blob: 6fab504af88b520ed3ee6e84c819e632b65b3256 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
*
* Copyright (C) 2010 John Crispin <john@phrozen.org>
* Copyright (C) 2017 Hauke Mehrtens <hauke@hauke-m.de>
* Based on EP93xx wdt driver
*/
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/watchdog.h>
#include <linux/of_platform.h>
#include <linux/uaccess.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <lantiq_soc.h>
#define LTQ_XRX_RCU_RST_STAT 0x0014
#define LTQ_XRX_RCU_RST_STAT_WDT BIT(31)
/* CPU0 Reset Source Register */
#define LTQ_FALCON_SYS1_CPU0RS 0x0060
/* reset cause mask */
#define LTQ_FALCON_SYS1_CPU0RS_MASK 0x0007
#define LTQ_FALCON_SYS1_CPU0RS_WDT 0x02
/*
* Section 3.4 of the datasheet
* The password sequence protects the WDT control register from unintended
* write actions, which might cause malfunction of the WDT.
*
* essentially the following two magic passwords need to be written to allow
* IO access to the WDT core
*/
#define LTQ_WDT_CR_PW1 0x00BE0000
#define LTQ_WDT_CR_PW2 0x00DC0000
#define LTQ_WDT_CR 0x0 /* watchdog control register */
#define LTQ_WDT_CR_GEN BIT(31) /* enable bit */
/* Pre-warning limit set to 1/16 of max WDT period */
#define LTQ_WDT_CR_PWL (0x3 << 26)
/* set clock divider to 0x40000 */
#define LTQ_WDT_CR_CLKDIV (0x3 << 24)
#define LTQ_WDT_CR_PW_MASK GENMASK(23, 16) /* Password field */
#define LTQ_WDT_CR_MAX_TIMEOUT ((1 << 16) - 1) /* The reload field is 16 bit */
#define LTQ_WDT_SR 0x8 /* watchdog status register */
#define LTQ_WDT_SR_EN BIT(31) /* Enable */
#define LTQ_WDT_SR_VALUE_MASK GENMASK(15, 0) /* Timer value */
#define LTQ_WDT_DIVIDER 0x40000
static bool nowayout = WATCHDOG_NOWAYOUT;
struct ltq_wdt_hw {
int (*bootstatus_get)(struct device *dev);
};
struct ltq_wdt_priv {
struct watchdog_device wdt;
void __iomem *membase;
unsigned long clk_rate;
};
static u32 ltq_wdt_r32(struct ltq_wdt_priv *priv, u32 offset)
{
return __raw_readl(priv->membase + offset);
}
static void ltq_wdt_w32(struct ltq_wdt_priv *priv, u32 val, u32 offset)
{
__raw_writel(val, priv->membase + offset);
}
static void ltq_wdt_mask(struct ltq_wdt_priv *priv, u32 clear, u32 set,
u32 offset)
{
u32 val = ltq_wdt_r32(priv, offset);
val &= ~(clear);
val |= set;
ltq_wdt_w32(priv, val, offset);
}
static struct ltq_wdt_priv *ltq_wdt_get_priv(struct watchdog_device *wdt)
{
return container_of(wdt, struct ltq_wdt_priv, wdt);
}
static struct watchdog_info ltq_wdt_info = {
.options = WDIOF_MAGICCLOSE | WDIOF_SETTIMEOUT | WDIOF_KEEPALIVEPING |
WDIOF_CARDRESET,
.identity = "ltq_wdt",
};
static int ltq_wdt_start(struct watchdog_device *wdt)
{
struct ltq_wdt_priv *priv = ltq_wdt_get_priv(wdt);
u32 timeout;
timeout = wdt->timeout * priv->clk_rate;
ltq_wdt_mask(priv, LTQ_WDT_CR_PW_MASK, LTQ_WDT_CR_PW1, LTQ_WDT_CR);
/* write the second magic plus the configuration and new timeout */
ltq_wdt_mask(priv, LTQ_WDT_CR_PW_MASK | LTQ_WDT_CR_MAX_TIMEOUT,
LTQ_WDT_CR_GEN | LTQ_WDT_CR_PWL | LTQ_WDT_CR_CLKDIV |
LTQ_WDT_CR_PW2 | timeout,
LTQ_WDT_CR);
return 0;
}
static int ltq_wdt_stop(struct watchdog_device *wdt)
{
struct ltq_wdt_priv *priv = ltq_wdt_get_priv(wdt);
ltq_wdt_mask(priv, LTQ_WDT_CR_PW_MASK, LTQ_WDT_CR_PW1, LTQ_WDT_CR);
ltq_wdt_mask(priv, LTQ_WDT_CR_GEN | LTQ_WDT_CR_PW_MASK,
LTQ_WDT_CR_PW2, LTQ_WDT_CR);
return 0;
}
static int ltq_wdt_ping(struct watchdog_device *wdt)
{
struct ltq_wdt_priv *priv = ltq_wdt_get_priv(wdt);
u32 timeout;
timeout = wdt->timeout * priv->clk_rate;
ltq_wdt_mask(priv, LTQ_WDT_CR_PW_MASK, LTQ_WDT_CR_PW1, LTQ_WDT_CR);
/* write the second magic plus the configuration and new timeout */
ltq_wdt_mask(priv, LTQ_WDT_CR_PW_MASK | LTQ_WDT_CR_MAX_TIMEOUT,
LTQ_WDT_CR_PW2 | timeout, LTQ_WDT_CR);
return 0;
}
static unsigned int ltq_wdt_get_timeleft(struct watchdog_device *wdt)
{
struct ltq_wdt_priv *priv = ltq_wdt_get_priv(wdt);
u64 timeout;
timeout = ltq_wdt_r32(priv, LTQ_WDT_SR) & LTQ_WDT_SR_VALUE_MASK;
return do_div(timeout, priv->clk_rate);
}
static const struct watchdog_ops ltq_wdt_ops = {
.owner = THIS_MODULE,
.start = ltq_wdt_start,
.stop = ltq_wdt_stop,
.ping = ltq_wdt_ping,
.get_timeleft = ltq_wdt_get_timeleft,
};
static int ltq_wdt_xrx_bootstatus_get(struct device *dev)
{
struct regmap *rcu_regmap;
u32 val;
int err;
rcu_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "regmap");
if (IS_ERR(rcu_regmap))
return PTR_ERR(rcu_regmap);
err = regmap_read(rcu_regmap, LTQ_XRX_RCU_RST_STAT, &val);
if (err)
return err;
if (val & LTQ_XRX_RCU_RST_STAT_WDT)
return WDIOF_CARDRESET;
return 0;
}
static int ltq_wdt_falcon_bootstatus_get(struct device *dev)
{
struct regmap *rcu_regmap;
u32 val;
int err;
rcu_regmap = syscon_regmap_lookup_by_phandle(dev->of_node,
"lantiq,rcu");
if (IS_ERR(rcu_regmap))
return PTR_ERR(rcu_regmap);
err = regmap_read(rcu_regmap, LTQ_FALCON_SYS1_CPU0RS, &val);
if (err)
return err;
if ((val & LTQ_FALCON_SYS1_CPU0RS_MASK) == LTQ_FALCON_SYS1_CPU0RS_WDT)
return WDIOF_CARDRESET;
return 0;
}
static int ltq_wdt_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ltq_wdt_priv *priv;
struct watchdog_device *wdt;
struct clk *clk;
const struct ltq_wdt_hw *ltq_wdt_hw;
int ret;
u32 status;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->membase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->membase))
return PTR_ERR(priv->membase);
/* we do not need to enable the clock as it is always running */
clk = clk_get_io();
priv->clk_rate = clk_get_rate(clk) / LTQ_WDT_DIVIDER;
if (!priv->clk_rate) {
dev_err(dev, "clock rate less than divider %i\n",
LTQ_WDT_DIVIDER);
return -EINVAL;
}
wdt = &priv->wdt;
wdt->info = &ltq_wdt_info;
wdt->ops = &ltq_wdt_ops;
wdt->min_timeout = 1;
wdt->max_timeout = LTQ_WDT_CR_MAX_TIMEOUT / priv->clk_rate;
wdt->timeout = wdt->max_timeout;
wdt->parent = dev;
ltq_wdt_hw = of_device_get_match_data(dev);
if (ltq_wdt_hw && ltq_wdt_hw->bootstatus_get) {
ret = ltq_wdt_hw->bootstatus_get(dev);
if (ret >= 0)
wdt->bootstatus = ret;
}
watchdog_set_nowayout(wdt, nowayout);
watchdog_init_timeout(wdt, 0, dev);
status = ltq_wdt_r32(priv, LTQ_WDT_SR);
if (status & LTQ_WDT_SR_EN) {
/*
* If the watchdog is already running overwrite it with our
* new settings. Stop is not needed as the start call will
* replace all settings anyway.
*/
ltq_wdt_start(wdt);
set_bit(WDOG_HW_RUNNING, &wdt->status);
}
return devm_watchdog_register_device(dev, wdt);
}
static const struct ltq_wdt_hw ltq_wdt_xrx100 = {
.bootstatus_get = ltq_wdt_xrx_bootstatus_get,
};
static const struct ltq_wdt_hw ltq_wdt_falcon = {
.bootstatus_get = ltq_wdt_falcon_bootstatus_get,
};
static const struct of_device_id ltq_wdt_match[] = {
{ .compatible = "lantiq,wdt", .data = NULL },
{ .compatible = "lantiq,xrx100-wdt", .data = &ltq_wdt_xrx100 },
{ .compatible = "lantiq,falcon-wdt", .data = &ltq_wdt_falcon },
{},
};
MODULE_DEVICE_TABLE(of, ltq_wdt_match);
static struct platform_driver ltq_wdt_driver = {
.probe = ltq_wdt_probe,
.driver = {
.name = "wdt",
.of_match_table = ltq_wdt_match,
},
};
module_platform_driver(ltq_wdt_driver);
module_param(nowayout, bool, 0);
MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started");
MODULE_AUTHOR("John Crispin <john@phrozen.org>");
MODULE_DESCRIPTION("Lantiq SoC Watchdog");
MODULE_LICENSE("GPL");