| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * HiSilicon SoC Hardware event counters support |
| * |
| * Copyright (C) 2017 Hisilicon Limited |
| * Author: Anurup M <anurup.m@huawei.com> |
| * Shaokun Zhang <zhangshaokun@hisilicon.com> |
| * |
| * This code is based on the uncore PMUs like arm-cci and arm-ccn. |
| */ |
| #include <linux/bitmap.h> |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/local64.h> |
| |
| #include "hisi_uncore_pmu.h" |
| |
| #define HISI_GET_EVENTID(ev) (ev->hw.config_base & 0xff) |
| #define HISI_MAX_PERIOD(nr) (BIT_ULL(nr) - 1) |
| |
| /* |
| * PMU format attributes |
| */ |
| ssize_t hisi_format_sysfs_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct dev_ext_attribute *eattr; |
| |
| eattr = container_of(attr, struct dev_ext_attribute, attr); |
| |
| return sprintf(buf, "%s\n", (char *)eattr->var); |
| } |
| |
| /* |
| * PMU event attributes |
| */ |
| ssize_t hisi_event_sysfs_show(struct device *dev, |
| struct device_attribute *attr, char *page) |
| { |
| struct dev_ext_attribute *eattr; |
| |
| eattr = container_of(attr, struct dev_ext_attribute, attr); |
| |
| return sprintf(page, "config=0x%lx\n", (unsigned long)eattr->var); |
| } |
| |
| /* |
| * sysfs cpumask attributes. For uncore PMU, we only have a single CPU to show |
| */ |
| ssize_t hisi_cpumask_sysfs_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(dev_get_drvdata(dev)); |
| |
| return sprintf(buf, "%d\n", hisi_pmu->on_cpu); |
| } |
| |
| static bool hisi_validate_event_group(struct perf_event *event) |
| { |
| struct perf_event *sibling, *leader = event->group_leader; |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| /* Include count for the event */ |
| int counters = 1; |
| |
| if (!is_software_event(leader)) { |
| /* |
| * We must NOT create groups containing mixed PMUs, although |
| * software events are acceptable |
| */ |
| if (leader->pmu != event->pmu) |
| return false; |
| |
| /* Increment counter for the leader */ |
| if (leader != event) |
| counters++; |
| } |
| |
| for_each_sibling_event(sibling, event->group_leader) { |
| if (is_software_event(sibling)) |
| continue; |
| if (sibling->pmu != event->pmu) |
| return false; |
| /* Increment counter for each sibling */ |
| counters++; |
| } |
| |
| /* The group can not count events more than the counters in the HW */ |
| return counters <= hisi_pmu->num_counters; |
| } |
| |
| int hisi_uncore_pmu_counter_valid(struct hisi_pmu *hisi_pmu, int idx) |
| { |
| return idx >= 0 && idx < hisi_pmu->num_counters; |
| } |
| |
| int hisi_uncore_pmu_get_event_idx(struct perf_event *event) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| unsigned long *used_mask = hisi_pmu->pmu_events.used_mask; |
| u32 num_counters = hisi_pmu->num_counters; |
| int idx; |
| |
| idx = find_first_zero_bit(used_mask, num_counters); |
| if (idx == num_counters) |
| return -EAGAIN; |
| |
| set_bit(idx, used_mask); |
| |
| return idx; |
| } |
| |
| static void hisi_uncore_pmu_clear_event_idx(struct hisi_pmu *hisi_pmu, int idx) |
| { |
| if (!hisi_uncore_pmu_counter_valid(hisi_pmu, idx)) { |
| dev_err(hisi_pmu->dev, "Unsupported event index:%d!\n", idx); |
| return; |
| } |
| |
| clear_bit(idx, hisi_pmu->pmu_events.used_mask); |
| } |
| |
| int hisi_uncore_pmu_event_init(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct hisi_pmu *hisi_pmu; |
| |
| if (event->attr.type != event->pmu->type) |
| return -ENOENT; |
| |
| /* |
| * We do not support sampling as the counters are all |
| * shared by all CPU cores in a CPU die(SCCL). Also we |
| * do not support attach to a task(per-process mode) |
| */ |
| if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) |
| return -EOPNOTSUPP; |
| |
| /* |
| * The uncore counters not specific to any CPU, so cannot |
| * support per-task |
| */ |
| if (event->cpu < 0) |
| return -EINVAL; |
| |
| /* |
| * Validate if the events in group does not exceed the |
| * available counters in hardware. |
| */ |
| if (!hisi_validate_event_group(event)) |
| return -EINVAL; |
| |
| hisi_pmu = to_hisi_pmu(event->pmu); |
| if (event->attr.config > hisi_pmu->check_event) |
| return -EINVAL; |
| |
| if (hisi_pmu->on_cpu == -1) |
| return -EINVAL; |
| /* |
| * We don't assign an index until we actually place the event onto |
| * hardware. Use -1 to signify that we haven't decided where to put it |
| * yet. |
| */ |
| hwc->idx = -1; |
| hwc->config_base = event->attr.config; |
| |
| /* Enforce to use the same CPU for all events in this PMU */ |
| event->cpu = hisi_pmu->on_cpu; |
| |
| return 0; |
| } |
| |
| /* |
| * Set the counter to count the event that we're interested in, |
| * and enable interrupt and counter. |
| */ |
| static void hisi_uncore_pmu_enable_event(struct perf_event *event) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| hisi_pmu->ops->write_evtype(hisi_pmu, hwc->idx, |
| HISI_GET_EVENTID(event)); |
| |
| hisi_pmu->ops->enable_counter_int(hisi_pmu, hwc); |
| hisi_pmu->ops->enable_counter(hisi_pmu, hwc); |
| } |
| |
| /* |
| * Disable counter and interrupt. |
| */ |
| static void hisi_uncore_pmu_disable_event(struct perf_event *event) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| hisi_pmu->ops->disable_counter(hisi_pmu, hwc); |
| hisi_pmu->ops->disable_counter_int(hisi_pmu, hwc); |
| } |
| |
| void hisi_uncore_pmu_set_event_period(struct perf_event *event) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| /* |
| * The HiSilicon PMU counters support 32 bits or 48 bits, depending on |
| * the PMU. We reduce it to 2^(counter_bits - 1) to account for the |
| * extreme interrupt latency. So we could hopefully handle the overflow |
| * interrupt before another 2^(counter_bits - 1) events occur and the |
| * counter overtakes its previous value. |
| */ |
| u64 val = BIT_ULL(hisi_pmu->counter_bits - 1); |
| |
| local64_set(&hwc->prev_count, val); |
| /* Write start value to the hardware event counter */ |
| hisi_pmu->ops->write_counter(hisi_pmu, hwc, val); |
| } |
| |
| void hisi_uncore_pmu_event_update(struct perf_event *event) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| u64 delta, prev_raw_count, new_raw_count; |
| |
| do { |
| /* Read the count from the counter register */ |
| new_raw_count = hisi_pmu->ops->read_counter(hisi_pmu, hwc); |
| prev_raw_count = local64_read(&hwc->prev_count); |
| } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count); |
| /* |
| * compute the delta |
| */ |
| delta = (new_raw_count - prev_raw_count) & |
| HISI_MAX_PERIOD(hisi_pmu->counter_bits); |
| local64_add(delta, &event->count); |
| } |
| |
| void hisi_uncore_pmu_start(struct perf_event *event, int flags) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) |
| return; |
| |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| hwc->state = 0; |
| hisi_uncore_pmu_set_event_period(event); |
| |
| if (flags & PERF_EF_RELOAD) { |
| u64 prev_raw_count = local64_read(&hwc->prev_count); |
| |
| hisi_pmu->ops->write_counter(hisi_pmu, hwc, prev_raw_count); |
| } |
| |
| hisi_uncore_pmu_enable_event(event); |
| perf_event_update_userpage(event); |
| } |
| |
| void hisi_uncore_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| hisi_uncore_pmu_disable_event(event); |
| WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); |
| hwc->state |= PERF_HES_STOPPED; |
| |
| if (hwc->state & PERF_HES_UPTODATE) |
| return; |
| |
| /* Read hardware counter and update the perf counter statistics */ |
| hisi_uncore_pmu_event_update(event); |
| hwc->state |= PERF_HES_UPTODATE; |
| } |
| |
| int hisi_uncore_pmu_add(struct perf_event *event, int flags) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| |
| hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| |
| /* Get an available counter index for counting */ |
| idx = hisi_pmu->ops->get_event_idx(event); |
| if (idx < 0) |
| return idx; |
| |
| event->hw.idx = idx; |
| hisi_pmu->pmu_events.hw_events[idx] = event; |
| |
| if (flags & PERF_EF_START) |
| hisi_uncore_pmu_start(event, PERF_EF_RELOAD); |
| |
| return 0; |
| } |
| |
| void hisi_uncore_pmu_del(struct perf_event *event, int flags) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| hisi_uncore_pmu_stop(event, PERF_EF_UPDATE); |
| hisi_uncore_pmu_clear_event_idx(hisi_pmu, hwc->idx); |
| perf_event_update_userpage(event); |
| hisi_pmu->pmu_events.hw_events[hwc->idx] = NULL; |
| } |
| |
| void hisi_uncore_pmu_read(struct perf_event *event) |
| { |
| /* Read hardware counter and update the perf counter statistics */ |
| hisi_uncore_pmu_event_update(event); |
| } |
| |
| void hisi_uncore_pmu_enable(struct pmu *pmu) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu); |
| int enabled = bitmap_weight(hisi_pmu->pmu_events.used_mask, |
| hisi_pmu->num_counters); |
| |
| if (!enabled) |
| return; |
| |
| hisi_pmu->ops->start_counters(hisi_pmu); |
| } |
| |
| void hisi_uncore_pmu_disable(struct pmu *pmu) |
| { |
| struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu); |
| |
| hisi_pmu->ops->stop_counters(hisi_pmu); |
| } |
| |
| |
| /* |
| * The Super CPU Cluster (SCCL) and CPU Cluster (CCL) IDs can be |
| * determined from the MPIDR_EL1, but the encoding varies by CPU: |
| * |
| * - For MT variants of TSV110: |
| * SCCL is Aff2[7:3], CCL is Aff2[2:0] |
| * |
| * - For other MT parts: |
| * SCCL is Aff3[7:0], CCL is Aff2[7:0] |
| * |
| * - For non-MT parts: |
| * SCCL is Aff2[7:0], CCL is Aff1[7:0] |
| */ |
| static void hisi_read_sccl_and_ccl_id(int *scclp, int *cclp) |
| { |
| u64 mpidr = read_cpuid_mpidr(); |
| int aff3 = MPIDR_AFFINITY_LEVEL(mpidr, 3); |
| int aff2 = MPIDR_AFFINITY_LEVEL(mpidr, 2); |
| int aff1 = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| bool mt = mpidr & MPIDR_MT_BITMASK; |
| int sccl, ccl; |
| |
| if (mt && read_cpuid_part_number() == HISI_CPU_PART_TSV110) { |
| sccl = aff2 >> 3; |
| ccl = aff2 & 0x7; |
| } else if (mt) { |
| sccl = aff3; |
| ccl = aff2; |
| } else { |
| sccl = aff2; |
| ccl = aff1; |
| } |
| |
| if (scclp) |
| *scclp = sccl; |
| if (cclp) |
| *cclp = ccl; |
| } |
| |
| /* |
| * Check whether the CPU is associated with this uncore PMU |
| */ |
| static bool hisi_pmu_cpu_is_associated_pmu(struct hisi_pmu *hisi_pmu) |
| { |
| int sccl_id, ccl_id; |
| |
| if (hisi_pmu->ccl_id == -1) { |
| /* If CCL_ID is -1, the PMU only shares the same SCCL */ |
| hisi_read_sccl_and_ccl_id(&sccl_id, NULL); |
| |
| return sccl_id == hisi_pmu->sccl_id; |
| } |
| |
| hisi_read_sccl_and_ccl_id(&sccl_id, &ccl_id); |
| |
| return sccl_id == hisi_pmu->sccl_id && ccl_id == hisi_pmu->ccl_id; |
| } |
| |
| int hisi_uncore_pmu_online_cpu(unsigned int cpu, struct hlist_node *node) |
| { |
| struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu, |
| node); |
| |
| if (!hisi_pmu_cpu_is_associated_pmu(hisi_pmu)) |
| return 0; |
| |
| cpumask_set_cpu(cpu, &hisi_pmu->associated_cpus); |
| |
| /* If another CPU is already managing this PMU, simply return. */ |
| if (hisi_pmu->on_cpu != -1) |
| return 0; |
| |
| /* Use this CPU in cpumask for event counting */ |
| hisi_pmu->on_cpu = cpu; |
| |
| /* Overflow interrupt also should use the same CPU */ |
| WARN_ON(irq_set_affinity(hisi_pmu->irq, cpumask_of(cpu))); |
| |
| return 0; |
| } |
| |
| int hisi_uncore_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node) |
| { |
| struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu, |
| node); |
| cpumask_t pmu_online_cpus; |
| unsigned int target; |
| |
| if (!cpumask_test_and_clear_cpu(cpu, &hisi_pmu->associated_cpus)) |
| return 0; |
| |
| /* Nothing to do if this CPU doesn't own the PMU */ |
| if (hisi_pmu->on_cpu != cpu) |
| return 0; |
| |
| /* Give up ownership of the PMU */ |
| hisi_pmu->on_cpu = -1; |
| |
| /* Choose a new CPU to migrate ownership of the PMU to */ |
| cpumask_and(&pmu_online_cpus, &hisi_pmu->associated_cpus, |
| cpu_online_mask); |
| target = cpumask_any_but(&pmu_online_cpus, cpu); |
| if (target >= nr_cpu_ids) |
| return 0; |
| |
| perf_pmu_migrate_context(&hisi_pmu->pmu, cpu, target); |
| /* Use this CPU for event counting */ |
| hisi_pmu->on_cpu = target; |
| WARN_ON(irq_set_affinity(hisi_pmu->irq, cpumask_of(target))); |
| |
| return 0; |
| } |