclk2GfxclkB; |
| } |
| |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; |
| if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->phy_clk_quad_eqn_a) && |
| (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != |
| data->phy_clk_quad_eqn_b)) { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = |
| (int32_t)data->phy_clk_quad_eqn_a; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = |
| (int32_t)data->phy_clk_quad_eqn_b; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = |
| (int32_t)data->phy_clk_quad_eqn_c; |
| } else { |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = |
| (int32_t)avfs_params.ulPhyclk2GfxclkM1; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = |
| (int32_t)avfs_params.ulPhyclk2GfxclkM2; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = |
| (int32_t)avfs_params.ulPhyclk2GfxclkB; |
| } |
| |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; |
| pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; |
| |
| pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; |
| pp_table->AcgBtcGbVdroopTable.a0_shift = 20; |
| pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; |
| pp_table->AcgBtcGbVdroopTable.a1_shift = 20; |
| pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; |
| pp_table->AcgBtcGbVdroopTable.a2_shift = 20; |
| |
| pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; |
| pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; |
| pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; |
| pp_table->AcgAvfsGb.m1_shift = 24; |
| pp_table->AcgAvfsGb.m2_shift = 12; |
| pp_table->AcgAvfsGb.b_shift = 0; |
| |
| } else { |
| data->smu_features[GNLD_AVFS].supported = false; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_acg_enable(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t agc_btc_response; |
| |
| if (data->smu_features[GNLD_ACG].supported) { |
| if (0 == vega10_enable_smc_features(hwmgr, true, |
| data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) |
| data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL); |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response); |
| |
| if (1 == agc_btc_response) { |
| if (1 == data->acg_loop_state) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL); |
| else if (2 == data->acg_loop_state) |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL); |
| if (0 == vega10_enable_smc_features(hwmgr, true, |
| data->smu_features[GNLD_ACG].smu_feature_bitmap)) |
| data->smu_features[GNLD_ACG].enabled = true; |
| } else { |
| pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); |
| data->smu_features[GNLD_ACG].enabled = false; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_acg_disable(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_ACG].supported && |
| data->smu_features[GNLD_ACG].enabled) |
| if (!vega10_enable_smc_features(hwmgr, false, |
| data->smu_features[GNLD_ACG].smu_feature_bitmap)) |
| data->smu_features[GNLD_ACG].enabled = false; |
| |
| return 0; |
| } |
| |
| static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; |
| int result; |
| |
| result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); |
| if (!result) { |
| if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && |
| data->registry_data.regulator_hot_gpio_support) { |
| pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; |
| pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; |
| pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; |
| pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; |
| } else { |
| pp_table->VR0HotGpio = 0; |
| pp_table->VR0HotPolarity = 0; |
| pp_table->VR1HotGpio = 0; |
| pp_table->VR1HotPolarity = 0; |
| } |
| |
| if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && |
| data->registry_data.ac_dc_switch_gpio_support) { |
| pp_table->AcDcGpio = gpio_params.ucAcDcGpio; |
| pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; |
| } else { |
| pp_table->AcDcGpio = 0; |
| pp_table->AcDcPolarity = 0; |
| } |
| } |
| |
| return result; |
| } |
| |
| static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_AVFS].supported) { |
| /* Already enabled or disabled */ |
| if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) |
| return 0; |
| |
| if (enable) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, |
| data->smu_features[GNLD_AVFS].smu_feature_bitmap), |
| "[avfs_control] Attempt to Enable AVFS feature Failed!", |
| return -1); |
| data->smu_features[GNLD_AVFS].enabled = true; |
| } else { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, |
| data->smu_features[GNLD_AVFS].smu_feature_bitmap), |
| "[avfs_control] Attempt to Disable AVFS feature Failed!", |
| return -1); |
| data->smu_features[GNLD_AVFS].enabled = false; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_update_avfs(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { |
| vega10_avfs_enable(hwmgr, false); |
| } else if (data->need_update_dpm_table) { |
| vega10_avfs_enable(hwmgr, false); |
| vega10_avfs_enable(hwmgr, true); |
| } else { |
| vega10_avfs_enable(hwmgr, true); |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| |
| uint64_t serial_number = 0; |
| uint32_t top32, bottom32; |
| struct phm_fuses_default fuse; |
| |
| struct vega10_hwmgr *data = hwmgr->backend; |
| AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); |
| |
| serial_number = ((uint64_t)bottom32 << 32) | top32; |
| |
| if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { |
| avfs_fuse_table->VFT0_b = fuse.VFT0_b; |
| avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; |
| avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; |
| avfs_fuse_table->VFT1_b = fuse.VFT1_b; |
| avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; |
| avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; |
| avfs_fuse_table->VFT2_b = fuse.VFT2_b; |
| avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; |
| avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; |
| result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, |
| AVFSFUSETABLE, false); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload FuseOVerride!", |
| ); |
| } |
| |
| return result; |
| } |
| |
| static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
| struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; |
| uint32_t i; |
| |
| dep_table = table_info->vdd_dep_on_mclk; |
| odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; |
| return; |
| } |
| } |
| |
| dep_table = table_info->vdd_dep_on_sclk; |
| odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; |
| return; |
| } |
| } |
| } |
| |
| /** |
| * Initializes the SMC table and uploads it |
| * |
| * @param hwmgr the address of the powerplay hardware manager. |
| * @param pInput the pointer to input data (PowerState) |
| * @return always 0 |
| */ |
| static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| struct pp_atomfwctrl_voltage_table voltage_table; |
| struct pp_atomfwctrl_bios_boot_up_values boot_up_values; |
| struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| |
| result = vega10_setup_default_dpm_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to setup default DPM tables!", |
| return result); |
| |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| /* initialize ODN table */ |
| if (hwmgr->od_enabled) { |
| if (odn_table->max_vddc) { |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; |
| vega10_check_dpm_table_updated(hwmgr); |
| } else { |
| vega10_odn_initial_default_setting(hwmgr); |
| } |
| } |
| |
| pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, |
| VOLTAGE_OBJ_SVID2, &voltage_table); |
| pp_table->MaxVidStep = voltage_table.max_vid_step; |
| |
| pp_table->GfxDpmVoltageMode = |
| (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); |
| pp_table->SocDpmVoltageMode = |
| (uint8_t)(table_info->uc_soc_dpm_voltage_mode); |
| pp_table->UclkDpmVoltageMode = |
| (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); |
| pp_table->UvdDpmVoltageMode = |
| (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); |
| pp_table->VceDpmVoltageMode = |
| (uint8_t)(table_info->uc_vce_dpm_voltage_mode); |
| pp_table->Mp0DpmVoltageMode = |
| (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); |
| |
| pp_table->DisplayDpmVoltageMode = |
| (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); |
| |
| data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; |
| data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; |
| |
| if (data->registry_data.ulv_support && |
| table_info->us_ulv_voltage_offset) { |
| result = vega10_populate_ulv_state(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ULV state!", |
| return result); |
| } |
| |
| result = vega10_populate_smc_link_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Link Level!", |
| return result); |
| |
| result = vega10_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Graphics Level!", |
| return result); |
| |
| result = vega10_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Memory Level!", |
| return result); |
| |
| vega10_populate_vddc_soc_levels(hwmgr); |
| |
| result = vega10_populate_all_display_clock_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Display Level!", |
| return result); |
| |
| result = vega10_populate_smc_vce_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize VCE Level!", |
| return result); |
| |
| result = vega10_populate_smc_uvd_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize UVD Level!", |
| return result); |
| |
| if (data->registry_data.clock_stretcher_support) { |
| result = vega10_populate_clock_stretcher_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate Clock Stretcher Table!", |
| return result); |
| } |
| |
| result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); |
| if (!result) { |
| data->vbios_boot_state.vddc = boot_up_values.usVddc; |
| data->vbios_boot_state.vddci = boot_up_values.usVddci; |
| data->vbios_boot_state.mvddc = boot_up_values.usMvddc; |
| data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; |
| data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; |
| pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, |
| SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); |
| |
| pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, |
| SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); |
| |
| data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; |
| data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; |
| if (0 != boot_up_values.usVddc) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetFloorSocVoltage, |
| (boot_up_values.usVddc * 4), |
| NULL); |
| data->vbios_boot_state.bsoc_vddc_lock = true; |
| } else { |
| data->vbios_boot_state.bsoc_vddc_lock = false; |
| } |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetMinDeepSleepDcefclk, |
| (uint32_t)(data->vbios_boot_state.dcef_clock / 100), |
| NULL); |
| } |
| |
| result = vega10_populate_avfs_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize AVFS Parameters!", |
| return result); |
| |
| result = vega10_populate_gpio_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize GPIO Parameters!", |
| return result); |
| |
| pp_table->GfxclkAverageAlpha = (uint8_t) |
| (data->gfxclk_average_alpha); |
| pp_table->SocclkAverageAlpha = (uint8_t) |
| (data->socclk_average_alpha); |
| pp_table->UclkAverageAlpha = (uint8_t) |
| (data->uclk_average_alpha); |
| pp_table->GfxActivityAverageAlpha = (uint8_t) |
| (data->gfx_activity_average_alpha); |
| |
| vega10_populate_and_upload_avfs_fuse_override(hwmgr); |
| |
| result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); |
| |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload PPtable!", return result); |
| |
| result = vega10_avfs_enable(hwmgr, true); |
| PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", |
| return result); |
| vega10_acg_enable(hwmgr); |
| |
| return 0; |
| } |
| |
| static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_THERMAL].supported) { |
| if (data->smu_features[GNLD_THERMAL].enabled) |
| pr_info("THERMAL Feature Already enabled!"); |
| |
| PP_ASSERT_WITH_CODE( |
| !vega10_enable_smc_features(hwmgr, |
| true, |
| data->smu_features[GNLD_THERMAL].smu_feature_bitmap), |
| "Enable THERMAL Feature Failed!", |
| return -1); |
| data->smu_features[GNLD_THERMAL].enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_THERMAL].supported) { |
| if (!data->smu_features[GNLD_THERMAL].enabled) |
| pr_info("THERMAL Feature Already disabled!"); |
| |
| PP_ASSERT_WITH_CODE( |
| !vega10_enable_smc_features(hwmgr, |
| false, |
| data->smu_features[GNLD_THERMAL].smu_feature_bitmap), |
| "disable THERMAL Feature Failed!", |
| return -1); |
| data->smu_features[GNLD_THERMAL].enabled = false; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { |
| if (data->smu_features[GNLD_VR0HOT].supported) { |
| PP_ASSERT_WITH_CODE( |
| !vega10_enable_smc_features(hwmgr, |
| true, |
| data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), |
| "Attempt to Enable VR0 Hot feature Failed!", |
| return -1); |
| data->smu_features[GNLD_VR0HOT].enabled = true; |
| } else { |
| if (data->smu_features[GNLD_VR1HOT].supported) { |
| PP_ASSERT_WITH_CODE( |
| !vega10_enable_smc_features(hwmgr, |
| true, |
| data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), |
| "Attempt to Enable VR0 Hot feature Failed!", |
| return -1); |
| data->smu_features[GNLD_VR1HOT].enabled = true; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->registry_data.ulv_support) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_ULV].smu_feature_bitmap), |
| "Enable ULV Feature Failed!", |
| return -1); |
| data->smu_features[GNLD_ULV].enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->registry_data.ulv_support) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_ULV].smu_feature_bitmap), |
| "disable ULV Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_ULV].enabled = false; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_DS_GFXCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), |
| "Attempt to Enable DS_GFXCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_GFXCLK].enabled = true; |
| } |
| |
| if (data->smu_features[GNLD_DS_SOCCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), |
| "Attempt to Enable DS_SOCCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_SOCCLK].enabled = true; |
| } |
| |
| if (data->smu_features[GNLD_DS_LCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), |
| "Attempt to Enable DS_LCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_LCLK].enabled = true; |
| } |
| |
| if (data->smu_features[GNLD_DS_DCEFCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), |
| "Attempt to Enable DS_DCEFCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_DCEFCLK].enabled = true; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_DS_GFXCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), |
| "Attempt to disable DS_GFXCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_GFXCLK].enabled = false; |
| } |
| |
| if (data->smu_features[GNLD_DS_SOCCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), |
| "Attempt to disable DS_ Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_SOCCLK].enabled = false; |
| } |
| |
| if (data->smu_features[GNLD_DS_LCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), |
| "Attempt to disable DS_LCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_LCLK].enabled = false; |
| } |
| |
| if (data->smu_features[GNLD_DS_DCEFCLK].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), |
| "Attempt to disable DS_DCEFCLK Feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_DS_DCEFCLK].enabled = false; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t i, feature_mask = 0; |
| |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), |
| "Attempt to disable LED DPM feature failed!", return -EINVAL); |
| data->smu_features[GNLD_LED_DISPLAY].enabled = false; |
| } |
| |
| for (i = 0; i < GNLD_DPM_MAX; i++) { |
| if (data->smu_features[i].smu_feature_bitmap & bitmap) { |
| if (data->smu_features[i].supported) { |
| if (data->smu_features[i].enabled) { |
| feature_mask |= data->smu_features[i]. |
| smu_feature_bitmap; |
| data->smu_features[i].enabled = false; |
| } |
| } |
| } |
| } |
| |
| vega10_enable_smc_features(hwmgr, false, feature_mask); |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Tell SMC to enabled the supported DPMs. |
| * |
| * @param hwmgr - the address of the powerplay hardware manager. |
| * @Param bitmap - bitmap for the features to enabled. |
| * @return 0 on at least one DPM is successfully enabled. |
| */ |
| static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t i, feature_mask = 0; |
| |
| for (i = 0; i < GNLD_DPM_MAX; i++) { |
| if (data->smu_features[i].smu_feature_bitmap & bitmap) { |
| if (data->smu_features[i].supported) { |
| if (!data->smu_features[i].enabled) { |
| feature_mask |= data->smu_features[i]. |
| smu_feature_bitmap; |
| data->smu_features[i].enabled = true; |
| } |
| } |
| } |
| } |
| |
| if (vega10_enable_smc_features(hwmgr, |
| true, feature_mask)) { |
| for (i = 0; i < GNLD_DPM_MAX; i++) { |
| if (data->smu_features[i].smu_feature_bitmap & |
| feature_mask) |
| data->smu_features[i].enabled = false; |
| } |
| } |
| |
| if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), |
| "Attempt to Enable LED DPM feature Failed!", return -EINVAL); |
| data->smu_features[GNLD_LED_DISPLAY].enabled = true; |
| } |
| |
| if (data->vbios_boot_state.bsoc_vddc_lock) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetFloorSocVoltage, 0, |
| NULL); |
| data->vbios_boot_state.bsoc_vddc_lock = false; |
| } |
| |
| if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { |
| if (data->smu_features[GNLD_ACDC].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), |
| "Attempt to Enable DS_GFXCLK Feature Failed!", |
| return -1); |
| data->smu_features[GNLD_ACDC].enabled = true; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_PCC_LIMIT].supported) { |
| if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) |
| pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled"); |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap), |
| "Attempt to Enable PCC Limit feature Failed!", |
| return -EINVAL); |
| data->smu_features[GNLD_PCC_LIMIT].enabled = enable; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| int tmp_result, result = 0; |
| |
| if (hwmgr->not_vf) { |
| vega10_enable_disable_PCC_limit_feature(hwmgr, true); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_ConfigureTelemetry, data->config_telemetry, |
| NULL); |
| |
| tmp_result = vega10_construct_voltage_tables(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to construct voltage tables!", |
| result = tmp_result); |
| } |
| |
| if (hwmgr->not_vf || hwmgr->pp_one_vf) { |
| tmp_result = vega10_init_smc_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to initialize SMC table!", |
| result = tmp_result); |
| } |
| |
| if (hwmgr->not_vf) { |
| if (PP_CAP(PHM_PlatformCaps_ThermalController)) { |
| tmp_result = vega10_enable_thermal_protection(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to enable thermal protection!", |
| result = tmp_result); |
| } |
| |
| tmp_result = vega10_enable_vrhot_feature(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to enable VR hot feature!", |
| result = tmp_result); |
| |
| tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to enable deep sleep master switch!", |
| result = tmp_result); |
| } |
| |
| if (hwmgr->not_vf) { |
| tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to start DPM!", result = tmp_result); |
| } |
| |
| if (hwmgr->not_vf) { |
| /* enable didt, do not abort if failed didt */ |
| tmp_result = vega10_enable_didt_config(hwmgr); |
| PP_ASSERT(!tmp_result, |
| "Failed to enable didt config!"); |
| } |
| |
| tmp_result = vega10_enable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to enable power containment!", |
| result = tmp_result); |
| |
| if (hwmgr->not_vf) { |
| tmp_result = vega10_power_control_set_level(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to power control set level!", |
| result = tmp_result); |
| |
| tmp_result = vega10_enable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to enable ULV!", |
| result = tmp_result); |
| } |
| |
| return result; |
| } |
| |
| static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) |
| { |
| return sizeof(struct vega10_power_state); |
| } |
| |
| static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, |
| void *state, struct pp_power_state *power_state, |
| void *pp_table, uint32_t classification_flag) |
| { |
| ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; |
| struct vega10_power_state *vega10_power_state = |
| cast_phw_vega10_power_state(&(power_state->hardware)); |
| struct vega10_performance_level *performance_level; |
| ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; |
| ATOM_Vega10_POWERPLAYTABLE *powerplay_table = |
| (ATOM_Vega10_POWERPLAYTABLE *)pp_table; |
| ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = |
| (ATOM_Vega10_SOCCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); |
| ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = |
| (ATOM_Vega10_GFXCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); |
| ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = |
| (ATOM_Vega10_MCLK_Dependency_Table *) |
| (((unsigned long)powerplay_table) + |
| le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); |
| |
| |
| /* The following fields are not initialized here: |
| * id orderedList allStatesList |
| */ |
| power_state->classification.ui_label = |
| (le16_to_cpu(state_entry->usClassification) & |
| ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> |
| ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; |
| power_state->classification.flags = classification_flag; |
| /* NOTE: There is a classification2 flag in BIOS |
| * that is not being used right now |
| */ |
| power_state->classification.temporary_state = false; |
| power_state->classification.to_be_deleted = false; |
| |
| power_state->validation.disallowOnDC = |
| ((le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Vega10_DISALLOW_ON_DC) != 0); |
| |
| power_state->display.disableFrameModulation = false; |
| power_state->display.limitRefreshrate = false; |
| power_state->display.enableVariBright = |
| ((le32_to_cpu(state_entry->ulCapsAndSettings) & |
| ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); |
| |
| power_state->validation.supportedPowerLevels = 0; |
| power_state->uvd_clocks.VCLK = 0; |
| power_state->uvd_clocks.DCLK = 0; |
| power_state->temperatures.min = 0; |
| power_state->temperatures.max = 0; |
| |
| performance_level = &(vega10_power_state->performance_levels |
| [vega10_power_state->performance_level_count++]); |
| |
| PP_ASSERT_WITH_CODE( |
| (vega10_power_state->performance_level_count < |
| NUM_GFXCLK_DPM_LEVELS), |
| "Performance levels exceeds SMC limit!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE( |
| (vega10_power_state->performance_level_count <= |
| hwmgr->platform_descriptor. |
| hardwareActivityPerformanceLevels), |
| "Performance levels exceeds Driver limit!", |
| return -1); |
| |
| /* Performance levels are arranged from low to high. */ |
| performance_level->soc_clock = socclk_dep_table->entries |
| [state_entry->ucSocClockIndexLow].ulClk; |
| performance_level->gfx_clock = gfxclk_dep_table->entries |
| [state_entry->ucGfxClockIndexLow].ulClk; |
| performance_level->mem_clock = mclk_dep_table->entries |
| [state_entry->ucMemClockIndexLow].ulMemClk; |
| |
| performance_level = &(vega10_power_state->performance_levels |
| [vega10_power_state->performance_level_count++]); |
| performance_level->soc_clock = socclk_dep_table->entries |
| [state_entry->ucSocClockIndexHigh].ulClk; |
| if (gfxclk_dep_table->ucRevId == 0) { |
| /* under vega10 pp one vf mode, the gfx clk dpm need be lower |
| * to level-4 due to the limited 110w-power |
| */ |
| if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) |
| performance_level->gfx_clock = |
| gfxclk_dep_table->entries[4].ulClk; |
| else |
| performance_level->gfx_clock = gfxclk_dep_table->entries |
| [state_entry->ucGfxClockIndexHigh].ulClk; |
| } else if (gfxclk_dep_table->ucRevId == 1) { |
| patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; |
| if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) |
| performance_level->gfx_clock = patom_record_V2[4].ulClk; |
| else |
| performance_level->gfx_clock = |
| patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; |
| } |
| |
| performance_level->mem_clock = mclk_dep_table->entries |
| [state_entry->ucMemClockIndexHigh].ulMemClk; |
| return 0; |
| } |
| |
| static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, |
| unsigned long entry_index, struct pp_power_state *state) |
| { |
| int result; |
| struct vega10_power_state *ps; |
| |
| state->hardware.magic = PhwVega10_Magic; |
| |
| ps = cast_phw_vega10_power_state(&state->hardware); |
| |
| result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, |
| vega10_get_pp_table_entry_callback_func); |
| |
| /* |
| * This is the earliest time we have all the dependency table |
| * and the VBIOS boot state |
| */ |
| /* set DC compatible flag if this state supports DC */ |
| if (!state->validation.disallowOnDC) |
| ps->dc_compatible = true; |
| |
| ps->uvd_clks.vclk = state->uvd_clocks.VCLK; |
| ps->uvd_clks.dclk = state->uvd_clocks.DCLK; |
| |
| return 0; |
| } |
| |
| static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, |
| struct pp_hw_power_state *hw_ps) |
| { |
| return 0; |
| } |
| |
| static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, |
| struct pp_power_state *request_ps, |
| const struct pp_power_state *current_ps) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| struct vega10_power_state *vega10_ps = |
| cast_phw_vega10_power_state(&request_ps->hardware); |
| uint32_t sclk; |
| uint32_t mclk; |
| struct PP_Clocks minimum_clocks = {0}; |
| bool disable_mclk_switching; |
| bool disable_mclk_switching_for_frame_lock; |
| bool disable_mclk_switching_for_vr; |
| bool force_mclk_high; |
| const struct phm_clock_and_voltage_limits *max_limits; |
| uint32_t i; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| int32_t count; |
| uint32_t stable_pstate_sclk_dpm_percentage; |
| uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; |
| uint32_t latency; |
| |
| data->battery_state = (PP_StateUILabel_Battery == |
| request_ps->classification.ui_label); |
| |
| if (vega10_ps->performance_level_count != 2) |
| pr_info("VI should always have 2 performance levels"); |
| |
| max_limits = adev->pm.ac_power ? |
| &(hwmgr->dyn_state.max_clock_voltage_on_ac) : |
| &(hwmgr->dyn_state.max_clock_voltage_on_dc); |
| |
| /* Cap clock DPM tables at DC MAX if it is in DC. */ |
| if (!adev->pm.ac_power) { |
| for (i = 0; i < vega10_ps->performance_level_count; i++) { |
| if (vega10_ps->performance_levels[i].mem_clock > |
| max_limits->mclk) |
| vega10_ps->performance_levels[i].mem_clock = |
| max_limits->mclk; |
| if (vega10_ps->performance_levels[i].gfx_clock > |
| max_limits->sclk) |
| vega10_ps->performance_levels[i].gfx_clock = |
| max_limits->sclk; |
| } |
| } |
| |
| /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ |
| minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; |
| minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
| |
| if (PP_CAP(PHM_PlatformCaps_StablePState)) { |
| stable_pstate_sclk_dpm_percentage = |
| data->registry_data.stable_pstate_sclk_dpm_percentage; |
| PP_ASSERT_WITH_CODE( |
| data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && |
| data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, |
| "percent sclk value must range from 1% to 100%, setting default value", |
| stable_pstate_sclk_dpm_percentage = 75); |
| |
| max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); |
| stable_pstate_sclk = (max_limits->sclk * |
| stable_pstate_sclk_dpm_percentage) / 100; |
| |
| for (count = table_info->vdd_dep_on_sclk->count - 1; |
| count >= 0; count--) { |
| if (stable_pstate_sclk >= |
| table_info->vdd_dep_on_sclk->entries[count].clk) { |
| stable_pstate_sclk = |
| table_info->vdd_dep_on_sclk->entries[count].clk; |
| break; |
| } |
| } |
| |
| if (count < 0) |
| stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; |
| |
| stable_pstate_mclk = max_limits->mclk; |
| |
| minimum_clocks.engineClock = stable_pstate_sclk; |
| minimum_clocks.memoryClock = stable_pstate_mclk; |
| } |
| |
| disable_mclk_switching_for_frame_lock = |
| PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); |
| disable_mclk_switching_for_vr = |
| PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); |
| force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); |
| |
| if (hwmgr->display_config->num_display == 0) |
| disable_mclk_switching = false; |
| else |
| disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && |
| !hwmgr->display_config->multi_monitor_in_sync) || |
| disable_mclk_switching_for_frame_lock || |
| disable_mclk_switching_for_vr || |
| force_mclk_high; |
| |
| sclk = vega10_ps->performance_levels[0].gfx_clock; |
| mclk = vega10_ps->performance_levels[0].mem_clock; |
| |
| if (sclk < minimum_clocks.engineClock) |
| sclk = (minimum_clocks.engineClock > max_limits->sclk) ? |
| max_limits->sclk : minimum_clocks.engineClock; |
| |
| if (mclk < minimum_clocks.memoryClock) |
| mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? |
| max_limits->mclk : minimum_clocks.memoryClock; |
| |
| vega10_ps->performance_levels[0].gfx_clock = sclk; |
| vega10_ps->performance_levels[0].mem_clock = mclk; |
| |
| if (vega10_ps->performance_levels[1].gfx_clock < |
| vega10_ps->performance_levels[0].gfx_clock) |
| vega10_ps->performance_levels[0].gfx_clock = |
| vega10_ps->performance_levels[1].gfx_clock; |
| |
| if (disable_mclk_switching) { |
| /* Set Mclk the max of level 0 and level 1 */ |
| if (mclk < vega10_ps->performance_levels[1].mem_clock) |
| mclk = vega10_ps->performance_levels[1].mem_clock; |
| |
| /* Find the lowest MCLK frequency that is within |
| * the tolerable latency defined in DAL |
| */ |
| latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; |
| for (i = 0; i < data->mclk_latency_table.count; i++) { |
| if ((data->mclk_latency_table.entries[i].latency <= latency) && |
| (data->mclk_latency_table.entries[i].frequency >= |
| vega10_ps->performance_levels[0].mem_clock) && |
| (data->mclk_latency_table.entries[i].frequency <= |
| vega10_ps->performance_levels[1].mem_clock)) |
| mclk = data->mclk_latency_table.entries[i].frequency; |
| } |
| vega10_ps->performance_levels[0].mem_clock = mclk; |
| } else { |
| if (vega10_ps->performance_levels[1].mem_clock < |
| vega10_ps->performance_levels[0].mem_clock) |
| vega10_ps->performance_levels[0].mem_clock = |
| vega10_ps->performance_levels[1].mem_clock; |
| } |
| |
| if (PP_CAP(PHM_PlatformCaps_StablePState)) { |
| for (i = 0; i < vega10_ps->performance_level_count; i++) { |
| vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; |
| vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct vega10_power_state *vega10_ps = |
| cast_const_phw_vega10_power_state(states->pnew_state); |
| struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
| uint32_t sclk = vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].gfx_clock; |
| struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
| uint32_t mclk = vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].mem_clock; |
| uint32_t i; |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| if (sclk == sclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= sclk_table->count) { |
| if (sclk > sclk_table->dpm_levels[i-1].value) { |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| sclk_table->dpm_levels[i-1].value = sclk; |
| } |
| } |
| |
| for (i = 0; i < mclk_table->count; i++) { |
| if (mclk == mclk_table->dpm_levels[i].value) |
| break; |
| } |
| |
| if (i >= mclk_table->count) { |
| if (mclk > mclk_table->dpm_levels[i-1].value) { |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| mclk_table->dpm_levels[i-1].value = mclk; |
| } |
| } |
| |
| if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
| data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; |
| |
| return 0; |
| } |
| |
| static int vega10_populate_and_upload_sclk_mclk_dpm_levels( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| int result = 0; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_dpm_table *dpm_table = &data->dpm_table; |
| struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; |
| struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; |
| int count; |
| |
| if (!data->need_update_dpm_table) |
| return 0; |
| |
| if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { |
| for (count = 0; count < dpm_table->gfx_table.count; count++) |
| dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; |
| } |
| |
| odn_clk_table = &odn_table->vdd_dep_on_mclk; |
| if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { |
| for (count = 0; count < dpm_table->mem_table.count; count++) |
| dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; |
| } |
| |
| if (data->need_update_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) { |
| result = vega10_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| if (data->need_update_dpm_table & |
| (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { |
| result = vega10_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", |
| return result); |
| } |
| |
| vega10_populate_vddc_soc_levels(hwmgr); |
| |
| return result; |
| } |
| |
| static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, |
| struct vega10_single_dpm_table *dpm_table, |
| uint32_t low_limit, uint32_t high_limit) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| if ((dpm_table->dpm_levels[i].value < low_limit) || |
| (dpm_table->dpm_levels[i].value > high_limit)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| return 0; |
| } |
| |
| static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, |
| struct vega10_single_dpm_table *dpm_table, |
| uint32_t low_limit, uint32_t high_limit, |
| uint32_t disable_dpm_mask) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| if ((dpm_table->dpm_levels[i].value < low_limit) || |
| (dpm_table->dpm_levels[i].value > high_limit)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else if (!((1 << i) & disable_dpm_mask)) |
| dpm_table->dpm_levels[i].enabled = false; |
| else |
| dpm_table->dpm_levels[i].enabled = true; |
| } |
| return 0; |
| } |
| |
| static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, |
| const struct vega10_power_state *vega10_ps) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t high_limit_count; |
| |
| PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), |
| "power state did not have any performance level", |
| return -1); |
| |
| high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; |
| |
| vega10_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.soc_table), |
| vega10_ps->performance_levels[0].soc_clock, |
| vega10_ps->performance_levels[high_limit_count].soc_clock); |
| |
| vega10_trim_single_dpm_states_with_mask(hwmgr, |
| &(data->dpm_table.gfx_table), |
| vega10_ps->performance_levels[0].gfx_clock, |
| vega10_ps->performance_levels[high_limit_count].gfx_clock, |
| data->disable_dpm_mask); |
| |
| vega10_trim_single_dpm_states(hwmgr, |
| &(data->dpm_table.mem_table), |
| vega10_ps->performance_levels[0].mem_clock, |
| vega10_ps->performance_levels[high_limit_count].mem_clock); |
| |
| return 0; |
| } |
| |
| static uint32_t vega10_find_lowest_dpm_level( |
| struct vega10_single_dpm_table *table) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < table->count; i++) { |
| if (table->dpm_levels[i].enabled) |
| break; |
| } |
| |
| return i; |
| } |
| |
| static uint32_t vega10_find_highest_dpm_level( |
| struct vega10_single_dpm_table *table) |
| { |
| uint32_t i = 0; |
| |
| if (table->count <= MAX_REGULAR_DPM_NUMBER) { |
| for (i = table->count; i > 0; i--) { |
| if (table->dpm_levels[i - 1].enabled) |
| return i - 1; |
| } |
| } else { |
| pr_info("DPM Table Has Too Many Entries!"); |
| return MAX_REGULAR_DPM_NUMBER - 1; |
| } |
| |
| return i; |
| } |
| |
| static void vega10_apply_dal_minimum_voltage_request( |
| struct pp_hwmgr *hwmgr) |
| { |
| return; |
| } |
| |
| static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) |
| { |
| struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| |
| vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; |
| |
| return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; |
| } |
| |
| static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t socclk_idx; |
| |
| vega10_apply_dal_minimum_voltage_request(hwmgr); |
| |
| if (!data->registry_data.sclk_dpm_key_disabled) { |
| if (data->smc_state_table.gfx_boot_level != |
| data->dpm_table.gfx_table.dpm_state.soft_min_level) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMinGfxclkByIndex, |
| data->smc_state_table.gfx_boot_level, |
| NULL); |
| |
| data->dpm_table.gfx_table.dpm_state.soft_min_level = |
| data->smc_state_table.gfx_boot_level; |
| } |
| } |
| |
| if (!data->registry_data.mclk_dpm_key_disabled) { |
| if (data->smc_state_table.mem_boot_level != |
| data->dpm_table.mem_table.dpm_state.soft_min_level) { |
| if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) |
| && hwmgr->not_vf) { |
| socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMinSocclkByIndex, |
| socclk_idx, |
| NULL); |
| } else { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMinUclkByIndex, |
| data->smc_state_table.mem_boot_level, |
| NULL); |
| } |
| data->dpm_table.mem_table.dpm_state.soft_min_level = |
| data->smc_state_table.mem_boot_level; |
| } |
| } |
| |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| if (!data->registry_data.socclk_dpm_key_disabled) { |
| if (data->smc_state_table.soc_boot_level != |
| data->dpm_table.soc_table.dpm_state.soft_min_level) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMinSocclkByIndex, |
| data->smc_state_table.soc_boot_level, |
| NULL); |
| data->dpm_table.soc_table.dpm_state.soft_min_level = |
| data->smc_state_table.soc_boot_level; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| vega10_apply_dal_minimum_voltage_request(hwmgr); |
| |
| if (!data->registry_data.sclk_dpm_key_disabled) { |
| if (data->smc_state_table.gfx_max_level != |
| data->dpm_table.gfx_table.dpm_state.soft_max_level) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMaxGfxclkByIndex, |
| data->smc_state_table.gfx_max_level, |
| NULL); |
| data->dpm_table.gfx_table.dpm_state.soft_max_level = |
| data->smc_state_table.gfx_max_level; |
| } |
| } |
| |
| if (!data->registry_data.mclk_dpm_key_disabled) { |
| if (data->smc_state_table.mem_max_level != |
| data->dpm_table.mem_table.dpm_state.soft_max_level) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMaxUclkByIndex, |
| data->smc_state_table.mem_max_level, |
| NULL); |
| data->dpm_table.mem_table.dpm_state.soft_max_level = |
| data->smc_state_table.mem_max_level; |
| } |
| } |
| |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| if (!data->registry_data.socclk_dpm_key_disabled) { |
| if (data->smc_state_table.soc_max_level != |
| data->dpm_table.soc_table.dpm_state.soft_max_level) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSoftMaxSocclkByIndex, |
| data->smc_state_table.soc_max_level, |
| NULL); |
| data->dpm_table.soc_table.dpm_state.soft_max_level = |
| data->smc_state_table.soc_max_level; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_generate_dpm_level_enable_mask( |
| struct pp_hwmgr *hwmgr, const void *input) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| const struct phm_set_power_state_input *states = |
| (const struct phm_set_power_state_input *)input; |
| const struct vega10_power_state *vega10_ps = |
| cast_const_phw_vega10_power_state(states->pnew_state); |
| int i; |
| |
| PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), |
| "Attempt to Trim DPM States Failed!", |
| return -1); |
| |
| data->smc_state_table.gfx_boot_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.gfx_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.mem_boot_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
| data->smc_state_table.mem_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
| data->smc_state_table.soc_boot_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); |
| data->smc_state_table.soc_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Attempt to upload DPM Bootup Levels Failed!", |
| return -1); |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Attempt to upload DPM Max Levels Failed!", |
| return -1); |
| for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) |
| data->dpm_table.gfx_table.dpm_levels[i].enabled = true; |
| |
| |
| for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) |
| data->dpm_table.mem_table.dpm_levels[i].enabled = true; |
| |
| for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) |
| data->dpm_table.soc_table.dpm_levels[i].enabled = true; |
| |
| return 0; |
| } |
| |
| int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_DPM_VCE].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| enable, |
| data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), |
| "Attempt to Enable/Disable DPM VCE Failed!", |
| return -1); |
| data->smu_features[GNLD_DPM_VCE].enabled = enable; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && |
| (data->low_sclk_interrupt_threshold != 0)) { |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = |
| cpu_to_le32(low_sclk_interrupt_threshold); |
| |
| /* This message will also enable SmcToHost Interrupt */ |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetLowGfxclkInterruptThreshold, |
| (uint32_t)low_sclk_interrupt_threshold, |
| NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, |
| const void *input) |
| { |
| int tmp_result, result = 0; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| |
| tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to find DPM states clocks in DPM table!", |
| result = tmp_result); |
| |
| tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to populate and upload SCLK MCLK DPM levels!", |
| result = tmp_result); |
| |
| tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to generate DPM level enabled mask!", |
| result = tmp_result); |
| |
| tmp_result = vega10_update_sclk_threshold(hwmgr); |
| PP_ASSERT_WITH_CODE(!tmp_result, |
| "Failed to update SCLK threshold!", |
| result = tmp_result); |
| |
| result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload PPtable!", return result); |
| |
| /* |
| * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. |
| * That effectively disables AVFS feature. |
| */ |
| if(hwmgr->hardcode_pp_table != NULL) |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; |
| |
| vega10_update_avfs(hwmgr); |
| |
| /* |
| * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. |
| * That will help to keep AVFS disabled. |
| */ |
| data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; |
| |
| return 0; |
| } |
| |
| static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct vega10_power_state *vega10_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| |
| if (low) |
| return vega10_ps->performance_levels[0].gfx_clock; |
| else |
| return vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].gfx_clock; |
| } |
| |
| static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) |
| { |
| struct pp_power_state *ps; |
| struct vega10_power_state *vega10_ps; |
| |
| if (hwmgr == NULL) |
| return -EINVAL; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| |
| if (low) |
| return vega10_ps->performance_levels[0].mem_clock; |
| else |
| return vega10_ps->performance_levels |
| [vega10_ps->performance_level_count-1].mem_clock; |
| } |
| |
| static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, |
| uint32_t *query) |
| { |
| uint32_t value; |
| |
| if (!query) |
| return -EINVAL; |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value); |
| |
| /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ |
| *query = value << 8; |
| |
| return 0; |
| } |
| |
| static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, |
| void *value, int *size) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| uint32_t sclk_mhz, mclk_idx, activity_percent = 0; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_dpm_table *dpm_table = &data->dpm_table; |
| int ret = 0; |
| uint32_t val_vid; |
| |
| switch (idx) { |
| case AMDGPU_PP_SENSOR_GFX_SCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz); |
| *((uint32_t *)value) = sclk_mhz * 100; |
| break; |
| case AMDGPU_PP_SENSOR_GFX_MCLK: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx); |
| if (mclk_idx < dpm_table->mem_table.count) { |
| *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; |
| *size = 4; |
| } else { |
| ret = -EINVAL; |
| } |
| break; |
| case AMDGPU_PP_SENSOR_GPU_LOAD: |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0, |
| &activity_percent); |
| *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_TEMP: |
| *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value); |
| *((uint32_t *)value) = *((uint32_t *)value) * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_MEM_TEMP: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value); |
| *((uint32_t *)value) = *((uint32_t *)value) * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_UVD_POWER: |
| *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_VCE_POWER: |
| *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; |
| *size = 4; |
| break; |
| case AMDGPU_PP_SENSOR_GPU_POWER: |
| ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); |
| break; |
| case AMDGPU_PP_SENSOR_VDDGFX: |
| val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) & |
| SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >> |
| SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT; |
| *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); |
| return 0; |
| case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: |
| ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); |
| if (!ret) |
| *size = 8; |
| break; |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, |
| bool has_disp) |
| { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetUclkFastSwitch, |
| has_disp ? 1 : 0, |
| NULL); |
| } |
| |
| static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, |
| struct pp_display_clock_request *clock_req) |
| { |
| int result = 0; |
| enum amd_pp_clock_type clk_type = clock_req->clock_type; |
| uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; |
| DSPCLK_e clk_select = 0; |
| uint32_t clk_request = 0; |
| |
| switch (clk_type) { |
| case amd_pp_dcef_clock: |
| clk_select = DSPCLK_DCEFCLK; |
| break; |
| case amd_pp_disp_clock: |
| clk_select = DSPCLK_DISPCLK; |
| break; |
| case amd_pp_pixel_clock: |
| clk_select = DSPCLK_PIXCLK; |
| break; |
| case amd_pp_phy_clock: |
| clk_select = DSPCLK_PHYCLK; |
| break; |
| default: |
| pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); |
| result = -1; |
| break; |
| } |
| |
| if (!result) { |
| clk_request = (clk_freq << 16) | clk_select; |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_RequestDisplayClockByFreq, |
| clk_request, |
| NULL); |
| } |
| |
| return result; |
| } |
| |
| static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, |
| uint32_t frequency) |
| { |
| uint8_t count; |
| uint8_t i; |
| |
| if (mclk_table == NULL || mclk_table->count == 0) |
| return 0; |
| |
| count = (uint8_t)(mclk_table->count); |
| |
| for(i = 0; i < count; i++) { |
| if(mclk_table->entries[i].clk >= frequency) |
| return i; |
| } |
| |
| return i-1; |
| } |
| |
| static int vega10_notify_smc_display_config_after_ps_adjustment( |
| struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *dpm_table = |
| &data->dpm_table.dcef_table; |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; |
| uint32_t idx; |
| struct PP_Clocks min_clocks = {0}; |
| uint32_t i; |
| struct pp_display_clock_request clock_req; |
| |
| if ((hwmgr->display_config->num_display > 1) && |
| !hwmgr->display_config->multi_monitor_in_sync && |
| !hwmgr->display_config->nb_pstate_switch_disable) |
| vega10_notify_smc_display_change(hwmgr, false); |
| else |
| vega10_notify_smc_display_change(hwmgr, true); |
| |
| min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; |
| min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; |
| min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; |
| |
| for (i = 0; i < dpm_table->count; i++) { |
| if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) |
| break; |
| } |
| |
| if (i < dpm_table->count) { |
| clock_req.clock_type = amd_pp_dcef_clock; |
| clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; |
| if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { |
| smum_send_msg_to_smc_with_parameter( |
| hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, |
| min_clocks.dcefClockInSR / 100, |
| NULL); |
| } else { |
| pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); |
| } |
| } else { |
| pr_debug("Cannot find requested DCEFCLK!"); |
| } |
| |
| if (min_clocks.memoryClock != 0) { |
| idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx, |
| NULL); |
| data->dpm_table.mem_table.dpm_state.soft_min_level= idx; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->smc_state_table.gfx_boot_level = |
| data->smc_state_table.gfx_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.mem_boot_level = |
| data->smc_state_table.mem_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload boot level to highest!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload dpm max level to highest!", |
| return -1); |
| |
| return 0; |
| } |
| |
| static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->smc_state_table.gfx_boot_level = |
| data->smc_state_table.gfx_max_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.mem_boot_level = |
| data->smc_state_table.mem_max_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload boot level to highest!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload dpm max level to highest!", |
| return -1); |
| |
| return 0; |
| |
| } |
| |
| static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->smc_state_table.gfx_boot_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.gfx_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); |
| data->smc_state_table.mem_boot_level = |
| vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); |
| data->smc_state_table.mem_max_level = |
| vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload DPM Bootup Levels!", |
| return -1); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload DPM Max Levels!", |
| return -1); |
| return 0; |
| } |
| |
| static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, |
| uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)(hwmgr->pptable); |
| |
| if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && |
| table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && |
| table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { |
| *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; |
| *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; |
| *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; |
| hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk; |
| hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk; |
| } |
| |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { |
| *sclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { |
| *mclk_mask = 0; |
| } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { |
| /* under vega10 pp one vf mode, the gfx clk dpm need be lower |
| * to level-4 due to the limited power |
| */ |
| if (hwmgr->pp_one_vf) |
| *sclk_mask = 4; |
| else |
| *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; |
| *soc_mask = table_info->vdd_dep_on_socclk->count - 1; |
| *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; |
| } |
| |
| return 0; |
| } |
| |
| static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) |
| { |
| if (!hwmgr->not_vf) |
| return; |
| |
| switch (mode) { |
| case AMD_FAN_CTRL_NONE: |
| vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); |
| break; |
| case AMD_FAN_CTRL_MANUAL: |
| if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) |
| vega10_fan_ctrl_stop_smc_fan_control(hwmgr); |
| break; |
| case AMD_FAN_CTRL_AUTO: |
| if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) |
| vega10_fan_ctrl_start_smc_fan_control(hwmgr); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, uint32_t mask) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| switch (type) { |
| case PP_SCLK: |
| data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; |
| data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload boot level to lowest!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload dpm max level to highest!", |
| return -EINVAL); |
| break; |
| |
| case PP_MCLK: |
| data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; |
| data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload boot level to lowest!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload dpm max level to highest!", |
| return -EINVAL); |
| |
| break; |
| |
| case PP_SOCCLK: |
| data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; |
| data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), |
| "Failed to upload boot level to lowest!", |
| return -EINVAL); |
| |
| PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), |
| "Failed to upload dpm max level to highest!", |
| return -EINVAL); |
| |
| break; |
| |
| case PP_DCEFCLK: |
| pr_info("Setting DCEFCLK min/max dpm level is not supported!\n"); |
| break; |
| |
| case PP_PCIE: |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, |
| enum amd_dpm_forced_level level) |
| { |
| int ret = 0; |
| uint32_t sclk_mask = 0; |
| uint32_t mclk_mask = 0; |
| uint32_t soc_mask = 0; |
| |
| if (hwmgr->pstate_sclk == 0) |
| vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); |
| |
| switch (level) { |
| case AMD_DPM_FORCED_LEVEL_HIGH: |
| ret = vega10_force_dpm_highest(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_LOW: |
| ret = vega10_force_dpm_lowest(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_AUTO: |
| ret = vega10_unforce_dpm_levels(hwmgr); |
| break; |
| case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: |
| ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); |
| if (ret) |
| return ret; |
| vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); |
| vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); |
| break; |
| case AMD_DPM_FORCED_LEVEL_MANUAL: |
| case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: |
| default: |
| break; |
| } |
| |
| if (!hwmgr->not_vf) |
| return ret; |
| |
| if (!ret) { |
| if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); |
| else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) |
| vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); |
| } |
| |
| return ret; |
| } |
| |
| static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) |
| return AMD_FAN_CTRL_MANUAL; |
| else |
| return AMD_FAN_CTRL_AUTO; |
| } |
| |
| static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, |
| struct amd_pp_simple_clock_info *info) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_clock_and_voltage_limits *max_limits = |
| &table_info->max_clock_voltage_on_ac; |
| |
| info->engine_max_clock = max_limits->sclk; |
| info->memory_max_clock = max_limits->mclk; |
| |
| return 0; |
| } |
| |
| static void vega10_get_sclks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_sclk; |
| uint32_t i; |
| |
| clocks->num_levels = 0; |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].clk) { |
| clocks->data[clocks->num_levels].clocks_in_khz = |
| dep_table->entries[i].clk * 10; |
| clocks->num_levels++; |
| } |
| } |
| |
| } |
| |
| static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_mclk; |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t j = 0; |
| uint32_t i; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].clk) { |
| |
| clocks->data[j].clocks_in_khz = |
| dep_table->entries[i].clk * 10; |
| data->mclk_latency_table.entries[j].frequency = |
| dep_table->entries[i].clk; |
| clocks->data[j].latency_in_us = |
| data->mclk_latency_table.entries[j].latency = 25; |
| j++; |
| } |
| } |
| clocks->num_levels = data->mclk_latency_table.count = j; |
| } |
| |
| static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_dcefclk; |
| uint32_t i; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
| clocks->data[i].latency_in_us = 0; |
| clocks->num_levels++; |
| } |
| } |
| |
| static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = |
| table_info->vdd_dep_on_socclk; |
| uint32_t i; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
| clocks->data[i].latency_in_us = 0; |
| clocks->num_levels++; |
| } |
| } |
| |
| static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, |
| enum amd_pp_clock_type type, |
| struct pp_clock_levels_with_latency *clocks) |
| { |
| switch (type) { |
| case amd_pp_sys_clock: |
| vega10_get_sclks(hwmgr, clocks); |
| break; |
| case amd_pp_mem_clock: |
| vega10_get_memclocks(hwmgr, clocks); |
| break; |
| case amd_pp_dcef_clock: |
| vega10_get_dcefclocks(hwmgr, clocks); |
| break; |
| case amd_pp_soc_clock: |
| vega10_get_socclocks(hwmgr, clocks); |
| break; |
| default: |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, |
| enum amd_pp_clock_type type, |
| struct pp_clock_levels_with_voltage *clocks) |
| { |
| struct phm_ppt_v2_information *table_info = |
| (struct phm_ppt_v2_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; |
| uint32_t i; |
| |
| switch (type) { |
| case amd_pp_mem_clock: |
| dep_table = table_info->vdd_dep_on_mclk; |
| break; |
| case amd_pp_dcef_clock: |
| dep_table = table_info->vdd_dep_on_dcefclk; |
| break; |
| case amd_pp_disp_clock: |
| dep_table = table_info->vdd_dep_on_dispclk; |
| break; |
| case amd_pp_pixel_clock: |
| dep_table = table_info->vdd_dep_on_pixclk; |
| break; |
| case amd_pp_phy_clock: |
| dep_table = table_info->vdd_dep_on_phyclk; |
| break; |
| default: |
| return -1; |
| } |
| |
| for (i = 0; i < dep_table->count; i++) { |
| clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; |
| clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> |
| entries[dep_table->entries[i].vddInd].us_vdd); |
| clocks->num_levels++; |
| } |
| |
| if (i < dep_table->count) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, |
| void *clock_range) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; |
| Watermarks_t *table = &(data->smc_state_table.water_marks_table); |
| |
| if (!data->registry_data.disable_water_mark) { |
| smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); |
| data->water_marks_bitmap = WaterMarksExist; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) |
| { |
| static const char *ppfeature_name[] = { |
| "DPM_PREFETCHER", |
| "GFXCLK_DPM", |
| "UCLK_DPM", |
| "SOCCLK_DPM", |
| "UVD_DPM", |
| "VCE_DPM", |
| "ULV", |
| "MP0CLK_DPM", |
| "LINK_DPM", |
| "DCEFCLK_DPM", |
| "AVFS", |
| "GFXCLK_DS", |
| "SOCCLK_DS", |
| "LCLK_DS", |
| "PPT", |
| "TDC", |
| "THERMAL", |
| "GFX_PER_CU_CG", |
| "RM", |
| "DCEFCLK_DS", |
| "ACDC", |
| "VR0HOT", |
| "VR1HOT", |
| "FW_CTF", |
| "LED_DISPLAY", |
| "FAN_CONTROL", |
| "FAST_PPT", |
| "DIDT", |
| "ACG", |
| "PCC_LIMIT"}; |
| static const char *output_title[] = { |
| "FEATURES", |
| "BITMASK", |
| "ENABLEMENT"}; |
| uint64_t features_enabled; |
| int i; |
| int ret = 0; |
| int size = 0; |
| |
| ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); |
| PP_ASSERT_WITH_CODE(!ret, |
| "[EnableAllSmuFeatures] Failed to get enabled smc features!", |
| return ret); |
| |
| size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled); |
| size += sprintf(buf + size, "%-19s %-22s %s\n", |
| output_title[0], |
| output_title[1], |
| output_title[2]); |
| for (i = 0; i < GNLD_FEATURES_MAX; i++) { |
| size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", |
| ppfeature_name[i], |
| 1ULL << i, |
| (features_enabled & (1ULL << i)) ? "Y" : "N"); |
| } |
| |
| return size; |
| } |
| |
| static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) |
| { |
| uint64_t features_enabled; |
| uint64_t features_to_enable; |
| uint64_t features_to_disable; |
| int ret = 0; |
| |
| if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) |
| return -EINVAL; |
| |
| ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); |
| if (ret) |
| return ret; |
| |
| features_to_disable = |
| features_enabled & ~new_ppfeature_masks; |
| features_to_enable = |
| ~features_enabled & new_ppfeature_masks; |
| |
| pr_debug("features_to_disable 0x%llx\n", features_to_disable); |
| pr_debug("features_to_enable 0x%llx\n", features_to_enable); |
| |
| if (features_to_disable) { |
| ret = vega10_enable_smc_features(hwmgr, false, features_to_disable); |
| if (ret) |
| return ret; |
| } |
| |
| if (features_to_enable) { |
| ret = vega10_enable_smc_features(hwmgr, true, features_to_enable); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, |
| enum pp_clock_type type, char *buf) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
| struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
| struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); |
| struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); |
| struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); |
| struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; |
| |
| int i, now, size = 0, count = 0; |
| |
| switch (type) { |
| case PP_SCLK: |
| if (data->registry_data.sclk_dpm_key_disabled) |
| break; |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now); |
| |
| if (hwmgr->pp_one_vf && |
| (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) |
| count = 5; |
| else |
| count = sclk_table->count; |
| for (i = 0; i < count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, sclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_MCLK: |
| if (data->registry_data.mclk_dpm_key_disabled) |
| break; |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now); |
| |
| for (i = 0; i < mclk_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, mclk_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_SOCCLK: |
| if (data->registry_data.socclk_dpm_key_disabled) |
| break; |
| |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now); |
| |
| for (i = 0; i < soc_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, soc_table->dpm_levels[i].value / 100, |
| (i == now) ? "*" : ""); |
| break; |
| case PP_DCEFCLK: |
| if (data->registry_data.dcefclk_dpm_key_disabled) |
| break; |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now); |
| |
| for (i = 0; i < dcef_table->count; i++) |
| size += sprintf(buf + size, "%d: %uMhz %s\n", |
| i, dcef_table->dpm_levels[i].value / 100, |
| (dcef_table->dpm_levels[i].value / 100 == now) ? |
| "*" : ""); |
| break; |
| case PP_PCIE: |
| smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now); |
| |
| for (i = 0; i < pcie_table->count; i++) |
| size += sprintf(buf + size, "%d: %s %s\n", i, |
| (pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" : |
| (pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" : |
| (pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "", |
| (i == now) ? "*" : ""); |
| break; |
| case OD_SCLK: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_SCLK"); |
| podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; |
| for (i = 0; i < podn_vdd_dep->count; i++) |
| size += sprintf(buf + size, "%d: %10uMhz %10umV\n", |
| i, podn_vdd_dep->entries[i].clk / 100, |
| podn_vdd_dep->entries[i].vddc); |
| } |
| break; |
| case OD_MCLK: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_MCLK"); |
| podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; |
| for (i = 0; i < podn_vdd_dep->count; i++) |
| size += sprintf(buf + size, "%d: %10uMhz %10umV\n", |
| i, podn_vdd_dep->entries[i].clk/100, |
| podn_vdd_dep->entries[i].vddc); |
| } |
| break; |
| case OD_RANGE: |
| if (hwmgr->od_enabled) { |
| size = sprintf(buf, "%s:\n", "OD_RANGE"); |
| size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", |
| data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.engineClock/100); |
| size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", |
| data->golden_dpm_table.mem_table.dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); |
| size += sprintf(buf + size, "VDDC: %7umV %11umV\n", |
| data->odn_dpm_table.min_vddc, |
| data->odn_dpm_table.max_vddc); |
| } |
| break; |
| default: |
| break; |
| } |
| return size; |
| } |
| |
| static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); |
| int result = 0; |
| |
| if ((data->water_marks_bitmap & WaterMarksExist) && |
| !(data->water_marks_bitmap & WaterMarksLoaded)) { |
| result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false); |
| PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); |
| data->water_marks_bitmap |= WaterMarksLoaded; |
| } |
| |
| if (data->water_marks_bitmap & WaterMarksLoaded) { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, |
| NULL); |
| } |
| |
| return result; |
| } |
| |
| static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| if (data->smu_features[GNLD_DPM_UVD].supported) { |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| enable, |
| data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), |
| "Attempt to Enable/Disable DPM UVD Failed!", |
| return -1); |
| data->smu_features[GNLD_DPM_UVD].enabled = enable; |
| } |
| return 0; |
| } |
| |
| static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->vce_power_gated = bgate; |
| vega10_enable_disable_vce_dpm(hwmgr, !bgate); |
| } |
| |
| static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| |
| data->uvd_power_gated = bgate; |
| vega10_enable_disable_uvd_dpm(hwmgr, !bgate); |
| } |
| |
| static inline bool vega10_are_power_levels_equal( |
| const struct vega10_performance_level *pl1, |
| const struct vega10_performance_level *pl2) |
| { |
| return ((pl1->soc_clock == pl2->soc_clock) && |
| (pl1->gfx_clock == pl2->gfx_clock) && |
| (pl1->mem_clock == pl2->mem_clock)); |
| } |
| |
| static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, |
| const struct pp_hw_power_state *pstate1, |
| const struct pp_hw_power_state *pstate2, bool *equal) |
| { |
| const struct vega10_power_state *psa; |
| const struct vega10_power_state *psb; |
| int i; |
| |
| if (pstate1 == NULL || pstate2 == NULL || equal == NULL) |
| return -EINVAL; |
| |
| psa = cast_const_phw_vega10_power_state(pstate1); |
| psb = cast_const_phw_vega10_power_state(pstate2); |
| /* If the two states don't even have the same number of performance levels they cannot be the same state. */ |
| if (psa->performance_level_count != psb->performance_level_count) { |
| *equal = false; |
| return 0; |
| } |
| |
| for (i = 0; i < psa->performance_level_count; i++) { |
| if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { |
| /* If we have found even one performance level pair that is different the states are different. */ |
| *equal = false; |
| return 0; |
| } |
| } |
| |
| /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ |
| *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); |
| *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); |
| *equal &= (psa->sclk_threshold == psb->sclk_threshold); |
| |
| return 0; |
| } |
| |
| static bool |
| vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| bool is_update_required = false; |
| |
| if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) |
| is_update_required = true; |
| |
| if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { |
| if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) |
| is_update_required = true; |
| } |
| |
| return is_update_required; |
| } |
| |
| static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) |
| { |
| int tmp_result, result = 0; |
| |
| if (!hwmgr->not_vf) |
| return 0; |
| |
| if (PP_CAP(PHM_PlatformCaps_ThermalController)) |
| vega10_disable_thermal_protection(hwmgr); |
| |
| tmp_result = vega10_disable_power_containment(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable power containment!", result = tmp_result); |
| |
| tmp_result = vega10_disable_didt_config(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable didt config!", result = tmp_result); |
| |
| tmp_result = vega10_avfs_enable(hwmgr, false); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable AVFS!", result = tmp_result); |
| |
| tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to stop DPM!", result = tmp_result); |
| |
| tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable deep sleep!", result = tmp_result); |
| |
| tmp_result = vega10_disable_ulv(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable ulv!", result = tmp_result); |
| |
| tmp_result = vega10_acg_disable(hwmgr); |
| PP_ASSERT_WITH_CODE((tmp_result == 0), |
| "Failed to disable acg!", result = tmp_result); |
| |
| vega10_enable_disable_PCC_limit_feature(hwmgr, false); |
| return result; |
| } |
| |
| static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| int result; |
| |
| result = vega10_disable_dpm_tasks(hwmgr); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "[disable_dpm_tasks] Failed to disable DPM!", |
| ); |
| data->water_marks_bitmap &= ~(WaterMarksLoaded); |
| |
| return result; |
| } |
| |
| static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); |
| struct vega10_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.gfx_table); |
| int value = sclk_table->dpm_levels[sclk_table->count - 1].value; |
| int golden_value = golden_sclk_table->dpm_levels |
| [golden_sclk_table->count - 1].value; |
| |
| value -= golden_value; |
| value = DIV_ROUND_UP(value * 100, golden_value); |
| |
| return value; |
| } |
| |
| static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *golden_sclk_table = |
| &(data->golden_dpm_table.gfx_table); |
| struct pp_power_state *ps; |
| struct vega10_power_state *vega10_ps; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| |
| vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].gfx_clock = |
| golden_sclk_table->dpm_levels |
| [golden_sclk_table->count - 1].value * |
| value / 100 + |
| golden_sclk_table->dpm_levels |
| [golden_sclk_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].gfx_clock > |
| hwmgr->platform_descriptor.overdriveLimit.engineClock) { |
| vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].gfx_clock = |
| hwmgr->platform_descriptor.overdriveLimit.engineClock; |
| pr_warn("max sclk supported by vbios is %d\n", |
| hwmgr->platform_descriptor.overdriveLimit.engineClock); |
| } |
| return 0; |
| } |
| |
| static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); |
| struct vega10_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mem_table); |
| int value = mclk_table->dpm_levels[mclk_table->count - 1].value; |
| int golden_value = golden_mclk_table->dpm_levels |
| [golden_mclk_table->count - 1].value; |
| |
| value -= golden_value; |
| value = DIV_ROUND_UP(value * 100, golden_value); |
| |
| return value; |
| } |
| |
| static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_single_dpm_table *golden_mclk_table = |
| &(data->golden_dpm_table.mem_table); |
| struct pp_power_state *ps; |
| struct vega10_power_state *vega10_ps; |
| |
| ps = hwmgr->request_ps; |
| |
| if (ps == NULL) |
| return -EINVAL; |
| |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| |
| vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].mem_clock = |
| golden_mclk_table->dpm_levels |
| [golden_mclk_table->count - 1].value * |
| value / 100 + |
| golden_mclk_table->dpm_levels |
| [golden_mclk_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].mem_clock > |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock) { |
| vega10_ps->performance_levels |
| [vega10_ps->performance_level_count - 1].mem_clock = |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock; |
| pr_warn("max mclk supported by vbios is %d\n", |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock); |
| } |
| |
| return 0; |
| } |
| |
| static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, |
| uint32_t virtual_addr_low, |
| uint32_t virtual_addr_hi, |
| uint32_t mc_addr_low, |
| uint32_t mc_addr_hi, |
| uint32_t size) |
| { |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSystemVirtualDramAddrHigh, |
| virtual_addr_hi, |
| NULL); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetSystemVirtualDramAddrLow, |
| virtual_addr_low, |
| NULL); |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramAddrHigh, |
| mc_addr_hi, |
| NULL); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramAddrLow, |
| mc_addr_low, |
| NULL); |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_DramLogSetDramSize, |
| size, |
| NULL); |
| return 0; |
| } |
| |
| static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, |
| struct PP_TemperatureRange *thermal_data) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| PPTable_t *pp_table = &(data->smc_state_table.pp_table); |
| |
| memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); |
| |
| thermal_data->max = pp_table->TedgeLimit * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| thermal_data->mem_crit_max = pp_table->ThbmLimit * |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* |
| PP_TEMPERATURE_UNITS_PER_CENTIGRADES; |
| |
| return 0; |
| } |
| |
| static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t i, size = 0; |
| static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, |
| {70, 60, 1, 3,}, |
| {90, 60, 0, 0,}, |
| {70, 60, 0, 0,}, |
| {70, 90, 0, 0,}, |
| {30, 60, 0, 6,}, |
| }; |
| static const char *profile_name[7] = {"BOOTUP_DEFAULT", |
| "3D_FULL_SCREEN", |
| "POWER_SAVING", |
| "VIDEO", |
| "VR", |
| "COMPUTE", |
| "CUSTOM"}; |
| static const char *title[6] = {"NUM", |
| "MODE_NAME", |
| "BUSY_SET_POINT", |
| "FPS", |
| "USE_RLC_BUSY", |
| "MIN_ACTIVE_LEVEL"}; |
| |
| if (!buf) |
| return -EINVAL; |
| |
| size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0], |
| title[1], title[2], title[3], title[4], title[5]); |
| |
| for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) |
| size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", |
| i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", |
| profile_mode_setting[i][0], profile_mode_setting[i][1], |
| profile_mode_setting[i][2], profile_mode_setting[i][3]); |
| size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i, |
| profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", |
| data->custom_profile_mode[0], data->custom_profile_mode[1], |
| data->custom_profile_mode[2], data->custom_profile_mode[3]); |
| return size; |
| } |
| |
| static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint8_t busy_set_point; |
| uint8_t FPS; |
| uint8_t use_rlc_busy; |
| uint8_t min_active_level; |
| uint32_t power_profile_mode = input[size]; |
| |
| if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { |
| if (size != 0 && size != 4) |
| return -EINVAL; |
| |
| /* If size = 0 and the CUSTOM profile has been set already |
| * then just apply the profile. The copy stored in the hwmgr |
| * is zeroed out on init |
| */ |
| if (size == 0) { |
| if (data->custom_profile_mode[0] != 0) |
| goto out; |
| else |
| return -EINVAL; |
| } |
| |
| data->custom_profile_mode[0] = busy_set_point = input[0]; |
| data->custom_profile_mode[1] = FPS = input[1]; |
| data->custom_profile_mode[2] = use_rlc_busy = input[2]; |
| data->custom_profile_mode[3] = min_active_level = input[3]; |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_SetCustomGfxDpmParameters, |
| busy_set_point | FPS<<8 | |
| use_rlc_busy << 16 | min_active_level<<24, |
| NULL); |
| } |
| |
| out: |
| smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, |
| 1 << power_profile_mode, |
| NULL); |
| hwmgr->power_profile_mode = power_profile_mode; |
| |
| return 0; |
| } |
| |
| |
| static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| uint32_t clk, |
| uint32_t voltage) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); |
| struct vega10_single_dpm_table *golden_table; |
| |
| if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { |
| pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc); |
| return false; |
| } |
| |
| if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { |
| golden_table = &(data->golden_dpm_table.gfx_table); |
| if (golden_table->dpm_levels[0].value > clk || |
| hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { |
| pr_info("OD engine clock is out of range [%d - %d] MHz\n", |
| golden_table->dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.engineClock/100); |
| return false; |
| } |
| } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { |
| golden_table = &(data->golden_dpm_table.mem_table); |
| if (golden_table->dpm_levels[0].value > clk || |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { |
| pr_info("OD memory clock is out of range [%d - %d] MHz\n", |
| golden_table->dpm_levels[0].value/100, |
| hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct pp_power_state *ps = hwmgr->request_ps; |
| struct vega10_power_state *vega10_ps; |
| struct vega10_single_dpm_table *gfx_dpm_table = |
| &data->dpm_table.gfx_table; |
| struct vega10_single_dpm_table *soc_dpm_table = |
| &data->dpm_table.soc_table; |
| struct vega10_single_dpm_table *mem_dpm_table = |
| &data->dpm_table.mem_table; |
| int max_level; |
| |
| if (!ps) |
| return; |
| |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| max_level = vega10_ps->performance_level_count - 1; |
| |
| if (vega10_ps->performance_levels[max_level].gfx_clock != |
| gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].gfx_clock = |
| gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels[max_level].soc_clock != |
| soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].soc_clock = |
| soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels[max_level].mem_clock != |
| mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].mem_clock = |
| mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; |
| |
| if (!hwmgr->ps) |
| return; |
| |
| ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); |
| vega10_ps = cast_phw_vega10_power_state(&ps->hardware); |
| max_level = vega10_ps->performance_level_count - 1; |
| |
| if (vega10_ps->performance_levels[max_level].gfx_clock != |
| gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].gfx_clock = |
| gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels[max_level].soc_clock != |
| soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].soc_clock = |
| soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; |
| |
| if (vega10_ps->performance_levels[max_level].mem_clock != |
| mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) |
| vega10_ps->performance_levels[max_level].mem_clock = |
| mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; |
| } |
| |
| static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct phm_ppt_v2_information *table_info = hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; |
| struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; |
| |
| struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = |
| &data->odn_dpm_table.vdd_dep_on_socclk; |
| struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; |
| |
| struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; |
| uint8_t i, j; |
| |
| if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { |
| podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; |
| for (i = 0; i < podn_vdd_dep->count; i++) |
| od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; |
| } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { |
| podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; |
| for (i = 0; i < dpm_table->count; i++) { |
| for (j = 0; j < od_vddc_lookup_table->count; j++) { |
| if (od_vddc_lookup_table->entries[j].us_vdd > |
| podn_vdd_dep->entries[i].vddc) |
| break; |
| } |
| if (j == od_vddc_lookup_table->count) { |
| j = od_vddc_lookup_table->count - 1; |
| od_vddc_lookup_table->entries[j].us_vdd = |
| podn_vdd_dep->entries[i].vddc; |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; |
| } |
| podn_vdd_dep->entries[i].vddInd = j; |
| } |
| dpm_table = &data->dpm_table.soc_table; |
| for (i = 0; i < dep_table->count; i++) { |
| if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && |
| dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { |
| data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; |
| for (; (i < dep_table->count) && |
| (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { |
| podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; |
| dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; |
| } |
| break; |
| } else { |
| dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; |
| podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; |
| podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; |
| podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; |
| } |
| } |
| if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < |
| podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { |
| data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; |
| podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = |
| podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; |
| dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = |
| podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; |
| } |
| if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < |
| podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { |
| data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; |
| podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = |
| podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; |
| } |
| } |
| vega10_odn_update_power_state(hwmgr); |
| } |
| |
| static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, |
| enum PP_OD_DPM_TABLE_COMMAND type, |
| long *input, uint32_t size) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; |
| struct vega10_single_dpm_table *dpm_table; |
| |
| uint32_t input_clk; |
| uint32_t input_vol; |
| uint32_t input_level; |
| uint32_t i; |
| |
| PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", |
| return -EINVAL); |
| |
| if (!hwmgr->od_enabled) { |
| pr_info("OverDrive feature not enabled\n"); |
| return -EINVAL; |
| } |
| |
| if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { |
| dpm_table = &data->dpm_table.gfx_table; |
| podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; |
| } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { |
| dpm_table = &data->dpm_table.mem_table; |
| podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; |
| data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; |
| } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { |
| memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table)); |
| vega10_odn_initial_default_setting(hwmgr); |
| vega10_odn_update_power_state(hwmgr); |
| /* force to update all clock tables */ |
| data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK | |
| DPMTABLE_UPDATE_MCLK | |
| DPMTABLE_UPDATE_SOCCLK; |
| return 0; |
| } else if (PP_OD_COMMIT_DPM_TABLE == type) { |
| vega10_check_dpm_table_updated(hwmgr); |
| return 0; |
| } else { |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < size; i += 3) { |
| if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { |
| pr_info("invalid clock voltage input\n"); |
| return 0; |
| } |
| input_level = input[i]; |
| input_clk = input[i+1] * 100; |
| input_vol = input[i+2]; |
| |
| if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { |
| dpm_table->dpm_levels[input_level].value = input_clk; |
| podn_vdd_dep_table->entries[input_level].clk = input_clk; |
| podn_vdd_dep_table->entries[input_level].vddc = input_vol; |
| } else { |
| return -EINVAL; |
| } |
| } |
| vega10_odn_update_soc_table(hwmgr, type); |
| return 0; |
| } |
| |
| static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, |
| enum pp_mp1_state mp1_state) |
| { |
| uint16_t msg; |
| int ret; |
| |
| switch (mp1_state) { |
| case PP_MP1_STATE_UNLOAD: |
| msg = PPSMC_MSG_PrepareMp1ForUnload; |
| break; |
| case PP_MP1_STATE_SHUTDOWN: |
| case PP_MP1_STATE_RESET: |
| case PP_MP1_STATE_NONE: |
| default: |
| return 0; |
| } |
| |
| PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, |
| "[PrepareMp1] Failed!", |
| return ret); |
| |
| return 0; |
| } |
| |
| static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, |
| PHM_PerformanceLevelDesignation designation, uint32_t index, |
| PHM_PerformanceLevel *level) |
| { |
| const struct vega10_power_state *ps; |
| uint32_t i; |
| |
| if (level == NULL || hwmgr == NULL || state == NULL) |
| return -EINVAL; |
| |
| ps = cast_const_phw_vega10_power_state(state); |
| |
| i = index > ps->performance_level_count - 1 ? |
| ps->performance_level_count - 1 : index; |
| |
| level->coreClock = ps->performance_levels[i].gfx_clock; |
| level->memory_clock = ps->performance_levels[i].mem_clock; |
| |
| return 0; |
| } |
| |
| static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable) |
| { |
| struct vega10_hwmgr *data = hwmgr->backend; |
| uint32_t feature_mask = 0; |
| |
| if (disable) { |
| feature_mask |= data->smu_features[GNLD_ULV].enabled ? |
| data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; |
| feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? |
| data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; |
| feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? |
| data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; |
| feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? |
| data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; |
| feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? |
| data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; |
| } else { |
| feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? |
| data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; |
| feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? |
| data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; |
| feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? |
| data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; |
| feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? |
| data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; |
| feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? |
| data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; |
| } |
| |
| if (feature_mask) |
| PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, |
| !disable, feature_mask), |
| "enable/disable power features for compute performance Failed!", |
| return -EINVAL); |
| |
| if (disable) { |
| data->smu_features[GNLD_ULV].enabled = false; |
| data->smu_features[GNLD_DS_GFXCLK].enabled = false; |
| data->smu_features[GNLD_DS_SOCCLK].enabled = false; |
| data->smu_features[GNLD_DS_LCLK].enabled = false; |
| data->smu_features[GNLD_DS_DCEFCLK].enabled = false; |
| } else { |
| data->smu_features[GNLD_ULV].enabled = true; |
| data->smu_features[GNLD_DS_GFXCLK].enabled = true; |
| data->smu_features[GNLD_DS_SOCCLK].enabled = true; |
| data->smu_features[GNLD_DS_LCLK].enabled = true; |
| data->smu_features[GNLD_DS_DCEFCLK].enabled = true; |
| } |
| |
| return 0; |
| |
| } |
| |
| static const struct pp_hwmgr_func vega10_hwmgr_funcs = { |
| .backend_init = vega10_hwmgr_backend_init, |
| .backend_fini = vega10_hwmgr_backend_fini, |
| .asic_setup = vega10_setup_asic_task, |
| .dynamic_state_management_enable = vega10_enable_dpm_tasks, |
| .dynamic_state_management_disable = vega10_disable_dpm_tasks, |
| .get_num_of_pp_table_entries = |
| vega10_get_number_of_powerplay_table_entries, |
| .get_power_state_size = vega10_get_power_state_size, |
| .get_pp_table_entry = vega10_get_pp_table_entry, |
| .patch_boot_state = vega10_patch_boot_state, |
| .apply_state_adjust_rules = vega10_apply_state_adjust_rules, |
| .power_state_set = vega10_set_power_state_tasks, |
| .get_sclk = vega10_dpm_get_sclk, |
| .get_mclk = vega10_dpm_get_mclk, |
| .notify_smc_display_config_after_ps_adjustment = |
| vega10_notify_smc_display_config_after_ps_adjustment, |
| .force_dpm_level = vega10_dpm_force_dpm_level, |
| .stop_thermal_controller = vega10_thermal_stop_thermal_controller, |
| .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, |
| .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, |
| .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, |
| .reset_fan_speed_to_default = |
| vega10_fan_ctrl_reset_fan_speed_to_default, |
| .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, |
| .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, |
| .uninitialize_thermal_controller = |
| vega10_thermal_ctrl_uninitialize_thermal_controller, |
| .set_fan_control_mode = vega10_set_fan_control_mode, |
| .get_fan_control_mode = vega10_get_fan_control_mode, |
| .read_sensor = vega10_read_sensor, |
| .get_dal_power_level = vega10_get_dal_power_level, |
| .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, |
| .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, |
| .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, |
| .display_clock_voltage_request = vega10_display_clock_voltage_request, |
| .force_clock_level = vega10_force_clock_level, |
| .print_clock_levels = vega10_print_clock_levels, |
| .display_config_changed = vega10_display_configuration_changed_task, |
| .powergate_uvd = vega10_power_gate_uvd, |
| .powergate_vce = vega10_power_gate_vce, |
| .check_states_equal = vega10_check_states_equal, |
| .check_smc_update_required_for_display_configuration = |
| vega10_check_smc_update_required_for_display_configuration, |
| .power_off_asic = vega10_power_off_asic, |
| .disable_smc_firmware_ctf = vega10_thermal_disable_alert, |
| .get_sclk_od = vega10_get_sclk_od, |
| .set_sclk_od = vega10_set_sclk_od, |
| .get_mclk_od = vega10_get_mclk_od, |
| .set_mclk_od = vega10_set_mclk_od, |
| .avfs_control = vega10_avfs_enable, |
| .notify_cac_buffer_info = vega10_notify_cac_buffer_info, |
| .get_thermal_temperature_range = vega10_get_thermal_temperature_range, |
| .register_irq_handlers = smu9_register_irq_handlers, |
| .start_thermal_controller = vega10_start_thermal_controller, |
| .get_power_profile_mode = vega10_get_power_profile_mode, |
| .set_power_profile_mode = vega10_set_power_profile_mode, |
| .set_power_limit = vega10_set_power_limit, |
| .odn_edit_dpm_table = vega10_odn_edit_dpm_table, |
| .get_performance_level = vega10_get_performance_level, |
| .get_asic_baco_capability = smu9_baco_get_capability, |
| .get_asic_baco_state = smu9_baco_get_state, |
| .set_asic_baco_state = vega10_baco_set_state, |
| .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, |
| .get_ppfeature_status = vega10_get_ppfeature_status, |
| .set_ppfeature_status = vega10_set_ppfeature_status, |
| .set_mp1_state = vega10_set_mp1_state, |
| .disable_power_features_for_compute_performance = |
| vega10_disable_power_features_for_compute_performance, |
| }; |
| |
| int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| hwmgr->hwmgr_func = &vega10_hwmgr_funcs; |
| hwmgr->pptable_func = &vega10_pptable_funcs; |
| if (amdgpu_passthrough(adev)) |
| return vega10_baco_set_cap(hwmgr); |
| |
| return 0; |
| } |