| /* |
| * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| * Authors: |
| * Zhi Wang <zhi.a.wang@intel.com> |
| * |
| * Contributors: |
| * Ping Gao <ping.a.gao@intel.com> |
| * Tina Zhang <tina.zhang@intel.com> |
| * Chanbin Du <changbin.du@intel.com> |
| * Min He <min.he@intel.com> |
| * Bing Niu <bing.niu@intel.com> |
| * Zhenyu Wang <zhenyuw@linux.intel.com> |
| * |
| */ |
| |
| #include <linux/kthread.h> |
| |
| #include "gem/i915_gem_pm.h" |
| #include "gt/intel_context.h" |
| #include "gt/intel_ring.h" |
| |
| #include "i915_drv.h" |
| #include "i915_gem_gtt.h" |
| #include "gvt.h" |
| |
| #define RING_CTX_OFF(x) \ |
| offsetof(struct execlist_ring_context, x) |
| |
| static void set_context_pdp_root_pointer( |
| struct execlist_ring_context *ring_context, |
| u32 pdp[8]) |
| { |
| int i; |
| |
| for (i = 0; i < 8; i++) |
| ring_context->pdps[i].val = pdp[7 - i]; |
| } |
| |
| static void update_shadow_pdps(struct intel_vgpu_workload *workload) |
| { |
| struct execlist_ring_context *shadow_ring_context; |
| struct intel_context *ctx = workload->req->context; |
| |
| if (WARN_ON(!workload->shadow_mm)) |
| return; |
| |
| if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount))) |
| return; |
| |
| shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state; |
| set_context_pdp_root_pointer(shadow_ring_context, |
| (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps); |
| } |
| |
| /* |
| * when populating shadow ctx from guest, we should not overrride oa related |
| * registers, so that they will not be overlapped by guest oa configs. Thus |
| * made it possible to capture oa data from host for both host and guests. |
| */ |
| static void sr_oa_regs(struct intel_vgpu_workload *workload, |
| u32 *reg_state, bool save) |
| { |
| struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915; |
| u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset; |
| u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset; |
| int i = 0; |
| u32 flex_mmio[] = { |
| i915_mmio_reg_offset(EU_PERF_CNTL0), |
| i915_mmio_reg_offset(EU_PERF_CNTL1), |
| i915_mmio_reg_offset(EU_PERF_CNTL2), |
| i915_mmio_reg_offset(EU_PERF_CNTL3), |
| i915_mmio_reg_offset(EU_PERF_CNTL4), |
| i915_mmio_reg_offset(EU_PERF_CNTL5), |
| i915_mmio_reg_offset(EU_PERF_CNTL6), |
| }; |
| |
| if (workload->engine->id != RCS0) |
| return; |
| |
| if (save) { |
| workload->oactxctrl = reg_state[ctx_oactxctrl + 1]; |
| |
| for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { |
| u32 state_offset = ctx_flexeu0 + i * 2; |
| |
| workload->flex_mmio[i] = reg_state[state_offset + 1]; |
| } |
| } else { |
| reg_state[ctx_oactxctrl] = |
| i915_mmio_reg_offset(GEN8_OACTXCONTROL); |
| reg_state[ctx_oactxctrl + 1] = workload->oactxctrl; |
| |
| for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) { |
| u32 state_offset = ctx_flexeu0 + i * 2; |
| u32 mmio = flex_mmio[i]; |
| |
| reg_state[state_offset] = mmio; |
| reg_state[state_offset + 1] = workload->flex_mmio[i]; |
| } |
| } |
| } |
| |
| static int populate_shadow_context(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_gvt *gvt = vgpu->gvt; |
| struct intel_context *ctx = workload->req->context; |
| struct execlist_ring_context *shadow_ring_context; |
| void *dst; |
| void *context_base; |
| unsigned long context_gpa, context_page_num; |
| unsigned long gpa_base; /* first gpa of consecutive GPAs */ |
| unsigned long gpa_size; /* size of consecutive GPAs */ |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| int i; |
| bool skip = false; |
| int ring_id = workload->engine->id; |
| |
| GEM_BUG_ON(!intel_context_is_pinned(ctx)); |
| |
| context_base = (void *) ctx->lrc_reg_state - |
| (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); |
| |
| shadow_ring_context = (void *) ctx->lrc_reg_state; |
| |
| sr_oa_regs(workload, (u32 *)shadow_ring_context, true); |
| #define COPY_REG(name) \ |
| intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ |
| + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) |
| #define COPY_REG_MASKED(name) {\ |
| intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \ |
| + RING_CTX_OFF(name.val),\ |
| &shadow_ring_context->name.val, 4);\ |
| shadow_ring_context->name.val |= 0xffff << 16;\ |
| } |
| |
| COPY_REG_MASKED(ctx_ctrl); |
| COPY_REG(ctx_timestamp); |
| |
| if (workload->engine->id == RCS0) { |
| COPY_REG(bb_per_ctx_ptr); |
| COPY_REG(rcs_indirect_ctx); |
| COPY_REG(rcs_indirect_ctx_offset); |
| } |
| #undef COPY_REG |
| #undef COPY_REG_MASKED |
| |
| intel_gvt_hypervisor_read_gpa(vgpu, |
| workload->ring_context_gpa + |
| sizeof(*shadow_ring_context), |
| (void *)shadow_ring_context + |
| sizeof(*shadow_ring_context), |
| I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); |
| |
| sr_oa_regs(workload, (u32 *)shadow_ring_context, false); |
| |
| gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx", |
| workload->engine->name, workload->ctx_desc.lrca, |
| workload->ctx_desc.context_id, |
| workload->ring_context_gpa); |
| |
| /* only need to ensure this context is not pinned/unpinned during the |
| * period from last submission to this this submission. |
| * Upon reaching this function, the currently submitted context is not |
| * supposed to get unpinned. If a misbehaving guest driver ever does |
| * this, it would corrupt itself. |
| */ |
| if (s->last_ctx[ring_id].valid && |
| (s->last_ctx[ring_id].lrca == |
| workload->ctx_desc.lrca) && |
| (s->last_ctx[ring_id].ring_context_gpa == |
| workload->ring_context_gpa)) |
| skip = true; |
| |
| s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca; |
| s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa; |
| |
| if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip) |
| return 0; |
| |
| s->last_ctx[ring_id].valid = false; |
| context_page_num = workload->engine->context_size; |
| context_page_num = context_page_num >> PAGE_SHIFT; |
| |
| if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0) |
| context_page_num = 19; |
| |
| /* find consecutive GPAs from gma until the first inconsecutive GPA. |
| * read from the continuous GPAs into dst virtual address |
| */ |
| gpa_size = 0; |
| for (i = 2; i < context_page_num; i++) { |
| context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, |
| (u32)((workload->ctx_desc.lrca + i) << |
| I915_GTT_PAGE_SHIFT)); |
| if (context_gpa == INTEL_GVT_INVALID_ADDR) { |
| gvt_vgpu_err("Invalid guest context descriptor\n"); |
| return -EFAULT; |
| } |
| |
| if (gpa_size == 0) { |
| gpa_base = context_gpa; |
| dst = context_base + (i << I915_GTT_PAGE_SHIFT); |
| } else if (context_gpa != gpa_base + gpa_size) |
| goto read; |
| |
| gpa_size += I915_GTT_PAGE_SIZE; |
| |
| if (i == context_page_num - 1) |
| goto read; |
| |
| continue; |
| |
| read: |
| intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size); |
| gpa_base = context_gpa; |
| gpa_size = I915_GTT_PAGE_SIZE; |
| dst = context_base + (i << I915_GTT_PAGE_SHIFT); |
| } |
| s->last_ctx[ring_id].valid = true; |
| return 0; |
| } |
| |
| static inline bool is_gvt_request(struct i915_request *rq) |
| { |
| return intel_context_force_single_submission(rq->context); |
| } |
| |
| static void save_ring_hw_state(struct intel_vgpu *vgpu, |
| const struct intel_engine_cs *engine) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| i915_reg_t reg; |
| |
| reg = RING_INSTDONE(engine->mmio_base); |
| vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = |
| intel_uncore_read(uncore, reg); |
| |
| reg = RING_ACTHD(engine->mmio_base); |
| vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = |
| intel_uncore_read(uncore, reg); |
| |
| reg = RING_ACTHD_UDW(engine->mmio_base); |
| vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = |
| intel_uncore_read(uncore, reg); |
| } |
| |
| static int shadow_context_status_change(struct notifier_block *nb, |
| unsigned long action, void *data) |
| { |
| struct i915_request *rq = data; |
| struct intel_gvt *gvt = container_of(nb, struct intel_gvt, |
| shadow_ctx_notifier_block[rq->engine->id]); |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| enum intel_engine_id ring_id = rq->engine->id; |
| struct intel_vgpu_workload *workload; |
| unsigned long flags; |
| |
| if (!is_gvt_request(rq)) { |
| spin_lock_irqsave(&scheduler->mmio_context_lock, flags); |
| if (action == INTEL_CONTEXT_SCHEDULE_IN && |
| scheduler->engine_owner[ring_id]) { |
| /* Switch ring from vGPU to host. */ |
| intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], |
| NULL, rq->engine); |
| scheduler->engine_owner[ring_id] = NULL; |
| } |
| spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); |
| |
| return NOTIFY_OK; |
| } |
| |
| workload = scheduler->current_workload[ring_id]; |
| if (unlikely(!workload)) |
| return NOTIFY_OK; |
| |
| switch (action) { |
| case INTEL_CONTEXT_SCHEDULE_IN: |
| spin_lock_irqsave(&scheduler->mmio_context_lock, flags); |
| if (workload->vgpu != scheduler->engine_owner[ring_id]) { |
| /* Switch ring from host to vGPU or vGPU to vGPU. */ |
| intel_gvt_switch_mmio(scheduler->engine_owner[ring_id], |
| workload->vgpu, rq->engine); |
| scheduler->engine_owner[ring_id] = workload->vgpu; |
| } else |
| gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n", |
| ring_id, workload->vgpu->id); |
| spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags); |
| atomic_set(&workload->shadow_ctx_active, 1); |
| break; |
| case INTEL_CONTEXT_SCHEDULE_OUT: |
| save_ring_hw_state(workload->vgpu, rq->engine); |
| atomic_set(&workload->shadow_ctx_active, 0); |
| break; |
| case INTEL_CONTEXT_SCHEDULE_PREEMPTED: |
| save_ring_hw_state(workload->vgpu, rq->engine); |
| break; |
| default: |
| WARN_ON(1); |
| return NOTIFY_OK; |
| } |
| wake_up(&workload->shadow_ctx_status_wq); |
| return NOTIFY_OK; |
| } |
| |
| static void |
| shadow_context_descriptor_update(struct intel_context *ce, |
| struct intel_vgpu_workload *workload) |
| { |
| u64 desc = ce->lrc.desc; |
| |
| /* |
| * Update bits 0-11 of the context descriptor which includes flags |
| * like GEN8_CTX_* cached in desc_template |
| */ |
| desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT); |
| desc |= (u64)workload->ctx_desc.addressing_mode << |
| GEN8_CTX_ADDRESSING_MODE_SHIFT; |
| |
| ce->lrc.desc = desc; |
| } |
| |
| static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct i915_request *req = workload->req; |
| void *shadow_ring_buffer_va; |
| u32 *cs; |
| int err; |
| |
| if (IS_GEN(req->engine->i915, 9) && is_inhibit_context(req->context)) |
| intel_vgpu_restore_inhibit_context(vgpu, req); |
| |
| /* |
| * To track whether a request has started on HW, we can emit a |
| * breadcrumb at the beginning of the request and check its |
| * timeline's HWSP to see if the breadcrumb has advanced past the |
| * start of this request. Actually, the request must have the |
| * init_breadcrumb if its timeline set has_init_bread_crumb, or the |
| * scheduler might get a wrong state of it during reset. Since the |
| * requests from gvt always set the has_init_breadcrumb flag, here |
| * need to do the emit_init_breadcrumb for all the requests. |
| */ |
| if (req->engine->emit_init_breadcrumb) { |
| err = req->engine->emit_init_breadcrumb(req); |
| if (err) { |
| gvt_vgpu_err("fail to emit init breadcrumb\n"); |
| return err; |
| } |
| } |
| |
| /* allocate shadow ring buffer */ |
| cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32)); |
| if (IS_ERR(cs)) { |
| gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n", |
| workload->rb_len); |
| return PTR_ERR(cs); |
| } |
| |
| shadow_ring_buffer_va = workload->shadow_ring_buffer_va; |
| |
| /* get shadow ring buffer va */ |
| workload->shadow_ring_buffer_va = cs; |
| |
| memcpy(cs, shadow_ring_buffer_va, |
| workload->rb_len); |
| |
| cs += workload->rb_len / sizeof(u32); |
| intel_ring_advance(workload->req, cs); |
| |
| return 0; |
| } |
| |
| static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| if (!wa_ctx->indirect_ctx.obj) |
| return; |
| |
| i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj); |
| i915_gem_object_put(wa_ctx->indirect_ctx.obj); |
| |
| wa_ctx->indirect_ctx.obj = NULL; |
| wa_ctx->indirect_ctx.shadow_va = NULL; |
| } |
| |
| static void set_dma_address(struct i915_page_directory *pd, dma_addr_t addr) |
| { |
| struct scatterlist *sg = pd->pt.base->mm.pages->sgl; |
| |
| /* This is not a good idea */ |
| sg->dma_address = addr; |
| } |
| |
| static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload, |
| struct intel_context *ce) |
| { |
| struct intel_vgpu_mm *mm = workload->shadow_mm; |
| struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm); |
| int i = 0; |
| |
| if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { |
| set_dma_address(ppgtt->pd, mm->ppgtt_mm.shadow_pdps[0]); |
| } else { |
| for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) { |
| struct i915_page_directory * const pd = |
| i915_pd_entry(ppgtt->pd, i); |
| /* skip now as current i915 ppgtt alloc won't allocate |
| top level pdp for non 4-level table, won't impact |
| shadow ppgtt. */ |
| if (!pd) |
| break; |
| |
| set_dma_address(pd, mm->ppgtt_mm.shadow_pdps[i]); |
| } |
| } |
| } |
| |
| static int |
| intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct i915_request *rq; |
| |
| if (workload->req) |
| return 0; |
| |
| rq = i915_request_create(s->shadow[workload->engine->id]); |
| if (IS_ERR(rq)) { |
| gvt_vgpu_err("fail to allocate gem request\n"); |
| return PTR_ERR(rq); |
| } |
| |
| workload->req = i915_request_get(rq); |
| return 0; |
| } |
| |
| /** |
| * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and |
| * shadow it as well, include ringbuffer,wa_ctx and ctx. |
| * @workload: an abstract entity for each execlist submission. |
| * |
| * This function is called before the workload submitting to i915, to make |
| * sure the content of the workload is valid. |
| */ |
| int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| int ret; |
| |
| lockdep_assert_held(&vgpu->vgpu_lock); |
| |
| if (workload->shadow) |
| return 0; |
| |
| if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated)) |
| shadow_context_descriptor_update(s->shadow[workload->engine->id], |
| workload); |
| |
| ret = intel_gvt_scan_and_shadow_ringbuffer(workload); |
| if (ret) |
| return ret; |
| |
| if (workload->engine->id == RCS0 && |
| workload->wa_ctx.indirect_ctx.size) { |
| ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx); |
| if (ret) |
| goto err_shadow; |
| } |
| |
| workload->shadow = true; |
| return 0; |
| |
| err_shadow: |
| release_shadow_wa_ctx(&workload->wa_ctx); |
| return ret; |
| } |
| |
| static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload); |
| |
| static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload) |
| { |
| struct intel_gvt *gvt = workload->vgpu->gvt; |
| const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd; |
| struct intel_vgpu_shadow_bb *bb; |
| int ret; |
| |
| list_for_each_entry(bb, &workload->shadow_bb, list) { |
| /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va |
| * is only updated into ring_scan_buffer, not real ring address |
| * allocated in later copy_workload_to_ring_buffer. pls be noted |
| * shadow_ring_buffer_va is now pointed to real ring buffer va |
| * in copy_workload_to_ring_buffer. |
| */ |
| |
| if (bb->bb_offset) |
| bb->bb_start_cmd_va = workload->shadow_ring_buffer_va |
| + bb->bb_offset; |
| |
| /* |
| * For non-priv bb, scan&shadow is only for |
| * debugging purpose, so the content of shadow bb |
| * is the same as original bb. Therefore, |
| * here, rather than switch to shadow bb's gma |
| * address, we directly use original batch buffer's |
| * gma address, and send original bb to hardware |
| * directly |
| */ |
| if (!bb->ppgtt) { |
| bb->vma = i915_gem_object_ggtt_pin(bb->obj, |
| NULL, 0, 0, 0); |
| if (IS_ERR(bb->vma)) { |
| ret = PTR_ERR(bb->vma); |
| goto err; |
| } |
| |
| /* relocate shadow batch buffer */ |
| bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma); |
| if (gmadr_bytes == 8) |
| bb->bb_start_cmd_va[2] = 0; |
| |
| ret = i915_vma_move_to_active(bb->vma, |
| workload->req, |
| 0); |
| if (ret) |
| goto err; |
| } |
| |
| /* No one is going to touch shadow bb from now on. */ |
| i915_gem_object_flush_map(bb->obj); |
| } |
| return 0; |
| err: |
| release_shadow_batch_buffer(workload); |
| return ret; |
| } |
| |
| static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| struct intel_vgpu_workload *workload = |
| container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx); |
| struct i915_request *rq = workload->req; |
| struct execlist_ring_context *shadow_ring_context = |
| (struct execlist_ring_context *)rq->context->lrc_reg_state; |
| |
| shadow_ring_context->bb_per_ctx_ptr.val = |
| (shadow_ring_context->bb_per_ctx_ptr.val & |
| (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma; |
| shadow_ring_context->rcs_indirect_ctx.val = |
| (shadow_ring_context->rcs_indirect_ctx.val & |
| (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma; |
| } |
| |
| static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx) |
| { |
| struct i915_vma *vma; |
| unsigned char *per_ctx_va = |
| (unsigned char *)wa_ctx->indirect_ctx.shadow_va + |
| wa_ctx->indirect_ctx.size; |
| |
| if (wa_ctx->indirect_ctx.size == 0) |
| return 0; |
| |
| vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL, |
| 0, CACHELINE_BYTES, 0); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| /* FIXME: we are not tracking our pinned VMA leaving it |
| * up to the core to fix up the stray pin_count upon |
| * free. |
| */ |
| |
| wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma); |
| |
| wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1); |
| memset(per_ctx_va, 0, CACHELINE_BYTES); |
| |
| update_wa_ctx_2_shadow_ctx(wa_ctx); |
| return 0; |
| } |
| |
| static void update_vreg_in_ctx(struct intel_vgpu_workload *workload) |
| { |
| vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) = |
| workload->rb_start; |
| } |
| |
| static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu_shadow_bb *bb, *pos; |
| |
| if (list_empty(&workload->shadow_bb)) |
| return; |
| |
| bb = list_first_entry(&workload->shadow_bb, |
| struct intel_vgpu_shadow_bb, list); |
| |
| list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) { |
| if (bb->obj) { |
| if (bb->va && !IS_ERR(bb->va)) |
| i915_gem_object_unpin_map(bb->obj); |
| |
| if (bb->vma && !IS_ERR(bb->vma)) |
| i915_vma_unpin(bb->vma); |
| |
| i915_gem_object_put(bb->obj); |
| } |
| list_del(&bb->list); |
| kfree(bb); |
| } |
| } |
| |
| static int |
| intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_vgpu_mm *m; |
| int ret = 0; |
| |
| ret = intel_vgpu_pin_mm(workload->shadow_mm); |
| if (ret) { |
| gvt_vgpu_err("fail to vgpu pin mm\n"); |
| return ret; |
| } |
| |
| if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT || |
| !workload->shadow_mm->ppgtt_mm.shadowed) { |
| gvt_vgpu_err("workload shadow ppgtt isn't ready\n"); |
| return -EINVAL; |
| } |
| |
| if (!list_empty(&workload->lri_shadow_mm)) { |
| list_for_each_entry(m, &workload->lri_shadow_mm, |
| ppgtt_mm.link) { |
| ret = intel_vgpu_pin_mm(m); |
| if (ret) { |
| list_for_each_entry_from_reverse(m, |
| &workload->lri_shadow_mm, |
| ppgtt_mm.link) |
| intel_vgpu_unpin_mm(m); |
| gvt_vgpu_err("LRI shadow ppgtt fail to pin\n"); |
| break; |
| } |
| } |
| } |
| |
| if (ret) |
| intel_vgpu_unpin_mm(workload->shadow_mm); |
| |
| return ret; |
| } |
| |
| static void |
| intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu_mm *m; |
| |
| if (!list_empty(&workload->lri_shadow_mm)) { |
| list_for_each_entry(m, &workload->lri_shadow_mm, |
| ppgtt_mm.link) |
| intel_vgpu_unpin_mm(m); |
| } |
| intel_vgpu_unpin_mm(workload->shadow_mm); |
| } |
| |
| static int prepare_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| int ret = 0; |
| |
| ret = intel_vgpu_shadow_mm_pin(workload); |
| if (ret) { |
| gvt_vgpu_err("fail to pin shadow mm\n"); |
| return ret; |
| } |
| |
| update_shadow_pdps(workload); |
| |
| set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]); |
| |
| ret = intel_vgpu_sync_oos_pages(workload->vgpu); |
| if (ret) { |
| gvt_vgpu_err("fail to vgpu sync oos pages\n"); |
| goto err_unpin_mm; |
| } |
| |
| ret = intel_vgpu_flush_post_shadow(workload->vgpu); |
| if (ret) { |
| gvt_vgpu_err("fail to flush post shadow\n"); |
| goto err_unpin_mm; |
| } |
| |
| ret = copy_workload_to_ring_buffer(workload); |
| if (ret) { |
| gvt_vgpu_err("fail to generate request\n"); |
| goto err_unpin_mm; |
| } |
| |
| ret = prepare_shadow_batch_buffer(workload); |
| if (ret) { |
| gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n"); |
| goto err_unpin_mm; |
| } |
| |
| ret = prepare_shadow_wa_ctx(&workload->wa_ctx); |
| if (ret) { |
| gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n"); |
| goto err_shadow_batch; |
| } |
| |
| if (workload->prepare) { |
| ret = workload->prepare(workload); |
| if (ret) |
| goto err_shadow_wa_ctx; |
| } |
| |
| return 0; |
| err_shadow_wa_ctx: |
| release_shadow_wa_ctx(&workload->wa_ctx); |
| err_shadow_batch: |
| release_shadow_batch_buffer(workload); |
| err_unpin_mm: |
| intel_vgpu_shadow_mm_unpin(workload); |
| return ret; |
| } |
| |
| static int dispatch_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct i915_request *rq; |
| int ret; |
| |
| gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n", |
| workload->engine->name, workload); |
| |
| mutex_lock(&vgpu->vgpu_lock); |
| |
| ret = intel_gvt_workload_req_alloc(workload); |
| if (ret) |
| goto err_req; |
| |
| ret = intel_gvt_scan_and_shadow_workload(workload); |
| if (ret) |
| goto out; |
| |
| ret = populate_shadow_context(workload); |
| if (ret) { |
| release_shadow_wa_ctx(&workload->wa_ctx); |
| goto out; |
| } |
| |
| ret = prepare_workload(workload); |
| out: |
| if (ret) { |
| /* We might still need to add request with |
| * clean ctx to retire it properly.. |
| */ |
| rq = fetch_and_zero(&workload->req); |
| i915_request_put(rq); |
| } |
| |
| if (!IS_ERR_OR_NULL(workload->req)) { |
| gvt_dbg_sched("ring id %s submit workload to i915 %p\n", |
| workload->engine->name, workload->req); |
| i915_request_add(workload->req); |
| workload->dispatched = true; |
| } |
| err_req: |
| if (ret) |
| workload->status = ret; |
| mutex_unlock(&vgpu->vgpu_lock); |
| return ret; |
| } |
| |
| static struct intel_vgpu_workload * |
| pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine) |
| { |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| struct intel_vgpu_workload *workload = NULL; |
| |
| mutex_lock(&gvt->sched_lock); |
| |
| /* |
| * no current vgpu / will be scheduled out / no workload |
| * bail out |
| */ |
| if (!scheduler->current_vgpu) { |
| gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name); |
| goto out; |
| } |
| |
| if (scheduler->need_reschedule) { |
| gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name); |
| goto out; |
| } |
| |
| if (!scheduler->current_vgpu->active || |
| list_empty(workload_q_head(scheduler->current_vgpu, engine))) |
| goto out; |
| |
| /* |
| * still have current workload, maybe the workload disptacher |
| * fail to submit it for some reason, resubmit it. |
| */ |
| if (scheduler->current_workload[engine->id]) { |
| workload = scheduler->current_workload[engine->id]; |
| gvt_dbg_sched("ring %s still have current workload %p\n", |
| engine->name, workload); |
| goto out; |
| } |
| |
| /* |
| * pick a workload as current workload |
| * once current workload is set, schedule policy routines |
| * will wait the current workload is finished when trying to |
| * schedule out a vgpu. |
| */ |
| scheduler->current_workload[engine->id] = |
| list_first_entry(workload_q_head(scheduler->current_vgpu, |
| engine), |
| struct intel_vgpu_workload, list); |
| |
| workload = scheduler->current_workload[engine->id]; |
| |
| gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload); |
| |
| atomic_inc(&workload->vgpu->submission.running_workload_num); |
| out: |
| mutex_unlock(&gvt->sched_lock); |
| return workload; |
| } |
| |
| static void update_guest_pdps(struct intel_vgpu *vgpu, |
| u64 ring_context_gpa, u32 pdp[8]) |
| { |
| u64 gpa; |
| int i; |
| |
| gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); |
| |
| for (i = 0; i < 8; i++) |
| intel_gvt_hypervisor_write_gpa(vgpu, |
| gpa + i * 8, &pdp[7 - i], 4); |
| } |
| |
| static __maybe_unused bool |
| check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m) |
| { |
| if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) { |
| u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32; |
| |
| if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) { |
| gvt_dbg_mm("4-level context ppgtt not match LRI command\n"); |
| return false; |
| } |
| return true; |
| } else { |
| /* see comment in LRI handler in cmd_parser.c */ |
| gvt_dbg_mm("invalid shadow mm type\n"); |
| return false; |
| } |
| } |
| |
| static void update_guest_context(struct intel_vgpu_workload *workload) |
| { |
| struct i915_request *rq = workload->req; |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct execlist_ring_context *shadow_ring_context; |
| struct intel_context *ctx = workload->req->context; |
| void *context_base; |
| void *src; |
| unsigned long context_gpa, context_page_num; |
| unsigned long gpa_base; /* first gpa of consecutive GPAs */ |
| unsigned long gpa_size; /* size of consecutive GPAs*/ |
| int i; |
| u32 ring_base; |
| u32 head, tail; |
| u16 wrap_count; |
| |
| gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id, |
| workload->ctx_desc.lrca); |
| |
| GEM_BUG_ON(!intel_context_is_pinned(ctx)); |
| |
| head = workload->rb_head; |
| tail = workload->rb_tail; |
| wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF; |
| |
| if (tail < head) { |
| if (wrap_count == RB_HEAD_WRAP_CNT_MAX) |
| wrap_count = 0; |
| else |
| wrap_count += 1; |
| } |
| |
| head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail; |
| |
| ring_base = rq->engine->mmio_base; |
| vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail; |
| vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head; |
| |
| context_page_num = rq->engine->context_size; |
| context_page_num = context_page_num >> PAGE_SHIFT; |
| |
| if (IS_BROADWELL(rq->engine->i915) && rq->engine->id == RCS0) |
| context_page_num = 19; |
| |
| context_base = (void *) ctx->lrc_reg_state - |
| (LRC_STATE_PN << I915_GTT_PAGE_SHIFT); |
| |
| /* find consecutive GPAs from gma until the first inconsecutive GPA. |
| * write to the consecutive GPAs from src virtual address |
| */ |
| gpa_size = 0; |
| for (i = 2; i < context_page_num; i++) { |
| context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, |
| (u32)((workload->ctx_desc.lrca + i) << |
| I915_GTT_PAGE_SHIFT)); |
| if (context_gpa == INTEL_GVT_INVALID_ADDR) { |
| gvt_vgpu_err("invalid guest context descriptor\n"); |
| return; |
| } |
| |
| if (gpa_size == 0) { |
| gpa_base = context_gpa; |
| src = context_base + (i << I915_GTT_PAGE_SHIFT); |
| } else if (context_gpa != gpa_base + gpa_size) |
| goto write; |
| |
| gpa_size += I915_GTT_PAGE_SIZE; |
| |
| if (i == context_page_num - 1) |
| goto write; |
| |
| continue; |
| |
| write: |
| intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size); |
| gpa_base = context_gpa; |
| gpa_size = I915_GTT_PAGE_SIZE; |
| src = context_base + (i << I915_GTT_PAGE_SHIFT); |
| } |
| |
| intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + |
| RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4); |
| |
| shadow_ring_context = (void *) ctx->lrc_reg_state; |
| |
| if (!list_empty(&workload->lri_shadow_mm)) { |
| struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm, |
| struct intel_vgpu_mm, |
| ppgtt_mm.link); |
| GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m)); |
| update_guest_pdps(vgpu, workload->ring_context_gpa, |
| (void *)m->ppgtt_mm.guest_pdps); |
| } |
| |
| #define COPY_REG(name) \ |
| intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \ |
| RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4) |
| |
| COPY_REG(ctx_ctrl); |
| COPY_REG(ctx_timestamp); |
| |
| #undef COPY_REG |
| |
| intel_gvt_hypervisor_write_gpa(vgpu, |
| workload->ring_context_gpa + |
| sizeof(*shadow_ring_context), |
| (void *)shadow_ring_context + |
| sizeof(*shadow_ring_context), |
| I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context)); |
| } |
| |
| void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu, |
| intel_engine_mask_t engine_mask) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915; |
| struct intel_engine_cs *engine; |
| struct intel_vgpu_workload *pos, *n; |
| intel_engine_mask_t tmp; |
| |
| /* free the unsubmited workloads in the queues. */ |
| for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) { |
| list_for_each_entry_safe(pos, n, |
| &s->workload_q_head[engine->id], list) { |
| list_del_init(&pos->list); |
| intel_vgpu_destroy_workload(pos); |
| } |
| clear_bit(engine->id, s->shadow_ctx_desc_updated); |
| } |
| } |
| |
| static void complete_current_workload(struct intel_gvt *gvt, int ring_id) |
| { |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| struct intel_vgpu_workload *workload = |
| scheduler->current_workload[ring_id]; |
| struct intel_vgpu *vgpu = workload->vgpu; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct i915_request *rq = workload->req; |
| int event; |
| |
| mutex_lock(&vgpu->vgpu_lock); |
| mutex_lock(&gvt->sched_lock); |
| |
| /* For the workload w/ request, needs to wait for the context |
| * switch to make sure request is completed. |
| * For the workload w/o request, directly complete the workload. |
| */ |
| if (rq) { |
| wait_event(workload->shadow_ctx_status_wq, |
| !atomic_read(&workload->shadow_ctx_active)); |
| |
| /* If this request caused GPU hang, req->fence.error will |
| * be set to -EIO. Use -EIO to set workload status so |
| * that when this request caused GPU hang, didn't trigger |
| * context switch interrupt to guest. |
| */ |
| if (likely(workload->status == -EINPROGRESS)) { |
| if (workload->req->fence.error == -EIO) |
| workload->status = -EIO; |
| else |
| workload->status = 0; |
| } |
| |
| if (!workload->status && |
| !(vgpu->resetting_eng & BIT(ring_id))) { |
| update_guest_context(workload); |
| |
| for_each_set_bit(event, workload->pending_events, |
| INTEL_GVT_EVENT_MAX) |
| intel_vgpu_trigger_virtual_event(vgpu, event); |
| } |
| |
| i915_request_put(fetch_and_zero(&workload->req)); |
| } |
| |
| gvt_dbg_sched("ring id %d complete workload %p status %d\n", |
| ring_id, workload, workload->status); |
| |
| scheduler->current_workload[ring_id] = NULL; |
| |
| list_del_init(&workload->list); |
| |
| if (workload->status || vgpu->resetting_eng & BIT(ring_id)) { |
| /* if workload->status is not successful means HW GPU |
| * has occurred GPU hang or something wrong with i915/GVT, |
| * and GVT won't inject context switch interrupt to guest. |
| * So this error is a vGPU hang actually to the guest. |
| * According to this we should emunlate a vGPU hang. If |
| * there are pending workloads which are already submitted |
| * from guest, we should clean them up like HW GPU does. |
| * |
| * if it is in middle of engine resetting, the pending |
| * workloads won't be submitted to HW GPU and will be |
| * cleaned up during the resetting process later, so doing |
| * the workload clean up here doesn't have any impact. |
| **/ |
| intel_vgpu_clean_workloads(vgpu, BIT(ring_id)); |
| } |
| |
| workload->complete(workload); |
| |
| intel_vgpu_shadow_mm_unpin(workload); |
| intel_vgpu_destroy_workload(workload); |
| |
| atomic_dec(&s->running_workload_num); |
| wake_up(&scheduler->workload_complete_wq); |
| |
| if (gvt->scheduler.need_reschedule) |
| intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED); |
| |
| mutex_unlock(&gvt->sched_lock); |
| mutex_unlock(&vgpu->vgpu_lock); |
| } |
| |
| static int workload_thread(void *arg) |
| { |
| struct intel_engine_cs *engine = arg; |
| const bool need_force_wake = INTEL_GEN(engine->i915) >= 9; |
| struct intel_gvt *gvt = engine->i915->gvt; |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| struct intel_vgpu_workload *workload = NULL; |
| struct intel_vgpu *vgpu = NULL; |
| int ret; |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| |
| gvt_dbg_core("workload thread for ring %s started\n", engine->name); |
| |
| while (!kthread_should_stop()) { |
| intel_wakeref_t wakeref; |
| |
| add_wait_queue(&scheduler->waitq[engine->id], &wait); |
| do { |
| workload = pick_next_workload(gvt, engine); |
| if (workload) |
| break; |
| wait_woken(&wait, TASK_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| } while (!kthread_should_stop()); |
| remove_wait_queue(&scheduler->waitq[engine->id], &wait); |
| |
| if (!workload) |
| break; |
| |
| gvt_dbg_sched("ring %s next workload %p vgpu %d\n", |
| engine->name, workload, |
| workload->vgpu->id); |
| |
| wakeref = intel_runtime_pm_get(engine->uncore->rpm); |
| |
| gvt_dbg_sched("ring %s will dispatch workload %p\n", |
| engine->name, workload); |
| |
| if (need_force_wake) |
| intel_uncore_forcewake_get(engine->uncore, |
| FORCEWAKE_ALL); |
| /* |
| * Update the vReg of the vGPU which submitted this |
| * workload. The vGPU may use these registers for checking |
| * the context state. The value comes from GPU commands |
| * in this workload. |
| */ |
| update_vreg_in_ctx(workload); |
| |
| ret = dispatch_workload(workload); |
| |
| if (ret) { |
| vgpu = workload->vgpu; |
| gvt_vgpu_err("fail to dispatch workload, skip\n"); |
| goto complete; |
| } |
| |
| gvt_dbg_sched("ring %s wait workload %p\n", |
| engine->name, workload); |
| i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT); |
| |
| complete: |
| gvt_dbg_sched("will complete workload %p, status: %d\n", |
| workload, workload->status); |
| |
| complete_current_workload(gvt, engine->id); |
| |
| if (need_force_wake) |
| intel_uncore_forcewake_put(engine->uncore, |
| FORCEWAKE_ALL); |
| |
| intel_runtime_pm_put(engine->uncore->rpm, wakeref); |
| if (ret && (vgpu_is_vm_unhealthy(ret))) |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); |
| } |
| return 0; |
| } |
| |
| void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct intel_gvt *gvt = vgpu->gvt; |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| |
| if (atomic_read(&s->running_workload_num)) { |
| gvt_dbg_sched("wait vgpu idle\n"); |
| |
| wait_event(scheduler->workload_complete_wq, |
| !atomic_read(&s->running_workload_num)); |
| } |
| } |
| |
| void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt) |
| { |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id i; |
| |
| gvt_dbg_core("clean workload scheduler\n"); |
| |
| for_each_engine(engine, gvt->gt, i) { |
| atomic_notifier_chain_unregister( |
| &engine->context_status_notifier, |
| &gvt->shadow_ctx_notifier_block[i]); |
| kthread_stop(scheduler->thread[i]); |
| } |
| } |
| |
| int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt) |
| { |
| struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id i; |
| int ret; |
| |
| gvt_dbg_core("init workload scheduler\n"); |
| |
| init_waitqueue_head(&scheduler->workload_complete_wq); |
| |
| for_each_engine(engine, gvt->gt, i) { |
| init_waitqueue_head(&scheduler->waitq[i]); |
| |
| scheduler->thread[i] = kthread_run(workload_thread, engine, |
| "gvt:%s", engine->name); |
| if (IS_ERR(scheduler->thread[i])) { |
| gvt_err("fail to create workload thread\n"); |
| ret = PTR_ERR(scheduler->thread[i]); |
| goto err; |
| } |
| |
| gvt->shadow_ctx_notifier_block[i].notifier_call = |
| shadow_context_status_change; |
| atomic_notifier_chain_register(&engine->context_status_notifier, |
| &gvt->shadow_ctx_notifier_block[i]); |
| } |
| |
| return 0; |
| |
| err: |
| intel_gvt_clean_workload_scheduler(gvt); |
| return ret; |
| } |
| |
| static void |
| i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s, |
| struct i915_ppgtt *ppgtt) |
| { |
| int i; |
| |
| if (i915_vm_is_4lvl(&ppgtt->vm)) { |
| set_dma_address(ppgtt->pd, s->i915_context_pml4); |
| } else { |
| for (i = 0; i < GEN8_3LVL_PDPES; i++) { |
| struct i915_page_directory * const pd = |
| i915_pd_entry(ppgtt->pd, i); |
| |
| set_dma_address(pd, s->i915_context_pdps[i]); |
| } |
| } |
| } |
| |
| /** |
| * intel_vgpu_clean_submission - free submission-related resource for vGPU |
| * @vgpu: a vGPU |
| * |
| * This function is called when a vGPU is being destroyed. |
| * |
| */ |
| void intel_vgpu_clean_submission(struct intel_vgpu *vgpu) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0); |
| |
| i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm)); |
| for_each_engine(engine, vgpu->gvt->gt, id) |
| intel_context_unpin(s->shadow[id]); |
| |
| kmem_cache_destroy(s->workloads); |
| } |
| |
| |
| /** |
| * intel_vgpu_reset_submission - reset submission-related resource for vGPU |
| * @vgpu: a vGPU |
| * @engine_mask: engines expected to be reset |
| * |
| * This function is called when a vGPU is being destroyed. |
| * |
| */ |
| void intel_vgpu_reset_submission(struct intel_vgpu *vgpu, |
| intel_engine_mask_t engine_mask) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| |
| if (!s->active) |
| return; |
| |
| intel_vgpu_clean_workloads(vgpu, engine_mask); |
| s->ops->reset(vgpu, engine_mask); |
| } |
| |
| static void |
| i915_context_ppgtt_root_save(struct intel_vgpu_submission *s, |
| struct i915_ppgtt *ppgtt) |
| { |
| int i; |
| |
| if (i915_vm_is_4lvl(&ppgtt->vm)) { |
| s->i915_context_pml4 = px_dma(ppgtt->pd); |
| } else { |
| for (i = 0; i < GEN8_3LVL_PDPES; i++) { |
| struct i915_page_directory * const pd = |
| i915_pd_entry(ppgtt->pd, i); |
| |
| s->i915_context_pdps[i] = px_dma(pd); |
| } |
| } |
| } |
| |
| /** |
| * intel_vgpu_setup_submission - setup submission-related resource for vGPU |
| * @vgpu: a vGPU |
| * |
| * This function is called when a vGPU is being created. |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| * |
| */ |
| int intel_vgpu_setup_submission(struct intel_vgpu *vgpu) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct intel_engine_cs *engine; |
| struct i915_ppgtt *ppgtt; |
| enum intel_engine_id i; |
| int ret; |
| |
| ppgtt = i915_ppgtt_create(&i915->gt); |
| if (IS_ERR(ppgtt)) |
| return PTR_ERR(ppgtt); |
| |
| i915_context_ppgtt_root_save(s, ppgtt); |
| |
| for_each_engine(engine, vgpu->gvt->gt, i) { |
| struct intel_context *ce; |
| |
| INIT_LIST_HEAD(&s->workload_q_head[i]); |
| s->shadow[i] = ERR_PTR(-EINVAL); |
| |
| ce = intel_context_create(engine); |
| if (IS_ERR(ce)) { |
| ret = PTR_ERR(ce); |
| goto out_shadow_ctx; |
| } |
| |
| i915_vm_put(ce->vm); |
| ce->vm = i915_vm_get(&ppgtt->vm); |
| intel_context_set_single_submission(ce); |
| |
| /* Max ring buffer size */ |
| if (!intel_uc_wants_guc_submission(&engine->gt->uc)) { |
| const unsigned int ring_size = 512 * SZ_4K; |
| |
| ce->ring = __intel_context_ring_size(ring_size); |
| } |
| |
| ret = intel_context_pin(ce); |
| intel_context_put(ce); |
| if (ret) |
| goto out_shadow_ctx; |
| |
| s->shadow[i] = ce; |
| } |
| |
| bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES); |
| |
| s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload", |
| sizeof(struct intel_vgpu_workload), 0, |
| SLAB_HWCACHE_ALIGN, |
| offsetof(struct intel_vgpu_workload, rb_tail), |
| sizeof_field(struct intel_vgpu_workload, rb_tail), |
| NULL); |
| |
| if (!s->workloads) { |
| ret = -ENOMEM; |
| goto out_shadow_ctx; |
| } |
| |
| atomic_set(&s->running_workload_num, 0); |
| bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES); |
| |
| memset(s->last_ctx, 0, sizeof(s->last_ctx)); |
| |
| i915_vm_put(&ppgtt->vm); |
| return 0; |
| |
| out_shadow_ctx: |
| i915_context_ppgtt_root_restore(s, ppgtt); |
| for_each_engine(engine, vgpu->gvt->gt, i) { |
| if (IS_ERR(s->shadow[i])) |
| break; |
| |
| intel_context_unpin(s->shadow[i]); |
| intel_context_put(s->shadow[i]); |
| } |
| i915_vm_put(&ppgtt->vm); |
| return ret; |
| } |
| |
| /** |
| * intel_vgpu_select_submission_ops - select virtual submission interface |
| * @vgpu: a vGPU |
| * @engine_mask: either ALL_ENGINES or target engine mask |
| * @interface: expected vGPU virtual submission interface |
| * |
| * This function is called when guest configures submission interface. |
| * |
| * Returns: |
| * Zero on success, negative error code if failed. |
| * |
| */ |
| int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu, |
| intel_engine_mask_t engine_mask, |
| unsigned int interface) |
| { |
| struct drm_i915_private *i915 = vgpu->gvt->gt->i915; |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| const struct intel_vgpu_submission_ops *ops[] = { |
| [INTEL_VGPU_EXECLIST_SUBMISSION] = |
| &intel_vgpu_execlist_submission_ops, |
| }; |
| int ret; |
| |
| if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops))) |
| return -EINVAL; |
| |
| if (drm_WARN_ON(&i915->drm, |
| interface == 0 && engine_mask != ALL_ENGINES)) |
| return -EINVAL; |
| |
| if (s->active) |
| s->ops->clean(vgpu, engine_mask); |
| |
| if (interface == 0) { |
| s->ops = NULL; |
| s->virtual_submission_interface = 0; |
| s->active = false; |
| gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id); |
| return 0; |
| } |
| |
| ret = ops[interface]->init(vgpu, engine_mask); |
| if (ret) |
| return ret; |
| |
| s->ops = ops[interface]; |
| s->virtual_submission_interface = interface; |
| s->active = true; |
| |
| gvt_dbg_core("vgpu%d: activate ops [ %s ]\n", |
| vgpu->id, s->ops->name); |
| |
| return 0; |
| } |
| |
| /** |
| * intel_vgpu_destroy_workload - destroy a vGPU workload |
| * @workload: workload to destroy |
| * |
| * This function is called when destroy a vGPU workload. |
| * |
| */ |
| void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload) |
| { |
| struct intel_vgpu_submission *s = &workload->vgpu->submission; |
| |
| release_shadow_batch_buffer(workload); |
| release_shadow_wa_ctx(&workload->wa_ctx); |
| |
| if (!list_empty(&workload->lri_shadow_mm)) { |
| struct intel_vgpu_mm *m, *mm; |
| list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm, |
| ppgtt_mm.link) { |
| list_del(&m->ppgtt_mm.link); |
| intel_vgpu_mm_put(m); |
| } |
| } |
| |
| GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm)); |
| if (workload->shadow_mm) |
| intel_vgpu_mm_put(workload->shadow_mm); |
| |
| kmem_cache_free(s->workloads, workload); |
| } |
| |
| static struct intel_vgpu_workload * |
| alloc_workload(struct intel_vgpu *vgpu) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct intel_vgpu_workload *workload; |
| |
| workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL); |
| if (!workload) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&workload->list); |
| INIT_LIST_HEAD(&workload->shadow_bb); |
| INIT_LIST_HEAD(&workload->lri_shadow_mm); |
| |
| init_waitqueue_head(&workload->shadow_ctx_status_wq); |
| atomic_set(&workload->shadow_ctx_active, 0); |
| |
| workload->status = -EINPROGRESS; |
| workload->vgpu = vgpu; |
| |
| return workload; |
| } |
| |
| #define RING_CTX_OFF(x) \ |
| offsetof(struct execlist_ring_context, x) |
| |
| static void read_guest_pdps(struct intel_vgpu *vgpu, |
| u64 ring_context_gpa, u32 pdp[8]) |
| { |
| u64 gpa; |
| int i; |
| |
| gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val); |
| |
| for (i = 0; i < 8; i++) |
| intel_gvt_hypervisor_read_gpa(vgpu, |
| gpa + i * 8, &pdp[7 - i], 4); |
| } |
| |
| static int prepare_mm(struct intel_vgpu_workload *workload) |
| { |
| struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc; |
| struct intel_vgpu_mm *mm; |
| struct intel_vgpu *vgpu = workload->vgpu; |
| enum intel_gvt_gtt_type root_entry_type; |
| u64 pdps[GVT_RING_CTX_NR_PDPS]; |
| |
| switch (desc->addressing_mode) { |
| case 1: /* legacy 32-bit */ |
| root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY; |
| break; |
| case 3: /* legacy 64-bit */ |
| root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY; |
| break; |
| default: |
| gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n"); |
| return -EINVAL; |
| } |
| |
| read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps); |
| |
| mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps); |
| if (IS_ERR(mm)) |
| return PTR_ERR(mm); |
| |
| workload->shadow_mm = mm; |
| return 0; |
| } |
| |
| #define same_context(a, b) (((a)->context_id == (b)->context_id) && \ |
| ((a)->lrca == (b)->lrca)) |
| |
| /** |
| * intel_vgpu_create_workload - create a vGPU workload |
| * @vgpu: a vGPU |
| * @engine: the engine |
| * @desc: a guest context descriptor |
| * |
| * This function is called when creating a vGPU workload. |
| * |
| * Returns: |
| * struct intel_vgpu_workload * on success, negative error code in |
| * pointer if failed. |
| * |
| */ |
| struct intel_vgpu_workload * |
| intel_vgpu_create_workload(struct intel_vgpu *vgpu, |
| const struct intel_engine_cs *engine, |
| struct execlist_ctx_descriptor_format *desc) |
| { |
| struct intel_vgpu_submission *s = &vgpu->submission; |
| struct list_head *q = workload_q_head(vgpu, engine); |
| struct intel_vgpu_workload *last_workload = NULL; |
| struct intel_vgpu_workload *workload = NULL; |
| u64 ring_context_gpa; |
| u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx; |
| u32 guest_head; |
| int ret; |
| |
| ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm, |
| (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT)); |
| if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) { |
| gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ring_header.val), &head, 4); |
| |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ring_tail.val), &tail, 4); |
| |
| guest_head = head; |
| |
| head &= RB_HEAD_OFF_MASK; |
| tail &= RB_TAIL_OFF_MASK; |
| |
| list_for_each_entry_reverse(last_workload, q, list) { |
| |
| if (same_context(&last_workload->ctx_desc, desc)) { |
| gvt_dbg_el("ring %s cur workload == last\n", |
| engine->name); |
| gvt_dbg_el("ctx head %x real head %lx\n", head, |
| last_workload->rb_tail); |
| /* |
| * cannot use guest context head pointer here, |
| * as it might not be updated at this time |
| */ |
| head = last_workload->rb_tail; |
| break; |
| } |
| } |
| |
| gvt_dbg_el("ring %s begin a new workload\n", engine->name); |
| |
| /* record some ring buffer register values for scan and shadow */ |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rb_start.val), &start, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rb_ctrl.val), &ctl, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4); |
| |
| if (!intel_gvt_ggtt_validate_range(vgpu, start, |
| _RING_CTL_BUF_SIZE(ctl))) { |
| gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| workload = alloc_workload(vgpu); |
| if (IS_ERR(workload)) |
| return workload; |
| |
| workload->engine = engine; |
| workload->ctx_desc = *desc; |
| workload->ring_context_gpa = ring_context_gpa; |
| workload->rb_head = head; |
| workload->guest_rb_head = guest_head; |
| workload->rb_tail = tail; |
| workload->rb_start = start; |
| workload->rb_ctl = ctl; |
| |
| if (engine->id == RCS0) { |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4); |
| intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa + |
| RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4); |
| |
| workload->wa_ctx.indirect_ctx.guest_gma = |
| indirect_ctx & INDIRECT_CTX_ADDR_MASK; |
| workload->wa_ctx.indirect_ctx.size = |
| (indirect_ctx & INDIRECT_CTX_SIZE_MASK) * |
| CACHELINE_BYTES; |
| |
| if (workload->wa_ctx.indirect_ctx.size != 0) { |
| if (!intel_gvt_ggtt_validate_range(vgpu, |
| workload->wa_ctx.indirect_ctx.guest_gma, |
| workload->wa_ctx.indirect_ctx.size)) { |
| gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n", |
| workload->wa_ctx.indirect_ctx.guest_gma); |
| kmem_cache_free(s->workloads, workload); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| |
| workload->wa_ctx.per_ctx.guest_gma = |
| per_ctx & PER_CTX_ADDR_MASK; |
| workload->wa_ctx.per_ctx.valid = per_ctx & 1; |
| if (workload->wa_ctx.per_ctx.valid) { |
| if (!intel_gvt_ggtt_validate_range(vgpu, |
| workload->wa_ctx.per_ctx.guest_gma, |
| CACHELINE_BYTES)) { |
| gvt_vgpu_err("invalid per_ctx at: 0x%lx\n", |
| workload->wa_ctx.per_ctx.guest_gma); |
| kmem_cache_free(s->workloads, workload); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| } |
| |
| gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n", |
| workload, engine->name, head, tail, start, ctl); |
| |
| ret = prepare_mm(workload); |
| if (ret) { |
| kmem_cache_free(s->workloads, workload); |
| return ERR_PTR(ret); |
| } |
| |
| /* Only scan and shadow the first workload in the queue |
| * as there is only one pre-allocated buf-obj for shadow. |
| */ |
| if (list_empty(q)) { |
| intel_wakeref_t wakeref; |
| |
| with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref) |
| ret = intel_gvt_scan_and_shadow_workload(workload); |
| } |
| |
| if (ret) { |
| if (vgpu_is_vm_unhealthy(ret)) |
| enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR); |
| intel_vgpu_destroy_workload(workload); |
| return ERR_PTR(ret); |
| } |
| |
| return workload; |
| } |
| |
| /** |
| * intel_vgpu_queue_workload - Qeue a vGPU workload |
| * @workload: the workload to queue in |
| */ |
| void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload) |
| { |
| list_add_tail(&workload->list, |
| workload_q_head(workload->vgpu, workload->engine)); |
| intel_gvt_kick_schedule(workload->vgpu->gvt); |
| wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]); |
| } |