| /* |
| Montage Technology TS2020 - Silicon Tuner driver |
| Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com> |
| |
| Copyright (C) 2009-2012 TurboSight.com |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <media/dvb_frontend.h> |
| #include "ts2020.h" |
| #include <linux/regmap.h> |
| #include <linux/math64.h> |
| |
| #define TS2020_XTAL_FREQ 27000 /* in kHz */ |
| #define FREQ_OFFSET_LOW_SYM_RATE 3000 |
| |
| struct ts2020_priv { |
| struct i2c_client *client; |
| struct mutex regmap_mutex; |
| struct regmap_config regmap_config; |
| struct regmap *regmap; |
| struct dvb_frontend *fe; |
| struct delayed_work stat_work; |
| int (*get_agc_pwm)(struct dvb_frontend *fe, u8 *_agc_pwm); |
| /* i2c details */ |
| struct i2c_adapter *i2c; |
| int i2c_address; |
| bool loop_through:1; |
| u8 clk_out:2; |
| u8 clk_out_div:5; |
| bool dont_poll:1; |
| u32 frequency_div; /* LO output divider switch frequency */ |
| u32 frequency_khz; /* actual used LO frequency */ |
| #define TS2020_M88TS2020 0 |
| #define TS2020_M88TS2022 1 |
| u8 tuner; |
| }; |
| |
| struct ts2020_reg_val { |
| u8 reg; |
| u8 val; |
| }; |
| |
| static void ts2020_stat_work(struct work_struct *work); |
| |
| static void ts2020_release(struct dvb_frontend *fe) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| struct i2c_client *client = priv->client; |
| |
| dev_dbg(&client->dev, "\n"); |
| |
| i2c_unregister_device(client); |
| } |
| |
| static int ts2020_sleep(struct dvb_frontend *fe) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| int ret; |
| u8 u8tmp; |
| |
| if (priv->tuner == TS2020_M88TS2020) |
| u8tmp = 0x0a; /* XXX: probably wrong */ |
| else |
| u8tmp = 0x00; |
| |
| ret = regmap_write(priv->regmap, u8tmp, 0x00); |
| if (ret < 0) |
| return ret; |
| |
| /* stop statistics polling */ |
| if (!priv->dont_poll) |
| cancel_delayed_work_sync(&priv->stat_work); |
| return 0; |
| } |
| |
| static int ts2020_init(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| struct ts2020_priv *priv = fe->tuner_priv; |
| int i; |
| u8 u8tmp; |
| |
| if (priv->tuner == TS2020_M88TS2020) { |
| regmap_write(priv->regmap, 0x42, 0x73); |
| regmap_write(priv->regmap, 0x05, priv->clk_out_div); |
| regmap_write(priv->regmap, 0x20, 0x27); |
| regmap_write(priv->regmap, 0x07, 0x02); |
| regmap_write(priv->regmap, 0x11, 0xff); |
| regmap_write(priv->regmap, 0x60, 0xf9); |
| regmap_write(priv->regmap, 0x08, 0x01); |
| regmap_write(priv->regmap, 0x00, 0x41); |
| } else { |
| static const struct ts2020_reg_val reg_vals[] = { |
| {0x7d, 0x9d}, |
| {0x7c, 0x9a}, |
| {0x7a, 0x76}, |
| {0x3b, 0x01}, |
| {0x63, 0x88}, |
| {0x61, 0x85}, |
| {0x22, 0x30}, |
| {0x30, 0x40}, |
| {0x20, 0x23}, |
| {0x24, 0x02}, |
| {0x12, 0xa0}, |
| }; |
| |
| regmap_write(priv->regmap, 0x00, 0x01); |
| regmap_write(priv->regmap, 0x00, 0x03); |
| |
| switch (priv->clk_out) { |
| case TS2020_CLK_OUT_DISABLED: |
| u8tmp = 0x60; |
| break; |
| case TS2020_CLK_OUT_ENABLED: |
| u8tmp = 0x70; |
| regmap_write(priv->regmap, 0x05, priv->clk_out_div); |
| break; |
| case TS2020_CLK_OUT_ENABLED_XTALOUT: |
| u8tmp = 0x6c; |
| break; |
| default: |
| u8tmp = 0x60; |
| break; |
| } |
| |
| regmap_write(priv->regmap, 0x42, u8tmp); |
| |
| if (priv->loop_through) |
| u8tmp = 0xec; |
| else |
| u8tmp = 0x6c; |
| |
| regmap_write(priv->regmap, 0x62, u8tmp); |
| |
| for (i = 0; i < ARRAY_SIZE(reg_vals); i++) |
| regmap_write(priv->regmap, reg_vals[i].reg, |
| reg_vals[i].val); |
| } |
| |
| /* Initialise v5 stats here */ |
| c->strength.len = 1; |
| c->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| c->strength.stat[0].uvalue = 0; |
| |
| /* Start statistics polling by invoking the work function */ |
| ts2020_stat_work(&priv->stat_work.work); |
| return 0; |
| } |
| |
| static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| int ret; |
| ret = regmap_write(priv->regmap, 0x51, 0x1f - offset); |
| ret |= regmap_write(priv->regmap, 0x51, 0x1f); |
| ret |= regmap_write(priv->regmap, 0x50, offset); |
| ret |= regmap_write(priv->regmap, 0x50, 0x00); |
| msleep(20); |
| return ret; |
| } |
| |
| static int ts2020_set_tuner_rf(struct dvb_frontend *fe) |
| { |
| struct ts2020_priv *dev = fe->tuner_priv; |
| int ret; |
| unsigned int utmp; |
| |
| ret = regmap_read(dev->regmap, 0x3d, &utmp); |
| utmp &= 0x7f; |
| if (utmp < 0x16) |
| utmp = 0xa1; |
| else if (utmp == 0x16) |
| utmp = 0x99; |
| else |
| utmp = 0xf9; |
| |
| regmap_write(dev->regmap, 0x60, utmp); |
| ret = ts2020_tuner_gate_ctrl(fe, 0x08); |
| |
| return ret; |
| } |
| |
| static int ts2020_set_params(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| struct ts2020_priv *priv = fe->tuner_priv; |
| int ret; |
| unsigned int utmp; |
| u32 f3db, gdiv28; |
| u16 u16tmp, value, lpf_coeff; |
| u8 buf[3], reg10, lpf_mxdiv, mlpf_max, mlpf_min, nlpf; |
| unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n; |
| unsigned int frequency_khz = c->frequency; |
| |
| /* |
| * Integer-N PLL synthesizer |
| * kHz is used for all calculations to keep calculations within 32-bit |
| */ |
| f_ref_khz = TS2020_XTAL_FREQ; |
| div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000); |
| |
| /* select LO output divider */ |
| if (frequency_khz < priv->frequency_div) { |
| div_out = 4; |
| reg10 = 0x10; |
| } else { |
| div_out = 2; |
| reg10 = 0x00; |
| } |
| |
| f_vco_khz = frequency_khz * div_out; |
| pll_n = f_vco_khz * div_ref / f_ref_khz; |
| pll_n += pll_n % 2; |
| priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out; |
| |
| pr_debug("frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n", |
| priv->frequency_khz, priv->frequency_khz - c->frequency, |
| f_vco_khz, pll_n, div_ref, div_out); |
| |
| if (priv->tuner == TS2020_M88TS2020) { |
| lpf_coeff = 2766; |
| reg10 |= 0x01; |
| ret = regmap_write(priv->regmap, 0x10, reg10); |
| } else { |
| lpf_coeff = 3200; |
| reg10 |= 0x0b; |
| ret = regmap_write(priv->regmap, 0x10, reg10); |
| ret |= regmap_write(priv->regmap, 0x11, 0x40); |
| } |
| |
| u16tmp = pll_n - 1024; |
| buf[0] = (u16tmp >> 8) & 0xff; |
| buf[1] = (u16tmp >> 0) & 0xff; |
| buf[2] = div_ref - 8; |
| |
| ret |= regmap_write(priv->regmap, 0x01, buf[0]); |
| ret |= regmap_write(priv->regmap, 0x02, buf[1]); |
| ret |= regmap_write(priv->regmap, 0x03, buf[2]); |
| |
| ret |= ts2020_tuner_gate_ctrl(fe, 0x10); |
| if (ret < 0) |
| return -ENODEV; |
| |
| ret |= ts2020_tuner_gate_ctrl(fe, 0x08); |
| |
| /* Tuner RF */ |
| if (priv->tuner == TS2020_M88TS2020) |
| ret |= ts2020_set_tuner_rf(fe); |
| |
| gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000; |
| ret |= regmap_write(priv->regmap, 0x04, gdiv28 & 0xff); |
| ret |= ts2020_tuner_gate_ctrl(fe, 0x04); |
| if (ret < 0) |
| return -ENODEV; |
| |
| if (priv->tuner == TS2020_M88TS2022) { |
| ret = regmap_write(priv->regmap, 0x25, 0x00); |
| ret |= regmap_write(priv->regmap, 0x27, 0x70); |
| ret |= regmap_write(priv->regmap, 0x41, 0x09); |
| ret |= regmap_write(priv->regmap, 0x08, 0x0b); |
| if (ret < 0) |
| return -ENODEV; |
| } |
| |
| regmap_read(priv->regmap, 0x26, &utmp); |
| value = utmp; |
| |
| f3db = (c->bandwidth_hz / 1000 / 2) + 2000; |
| f3db += FREQ_OFFSET_LOW_SYM_RATE; /* FIXME: ~always too wide filter */ |
| f3db = clamp(f3db, 7000U, 40000U); |
| |
| gdiv28 = gdiv28 * 207 / (value * 2 + 151); |
| mlpf_max = gdiv28 * 135 / 100; |
| mlpf_min = gdiv28 * 78 / 100; |
| if (mlpf_max > 63) |
| mlpf_max = 63; |
| |
| nlpf = (f3db * gdiv28 * 2 / lpf_coeff / |
| (TS2020_XTAL_FREQ / 1000) + 1) / 2; |
| if (nlpf > 23) |
| nlpf = 23; |
| if (nlpf < 1) |
| nlpf = 1; |
| |
| lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) |
| * lpf_coeff * 2 / f3db + 1) / 2; |
| |
| if (lpf_mxdiv < mlpf_min) { |
| nlpf++; |
| lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) |
| * lpf_coeff * 2 / f3db + 1) / 2; |
| } |
| |
| if (lpf_mxdiv > mlpf_max) |
| lpf_mxdiv = mlpf_max; |
| |
| ret = regmap_write(priv->regmap, 0x04, lpf_mxdiv); |
| ret |= regmap_write(priv->regmap, 0x06, nlpf); |
| |
| ret |= ts2020_tuner_gate_ctrl(fe, 0x04); |
| |
| ret |= ts2020_tuner_gate_ctrl(fe, 0x01); |
| |
| msleep(80); |
| |
| return (ret < 0) ? -EINVAL : 0; |
| } |
| |
| static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| |
| *frequency = priv->frequency_khz; |
| return 0; |
| } |
| |
| static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) |
| { |
| *frequency = 0; /* Zero-IF */ |
| return 0; |
| } |
| |
| /* |
| * Get the tuner gain. |
| * @fe: The front end for which we're determining the gain |
| * @v_agc: The voltage of the AGC from the demodulator (0-2600mV) |
| * @_gain: Where to store the gain (in 0.001dB units) |
| * |
| * Returns 0 or a negative error code. |
| */ |
| static int ts2020_read_tuner_gain(struct dvb_frontend *fe, unsigned v_agc, |
| __s64 *_gain) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| unsigned long gain1, gain2, gain3; |
| unsigned utmp; |
| int ret; |
| |
| /* Read the RF gain */ |
| ret = regmap_read(priv->regmap, 0x3d, &utmp); |
| if (ret < 0) |
| return ret; |
| gain1 = utmp & 0x1f; |
| |
| /* Read the baseband gain */ |
| ret = regmap_read(priv->regmap, 0x21, &utmp); |
| if (ret < 0) |
| return ret; |
| gain2 = utmp & 0x1f; |
| |
| switch (priv->tuner) { |
| case TS2020_M88TS2020: |
| gain1 = clamp_t(long, gain1, 0, 15); |
| gain2 = clamp_t(long, gain2, 0, 13); |
| v_agc = clamp_t(long, v_agc, 400, 1100); |
| |
| *_gain = -(gain1 * 2330 + |
| gain2 * 3500 + |
| v_agc * 24 / 10 * 10 + |
| 10000); |
| /* gain in range -19600 to -116850 in units of 0.001dB */ |
| break; |
| |
| case TS2020_M88TS2022: |
| ret = regmap_read(priv->regmap, 0x66, &utmp); |
| if (ret < 0) |
| return ret; |
| gain3 = (utmp >> 3) & 0x07; |
| |
| gain1 = clamp_t(long, gain1, 0, 15); |
| gain2 = clamp_t(long, gain2, 2, 16); |
| gain3 = clamp_t(long, gain3, 0, 6); |
| v_agc = clamp_t(long, v_agc, 600, 1600); |
| |
| *_gain = -(gain1 * 2650 + |
| gain2 * 3380 + |
| gain3 * 2850 + |
| v_agc * 176 / 100 * 10 - |
| 30000); |
| /* gain in range -47320 to -158950 in units of 0.001dB */ |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Get the AGC information from the demodulator and use that to calculate the |
| * tuner gain. |
| */ |
| static int ts2020_get_tuner_gain(struct dvb_frontend *fe, __s64 *_gain) |
| { |
| struct ts2020_priv *priv = fe->tuner_priv; |
| int v_agc = 0, ret; |
| u8 agc_pwm; |
| |
| /* Read the AGC PWM rate from the demodulator */ |
| if (priv->get_agc_pwm) { |
| ret = priv->get_agc_pwm(fe, &agc_pwm); |
| if (ret < 0) |
| return ret; |
| |
| switch (priv->tuner) { |
| case TS2020_M88TS2020: |
| v_agc = (int)agc_pwm * 20 - 1166; |
| break; |
| case TS2020_M88TS2022: |
| v_agc = (int)agc_pwm * 16 - 670; |
| break; |
| } |
| |
| if (v_agc < 0) |
| v_agc = 0; |
| } |
| |
| return ts2020_read_tuner_gain(fe, v_agc, _gain); |
| } |
| |
| /* |
| * Gather statistics on a regular basis |
| */ |
| static void ts2020_stat_work(struct work_struct *work) |
| { |
| struct ts2020_priv *priv = container_of(work, struct ts2020_priv, |
| stat_work.work); |
| struct i2c_client *client = priv->client; |
| struct dtv_frontend_properties *c = &priv->fe->dtv_property_cache; |
| int ret; |
| |
| dev_dbg(&client->dev, "\n"); |
| |
| ret = ts2020_get_tuner_gain(priv->fe, &c->strength.stat[0].svalue); |
| if (ret < 0) |
| goto err; |
| |
| c->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| |
| if (!priv->dont_poll) |
| schedule_delayed_work(&priv->stat_work, msecs_to_jiffies(2000)); |
| return; |
| err: |
| dev_dbg(&client->dev, "failed=%d\n", ret); |
| } |
| |
| /* |
| * Read TS2020 signal strength in v3 format. |
| */ |
| static int ts2020_read_signal_strength(struct dvb_frontend *fe, |
| u16 *_signal_strength) |
| { |
| struct dtv_frontend_properties *c = &fe->dtv_property_cache; |
| struct ts2020_priv *priv = fe->tuner_priv; |
| unsigned strength; |
| __s64 gain; |
| |
| if (priv->dont_poll) |
| ts2020_stat_work(&priv->stat_work.work); |
| |
| if (c->strength.stat[0].scale == FE_SCALE_NOT_AVAILABLE) { |
| *_signal_strength = 0; |
| return 0; |
| } |
| |
| gain = c->strength.stat[0].svalue; |
| |
| /* Calculate the signal strength based on the total gain of the tuner */ |
| if (gain < -85000) |
| /* 0%: no signal or weak signal */ |
| strength = 0; |
| else if (gain < -65000) |
| /* 0% - 60%: weak signal */ |
| strength = 0 + div64_s64((85000 + gain) * 3, 1000); |
| else if (gain < -45000) |
| /* 60% - 90%: normal signal */ |
| strength = 60 + div64_s64((65000 + gain) * 3, 2000); |
| else |
| /* 90% - 99%: strong signal */ |
| strength = 90 + div64_s64((45000 + gain), 5000); |
| |
| *_signal_strength = strength * 65535 / 100; |
| return 0; |
| } |
| |
| static const struct dvb_tuner_ops ts2020_tuner_ops = { |
| .info = { |
| .name = "TS2020", |
| .frequency_min = 950000, |
| .frequency_max = 2150000 |
| }, |
| .init = ts2020_init, |
| .release = ts2020_release, |
| .sleep = ts2020_sleep, |
| .set_params = ts2020_set_params, |
| .get_frequency = ts2020_get_frequency, |
| .get_if_frequency = ts2020_get_if_frequency, |
| .get_rf_strength = ts2020_read_signal_strength, |
| }; |
| |
| struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, |
| const struct ts2020_config *config, |
| struct i2c_adapter *i2c) |
| { |
| struct i2c_client *client; |
| struct i2c_board_info board_info; |
| |
| /* This is only used by ts2020_probe() so can be on the stack */ |
| struct ts2020_config pdata; |
| |
| memcpy(&pdata, config, sizeof(pdata)); |
| pdata.fe = fe; |
| pdata.attach_in_use = true; |
| |
| memset(&board_info, 0, sizeof(board_info)); |
| strlcpy(board_info.type, "ts2020", I2C_NAME_SIZE); |
| board_info.addr = config->tuner_address; |
| board_info.platform_data = &pdata; |
| client = i2c_new_device(i2c, &board_info); |
| if (!client || !client->dev.driver) |
| return NULL; |
| |
| return fe; |
| } |
| EXPORT_SYMBOL(ts2020_attach); |
| |
| /* |
| * We implement own regmap locking due to legacy DVB attach which uses frontend |
| * gate control callback to control I2C bus access. We can open / close gate and |
| * serialize whole open / I2C-operation / close sequence at the same. |
| */ |
| static void ts2020_regmap_lock(void *__dev) |
| { |
| struct ts2020_priv *dev = __dev; |
| |
| mutex_lock(&dev->regmap_mutex); |
| if (dev->fe->ops.i2c_gate_ctrl) |
| dev->fe->ops.i2c_gate_ctrl(dev->fe, 1); |
| } |
| |
| static void ts2020_regmap_unlock(void *__dev) |
| { |
| struct ts2020_priv *dev = __dev; |
| |
| if (dev->fe->ops.i2c_gate_ctrl) |
| dev->fe->ops.i2c_gate_ctrl(dev->fe, 0); |
| mutex_unlock(&dev->regmap_mutex); |
| } |
| |
| static int ts2020_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct ts2020_config *pdata = client->dev.platform_data; |
| struct dvb_frontend *fe = pdata->fe; |
| struct ts2020_priv *dev; |
| int ret; |
| u8 u8tmp; |
| unsigned int utmp; |
| char *chip_str; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| /* create regmap */ |
| mutex_init(&dev->regmap_mutex); |
| dev->regmap_config.reg_bits = 8, |
| dev->regmap_config.val_bits = 8, |
| dev->regmap_config.lock = ts2020_regmap_lock, |
| dev->regmap_config.unlock = ts2020_regmap_unlock, |
| dev->regmap_config.lock_arg = dev, |
| dev->regmap = regmap_init_i2c(client, &dev->regmap_config); |
| if (IS_ERR(dev->regmap)) { |
| ret = PTR_ERR(dev->regmap); |
| goto err_kfree; |
| } |
| |
| dev->i2c = client->adapter; |
| dev->i2c_address = client->addr; |
| dev->loop_through = pdata->loop_through; |
| dev->clk_out = pdata->clk_out; |
| dev->clk_out_div = pdata->clk_out_div; |
| dev->dont_poll = pdata->dont_poll; |
| dev->frequency_div = pdata->frequency_div; |
| dev->fe = fe; |
| dev->get_agc_pwm = pdata->get_agc_pwm; |
| fe->tuner_priv = dev; |
| dev->client = client; |
| INIT_DELAYED_WORK(&dev->stat_work, ts2020_stat_work); |
| |
| /* check if the tuner is there */ |
| ret = regmap_read(dev->regmap, 0x00, &utmp); |
| if (ret) |
| goto err_regmap_exit; |
| |
| if ((utmp & 0x03) == 0x00) { |
| ret = regmap_write(dev->regmap, 0x00, 0x01); |
| if (ret) |
| goto err_regmap_exit; |
| |
| usleep_range(2000, 50000); |
| } |
| |
| ret = regmap_write(dev->regmap, 0x00, 0x03); |
| if (ret) |
| goto err_regmap_exit; |
| |
| usleep_range(2000, 50000); |
| |
| ret = regmap_read(dev->regmap, 0x00, &utmp); |
| if (ret) |
| goto err_regmap_exit; |
| |
| dev_dbg(&client->dev, "chip_id=%02x\n", utmp); |
| |
| switch (utmp) { |
| case 0x01: |
| case 0x41: |
| case 0x81: |
| dev->tuner = TS2020_M88TS2020; |
| chip_str = "TS2020"; |
| if (!dev->frequency_div) |
| dev->frequency_div = 1060000; |
| break; |
| case 0xc3: |
| case 0x83: |
| dev->tuner = TS2020_M88TS2022; |
| chip_str = "TS2022"; |
| if (!dev->frequency_div) |
| dev->frequency_div = 1103000; |
| break; |
| default: |
| ret = -ENODEV; |
| goto err_regmap_exit; |
| } |
| |
| if (dev->tuner == TS2020_M88TS2022) { |
| switch (dev->clk_out) { |
| case TS2020_CLK_OUT_DISABLED: |
| u8tmp = 0x60; |
| break; |
| case TS2020_CLK_OUT_ENABLED: |
| u8tmp = 0x70; |
| ret = regmap_write(dev->regmap, 0x05, dev->clk_out_div); |
| if (ret) |
| goto err_regmap_exit; |
| break; |
| case TS2020_CLK_OUT_ENABLED_XTALOUT: |
| u8tmp = 0x6c; |
| break; |
| default: |
| ret = -EINVAL; |
| goto err_regmap_exit; |
| } |
| |
| ret = regmap_write(dev->regmap, 0x42, u8tmp); |
| if (ret) |
| goto err_regmap_exit; |
| |
| if (dev->loop_through) |
| u8tmp = 0xec; |
| else |
| u8tmp = 0x6c; |
| |
| ret = regmap_write(dev->regmap, 0x62, u8tmp); |
| if (ret) |
| goto err_regmap_exit; |
| } |
| |
| /* sleep */ |
| ret = regmap_write(dev->regmap, 0x00, 0x00); |
| if (ret) |
| goto err_regmap_exit; |
| |
| dev_info(&client->dev, |
| "Montage Technology %s successfully identified\n", chip_str); |
| |
| memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, |
| sizeof(struct dvb_tuner_ops)); |
| if (!pdata->attach_in_use) |
| fe->ops.tuner_ops.release = NULL; |
| |
| i2c_set_clientdata(client, dev); |
| return 0; |
| err_regmap_exit: |
| regmap_exit(dev->regmap); |
| err_kfree: |
| kfree(dev); |
| err: |
| dev_dbg(&client->dev, "failed=%d\n", ret); |
| return ret; |
| } |
| |
| static int ts2020_remove(struct i2c_client *client) |
| { |
| struct ts2020_priv *dev = i2c_get_clientdata(client); |
| |
| dev_dbg(&client->dev, "\n"); |
| |
| /* stop statistics polling */ |
| if (!dev->dont_poll) |
| cancel_delayed_work_sync(&dev->stat_work); |
| |
| regmap_exit(dev->regmap); |
| kfree(dev); |
| return 0; |
| } |
| |
| static const struct i2c_device_id ts2020_id_table[] = { |
| {"ts2020", 0}, |
| {"ts2022", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(i2c, ts2020_id_table); |
| |
| static struct i2c_driver ts2020_driver = { |
| .driver = { |
| .name = "ts2020", |
| }, |
| .probe = ts2020_probe, |
| .remove = ts2020_remove, |
| .id_table = ts2020_id_table, |
| }; |
| |
| module_i2c_driver(ts2020_driver); |
| |
| MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>"); |
| MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); |
| MODULE_LICENSE("GPL"); |