blob: 6264bc66a4fc9aa3472ab33f09f472cf6f4a78d2 [file] [log] [blame]
/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <net/addrconf.h>
#include <net/bonding.h>
#include <linux/uaccess.h>
#include <linux/crash_dump.h>
#include <net/udp_tunnel.h>
#include <net/xfrm.h>
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
#include <net/tls.h>
#endif
#include "cxgb4.h"
#include "cxgb4_filter.h"
#include "t4_regs.h"
#include "t4_values.h"
#include "t4_msg.h"
#include "t4fw_api.h"
#include "t4fw_version.h"
#include "cxgb4_dcb.h"
#include "srq.h"
#include "cxgb4_debugfs.h"
#include "clip_tbl.h"
#include "l2t.h"
#include "smt.h"
#include "sched.h"
#include "cxgb4_tc_u32.h"
#include "cxgb4_tc_flower.h"
#include "cxgb4_tc_mqprio.h"
#include "cxgb4_tc_matchall.h"
#include "cxgb4_ptp.h"
#include "cxgb4_cudbg.h"
char cxgb4_driver_name[] = KBUILD_MODNAME;
#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
/* Macros needed to support the PCI Device ID Table ...
*/
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
static const struct pci_device_id cxgb4_pci_tbl[] = {
#define CXGB4_UNIFIED_PF 0x4
#define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
* called for both.
*/
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
#define CH_PCI_ID_TABLE_ENTRY(devid) \
{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
{ 0, } \
}
#include "t4_pci_id_tbl.h"
#define FW4_FNAME "cxgb4/t4fw.bin"
#define FW5_FNAME "cxgb4/t5fw.bin"
#define FW6_FNAME "cxgb4/t6fw.bin"
#define FW4_CFNAME "cxgb4/t4-config.txt"
#define FW5_CFNAME "cxgb4/t5-config.txt"
#define FW6_CFNAME "cxgb4/t6-config.txt"
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
MODULE_FIRMWARE(FW4_FNAME);
MODULE_FIRMWARE(FW5_FNAME);
MODULE_FIRMWARE(FW6_FNAME);
/*
* The driver uses the best interrupt scheme available on a platform in the
* order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
* of these schemes the driver may consider as follows:
*
* msi = 2: choose from among all three options
* msi = 1: only consider MSI and INTx interrupts
* msi = 0: force INTx interrupts
*/
static int msi = 2;
module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
/*
* Normally we tell the chip to deliver Ingress Packets into our DMA buffers
* offset by 2 bytes in order to have the IP headers line up on 4-byte
* boundaries. This is a requirement for many architectures which will throw
* a machine check fault if an attempt is made to access one of the 4-byte IP
* header fields on a non-4-byte boundary. And it's a major performance issue
* even on some architectures which allow it like some implementations of the
* x86 ISA. However, some architectures don't mind this and for some very
* edge-case performance sensitive applications (like forwarding large volumes
* of small packets), setting this DMA offset to 0 will decrease the number of
* PCI-E Bus transfers enough to measurably affect performance.
*/
static int rx_dma_offset = 2;
/* TX Queue select used to determine what algorithm to use for selecting TX
* queue. Select between the kernel provided function (select_queue=0) or user
* cxgb_select_queue function (select_queue=1)
*
* Default: select_queue=0
*/
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
"Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
static struct dentry *cxgb4_debugfs_root;
LIST_HEAD(adapter_list);
DEFINE_MUTEX(uld_mutex);
LIST_HEAD(uld_list);
static int cfg_queues(struct adapter *adap);
static void link_report(struct net_device *dev)
{
if (!netif_carrier_ok(dev))
netdev_info(dev, "link down\n");
else {
static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
const char *s;
const struct port_info *p = netdev_priv(dev);
switch (p->link_cfg.speed) {
case 100:
s = "100Mbps";
break;
case 1000:
s = "1Gbps";
break;
case 10000:
s = "10Gbps";
break;
case 25000:
s = "25Gbps";
break;
case 40000:
s = "40Gbps";
break;
case 50000:
s = "50Gbps";
break;
case 100000:
s = "100Gbps";
break;
default:
pr_info("%s: unsupported speed: %d\n",
dev->name, p->link_cfg.speed);
return;
}
netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
fc[p->link_cfg.fc]);
}
}
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
int i;
/* We use a simple mapping of Port TX Queue Index to DCB
* Priority when we're enabling DCB.
*/
for (i = 0; i < pi->nqsets; i++, txq++) {
u32 name, value;
int err;
name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
FW_PARAMS_PARAM_X_V(
FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
value = enable ? i : 0xffffffff;
/* Since we can be called while atomic (from "interrupt
* level") we need to issue the Set Parameters Commannd
* without sleeping (timeout < 0).
*/
err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
&name, &value,
-FW_CMD_MAX_TIMEOUT);
if (err)
dev_err(adap->pdev_dev,
"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
enable ? "set" : "unset", pi->port_id, i, -err);
else
txq->dcb_prio = enable ? value : 0;
}
}
int cxgb4_dcb_enabled(const struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
if (!pi->dcb.enabled)
return 0;
return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
(pi->dcb.state == CXGB4_DCB_STATE_HOST));
}
#endif /* CONFIG_CHELSIO_T4_DCB */
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
struct net_device *dev = adapter->port[port_id];
/* Skip changes from disabled ports. */
if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
if (link_stat)
netif_carrier_on(dev);
else {
#ifdef CONFIG_CHELSIO_T4_DCB
if (cxgb4_dcb_enabled(dev)) {
cxgb4_dcb_reset(dev);
dcb_tx_queue_prio_enable(dev, false);
}
#endif /* CONFIG_CHELSIO_T4_DCB */
netif_carrier_off(dev);
}
link_report(dev);
}
}
void t4_os_portmod_changed(struct adapter *adap, int port_id)
{
static const char *mod_str[] = {
NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
};
struct net_device *dev = adap->port[port_id];
struct port_info *pi = netdev_priv(dev);
if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
netdev_info(dev, "port module unplugged\n");
else if (pi->mod_type < ARRAY_SIZE(mod_str))
netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
netdev_info(dev, "%s: unsupported port module inserted\n",
dev->name);
else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
netdev_info(dev, "%s: unknown port module inserted\n",
dev->name);
else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
netdev_info(dev, "%s: transceiver module error\n", dev->name);
else
netdev_info(dev, "%s: unknown module type %d inserted\n",
dev->name, pi->mod_type);
/* If the interface is running, then we'll need any "sticky" Link
* Parameters redone with a new Transceiver Module.
*/
pi->link_cfg.redo_l1cfg = netif_running(dev);
}
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
/*
* usecs to sleep while draining the dbfifo
*/
static int dbfifo_drain_delay = 1000;
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
"usecs to sleep while draining the dbfifo");
static inline int cxgb4_set_addr_hash(struct port_info *pi)
{
struct adapter *adap = pi->adapter;
u64 vec = 0;
bool ucast = false;
struct hash_mac_addr *entry;
/* Calculate the hash vector for the updated list and program it */
list_for_each_entry(entry, &adap->mac_hlist, list) {
ucast |= is_unicast_ether_addr(entry->addr);
vec |= (1ULL << hash_mac_addr(entry->addr));
}
return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
vec, false);
}
static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adap = pi->adapter;
int ret;
u64 mhash = 0;
u64 uhash = 0;
/* idx stores the index of allocated filters,
* its size should be modified based on the number of
* MAC addresses that we allocate filters for
*/
u16 idx[1] = {};
bool free = false;
bool ucast = is_unicast_ether_addr(mac_addr);
const u8 *maclist[1] = {mac_addr};
struct hash_mac_addr *new_entry;
ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
idx, ucast ? &uhash : &mhash, false);
if (ret < 0)
goto out;
/* if hash != 0, then add the addr to hash addr list
* so on the end we will calculate the hash for the
* list and program it
*/
if (uhash || mhash) {
new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
if (!new_entry)
return -ENOMEM;
ether_addr_copy(new_entry->addr, mac_addr);
list_add_tail(&new_entry->list, &adap->mac_hlist);
ret = cxgb4_set_addr_hash(pi);
}
out:
return ret < 0 ? ret : 0;
}
static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adap = pi->adapter;
int ret;
const u8 *maclist[1] = {mac_addr};
struct hash_mac_addr *entry, *tmp;
/* If the MAC address to be removed is in the hash addr
* list, delete it from the list and update hash vector
*/
list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
if (ether_addr_equal(entry->addr, mac_addr)) {
list_del(&entry->list);
kfree(entry);
return cxgb4_set_addr_hash(pi);
}
}
ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
return ret < 0 ? -EINVAL : 0;
}
/*
* Set Rx properties of a port, such as promiscruity, address filters, and MTU.
* If @mtu is -1 it is left unchanged.
*/
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
(dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
sleep_ok);
}
/**
* cxgb4_change_mac - Update match filter for a MAC address.
* @pi: the port_info
* @viid: the VI id
* @tcam_idx: TCAM index of existing filter for old value of MAC address,
* or -1
* @addr: the new MAC address value
* @persist: whether a new MAC allocation should be persistent
* @smt_idx: the destination to store the new SMT index.
*
* Modifies an MPS filter and sets it to the new MAC address if
* @tcam_idx >= 0, or adds the MAC address to a new filter if
* @tcam_idx < 0. In the latter case the address is added persistently
* if @persist is %true.
* Addresses are programmed to hash region, if tcam runs out of entries.
*
*/
int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
int *tcam_idx, const u8 *addr, bool persist,
u8 *smt_idx)
{
struct adapter *adapter = pi->adapter;
struct hash_mac_addr *entry, *new_entry;
int ret;
ret = t4_change_mac(adapter, adapter->mbox, viid,
*tcam_idx, addr, persist, smt_idx);
/* We ran out of TCAM entries. try programming hash region. */
if (ret == -ENOMEM) {
/* If the MAC address to be updated is in the hash addr
* list, update it from the list
*/
list_for_each_entry(entry, &adapter->mac_hlist, list) {
if (entry->iface_mac) {
ether_addr_copy(entry->addr, addr);
goto set_hash;
}
}
new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
if (!new_entry)
return -ENOMEM;
ether_addr_copy(new_entry->addr, addr);
new_entry->iface_mac = true;
list_add_tail(&new_entry->list, &adapter->mac_hlist);
set_hash:
ret = cxgb4_set_addr_hash(pi);
} else if (ret >= 0) {
*tcam_idx = ret;
ret = 0;
}
return ret;
}
/*
* link_start - enable a port
* @dev: the port to enable
*
* Performs the MAC and PHY actions needed to enable a port.
*/
static int link_start(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
unsigned int mb = pi->adapter->mbox;
int ret;
/*
* We do not set address filters and promiscuity here, the stack does
* that step explicitly.
*/
ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
dev->mtu, -1, -1, -1,
!!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
if (ret == 0)
ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
dev->dev_addr, true, &pi->smt_idx);
if (ret == 0)
ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
&pi->link_cfg);
if (ret == 0) {
local_bh_disable();
ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
true, CXGB4_DCB_ENABLED);
local_bh_enable();
}
return ret;
}
#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
struct net_device *dev = adap->port[adap->chan_map[port]];
int old_dcb_enabled = cxgb4_dcb_enabled(dev);
int new_dcb_enabled;
cxgb4_dcb_handle_fw_update(adap, pcmd);
new_dcb_enabled = cxgb4_dcb_enabled(dev);
/* If the DCB has become enabled or disabled on the port then we're
* going to need to set up/tear down DCB Priority parameters for the
* TX Queues associated with the port.
*/
if (new_dcb_enabled != old_dcb_enabled)
dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */
/* Response queue handler for the FW event queue.
*/
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
const struct pkt_gl *gl)
{
u8 opcode = ((const struct rss_header *)rsp)->opcode;
rsp++; /* skip RSS header */
/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
*/
if (unlikely(opcode == CPL_FW4_MSG &&
((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
rsp++;
opcode = ((const struct rss_header *)rsp)->opcode;
rsp++;
if (opcode != CPL_SGE_EGR_UPDATE) {
dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
, opcode);
goto out;
}
}
if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
const struct cpl_sge_egr_update *p = (void *)rsp;
unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
struct sge_txq *txq;
txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
txq->restarts++;
if (txq->q_type == CXGB4_TXQ_ETH) {
struct sge_eth_txq *eq;
eq = container_of(txq, struct sge_eth_txq, q);
t4_sge_eth_txq_egress_update(q->adap, eq, -1);
} else {
struct sge_uld_txq *oq;
oq = container_of(txq, struct sge_uld_txq, q);
tasklet_schedule(&oq->qresume_tsk);
}
} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
const struct cpl_fw6_msg *p = (void *)rsp;
#ifdef CONFIG_CHELSIO_T4_DCB
const struct fw_port_cmd *pcmd = (const void *)p->data;
unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
unsigned int action =
FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
if (cmd == FW_PORT_CMD &&
(action == FW_PORT_ACTION_GET_PORT_INFO ||
action == FW_PORT_ACTION_GET_PORT_INFO32)) {
int port = FW_PORT_CMD_PORTID_G(
be32_to_cpu(pcmd->op_to_portid));
struct net_device *dev;
int dcbxdis, state_input;
dev = q->adap->port[q->adap->chan_map[port]];
dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
: !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
& FW_PORT_CMD_DCBXDIS32_F));
state_input = (dcbxdis
? CXGB4_DCB_INPUT_FW_DISABLED
: CXGB4_DCB_INPUT_FW_ENABLED);
cxgb4_dcb_state_fsm(dev, state_input);
}
if (cmd == FW_PORT_CMD &&
action == FW_PORT_ACTION_L2_DCB_CFG)
dcb_rpl(q->adap, pcmd);
else
#endif
if (p->type == 0)
t4_handle_fw_rpl(q->adap, p->data);
} else if (opcode == CPL_L2T_WRITE_RPL) {
const struct cpl_l2t_write_rpl *p = (void *)rsp;
do_l2t_write_rpl(q->adap, p);
} else if (opcode == CPL_SMT_WRITE_RPL) {
const struct cpl_smt_write_rpl *p = (void *)rsp;
do_smt_write_rpl(q->adap, p);
} else if (opcode == CPL_SET_TCB_RPL) {
const struct cpl_set_tcb_rpl *p = (void *)rsp;
filter_rpl(q->adap, p);
} else if (opcode == CPL_ACT_OPEN_RPL) {
const struct cpl_act_open_rpl *p = (void *)rsp;
hash_filter_rpl(q->adap, p);
} else if (opcode == CPL_ABORT_RPL_RSS) {
const struct cpl_abort_rpl_rss *p = (void *)rsp;
hash_del_filter_rpl(q->adap, p);
} else if (opcode == CPL_SRQ_TABLE_RPL) {
const struct cpl_srq_table_rpl *p = (void *)rsp;
do_srq_table_rpl(q->adap, p);
} else
dev_err(q->adap->pdev_dev,
"unexpected CPL %#x on FW event queue\n", opcode);
out:
return 0;
}
static void disable_msi(struct adapter *adapter)
{
if (adapter->flags & CXGB4_USING_MSIX) {
pci_disable_msix(adapter->pdev);
adapter->flags &= ~CXGB4_USING_MSIX;
} else if (adapter->flags & CXGB4_USING_MSI) {
pci_disable_msi(adapter->pdev);
adapter->flags &= ~CXGB4_USING_MSI;
}
}
/*
* Interrupt handler for non-data events used with MSI-X.
*/
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
struct adapter *adap = cookie;
u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
if (v & PFSW_F) {
adap->swintr = 1;
t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
}
if (adap->flags & CXGB4_MASTER_PF)
t4_slow_intr_handler(adap);
return IRQ_HANDLED;
}
int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
cpumask_var_t *aff_mask, int idx)
{
int rv;
if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
return -ENOMEM;
}
cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
*aff_mask);
rv = irq_set_affinity_hint(vec, *aff_mask);
if (rv)
dev_warn(adap->pdev_dev,
"irq_set_affinity_hint %u failed %d\n",
vec, rv);
return 0;
}
void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
{
irq_set_affinity_hint(vec, NULL);
free_cpumask_var(aff_mask);
}
static int request_msix_queue_irqs(struct adapter *adap)
{
struct sge *s = &adap->sge;
struct msix_info *minfo;
int err, ethqidx;
if (s->fwevtq_msix_idx < 0)
return -ENOMEM;
err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
t4_sge_intr_msix, 0,
adap->msix_info[s->fwevtq_msix_idx].desc,
&s->fw_evtq);
if (err)
return err;
for_each_ethrxq(s, ethqidx) {
minfo = s->ethrxq[ethqidx].msix;
err = request_irq(minfo->vec,
t4_sge_intr_msix, 0,
minfo->desc,
&s->ethrxq[ethqidx].rspq);
if (err)
goto unwind;
cxgb4_set_msix_aff(adap, minfo->vec,
&minfo->aff_mask, ethqidx);
}
return 0;
unwind:
while (--ethqidx >= 0) {
minfo = s->ethrxq[ethqidx].msix;
cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
}
free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
return err;
}
static void free_msix_queue_irqs(struct adapter *adap)
{
struct sge *s = &adap->sge;
struct msix_info *minfo;
int i;
free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
for_each_ethrxq(s, i) {
minfo = s->ethrxq[i].msix;
cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
free_irq(minfo->vec, &s->ethrxq[i].rspq);
}
}
static int setup_ppod_edram(struct adapter *adap)
{
unsigned int param, val;
int ret;
/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
* if firmware supports ppod edram feature or not. If firmware
* returns 1, then driver can enable this feature by sending
* FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
* enable ppod edram feature.
*/
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
if (ret < 0) {
dev_warn(adap->pdev_dev,
"querying PPOD_EDRAM support failed: %d\n",
ret);
return -1;
}
if (val != 1)
return -1;
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
if (ret < 0) {
dev_err(adap->pdev_dev,
"setting PPOD_EDRAM failed: %d\n", ret);
return -1;
}
return 0;
}
static void adap_config_hpfilter(struct adapter *adapter)
{
u32 param, val = 0;
int ret;
/* Enable HP filter region. Older fw will fail this request and
* it is fine.
*/
param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
1, &param, &val);
/* An error means FW doesn't know about HP filter support,
* it's not a problem, don't return an error.
*/
if (ret < 0)
dev_err(adapter->pdev_dev,
"HP filter region isn't supported by FW\n");
}
static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
u16 rss_size, u16 viid)
{
struct adapter *adap = pi->adapter;
int ret;
ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
rss_size);
if (ret)
return ret;
/* If Tunnel All Lookup isn't specified in the global RSS
* Configuration, then we need to specify a default Ingress
* Queue for any ingress packets which aren't hashed. We'll
* use our first ingress queue ...
*/
return t4_config_vi_rss(adap, adap->mbox, viid,
FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
FW_RSS_VI_CONFIG_CMD_UDPEN_F,
rss[0]);
}
/**
* cxgb4_write_rss - write the RSS table for a given port
* @pi: the port
* @queues: array of queue indices for RSS
*
* Sets up the portion of the HW RSS table for the port's VI to distribute
* packets to the Rx queues in @queues.
* Should never be called before setting up sge eth rx queues
*/
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
{
struct adapter *adapter = pi->adapter;
const struct sge_eth_rxq *rxq;
int i, err;
u16 *rss;
rxq = &adapter->sge.ethrxq[pi->first_qset];
rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
if (!rss)
return -ENOMEM;
/* map the queue indices to queue ids */
for (i = 0; i < pi->rss_size; i++, queues++)
rss[i] = rxq[*queues].rspq.abs_id;
err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
kfree(rss);
return err;
}
/**
* setup_rss - configure RSS
* @adap: the adapter
*
* Sets up RSS for each port.
*/
static int setup_rss(struct adapter *adap)
{
int i, j, err;
for_each_port(adap, i) {
const struct port_info *pi = adap2pinfo(adap, i);
/* Fill default values with equal distribution */
for (j = 0; j < pi->rss_size; j++)
pi->rss[j] = j % pi->nqsets;
err = cxgb4_write_rss(pi, pi->rss);
if (err)
return err;
}
return 0;
}
/*
* Return the channel of the ingress queue with the given qid.
*/
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
qid -= p->ingr_start;
return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}
void cxgb4_quiesce_rx(struct sge_rspq *q)
{
if (q->handler)
napi_disable(&q->napi);
}
/*
* Wait until all NAPI handlers are descheduled.
*/
static void quiesce_rx(struct adapter *adap)
{
int i;
for (i = 0; i < adap->sge.ingr_sz; i++) {
struct sge_rspq *q = adap->sge.ingr_map[i];
if (!q)
continue;
cxgb4_quiesce_rx(q);
}
}
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
struct sge *s = &adap->sge;
if (adap->flags & CXGB4_FULL_INIT_DONE) {
t4_intr_disable(adap);
if (adap->flags & CXGB4_USING_MSIX) {
free_msix_queue_irqs(adap);
free_irq(adap->msix_info[s->nd_msix_idx].vec,
adap);
} else {
free_irq(adap->pdev->irq, adap);
}
quiesce_rx(adap);
}
}
void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
{
if (q->handler)
napi_enable(&q->napi);
/* 0-increment GTS to start the timer and enable interrupts */
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
SEINTARM_V(q->intr_params) |
INGRESSQID_V(q->cntxt_id));
}
/*
* Enable NAPI scheduling and interrupt generation for all Rx queues.
*/
static void enable_rx(struct adapter *adap)
{
int i;
for (i = 0; i < adap->sge.ingr_sz; i++) {
struct sge_rspq *q = adap->sge.ingr_map[i];
if (!q)
continue;
cxgb4_enable_rx(adap, q);
}
}
static int setup_non_data_intr(struct adapter *adap)
{
int msix;
adap->sge.nd_msix_idx = -1;
if (!(adap->flags & CXGB4_USING_MSIX))
return 0;
/* Request MSI-X vector for non-data interrupt */
msix = cxgb4_get_msix_idx_from_bmap(adap);
if (msix < 0)
return -ENOMEM;
snprintf(adap->msix_info[msix].desc,
sizeof(adap->msix_info[msix].desc),
"%s", adap->port[0]->name);
adap->sge.nd_msix_idx = msix;
return 0;
}
static int setup_fw_sge_queues(struct adapter *adap)
{
struct sge *s = &adap->sge;
int msix, err = 0;
bitmap_zero(s->starving_fl, s->egr_sz);
bitmap_zero(s->txq_maperr, s->egr_sz);
if (adap->flags & CXGB4_USING_MSIX) {
s->fwevtq_msix_idx = -1;
msix = cxgb4_get_msix_idx_from_bmap(adap);
if (msix < 0)
return -ENOMEM;
snprintf(adap->msix_info[msix].desc,
sizeof(adap->msix_info[msix].desc),
"%s-FWeventq", adap->port[0]->name);
} else {
err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
NULL, NULL, NULL, -1);
if (err)
return err;
msix = -((int)s->intrq.abs_id + 1);
}
err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
msix, NULL, fwevtq_handler, NULL, -1);
if (err && msix >= 0)
cxgb4_free_msix_idx_in_bmap(adap, msix);
s->fwevtq_msix_idx = msix;
return err;
}
/**
* setup_sge_queues - configure SGE Tx/Rx/response queues
* @adap: the adapter
*
* Determines how many sets of SGE queues to use and initializes them.
* We support multiple queue sets per port if we have MSI-X, otherwise
* just one queue set per port.
*/
static int setup_sge_queues(struct adapter *adap)
{
struct sge_uld_rxq_info *rxq_info = NULL;
struct sge *s = &adap->sge;
unsigned int cmplqid = 0;
int err, i, j, msix = 0;
if (is_uld(adap))
rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
if (!(adap->flags & CXGB4_USING_MSIX))
msix = -((int)s->intrq.abs_id + 1);
for_each_port(adap, i) {
struct net_device *dev = adap->port[i];
struct port_info *pi = netdev_priv(dev);
struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
for (j = 0; j < pi->nqsets; j++, q++) {
if (msix >= 0) {
msix = cxgb4_get_msix_idx_from_bmap(adap);
if (msix < 0) {
err = msix;
goto freeout;
}
snprintf(adap->msix_info[msix].desc,
sizeof(adap->msix_info[msix].desc),
"%s-Rx%d", dev->name, j);
q->msix = &adap->msix_info[msix];
}
err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
msix, &q->fl,
t4_ethrx_handler,
NULL,
t4_get_tp_ch_map(adap,
pi->tx_chan));
if (err)
goto freeout;
q->rspq.idx = j;
memset(&q->stats, 0, sizeof(q->stats));
}
q = &s->ethrxq[pi->first_qset];
for (j = 0; j < pi->nqsets; j++, t++, q++) {
err = t4_sge_alloc_eth_txq(adap, t, dev,
netdev_get_tx_queue(dev, j),
q->rspq.cntxt_id,
!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
if (err)
goto freeout;
}
}
for_each_port(adap, i) {
/* Note that cmplqid below is 0 if we don't
* have RDMA queues, and that's the right value.
*/
if (rxq_info)
cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
s->fw_evtq.cntxt_id, cmplqid);
if (err)
goto freeout;
}
if (!is_t4(adap->params.chip)) {
err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
netdev_get_tx_queue(adap->port[0], 0)
, s->fw_evtq.cntxt_id, false);
if (err)
goto freeout;
}
t4_write_reg(adap, is_t4(adap->params.chip) ?
MPS_TRC_RSS_CONTROL_A :
MPS_T5_TRC_RSS_CONTROL_A,
RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
return 0;
freeout:
dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
t4_free_sge_resources(adap);
return err;
}
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
int txq;
#ifdef CONFIG_CHELSIO_T4_DCB
/* If a Data Center Bridging has been successfully negotiated on this
* link then we'll use the skb's priority to map it to a TX Queue.
* The skb's priority is determined via the VLAN Tag Priority Code
* Point field.
*/
if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
u16 vlan_tci;
int err;
err = vlan_get_tag(skb, &vlan_tci);
if (unlikely(err)) {
if (net_ratelimit())
netdev_warn(dev,
"TX Packet without VLAN Tag on DCB Link\n");
txq = 0;
} else {
txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
#ifdef CONFIG_CHELSIO_T4_FCOE
if (skb->protocol == htons(ETH_P_FCOE))
txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
}
return txq;
}
#endif /* CONFIG_CHELSIO_T4_DCB */
if (dev->num_tc) {
struct port_info *pi = netdev2pinfo(dev);
u8 ver, proto;
ver = ip_hdr(skb)->version;
proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
ip_hdr(skb)->protocol;
/* Send unsupported traffic pattern to normal NIC queues. */
txq = netdev_pick_tx(dev, skb, sb_dev);
if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
skb->encapsulation ||
cxgb4_is_ktls_skb(skb) ||
(proto != IPPROTO_TCP && proto != IPPROTO_UDP))
txq = txq % pi->nqsets;
return txq;
}
if (select_queue) {
txq = (skb_rx_queue_recorded(skb)
? skb_get_rx_queue(skb)
: smp_processor_id());
while (unlikely(txq >= dev->real_num_tx_queues))
txq -= dev->real_num_tx_queues;
return txq;
}
return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
}
static int closest_timer(const struct sge *s, int time)
{
int i, delta, match = 0, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
delta = time - s->timer_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
static int closest_thres(const struct sge *s, int thres)
{
int i, delta, match = 0, min_delta = INT_MAX;
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
delta = thres - s->counter_val[i];
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
match = i;
}
}
return match;
}
/**
* cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
* @q: the Rx queue
* @us: the hold-off time in us, or 0 to disable timer
* @cnt: the hold-off packet count, or 0 to disable counter
*
* Sets an Rx queue's interrupt hold-off time and packet count. At least
* one of the two needs to be enabled for the queue to generate interrupts.
*/
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
unsigned int us, unsigned int cnt)
{
struct adapter *adap = q->adap;
if ((us | cnt) == 0)
cnt = 1;
if (cnt) {
int err;
u32 v, new_idx;
new_idx = closest_thres(&adap->sge, cnt);
if (q->desc && q->pktcnt_idx != new_idx) {
/* the queue has already been created, update it */
v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
FW_PARAMS_PARAM_X_V(
FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
&v, &new_idx);
if (err)
return err;
}
q->pktcnt_idx = new_idx;
}
us = us == 0 ? 6 : closest_timer(&adap->sge, us);
q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
return 0;
}
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
{
netdev_features_t changed = dev->features ^ features;
const struct port_info *pi = netdev_priv(dev);
int err;
if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
return 0;
err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
pi->viid_mirror, -1, -1, -1, -1,
!!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
if (unlikely(err))
dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
return err;
}
static int setup_debugfs(struct adapter *adap)
{
if (IS_ERR_OR_NULL(adap->debugfs_root))
return -1;
#ifdef CONFIG_DEBUG_FS
t4_setup_debugfs(adap);
#endif
return 0;
}
static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
struct sge_eth_rxq *mirror_rxq)
{
if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
!(adap->flags & CXGB4_SHUTTING_DOWN))
cxgb4_quiesce_rx(&mirror_rxq->rspq);
if (adap->flags & CXGB4_USING_MSIX) {
cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
mirror_rxq->msix->aff_mask);
free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
}
free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
}
static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge_eth_rxq *mirror_rxq;
struct sge *s = &adap->sge;
int ret = 0, msix = 0;
u16 i, rxqid;
u16 *rss;
if (!pi->vi_mirror_count)
return 0;
if (s->mirror_rxq[pi->port_id])
return 0;
mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
if (!mirror_rxq)
return -ENOMEM;
s->mirror_rxq[pi->port_id] = mirror_rxq;
if (!(adap->flags & CXGB4_USING_MSIX))
msix = -((int)adap->sge.intrq.abs_id + 1);
for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
mirror_rxq = &s->mirror_rxq[pi->port_id][i];
/* Allocate Mirror Rxqs */
if (msix >= 0) {
msix = cxgb4_get_msix_idx_from_bmap(adap);
if (msix < 0) {
ret = msix;
goto out_free_queues;
}
mirror_rxq->msix = &adap->msix_info[msix];
snprintf(mirror_rxq->msix->desc,
sizeof(mirror_rxq->msix->desc),
"%s-mirrorrxq%d", dev->name, i);
}
init_rspq(adap, &mirror_rxq->rspq,
CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
dev, msix, &mirror_rxq->fl,
t4_ethrx_handler, NULL, 0);
if (ret)
goto out_free_msix_idx;
/* Setup MSI-X vectors for Mirror Rxqs */
if (adap->flags & CXGB4_USING_MSIX) {
ret = request_irq(mirror_rxq->msix->vec,
t4_sge_intr_msix, 0,
mirror_rxq->msix->desc,
&mirror_rxq->rspq);
if (ret)
goto out_free_rxq;
cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
&mirror_rxq->msix->aff_mask, i);
}
/* Start NAPI for Mirror Rxqs */
cxgb4_enable_rx(adap, &mirror_rxq->rspq);
}
/* Setup RSS for Mirror Rxqs */
rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
if (!rss) {
ret = -ENOMEM;
goto out_free_queues;
}
mirror_rxq = &s->mirror_rxq[pi->port_id][0];
for (i = 0; i < pi->rss_size; i++)
rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
kfree(rss);
if (ret)
goto out_free_queues;
return 0;
out_free_rxq:
free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
out_free_msix_idx:
cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
out_free_queues:
while (rxqid-- > 0)
cxgb4_port_mirror_free_rxq(adap,
&s->mirror_rxq[pi->port_id][rxqid]);
kfree(s->mirror_rxq[pi->port_id]);
s->mirror_rxq[pi->port_id] = NULL;
return ret;
}
static void cxgb4_port_mirror_free_queues(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge *s = &adap->sge;
u16 i;
if (!pi->vi_mirror_count)
return;
if (!s->mirror_rxq[pi->port_id])
return;
for (i = 0; i < pi->nmirrorqsets; i++)
cxgb4_port_mirror_free_rxq(adap,
&s->mirror_rxq[pi->port_id][i]);
kfree(s->mirror_rxq[pi->port_id]);
s->mirror_rxq[pi->port_id] = NULL;
}
static int cxgb4_port_mirror_start(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
int ret, idx = -1;
if (!pi->vi_mirror_count)
return 0;
/* Mirror VIs can be created dynamically after stack had
* already setup Rx modes like MTU, promisc, allmulti, etc.
* on main VI. So, parse what the stack had setup on the
* main VI and update the same on the mirror VI.
*/
ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
(dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
!!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
if (ret) {
dev_err(adap->pdev_dev,
"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
pi->viid_mirror, ret);
return ret;
}
/* Enable replication bit for the device's MAC address
* in MPS TCAM, so that the packets for the main VI are
* replicated to mirror VI.
*/
ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
dev->dev_addr, true, NULL);
if (ret) {
dev_err(adap->pdev_dev,
"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
pi->viid_mirror, ret);
return ret;
}
/* Enabling a Virtual Interface can result in an interrupt
* during the processing of the VI Enable command and, in some
* paths, result in an attempt to issue another command in the
* interrupt context. Thus, we disable interrupts during the
* course of the VI Enable command ...
*/
local_bh_disable();
ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
false);
local_bh_enable();
if (ret)
dev_err(adap->pdev_dev,
"Failed starting Mirror VI 0x%x, ret: %d\n",
pi->viid_mirror, ret);
return ret;
}
static void cxgb4_port_mirror_stop(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
if (!pi->vi_mirror_count)
return;
t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
false);
}
int cxgb4_port_mirror_alloc(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
int ret = 0;
if (!pi->nmirrorqsets)
return -EOPNOTSUPP;
mutex_lock(&pi->vi_mirror_mutex);
if (pi->viid_mirror) {
pi->vi_mirror_count++;
goto out_unlock;
}
ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
&pi->viid_mirror);
if (ret)
goto out_unlock;
pi->vi_mirror_count = 1;
if (adap->flags & CXGB4_FULL_INIT_DONE) {
ret = cxgb4_port_mirror_alloc_queues(dev);
if (ret)
goto out_free_vi;
ret = cxgb4_port_mirror_start(dev);
if (ret)
goto out_free_queues;
}
mutex_unlock(&pi->vi_mirror_mutex);
return 0;
out_free_queues:
cxgb4_port_mirror_free_queues(dev);
out_free_vi:
pi->vi_mirror_count = 0;
t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
pi->viid_mirror = 0;
out_unlock:
mutex_unlock(&pi->vi_mirror_mutex);
return ret;
}
void cxgb4_port_mirror_free(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
mutex_lock(&pi->vi_mirror_mutex);
if (!pi->viid_mirror)
goto out_unlock;
if (pi->vi_mirror_count > 1) {
pi->vi_mirror_count--;
goto out_unlock;
}
cxgb4_port_mirror_stop(dev);
cxgb4_port_mirror_free_queues(dev);
pi->vi_mirror_count = 0;
t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
pi->viid_mirror = 0;
out_unlock:
mutex_unlock(&pi->vi_mirror_mutex);
}
/*
* upper-layer driver support
*/
/*
* Allocate an active-open TID and set it to the supplied value.
*/
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
int atid = -1;
spin_lock_bh(&t->atid_lock);
if (t->afree) {
union aopen_entry *p = t->afree;
atid = (p - t->atid_tab) + t->atid_base;
t->afree = p->next;
p->data = data;
t->atids_in_use++;
}
spin_unlock_bh(&t->atid_lock);
return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);
/*
* Release an active-open TID.
*/
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
spin_lock_bh(&t->atid_lock);
p->next = t->afree;
t->afree = p;
t->atids_in_use--;
spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);
/*
* Allocate a server TID and set it to the supplied value.
*/
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
int stid;
spin_lock_bh(&t->stid_lock);
if (family == PF_INET) {
stid = find_first_zero_bit(t->stid_bmap, t->nstids);
if (stid < t->nstids)
__set_bit(stid, t->stid_bmap);
else
stid = -1;
} else {
stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
if (stid < 0)
stid = -1;
}
if (stid >= 0) {
t->stid_tab[stid].data = data;
stid += t->stid_base;
/* IPv6 requires max of 520 bits or 16 cells in TCAM
* This is equivalent to 4 TIDs. With CLIP enabled it
* needs 2 TIDs.
*/
if (family == PF_INET6) {
t->stids_in_use += 2;
t->v6_stids_in_use += 2;
} else {
t->stids_in_use++;
}
}
spin_unlock_bh(&t->stid_lock);
return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);
/* Allocate a server filter TID and set it to the supplied value.
*/
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
int stid;
spin_lock_bh(&t->stid_lock);
if (family == PF_INET) {
stid = find_next_zero_bit(t->stid_bmap,
t->nstids + t->nsftids, t->nstids);
if (stid < (t->nstids + t->nsftids))
__set_bit(stid, t->stid_bmap);
else
stid = -1;
} else {
stid = -1;
}
if (stid >= 0) {
t->stid_tab[stid].data = data;
stid -= t->nstids;
stid += t->sftid_base;
t->sftids_in_use++;
}
spin_unlock_bh(&t->stid_lock);
return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);
/* Release a server TID.
*/
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
/* Is it a server filter TID? */
if (t->nsftids && (stid >= t->sftid_base)) {
stid -= t->sftid_base;
stid += t->nstids;
} else {
stid -= t->stid_base;
}
spin_lock_bh(&t->stid_lock);
if (family == PF_INET)
__clear_bit(stid, t->stid_bmap);
else
bitmap_release_region(t->stid_bmap, stid, 1);
t->stid_tab[stid].data = NULL;
if (stid < t->nstids) {
if (family == PF_INET6) {
t->stids_in_use -= 2;
t->v6_stids_in_use -= 2;
} else {
t->stids_in_use--;
}
} else {
t->sftids_in_use--;
}
spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);
/*
* Populate a TID_RELEASE WR. Caller must properly size the skb.
*/
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
unsigned int tid)
{
struct cpl_tid_release *req;
set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
req = __skb_put(skb, sizeof(*req));
INIT_TP_WR(req, tid);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}
/*
* Queue a TID release request and if necessary schedule a work queue to
* process it.
*/
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
unsigned int tid)
{
struct adapter *adap = container_of(t, struct adapter, tids);
void **p = &t->tid_tab[tid - t->tid_base];
spin_lock_bh(&adap->tid_release_lock);
*p = adap->tid_release_head;
/* Low 2 bits encode the Tx channel number */
adap->tid_release_head = (void **)((uintptr_t)p | chan);
if (!adap->tid_release_task_busy) {
adap->tid_release_task_busy = true;
queue_work(adap->workq, &adap->tid_release_task);
}
spin_unlock_bh(&adap->tid_release_lock);
}
/*
* Process the list of pending TID release requests.
*/
static void process_tid_release_list(struct work_struct *work)
{
struct sk_buff *skb;
struct adapter *adap;
adap = container_of(work, struct adapter, tid_release_task);
spin_lock_bh(&adap->tid_release_lock);
while (adap->tid_release_head) {
void **p = adap->tid_release_head;
unsigned int chan = (uintptr_t)p & 3;
p = (void *)p - chan;
adap->tid_release_head = *p;
*p = NULL;
spin_unlock_bh(&adap->tid_release_lock);
while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
GFP_KERNEL)))
schedule_timeout_uninterruptible(1);
mk_tid_release(skb, chan, p - adap->tids.tid_tab);
t4_ofld_send(adap, skb);
spin_lock_bh(&adap->tid_release_lock);
}
adap->tid_release_task_busy = false;
spin_unlock_bh(&adap->tid_release_lock);
}
/*
* Release a TID and inform HW. If we are unable to allocate the release
* message we defer to a work queue.
*/
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
unsigned short family)
{
struct adapter *adap = container_of(t, struct adapter, tids);
struct sk_buff *skb;
WARN_ON(tid_out_of_range(&adap->tids, tid));
if (t->tid_tab[tid - adap->tids.tid_base]) {
t->tid_tab[tid - adap->tids.tid_base] = NULL;
atomic_dec(&t->conns_in_use);
if (t->hash_base && (tid >= t->hash_base)) {
if (family == AF_INET6)
atomic_sub(2, &t->hash_tids_in_use);
else
atomic_dec(&t->hash_tids_in_use);
} else {
if (family == AF_INET6)
atomic_sub(2, &t->tids_in_use);
else
atomic_dec(&t->tids_in_use);
}
}
skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
if (likely(skb)) {
mk_tid_release(skb, chan, tid);
t4_ofld_send(adap, skb);
} else
cxgb4_queue_tid_release(t, chan, tid);
}
EXPORT_SYMBOL(cxgb4_remove_tid);
/*
* Allocate and initialize the TID tables. Returns 0 on success.
*/
static int tid_init(struct tid_info *t)
{
struct adapter *adap = container_of(t, struct adapter, tids);
unsigned int max_ftids = t->nftids + t->nsftids;
unsigned int natids = t->natids;
unsigned int hpftid_bmap_size;
unsigned int eotid_bmap_size;
unsigned int stid_bmap_size;
unsigned int ftid_bmap_size;
size_t size;
stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
ftid_bmap_size = BITS_TO_LONGS(t->nftids);
hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
eotid_bmap_size = BITS_TO_LONGS(t->neotids);
size = t->ntids * sizeof(*t->tid_tab) +
natids * sizeof(*t->atid_tab) +
t->nstids * sizeof(*t->stid_tab) +
t->nsftids * sizeof(*t->stid_tab) +
stid_bmap_size * sizeof(long) +
t->nhpftids * sizeof(*t->hpftid_tab) +
hpftid_bmap_size * sizeof(long) +
max_ftids * sizeof(*t->ftid_tab) +
ftid_bmap_size * sizeof(long) +
t->neotids * sizeof(*t->eotid_tab) +
eotid_bmap_size * sizeof(long);
t->tid_tab = kvzalloc(size, GFP_KERNEL);
if (!t->tid_tab)
return -ENOMEM;
t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
spin_lock_init(&t->stid_lock);
spin_lock_init(&t->atid_lock);
spin_lock_init(&t->ftid_lock);
t->stids_in_use = 0;
t->v6_stids_in_use = 0;
t->sftids_in_use = 0;
t->afree = NULL;
t->atids_in_use = 0;
atomic_set(&t->tids_in_use, 0);
atomic_set(&t->conns_in_use, 0);
atomic_set(&t->hash_tids_in_use, 0);
atomic_set(&t->eotids_in_use, 0);
/* Setup the free list for atid_tab and clear the stid bitmap. */
if (natids) {
while (--natids)
t->atid_tab[natids - 1].next = &t->atid_tab[natids];
t->afree = t->atid_tab;
}
if (is_offload(adap)) {
bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
/* Reserve stid 0 for T4/T5 adapters */
if (!t->stid_base &&
CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
__set_bit(0, t->stid_bmap);
if (t->neotids)
bitmap_zero(t->eotid_bmap, t->neotids);
}
if (t->nhpftids)
bitmap_zero(t->hpftid_bmap, t->nhpftids);
bitmap_zero(t->ftid_bmap, t->nftids);
return 0;
}
/**
* cxgb4_create_server - create an IP server
* @dev: the device
* @stid: the server TID
* @sip: local IP address to bind server to
* @sport: the server's TCP port
* @vlan: the VLAN header information
* @queue: queue to direct messages from this server to
*
* Create an IP server for the given port and address.
* Returns <0 on error and one of the %NET_XMIT_* values on success.
*/
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, __be16 vlan,
unsigned int queue)
{
unsigned int chan;
struct sk_buff *skb;
struct adapter *adap;
struct cpl_pass_open_req *req;
int ret;
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
if (!skb)
return -ENOMEM;
adap = netdev2adap(dev);
req = __skb_put(skb, sizeof(*req));
INIT_TP_WR(req, 0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
req->local_port = sport;
req->peer_port = htons(0);
req->local_ip = sip;
req->peer_ip = htonl(0);
chan = rxq_to_chan(&adap->sge, queue);
req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
ret = t4_mgmt_tx(adap, skb);
return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server);
/* cxgb4_create_server6 - create an IPv6 server
* @dev: the device
* @stid: the server TID
* @sip: local IPv6 address to bind server to
* @sport: the server's TCP port
* @queue: queue to direct messages from this server to
*
* Create an IPv6 server for the given port and address.
* Returns <0 on error and one of the %NET_XMIT_* values on success.
*/
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
const struct in6_addr *sip, __be16 sport,
unsigned int queue)
{
unsigned int chan;
struct sk_buff *skb;
struct adapter *adap;
struct cpl_pass_open_req6 *req;
int ret;
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
if (!skb)
return -ENOMEM;
adap = netdev2adap(dev);
req = __skb_put(skb, sizeof(*req));
INIT_TP_WR(req, 0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
req->local_port = sport;
req->peer_port = htons(0);
req->local_ip_hi = *(__be64 *)(sip->s6_addr);
req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
req->peer_ip_hi = cpu_to_be64(0);
req->peer_ip_lo = cpu_to_be64(0);
chan = rxq_to_chan(&adap->sge, queue);
req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
ret = t4_mgmt_tx(adap, skb);
return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);
int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
unsigned int queue, bool ipv6)
{
struct sk_buff *skb;
struct adapter *adap;
struct cpl_close_listsvr_req *req;
int ret;
adap = netdev2adap(dev);
skb = alloc_skb(sizeof(*req), GFP_KERNEL);
if (!skb)
return -ENOMEM;
req = __skb_put(skb, sizeof(*req));
INIT_TP_WR(req, 0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
ret = t4_mgmt_tx(adap, skb);
return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);
/**
* cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
* @mtus: the HW MTU table
* @mtu: the target MTU
* @idx: index of selected entry in the MTU table
*
* Returns the index and the value in the HW MTU table that is closest to
* but does not exceed @mtu, unless @mtu is smaller than any value in the
* table, in which case that smallest available value is selected.
*/
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
unsigned int *idx)
{
unsigned int i = 0;
while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
++i;
if (idx)
*idx = i;
return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);
/**
* cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
* @mtus: the HW MTU table
* @header_size: Header Size
* @data_size_max: maximum Data Segment Size
* @data_size_align: desired Data Segment Size Alignment (2^N)
* @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
*
* Similar to cxgb4_best_mtu() but instead of searching the Hardware
* MTU Table based solely on a Maximum MTU parameter, we break that
* parameter up into a Header Size and Maximum Data Segment Size, and
* provide a desired Data Segment Size Alignment. If we find an MTU in
* the Hardware MTU Table which will result in a Data Segment Size with
* the requested alignment _and_ that MTU isn't "too far" from the
* closest MTU, then we'll return that rather than the closest MTU.
*/
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
unsigned short header_size,
unsigned short data_size_max,
unsigned short data_size_align,
unsigned int *mtu_idxp)
{
unsigned short max_mtu = header_size + data_size_max;
unsigned short data_size_align_mask = data_size_align - 1;
int mtu_idx, aligned_mtu_idx;
/* Scan the MTU Table till we find an MTU which is larger than our
* Maximum MTU or we reach the end of the table. Along the way,
* record the last MTU found, if any, which will result in a Data
* Segment Length matching the requested alignment.
*/
for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
unsigned short data_size = mtus[mtu_idx] - header_size;
/* If this MTU minus the Header Size would result in a
* Data Segment Size of the desired alignment, remember it.
*/
if ((data_size & data_size_align_mask) == 0)
aligned_mtu_idx = mtu_idx;
/* If we're not at the end of the Hardware MTU Table and the
* next element is larger than our Maximum MTU, drop out of
* the loop.
*/
if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
break;
}
/* If we fell out of the loop because we ran to the end of the table,
* then we just have to use the last [largest] entry.
*/
if (mtu_idx == NMTUS)
mtu_idx--;
/* If we found an MTU which resulted in the requested Data Segment
* Length alignment and that's "not far" from the largest MTU which is
* less than or equal to the maximum MTU, then use that.
*/
if (aligned_mtu_idx >= 0 &&
mtu_idx - aligned_mtu_idx <= 1)
mtu_idx = aligned_mtu_idx;
/* If the caller has passed in an MTU Index pointer, pass the
* MTU Index back. Return the MTU value.
*/
if (mtu_idxp)
*mtu_idxp = mtu_idx;
return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
/**
* cxgb4_port_chan - get the HW channel of a port
* @dev: the net device for the port
*
* Return the HW Tx channel of the given port.
*/
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);
/**
* cxgb4_port_e2cchan - get the HW c-channel of a port
* @dev: the net device for the port
*
* Return the HW RX c-channel of the given port.
*/
unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
{
return netdev2pinfo(dev)->rx_cchan;
}
EXPORT_SYMBOL(cxgb4_port_e2cchan);
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
struct adapter *adap = netdev2adap(dev);
u32 v1, v2, lp_count, hp_count;
v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
if (is_t4(adap->params.chip)) {
lp_count = LP_COUNT_G(v1);
hp_count = HP_COUNT_G(v1);
} else {
lp_count = LP_COUNT_T5_G(v1);
hp_count = HP_COUNT_T5_G(v2);
}
return lpfifo ? lp_count : hp_count;
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);
/**
* cxgb4_port_viid - get the VI id of a port
* @dev: the net device for the port
*
* Return the VI id of the given port.
*/
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);
/**
* cxgb4_port_idx - get the index of a port
* @dev: the net device for the port
*
* Return the index of the given port.
*/
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);
void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
struct tp_tcp_stats *v6)
{
struct adapter *adap = pci_get_drvdata(pdev);
spin_lock(&adap->stats_lock);
t4_tp_get_tcp_stats(adap, v4, v6, false);
spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);
void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
const unsigned int *pgsz_order)
{
struct adapter *adap = netdev2adap(dev);
t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
HPZ3_V(pgsz_order[3]));
}
EXPORT_SYMBOL(cxgb4_iscsi_init);
int cxgb4_flush_eq_cache(struct net_device *dev)
{
struct adapter *adap = netdev2adap(dev);
return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);
static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
__be64 indices;
int ret;
spin_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
sizeof(indices), (__be32 *)&indices,
T4_MEMORY_READ);
spin_unlock(&adap->win0_lock);
if (!ret) {
*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
}
return ret;
}
int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
u16 size)
{
struct adapter *adap = netdev2adap(dev);
u16 hw_pidx, hw_cidx;
int ret;
ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
if (ret)
goto out;
if (pidx != hw_pidx) {
u16 delta;
u32 val;
if (pidx >= hw_pidx)
delta = pidx - hw_pidx;
else
delta = size - hw_pidx + pidx;
if (is_t4(adap->params.chip))
val = PIDX_V(delta);
else
val = PIDX_T5_V(delta);
wmb();
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
QID_V(qid) | val);
}
out:
return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
u32 edc0_end, edc1_end, mc0_end, mc1_end;
u32 offset, memtype, memaddr;
struct adapter *adap;
u32 hma_size = 0;
int ret;
adap = netdev2adap(dev);
offset = ((stag >> 8) * 32) + adap->vres.stag.start;
/* Figure out where the offset lands in the Memory Type/Address scheme.
* This code assumes that the memory is laid out starting at offset 0
* with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
* and EDC1. Some cards will have neither MC0 nor MC1, most cards have
* MC0, and some have both MC0 and MC1.
*/
size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
edc0_size = EDRAM0_SIZE_G(size) << 20;
size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
edc1_size = EDRAM1_SIZE_G(size) << 20;
size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
mc0_size = EXT_MEM0_SIZE_G(size) << 20;
if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
hma_size = EXT_MEM1_SIZE_G(size) << 20;
}
edc0_end = edc0_size;
edc1_end = edc0_end + edc1_size;
mc0_end = edc1_end + mc0_size;
if (offset < edc0_end) {
memtype = MEM_EDC0;
memaddr = offset;
} else if (offset < edc1_end) {
memtype = MEM_EDC1;
memaddr = offset - edc0_end;
} else {
if (hma_size && (offset < (edc1_end + hma_size))) {
memtype = MEM_HMA;
memaddr = offset - edc1_end;
} else if (offset < mc0_end) {
memtype = MEM_MC0;
memaddr = offset - edc1_end;
} else if (is_t5(adap->params.chip)) {
size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
mc1_size = EXT_MEM1_SIZE_G(size) << 20;
mc1_end = mc0_end + mc1_size;
if (offset < mc1_end) {
memtype = MEM_MC1;
memaddr = offset - mc0_end;
} else {
/* offset beyond the end of any memory */
goto err;
}
} else {
/* T4/T6 only has a single memory channel */
goto err;
}
}
spin_lock(&adap->win0_lock);
ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
spin_unlock(&adap->win0_lock);
return ret;
err:
dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
stag, offset);
return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
u32 hi, lo;
struct adapter *adap;
adap = netdev2adap(dev);
lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
int cxgb4_bar2_sge_qregs(struct net_device *dev,
unsigned int qid,
enum cxgb4_bar2_qtype qtype,
int user,
u64 *pbar2_qoffset,
unsigned int *pbar2_qid)
{
return t4_bar2_sge_qregs(netdev2adap(dev),
qid,
(qtype == CXGB4_BAR2_QTYPE_EGRESS
? T4_BAR2_QTYPE_EGRESS
: T4_BAR2_QTYPE_INGRESS),
user,
pbar2_qoffset,
pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
static struct pci_driver cxgb4_driver;
static void check_neigh_update(struct neighbour *neigh)
{
const struct device *parent;
const struct net_device *netdev = neigh->dev;
if (is_vlan_dev(netdev))
netdev = vlan_dev_real_dev(netdev);
parent = netdev->dev.parent;
if (parent && parent->driver == &cxgb4_driver.driver)
t4_l2t_update(dev_get_drvdata(parent), neigh);
}
static int netevent_cb(struct notifier_block *nb, unsigned long event,
void *data)
{
switch (event) {
case NETEVENT_NEIGH_UPDATE:
check_neigh_update(data);
break;
case NETEVENT_REDIRECT:
default:
break;
}
return 0;
}
static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
.notifier_call = netevent_cb
};
static void drain_db_fifo(struct adapter *adap, int usecs)
{
u32 v1, v2, lp_count, hp_count;
do {
v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
if (is_t4(adap->params.chip)) {
lp_count = LP_COUNT_G(v1);
hp_count = HP_COUNT_G(v1);
} else {
lp_count = LP_COUNT_T5_G(v1);
hp_count = HP_COUNT_T5_G(v2);
}
if (lp_count == 0 && hp_count == 0)
break;
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(usecs_to_jiffies(usecs));
} while (1);
}
static void disable_txq_db(struct sge_txq *q)
{
unsigned long flags;
spin_lock_irqsave(&q->db_lock, flags);
q->db_disabled = 1;
spin_unlock_irqrestore(&q->db_lock, flags);
}
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
{
spin_lock_irq(&q->db_lock);
if (q->db_pidx_inc) {
/* Make sure that all writes to the TX descriptors
* are committed before we tell HW about them.
*/
wmb();
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
q->db_pidx_inc = 0;
}
q->db_disabled = 0;
spin_unlock_irq(&q->db_lock);
}
static void disable_dbs(struct adapter *adap)
{
int i;
for_each_ethrxq(&adap->sge, i)
disable_txq_db(&adap->sge.ethtxq[i].q);
if (is_offload(adap)) {
struct sge_uld_txq_info *txq_info =
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
if (txq_info) {
for_each_ofldtxq(&adap->sge, i) {
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
disable_txq_db(&txq->q);
}
}
}
for_each_port(adap, i)
disable_txq_db(&adap->sge.ctrlq[i].q);
}
static void enable_dbs(struct adapter *adap)
{
int i;
for_each_ethrxq(&adap->sge, i)
enable_txq_db(adap, &adap->sge.ethtxq[i].q);
if (is_offload(adap)) {
struct sge_uld_txq_info *txq_info =
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
if (txq_info) {
for_each_ofldtxq(&adap->sge, i) {
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
enable_txq_db(adap, &txq->q);
}
}
}
for_each_port(adap, i)
enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}
static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
enum cxgb4_uld type = CXGB4_ULD_RDMA;
if (adap->uld && adap->uld[type].handle)
adap->uld[type].control(adap->uld[type].handle, cmd);
}
static void process_db_full(struct work_struct *work)
{
struct adapter *adap;
adap = container_of(work, struct adapter, db_full_task);
drain_db_fifo(adap, dbfifo_drain_delay);
enable_dbs(adap);
notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
else
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
}
static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
u16 hw_pidx, hw_cidx;
int ret;
spin_lock_irq(&q->db_lock);
ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
if (ret)
goto out;
if (q->db_pidx != hw_pidx) {
u16 delta;
u32 val;
if (q->db_pidx >= hw_pidx)
delta = q->db_pidx - hw_pidx;
else
delta = q->size - hw_pidx + q->db_pidx;
if (is_t4(adap->params.chip))
val = PIDX_V(delta);
else
val = PIDX_T5_V(delta);
wmb();
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
QID_V(q->cntxt_id) | val);
}
out:
q->db_disabled = 0;
q->db_pidx_inc = 0;
spin_unlock_irq(&q->db_lock);
if (ret)
CH_WARN(adap, "DB drop recovery failed.\n");
}
static void recover_all_queues(struct adapter *adap)
{
int i;
for_each_ethrxq(&adap->sge, i)
sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
if (is_offload(adap)) {
struct sge_uld_txq_info *txq_info =
adap->sge.uld_txq_info[CXGB4_TX_OFLD];
if (txq_info) {
for_each_ofldtxq(&adap->sge, i) {
struct sge_uld_txq *txq = &txq_info->uldtxq[i];
sync_txq_pidx(adap, &txq->q);
}
}
}
for_each_port(adap, i)
sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}
static void process_db_drop(struct work_struct *work)
{
struct adapter *adap;
adap = container_of(work, struct adapter, db_drop_task);
if (is_t4(adap->params.chip)) {
drain_db_fifo(adap, dbfifo_drain_delay);
notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
drain_db_fifo(adap, dbfifo_drain_delay);
recover_all_queues(adap);
drain_db_fifo(adap, dbfifo_drain_delay);
enable_dbs(adap);
notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
} else if (is_t5(adap->params.chip)) {
u32 dropped_db = t4_read_reg(adap, 0x010ac);
u16 qid = (dropped_db >> 15) & 0x1ffff;
u16 pidx_inc = dropped_db & 0x1fff;
u64 bar2_qoffset;
unsigned int bar2_qid;
int ret;
ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
0, &bar2_qoffset, &bar2_qid);
if (ret)
dev_err(adap->pdev_dev, "doorbell drop recovery: "
"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
else
writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
/* Re-enable BAR2 WC */
t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
}
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
}
void t4_db_full(struct adapter *adap)
{
if (is_t4(adap->params.chip)) {
disable_dbs(adap);
notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
queue_work(adap->workq, &adap->db_full_task);
}
}
void t4_db_dropped(struct adapter *adap)
{
if (is_t4(adap->params.chip)) {
disable_dbs(adap);
notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
}
queue_work(adap->workq, &adap->db_drop_task);
}
void t4_register_netevent_notifier(void)
{
if (!netevent_registered) {
register_netevent_notifier(&cxgb4_netevent_nb);
netevent_registered = true;
}
}
static void detach_ulds(struct adapter *adap)
{
unsigned int i;
mutex_lock(&uld_mutex);
list_del(&adap->list_node);
for (i = 0; i < CXGB4_ULD_MAX; i++)
if (adap->uld && adap->uld[i].handle)
adap->uld[i].state_change(adap->uld[i].handle,
CXGB4_STATE_DETACH);
if (netevent_registered && list_empty(&adapter_list)) {
unregister_netevent_notifier(&cxgb4_netevent_nb);
netevent_registered = false;
}
mutex_unlock(&uld_mutex);
}
static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
unsigned int i;
mutex_lock(&uld_mutex);
for (i = 0; i < CXGB4_ULD_MAX; i++)
if (adap->uld && adap->uld[i].handle)
adap->uld[i].state_change(adap->uld[i].handle,
new_state);
mutex_unlock(&uld_mutex);
}
#if IS_ENABLED(CONFIG_IPV6)
static int cxgb4_inet6addr_handler(struct notifier_block *this,
unsigned long event, void *data)
{
struct inet6_ifaddr *ifa = data;
struct net_device *event_dev = ifa->idev->dev;
const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
struct adapter *adap;
#endif
if (is_vlan_dev(event_dev))
event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
if (event_dev->flags & IFF_MASTER) {
list_for_each_entry(adap, &adapter_list, list_node) {
switch (event) {
case NETDEV_UP:
cxgb4_clip_get(adap->port[0],
(const u32 *)ifa, 1);
break;
case NETDEV_DOWN:
cxgb4_clip_release(adap->port[0],
(const u32 *)ifa, 1);
break;
default:
break;
}
}
return NOTIFY_OK;
}
#endif
if (event_dev)
parent = event_dev->dev.parent;
if (parent && parent->driver == &cxgb4_driver.driver) {
switch (event) {
case NETDEV_UP:
cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
break;
case NETDEV_DOWN:
cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
break;
default:
break;
}
}
return NOTIFY_OK;
}
static bool inet6addr_registered;
static struct notifier_block cxgb4_inet6addr_notifier = {
.notifier_call = cxgb4_inet6addr_handler
};
static void update_clip(const struct adapter *adap)
{
int i;
struct net_device *dev;
int ret;
rcu_read_lock();
for (i = 0; i < MAX_NPORTS; i++) {
dev = adap->port[i];
ret = 0;
if (dev)
ret = cxgb4_update_root_dev_clip(dev);
if (ret < 0)
break;
}
rcu_read_unlock();
}
#endif /* IS_ENABLED(CONFIG_IPV6) */
/**
* cxgb_up - enable the adapter
* @adap: adapter being enabled
*
* Called when the first port is enabled, this function performs the
* actions necessary to make an adapter operational, such as completing
* the initialization of HW modules, and enabling interrupts.
*
* Must be called with the rtnl lock held.
*/
static int cxgb_up(struct adapter *adap)
{
struct sge *s = &adap->sge;
int err;
mutex_lock(&uld_mutex);
err = setup_sge_queues(adap);
if (err)
goto rel_lock;
err = setup_rss(adap);
if (err)
goto freeq;
if (adap->flags & CXGB4_USING_MSIX) {
if (s->nd_msix_idx < 0) {
err = -ENOMEM;
goto irq_err;
}
err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
t4_nondata_intr, 0,
adap->msix_info[s->nd_msix_idx].desc, adap);
if (err)
goto irq_err;
err = request_msix_queue_irqs(adap);
if (err)
goto irq_err_free_nd_msix;
} else {
err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
(adap->flags & CXGB4_USING_MSI) ? 0
: IRQF_SHARED,
adap->port[0]->name, adap);
if (err)
goto irq_err;
}
enable_rx(adap);
t4_sge_start(adap);
t4_intr_enable(adap);
adap->flags |= CXGB4_FULL_INIT_DONE;
mutex_unlock(&uld_mutex);
notify_ulds(adap, CXGB4_STATE_UP);
#if IS_ENABLED(CONFIG_IPV6)
update_clip(adap);
#endif
return err;
irq_err_free_nd_msix:
free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
irq_err:
dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
freeq:
t4_free_sge_resources(adap);
rel_lock:
mutex_unlock(&uld_mutex);
return err;
}
static void cxgb_down(struct adapter *adapter)
{
cancel_work_sync(&adapter->tid_release_task);
cancel_work_sync(&adapter->db_full_task);
cancel_work_sync(&adapter->db_drop_task);
adapter->tid_release_task_busy = false;
adapter->tid_release_head = NULL;
t4_sge_stop(adapter);
t4_free_sge_resources(adapter);
adapter->flags &= ~CXGB4_FULL_INIT_DONE;
}
/*
* net_device operations
*/
int cxgb_open(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int err;
netif_carrier_off(dev);
if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
err = cxgb_up(adapter);
if (err < 0)
return err;
}
/* It's possible that the basic port information could have
* changed since we first read it.
*/
err = t4_update_port_info(pi);
if (err < 0)
return err;
err = link_start(dev);
if (err)
return err;
if (pi->nmirrorqsets) {
mutex_lock(&pi->vi_mirror_mutex);
err = cxgb4_port_mirror_alloc_queues(dev);
if (err)
goto out_unlock;
err = cxgb4_port_mirror_start(dev);
if (err)
goto out_free_queues;
mutex_unlock(&pi->vi_mirror_mutex);
}
netif_tx_start_all_queues(dev);
return 0;
out_free_queues:
cxgb4_port_mirror_free_queues(dev);
out_unlock:
mutex_unlock(&pi->vi_mirror_mutex);
return err;
}
int cxgb_close(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
int ret;
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
ret = t4_enable_pi_params(adapter, adapter->pf, pi,
false, false, false);
#ifdef CONFIG_CHELSIO_T4_DCB
cxgb4_dcb_reset(dev);
dcb_tx_queue_prio_enable(dev, false);
#endif
if (ret)
return ret;
if (pi->nmirrorqsets) {
mutex_lock(&pi->vi_mirror_mutex);
cxgb4_port_mirror_stop(dev);
cxgb4_port_mirror_free_queues(dev);
mutex_unlock(&pi->vi_mirror_mutex);
}
return 0;
}
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
__be32 sip, __be16 sport, __be16 vlan,
unsigned int queue, unsigned char port, unsigned char mask)
{
int ret;
struct filter_entry *f;
struct adapter *adap;
int i;
u8 *val;
adap = netdev2adap(dev);
/* Adjust stid to correct filter index */
stid -= adap->tids.sftid_base;
stid += adap->tids.nftids;
/* Check to make sure the filter requested is writable ...
*/
f = &adap->tids.ftid_tab[stid];
ret = writable_filter(f);
if (ret)
return ret;
/* Clear out any old resources being used by the filter before
* we start constructing the new filter.
*/
if (f->valid)
clear_filter(adap, f);
/* Clear out filter specifications */
memset(&f->fs, 0, sizeof(struct ch_filter_specification));
f->fs.val.lport = be16_to_cpu(sport);
f->fs.mask.lport = ~0;
val = (u8 *)&sip;
if ((val[0] | val[1] | val[2] | val[3]) != 0) {
for (i = 0; i < 4; i++) {
f->fs.val.lip[i] = val[i];
f->fs.mask.lip[i] = ~0;
}
if (adap->params.tp.vlan_pri_map & PORT_F) {
f->fs.val.iport = port;
f->fs.mask.iport = mask;
}
}
if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
f->fs.val.proto = IPPROTO_TCP;
f->fs.mask.proto = ~0;
}
f->fs.dirsteer = 1;
f->fs.iq = queue;
/* Mark filter as locked */
f->locked = 1;
f->fs.rpttid = 1;
/* Save the actual tid. We need this to get the corresponding
* filter entry structure in filter_rpl.
*/
f->tid = stid + adap->tids.ftid_base;
ret = set_filter_wr(adap, stid);
if (ret) {
clear_filter(adap, f);
return ret;
}
return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);
int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
unsigned int queue, bool ipv6)
{
struct filter_entry *f;
struct adapter *adap;
adap = netdev2adap(dev);
/* Adjust stid to correct filter index */
stid -= adap->tids.sftid_base;
stid += adap->tids.nftids;
f = &adap->tids.ftid_tab[stid];
/* Unlock the filter */
f->locked = 0;
return delete_filter(adap, stid);
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);
static void cxgb_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *ns)
{
struct port_stats stats;
struct port_info *p = netdev_priv(dev);
struct adapter *adapter = p->adapter;
/* Block retrieving statistics during EEH error
* recovery. Otherwise, the recovery might fail
* and the PCI device will be removed permanently
*/
spin_lock(&adapter->stats_lock);
if (!netif_device_present(dev)) {
spin_unlock(&adapter->stats_lock);
return;
}
t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
&p->stats_base);
spin_unlock(&adapter->stats_lock);
ns->tx_bytes = stats.tx_octets;
ns->tx_packets = stats.tx_frames;
ns->rx_bytes = stats.rx_octets;
ns->rx_packets = stats.rx_frames;
ns->multicast = stats.rx_mcast_frames;
/* detailed rx_errors */
ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
stats.rx_runt;
ns->rx_over_errors = 0;
ns->rx_crc_errors = stats.rx_fcs_err;
ns->rx_frame_errors = stats.rx_symbol_err;
ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
stats.rx_ovflow2 + stats.rx_ovflow3 +
stats.rx_trunc0 + stats.rx_trunc1 +
stats.rx_trunc2 + stats.rx_trunc3;
ns->rx_missed_errors = 0;
/* detailed tx_errors */
ns->tx_aborted_errors = 0;
ns->tx_carrier_errors = 0;
ns->tx_fifo_errors = 0;
ns->tx_heartbeat_errors = 0;
ns->tx_window_errors = 0;
ns->tx_errors = stats.tx_error_frames;
ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
}
static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
unsigned int mbox;
int ret = 0, prtad, devad;
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
switch (cmd) {
case SIOCGMIIPHY:
if (pi->mdio_addr < 0)
return -EOPNOTSUPP;
data->phy_id = pi->mdio_addr;
break;
case SIOCGMIIREG:
case SIOCSMIIREG:
if (mdio_phy_id_is_c45(data->phy_id)) {
prtad = mdio_phy_id_prtad(data->phy_id);
devad = mdio_phy_id_devad(data->phy_id);
} else if (data->phy_id < 32) {
prtad = data->phy_id;
devad = 0;
data->reg_num &= 0x1f;
} else
return -EINVAL;
mbox = pi->adapter->pf;
if (cmd == SIOCGMIIREG)
ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
data->reg_num, &data->val_out);
else
ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
data->reg_num, data->val_in);
break;
case SIOCGHWTSTAMP:
return copy_to_user(req->ifr_data, &pi->tstamp_config,
sizeof(pi->tstamp_config)) ?
-EFAULT : 0;
case SIOCSHWTSTAMP:
if (copy_from_user(&pi->tstamp_config, req->ifr_data,
sizeof(pi->tstamp_config)))
return -EFAULT;
if (!is_t4(adapter->params.chip)) {
switch (pi->tstamp_config.tx_type) {
case HWTSTAMP_TX_OFF:
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (pi->tstamp_config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
pi->rxtstamp = false;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
cxgb4_ptprx_timestamping(pi, pi->port_id,
PTP_TS_L4);
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
cxgb4_ptprx_timestamping(pi, pi->port_id,
PTP_TS_L2_L4);
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
pi->rxtstamp = true;
break;
default:
pi->tstamp_config.rx_filter =
HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
(pi->tstamp_config.rx_filter ==
HWTSTAMP_FILTER_NONE)) {
if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
pi->ptp_enable = false;
}
if (pi->tstamp_config.rx_filter !=
HWTSTAMP_FILTER_NONE) {
if (cxgb4_ptp_redirect_rx_packet(adapter,
pi) >= 0)
pi->ptp_enable = true;
}
} else {
/* For T4 Adapters */
switch (pi->tstamp_config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
pi->rxtstamp = false;
break;
case HWTSTAMP_FILTER_ALL:
pi->rxtstamp = true;
break;
default:
pi->tstamp_config.rx_filter =
HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
}
return copy_to_user(req->ifr_data, &pi->tstamp_config,
sizeof(pi->tstamp_config)) ?
-EFAULT : 0;
default:
return -EOPNOTSUPP;
}
return ret;
}
static void cxgb_set_rxmode(struct net_device *dev)
{
/* unfortunately we can't return errors to the stack */
set_rxmode(dev, -1, false);
}
static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
struct port_info *pi = netdev_priv(dev);
int ret;
ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
if (!ret)
dev->mtu = new_mtu;
return ret;
}
#ifdef CONFIG_PCI_IOV
static int cxgb4_mgmt_open(struct net_device *dev)
{
/* Turn carrier off since we don't have to transmit anything on this
* interface.
*/
netif_carrier_off(dev);
return 0;
}
/* Fill MAC address that will be assigned by the FW */
static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
{
u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
unsigned int i, vf, nvfs;
u16 a, b;
int err;
u8 *na;
err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
if (err)
return;
na = adap->params.vpd.na;
for (i = 0; i < ETH_ALEN; i++)
hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
hex2val(na[2 * i + 1]));
a = (hw_addr[0] << 8) | hw_addr[1];
b = (hw_addr[1] << 8) | hw_addr[2];
a ^= b;
a |= 0x0200; /* locally assigned Ethernet MAC address */
a &= ~0x0100; /* not a multicast Ethernet MAC address */
macaddr[0] = a >> 8;
macaddr[1] = a & 0xff;
for (i = 2; i < 5; i++)
macaddr[i] = hw_addr[i + 1];
for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
vf < nvfs; vf++) {
macaddr[5] = adap->pf * nvfs + vf;
ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
}
}
static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
int ret;
/* verify MAC addr is valid */
if (!is_valid_ether_addr(mac)) {
dev_err(pi->adapter->pdev_dev,
"Invalid Ethernet address %pM for VF %d\n",
mac, vf);
return -EINVAL;
}
dev_info(pi->adapter->pdev_dev,
"Setting MAC %pM on VF %d\n", mac, vf);
ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
if (!ret)
ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
return ret;
}
static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
int vf, struct ifla_vf_info *ivi)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct vf_info *vfinfo;
if (vf >= adap->num_vfs)
return -EINVAL;
vfinfo = &adap->vfinfo[vf];
ivi->vf = vf;
ivi->max_tx_rate = vfinfo->tx_rate;
ivi->min_tx_rate = 0;
ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
ivi->vlan = vfinfo->vlan;
ivi->linkstate = vfinfo->link_state;
return 0;
}
static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
struct netdev_phys_item_id *ppid)
{
struct port_info *pi = netdev_priv(dev);
unsigned int phy_port_id;
phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
ppid->id_len = sizeof(phy_port_id);
memcpy(ppid->id, &phy_port_id, ppid->id_len);
return 0;
}
static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
int min_tx_rate, int max_tx_rate)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
unsigned int link_ok, speed, mtu;
u32 fw_pfvf, fw_class;
int class_id = vf;
int ret;
u16 pktsize;
if (vf >= adap->num_vfs)
return -EINVAL;
if (min_tx_rate) {
dev_err(adap->pdev_dev,
"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
min_tx_rate, vf);
return -EINVAL;
}
if (max_tx_rate == 0) {
/* unbind VF to to any Traffic Class */
fw_pfvf =
(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
fw_class = 0xffffffff;
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
&fw_pfvf, &fw_class);
if (ret) {
dev_err(adap->pdev_dev,
"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
ret, adap->pf, vf);
return -EINVAL;
}
dev_info(adap->pdev_dev,
"PF %d VF %d is unbound from TX Rate Limiting\n",
adap->pf, vf);
adap->vfinfo[vf].tx_rate = 0;
return 0;
}
ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
if (ret != FW_SUCCESS) {
dev_err(adap->pdev_dev,
"Failed to get link information for VF %d\n", vf);
return -EINVAL;
}
if (!link_ok) {
dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
return -EINVAL;
}
if (max_tx_rate > speed) {
dev_err(adap->pdev_dev,
"Max tx rate %d for VF %d can't be > link-speed %u",
max_tx_rate, vf, speed);
return -EINVAL;
}
pktsize = mtu;
/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
pktsize = pktsize - sizeof(struct ethhdr) - 4;
/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
/* configure Traffic Class for rate-limiting */
ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
SCHED_CLASS_LEVEL_CL_RL,
SCHED_CLASS_MODE_CLASS,
SCHED_CLASS_RATEUNIT_BITS,
SCHED_CLASS_RATEMODE_ABS,
pi->tx_chan, class_id, 0,
max_tx_rate * 1000, 0, pktsize, 0);
if (ret) {
dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
ret);
return -EINVAL;
}
dev_info(adap->pdev_dev,
"Class %d with MSS %u configured with rate %u\n",
class_id, pktsize, max_tx_rate);
/* bind VF to configured Traffic Class */
fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
fw_class = class_id;
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
&fw_class);
if (ret) {
dev_err(adap->pdev_dev,
"Err %d in binding PF %d VF %d to Traffic Class %d\n",
ret, adap->pf, vf, class_id);
return -EINVAL;
}
dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
adap->pf, vf, class_id);
adap->vfinfo[vf].tx_rate = max_tx_rate;
return 0;
}
static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
u16 vlan, u8 qos, __be16 vlan_proto)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
int ret;
if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
return -EINVAL;
if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
return -EPROTONOSUPPORT;
ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
if (!ret) {
adap->vfinfo[vf].vlan = vlan;
return 0;
}
dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
return ret;
}
static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
int link)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
u32 param, val;
int ret = 0;
if (vf >= adap->num_vfs)
return -EINVAL;
switch (link) {
case IFLA_VF_LINK_STATE_AUTO:
val = FW_VF_LINK_STATE_AUTO;
break;
case IFLA_VF_LINK_STATE_ENABLE:
val = FW_VF_LINK_STATE_ENABLE;
break;
case IFLA_VF_LINK_STATE_DISABLE:
val = FW_VF_LINK_STATE_DISABLE;
break;
default:
return -EINVAL;
}
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
&param, &val);
if (ret) {
dev_err(adap->pdev_dev,
"Error %d in setting PF %d VF %d link state\n",
ret, adap->pf, vf);
return -EINVAL;
}
adap->vfinfo[vf].link_state = link;
return ret;
}
#endif /* CONFIG_PCI_IOV */
static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
int ret;
struct sockaddr *addr = p;
struct port_info *pi = netdev_priv(dev);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
addr->sa_data, true, &pi->smt_idx);
if (ret < 0)
return ret;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
if (adap->flags & CXGB4_USING_MSIX) {
int i;
struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
for (i = pi->nqsets; i; i--, rx++)
t4_sge_intr_msix(0, &rx->rspq);
} else
t4_intr_handler(adap)(0, adap);
}
#endif
static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adap = pi->adapter;
struct ch_sched_queue qe = { 0 };
struct ch_sched_params p = { 0 };
struct sched_class *e;
u32 req_rate;
int err = 0;
if (!can_sched(dev))
return -ENOTSUPP;
if (index < 0 || index > pi->nqsets - 1)
return -EINVAL;
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
dev_err(adap->pdev_dev,
"Failed to rate limit on queue %d. Link Down?\n",
index);
return -EINVAL;
}
qe.queue = index;
e = cxgb4_sched_queue_lookup(dev, &qe);
if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
dev_err(adap->pdev_dev,
"Queue %u already bound to class %u of type: %u\n",
index, e->idx, e->info.u.params.level);
return -EBUSY;
}
/* Convert from Mbps to Kbps */
req_rate = rate * 1000;
/* Max rate is 100 Gbps */
if (req_rate > SCHED_MAX_RATE_KBPS) {
dev_err(adap->pdev_dev,
"Invalid rate %u Mbps, Max rate is %u Mbps\n",
rate, SCHED_MAX_RATE_KBPS / 1000);
return -ERANGE;
}
/* First unbind the queue from any existing class */
memset(&qe, 0, sizeof(qe));
qe.queue = index;
qe.class = SCHED_CLS_NONE;
err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
if (err) {
dev_err(adap->pdev_dev,
"Unbinding Queue %d on port %d fail. Err: %d\n",
index, pi->port_id, err);
return err;
}
/* Queue already unbound */
if (!req_rate)
return 0;
/* Fetch any available unused or matching scheduling class */
p.type = SCHED_CLASS_TYPE_PACKET;
p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
p.u.params.mode = SCHED_CLASS_MODE_CLASS;
p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
p.u.params.channel = pi->tx_chan;
p.u.params.class = SCHED_CLS_NONE;
p.u.params.minrate = 0;
p.u.params.maxrate = req_rate;
p.u.params.weight = 0;
p.u.params.pktsize = dev->mtu;
e = cxgb4_sched_class_alloc(dev, &p);
if (!e)
return -ENOMEM;
/* Bind the queue to a scheduling class */
memset(&qe, 0, sizeof(qe));
qe.queue = index;
qe.class = e->idx;
err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
if (err)
dev_err(adap->pdev_dev,
"Queue rate limiting failed. Err: %d\n", err);
return err;
}
static int cxgb_setup_tc_flower(struct net_device *dev,
struct flow_cls_offload *cls_flower)
{
switch (cls_flower->command) {
case FLOW_CLS_REPLACE:
return cxgb4_tc_flower_replace(dev, cls_flower);
case FLOW_CLS_DESTROY:
return cxgb4_tc_flower_destroy(dev, cls_flower);
case FLOW_CLS_STATS:
return cxgb4_tc_flower_stats(dev, cls_flower);
default:
return -EOPNOTSUPP;
}
}
static int cxgb_setup_tc_cls_u32(struct net_device *dev,
struct tc_cls_u32_offload *cls_u32)
{
switch (cls_u32->command) {
case TC_CLSU32_NEW_KNODE:
case TC_CLSU32_REPLACE_KNODE:
return cxgb4_config_knode(dev, cls_u32);
case TC_CLSU32_DELETE_KNODE:
return cxgb4_delete_knode(dev, cls_u32);
default:
return -EOPNOTSUPP;
}
}
static int cxgb_setup_tc_matchall(struct net_device *dev,
struct tc_cls_matchall_offload *cls_matchall,
bool ingress)
{
struct adapter *adap = netdev2adap(dev);
if (!adap->tc_matchall)
return -ENOMEM;
switch (cls_matchall->command) {
case TC_CLSMATCHALL_REPLACE:
return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
case TC_CLSMATCHALL_DESTROY:
return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
case TC_CLSMATCHALL_STATS:
if (ingress)
return cxgb4_tc_matchall_stats(dev, cls_matchall);
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct net_device *dev = cb_priv;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
dev_err(adap->pdev_dev,
"Failed to setup tc on port %d. Link Down?\n",
pi->port_id);
return -EINVAL;
}
if (!tc_cls_can_offload_and_chain0(dev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSU32:
return cxgb_setup_tc_cls_u32(dev, type_data);
case TC_SETUP_CLSFLOWER:
return cxgb_setup_tc_flower(dev, type_data);
case TC_SETUP_CLSMATCHALL:
return cxgb_setup_tc_matchall(dev, type_data, true);
default:
return -EOPNOTSUPP;
}
}
static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct net_device *dev = cb_priv;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
dev_err(adap->pdev_dev,
"Failed to setup tc on port %d. Link Down?\n",
pi->port_id);
return -EINVAL;
}
if (!tc_cls_can_offload_and_chain0(dev, type_data))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSMATCHALL:
return cxgb_setup_tc_matchall(dev, type_data, false);
default:
break;
}
return -EOPNOTSUPP;
}
static int cxgb_setup_tc_mqprio(struct net_device *dev,
struct tc_mqprio_qopt_offload *mqprio)
{
struct adapter *adap = netdev2adap(dev);
if (!is_ethofld(adap) || !adap->tc_mqprio)
return -ENOMEM;
return cxgb4_setup_tc_mqprio(dev, mqprio);
}
static LIST_HEAD(cxgb_block_cb_list);
static int cxgb_setup_tc_block(struct net_device *dev,
struct flow_block_offload *f)
{
struct port_info *pi = netdev_priv(dev);
flow_setup_cb_t *cb;
bool ingress_only;
pi->tc_block_shared = f->block_shared;
if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
cb = cxgb_setup_tc_block_egress_cb;
ingress_only = false;
} else {
cb = cxgb_setup_tc_block_ingress_cb;
ingress_only = true;
}
return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
cb, pi, dev, ingress_only);
}
static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return cxgb_setup_tc_mqprio(dev, type_data);
case TC_SETUP_BLOCK:
return cxgb_setup_tc_block(dev, type_data);
default:
return -EOPNOTSUPP;
}
}
static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
unsigned int table, unsigned int entry,
struct udp_tunnel_info *ti)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adapter = pi->adapter;
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
int ret = 0, i;
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
adapter->vxlan_port = 0;
t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
break;
case UDP_TUNNEL_TYPE_GENEVE:
adapter->geneve_port = 0;
t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
break;
default:
return -EINVAL;
}
/* Matchall mac entries can be deleted only after all tunnel ports
* are brought down or removed.
*/
if (!adapter->rawf_cnt)
return 0;
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
ret = t4_free_raw_mac_filt(adapter, pi->viid,
match_all_mac, match_all_mac,
adapter->rawf_start + pi->port_id,
1, pi->port_id, false);
if (ret < 0) {
netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
i);
return ret;
}
}
return 0;
}
static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
unsigned int table, unsigned int entry,
struct udp_tunnel_info *ti)
{
struct port_info *pi = netdev_priv(netdev);
struct adapter *adapter = pi->adapter;
u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
int i, ret;
switch (ti->type) {
case UDP_TUNNEL_TYPE_VXLAN:
adapter->vxlan_port = ti->port;
t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
break;
case UDP_TUNNEL_TYPE_GENEVE:
adapter->geneve_port = ti->port;
t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
break;
default:
return -EINVAL;
}
/* Create a 'match all' mac filter entry for inner mac,
* if raw mac interface is supported. Once the linux kernel provides
* driver entry points for adding/deleting the inner mac addresses,
* we will remove this 'match all' entry and fallback to adding
* exact match filters.
*/
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
match_all_mac,
match_all_mac,
adapter->rawf_start + pi->port_id,
1, pi->port_id, false);
if (ret < 0) {
netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
be16_to_cpu(ti->port));
return ret;
}
}
return 0;
}
static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
.set_port = cxgb_udp_tunnel_set_port,
.unset_port = cxgb_udp_tunnel_unset_port,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
},
};
static netdev_features_t cxgb_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
struct port_info *pi = netdev_priv(dev);
struct adapter *adapter = pi->adapter;
if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
return features;
/* Check if hw supports offload for this packet */
if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
return features;
/* Offload is not supported for this encapsulated packet */
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
static netdev_features_t cxgb_fix_features(struct net_device *dev,
netdev_features_t features)
{
/* Disable GRO, if RX_CSUM is disabled */
if (!(features & NETIF_F_RXCSUM))
features &= ~NETIF_F_GRO;
return features;
}
static const struct net_device_ops cxgb4_netdev_ops = {
.ndo_open = cxgb_open,
.ndo_stop = cxgb_close,
.ndo_start_xmit = t4_start_xmit,
.ndo_select_queue = cxgb_select_queue,
.ndo_get_stats64 = cxgb_get_stats,
.ndo_set_rx_mode = cxgb_set_rxmode,
.ndo_set_mac_address = cxgb_set_mac_addr,
.ndo_set_features = cxgb_set_features,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = cxgb_ioctl,
.ndo_change_mtu = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = cxgb_netpoll,
#endif
#ifdef CONFIG_CHELSIO_T4_FCOE
.ndo_fcoe_enable = cxgb_fcoe_enable,
.ndo_fcoe_disable = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
.ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
.ndo_setup_tc = cxgb_setup_tc,
.ndo_features_check = cxgb_features_check,
.ndo_fix_features = cxgb_fix_features,
};
#ifdef CONFIG_PCI_IOV
static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
.ndo_open = cxgb4_mgmt_open,
.ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
.ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
.ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
.ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
.ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state,
};
#endif
static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct adapter *adapter = netdev2adap(dev);
strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
strlcpy(info->bus_info, pci_name(adapter->pdev),
sizeof(info->bus_info));
}
static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
.get_drvinfo = cxgb4_mgmt_get_drvinfo,
};
static void notify_fatal_err(struct work_struct *work)
{
struct adapter *adap;
adap = container_of(work, struct adapter, fatal_err_notify_task);
notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
}
void t4_fatal_err(struct adapter *adap)
{
int port;
if (pci_channel_offline(adap->pdev))
return;
/* Disable the SGE since ULDs are going to free resources that
* could be exposed to the adapter. RDMA MWs for example...
*/
t4_shutdown_adapter(adap);
for_each_port(adap, port) {
struct net_device *dev = adap->port[port];
/* If we get here in very early initialization the network
* devices may not have been set up yet.
*/
if (!dev)
continue;
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
}
dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
queue_work(adap->workq, &adap->fatal_err_notify_task);
}
static void setup_memwin(struct adapter *adap)
{
u32 nic_win_base = t4_get_util_window(adap);
t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
}
static void setup_memwin_rdma(struct adapter *adap)
{
if (adap->vres.ocq.size) {
u32 start;
unsigned int sz_kb;
start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
start &= PCI_BASE_ADDRESS_MEM_MASK;
start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
t4_write_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
adap->vres.ocq.start);
t4_read_reg(adap,
PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
}
}
/* HMA Definitions */
/* The maximum number of address that can be send in a single FW cmd */
#define HMA_MAX_ADDR_IN_CMD 5
#define HMA_PAGE_SIZE PAGE_SIZE
#define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
#define HMA_PAGE_ORDER \
((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
/* The minimum and maximum possible HMA sizes that can be specified in the FW
* configuration(in units of MB).
*/
#define HMA_MIN_TOTAL_SIZE 1
#define HMA_MAX_TOTAL_SIZE \
(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
HMA_MAX_NO_FW_ADDRESS) >> 20)
static void adap_free_hma_mem(struct adapter *adapter)
{
struct scatterlist *iter;
struct page *page;
int i;
if (!adapter->hma.sgt)
return;
if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
}
for_each_sg(adapter->hma.sgt->sgl, iter,
adapter->hma.sgt->orig_nents, i) {
page = sg_page(iter);
if (page)
__free_pages(page, HMA_PAGE_ORDER);
}
kfree(adapter->hma.phy_addr);
sg_free_table(adapter->hma.sgt);
kfree(adapter->hma.sgt);
adapter->hma.sgt = NULL;
}
static int adap_config_hma(struct adapter *adapter)
{
struct scatterlist *sgl, *iter;
struct sg_table *sgt;
struct page *newpage;
unsigned int i, j, k;
u32 param, hma_size;
unsigned int ncmds;
size_t page_size;
u32 page_order;
int node, ret;
/* HMA is supported only for T6+ cards.
* Avoid initializing HMA in kdump kernels.
*/
if (is_kdump_kernel() ||
CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
return 0;
/* Get the HMA region size required by fw */
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1, &param, &hma_size);
/* An error means card has its own memory or HMA is not supported by
* the firmware. Return without any errors.
*/
if (ret || !hma_size)
return 0;
if (hma_size < HMA_MIN_TOTAL_SIZE ||
hma_size > HMA_MAX_TOTAL_SIZE) {
dev_err(adapter->pdev_dev,
"HMA size %uMB beyond bounds(%u-%lu)MB\n",
hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
return -EINVAL;
}
page_size = HMA_PAGE_SIZE;
page_order = HMA_PAGE_ORDER;
adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
if (unlikely(!adapter->hma.sgt)) {
dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
return -ENOMEM;
}
sgt = adapter->hma.sgt;
/* FW returned value will be in MB's
*/
sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
kfree(adapter->hma.sgt);
adapter->hma.sgt = NULL;
return -ENOMEM;
}
sgl = adapter->hma.sgt->sgl;
node = dev_to_node(adapter->pdev_dev);
for_each_sg(sgl, iter, sgt->orig_nents, i) {
newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
__GFP_ZERO, page_order);
if (!newpage) {
dev_err(adapter->pdev_dev,
"Not enough memory for HMA page allocation\n");
ret = -ENOMEM;
goto free_hma;
}
sg_set_page(iter, newpage, page_size << page_order, 0);
}
sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
DMA_BIDIRECTIONAL);
if (!sgt->nents) {
dev_err(adapter->pdev_dev,
"Not enough memory for HMA DMA mapping");
ret = -ENOMEM;
goto free_hma;
}
adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
GFP_KERNEL);
if (unlikely(!adapter->hma.phy_addr))
goto free_hma;
for_each_sg(sgl, iter, sgt->nents, i) {
newpage = sg_page(iter);
adapter->hma.phy_addr[i] = sg_dma_address(iter);
}
ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
/* Pass on the addresses to firmware */
for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
struct fw_hma_cmd hma_cmd;
u8 naddr = HMA_MAX_ADDR_IN_CMD;
u8 soc = 0, eoc = 0;
u8 hma_mode = 1; /* Presently we support only Page table mode */
soc = (i == 0) ? 1 : 0;
eoc = (i == ncmds - 1) ? 1 : 0;
/* For last cmd, set naddr corresponding to remaining
* addresses
*/
if (i == ncmds - 1) {
naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
}
memset(&hma_cmd, 0, sizeof(hma_cmd));
hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
hma_cmd.mode_to_pcie_params =
htonl(FW_HMA_CMD_MODE_V(hma_mode) |
FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
/* HMA cmd size specified in MB's */
hma_cmd.naddr_size =
htonl(FW_HMA_CMD_SIZE_V(hma_size) |
FW_HMA_CMD_NADDR_V(naddr));
/* Total Page size specified in units of 4K */
hma_cmd.addr_size_pkd =
htonl(FW_HMA_CMD_ADDR_SIZE_V
((page_size << page_order) >> 12));
/* Fill the 5 addresses */
for (j = 0; j < naddr; j++) {
hma_cmd.phy_address[j] =
cpu_to_be64(adapter->hma.phy_addr[j + k]);
}
ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
sizeof(hma_cmd), &hma_cmd);
if (ret) {
dev_err(adapter->pdev_dev,
"HMA FW command failed with err %d\n", ret);
goto free_hma;
}
}
if (!ret)
dev_info(adapter->pdev_dev,
"Reserved %uMB host memory for HMA\n", hma_size);
return ret;
free_hma:
adap_free_hma_mem(adapter);
return ret;
}
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
u32 v;
int ret;
/* Now that we've successfully configured and initialized the adapter
* can ask the Firmware what resources it has provisioned for us.
*/
ret = t4_get_pfres(adap);
if (ret) {
dev_err(adap->pdev_dev,
"Unable to retrieve resource provisioning information\n");
return ret;
}
/* get device capabilities */
memset(c, 0, sizeof(*c));
c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F);
c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
if (ret < 0)
return ret;
c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
if (ret < 0)
return ret;
ret = t4_config_glbl_rss(adap, adap->pf,
FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
if (ret < 0)
return ret;
ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
FW_CMD_CAP_PF);
if (ret < 0)
return ret;
t4_sge_init(adap);
/* tweak some settings */
t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
v = t4_read_reg(adap, TP_PIO_DATA_A);
t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
/* first 4 Tx modulation queues point to consecutive Tx channels */
adap->params.tp.tx_modq_map = 0xE4;
t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
/* associate each Tx modulation queue with consecutive Tx channels */
v = 0x84218421;
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
&v, 1, TP_TX_SCHED_HDR_A);
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
&v, 1, TP_TX_SCHED_FIFO_A);
t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
&v, 1, TP_TX_SCHED_PCMD_A);
#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
if (is_offload(adap)) {
t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
}
/* get basic stuff going */
return t4_early_init(adap, adap->pf);
}
/*
* Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
*/
#define MAX_ATIDS 8192U
/*
* Phase 0 of initialization: contact FW, obtain config, perform basic init.
*
* If the firmware we're dealing with has Configuration File support, then
* we use that to perform all configuration
*/
/*
* Tweak configuration based on module parameters, etc. Most of these have
* defaults assigned to them by Firmware Configuration Files (if we're using
* them) but need to be explicitly set if we're using hard-coded
* initialization. But even in the case of using Firmware Configuration
* Files, we'd like to expose the ability to change these via module
* parameters so these are essentially common tweaks/settings for
* Configuration Files and hard-coded initialization ...
*/
static int adap_init0_tweaks(struct adapter *adapter)
{
/*
* Fix up various Host-Dependent Parameters like Page Size, Cache
* Line Size, etc. The firmware default is for a 4KB Page Size and
* 64B Cache Line Size ...
*/
t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
/*
* Process module parameters which affect early initialization.
*/
if (rx_dma_offset != 2 && rx_dma_offset != 0) {
dev_err(&adapter->pdev->dev,
"Ignoring illegal rx_dma_offset=%d, using 2\n",
rx_dma_offset);
rx_dma_offset = 2;
}
t4_set_reg_field(adapter, SGE_CONTROL_A,
PKTSHIFT_V(PKTSHIFT_M),
PKTSHIFT_V(rx_dma_offset));
/*
* Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
* adds the pseudo header itself.
*/
t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
CSUM_HAS_PSEUDO_HDR_F, 0);
return 0;
}
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
* unto themselves and they contain their own firmware to perform their
* tasks ...
*/
static int phy_aq1202_version(const u8 *phy_fw_data,
size_t phy_fw_size)
{
int offset;
/* At offset 0x8 you're looking for the primary image's
* starting offset which is 3 Bytes wide
*
* At offset 0xa of the primary image, you look for the offset
* of the DRAM segment which is 3 Bytes wide.
*
* The FW version is at offset 0x27e of the DRAM and is 2 Bytes
* wide
*/
#define be16(__p) (((__p)[0] << 8) | (__p)[1])
#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
#define le24(__p) (le16(__p) | ((__p)[2] << 16))
offset = le24(phy_fw_data + 0x8) << 12;
offset = le24(phy_fw_data + offset + 0xa);
return be16(phy_fw_data + offset + 0x27e);
#undef be16
#undef le16
#undef le24
}
static struct info_10gbt_phy_fw {
unsigned int phy_fw_id; /* PCI Device ID */
char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
int phy_flash; /* Has FLASH for PHY Firmware */
} phy_info_array[] = {
{
PHY_AQ1202_DEVICEID,
PHY_AQ1202_FIRMWARE,
phy_aq1202_version,
1,
},
{
PHY_BCM84834_DEVICEID,
PHY_BCM84834_FIRMWARE,
NULL,
0,
},
{ 0, NULL, NULL },
};
static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
int i;
for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
if (phy_info_array[i].phy_fw_id == devid)
return &phy_info_array[i];
}
return NULL;
}
/* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
* happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
* we return a negative error number. If we transfer new firmware we return 1
* (from t4_load_phy_fw()). If we don't do anything we return 0.
*/
static int adap_init0_phy(struct adapter *adap)
{
const struct firmware *phyf;
int ret;
struct info_10gbt_phy_fw *phy_info;
/* Use the device ID to determine which PHY file to flash.
*/
phy_info = find_phy_info(adap->pdev->device);
if (!phy_info) {
dev_warn(adap->pdev_dev,
"No PHY Firmware file found for this PHY\n");
return -EOPNOTSUPP;
}
/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
* use that. The adapter firmware provides us with a memory buffer
* where we can load a PHY firmware file from the host if we want to
* override the PHY firmware File in flash.
*/
ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
adap->pdev_dev);
if (ret < 0) {
/* For adapters without FLASH attached to PHY for their
* firmware, it's obviously a fatal error if we can't get the
* firmware to the adapter. For adapters with PHY firmware
* FLASH storage, it's worth a warning if we can't find the
* PHY Firmware but we'll neuter the error ...
*/
dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
"/lib/firmware/%s, error %d\n",
phy_info->phy_fw_file, -ret);
if (phy_info->phy_flash) {
int cur_phy_fw_ver = 0;
t4_phy_fw_ver(adap, &cur_phy_fw_ver);
dev_warn(adap->pdev_dev, "continuing with, on-adapter "
"FLASH copy, version %#x\n", cur_phy_fw_ver);
ret = 0;
}
return ret;
}
/* Load PHY Firmware onto adapter.
*/
spin_lock_bh(&adap->win0_lock);
ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
(u8 *)phyf->data, phyf->size);
spin_unlock_bh(&adap->win0_lock);
if (ret < 0)
dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
-ret);
else if (ret > 0) {
int new_phy_fw_ver = 0;
if (phy_info->phy_fw_version)
new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
phyf->size);
dev_info(adap->pdev_dev, "Successfully transferred PHY "
"Firmware /lib/firmware/%s, version %#x\n",
phy_info->phy_fw_file, new_phy_fw_ver);
}
release_firmware(phyf);
return ret;
}
/*
* Attempt to initialize the adapter via a Firmware Configuration File.
*/
static int adap_init0_config(struct adapter *adapter, int reset)
{
char *fw_config_file, fw_config_file_path[256];
u32 finiver, finicsum, cfcsum, param, val;
struct fw_caps_config_cmd caps_cmd;
unsigned long mtype = 0, maddr = 0;
const struct firmware *cf;
char *config_name = NULL;
int config_issued = 0;
int ret;
/*
* Reset device if necessary.
*/
if (reset) {
ret = t4_fw_reset(adapter, adapter->mbox,
PIORSTMODE_F | PIORST_F);
if (ret < 0)
goto bye;
}
/* If this is a 10Gb/s-BT adapter make sure the chip-external
* 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
* to be performed after any global adapter RESET above since some
* PHYs only have local RAM copies of the PHY firmware.
*/
if (is_10gbt_device(adapter->pdev->device)) {
ret = adap_init0_phy(adapter);
if (ret < 0)
goto bye;
}
/*
* If we have a T4 configuration file under /lib/firmware/cxgb4/,
* then use that. Otherwise, use the configuration file stored
* in the adapter flash ...
*/
switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
case CHELSIO_T4:
fw_config_file = FW4_CFNAME;
break;
case CHELSIO_T5:
fw_config_file = FW5_CFNAME;
break;
case CHELSIO_T6:
fw_config_file = FW6_CFNAME;
break;
default:
dev_err(adapter->pdev_dev, "Device %d is not supported\n",
adapter->pdev->device);
ret = -EINVAL;
goto bye;
}
ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
if (ret < 0) {
config_name = "On FLASH";
mtype = FW_MEMTYPE_CF_FLASH;
maddr = t4_flash_cfg_addr(adapter);
} else {
u32 params[7], val[7];
sprintf(fw_config_file_path,
"/lib/firmware/%s", fw_config_file);
config_name = fw_config_file_path;
if (cf->size >= FLASH_CFG_MAX_SIZE)
ret = -ENOMEM;
else {
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
ret = t4_query_params(adapter, adapter->mbox,
adapter->pf, 0, 1, params, val);
if (ret == 0) {
/*
* For t4_memory_rw() below addresses and
* sizes have to be in terms of multiples of 4
* bytes. So, if the Configuration File isn't
* a multiple of 4 bytes in length we'll have
* to write that out separately since we can't
* guarantee that the bytes following the
* residual byte in the buffer returned by
* request_firmware() are zeroed out ...
*/
size_t resid = cf->size & 0x3;
size_t size = cf->size & ~0x3;
__be32 *data = (__be32 *)cf->data;
mtype = FW_PARAMS_PARAM_Y_G(val[0]);
maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
spin_lock(&adapter->win0_lock);
ret = t4_memory_rw(adapter, 0, mtype, maddr,
size, data, T4_MEMORY_WRITE);
if (ret == 0 && resid != 0) {
union {
__be32 word;
char buf[4];
} last;
int i;
last.word = data[size >> 2];
for (i = resid; i < 4; i++)
last.buf[i] = 0;
ret = t4_memory_rw(adapter, 0, mtype,
maddr + size,
4, &last.word,
T4_MEMORY_WRITE);
}
spin_unlock(&adapter->win0_lock);
}
}
release_firmware(cf);
if (ret)
goto bye;
}
val = 0;
/* Ofld + Hash filter is supported. Older fw will fail this request and
* it is fine.
*/
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
1, &param, &val);
/* FW doesn't know about Hash filter + ofld support,
* it's not a problem, don't return an error.
*/
if (ret < 0) {
dev_warn(adapter->pdev_dev,
"Hash filter with ofld is not supported by FW\n");
}
/*
* Issue a Capability Configuration command to the firmware to get it
* to parse the Configuration File. We don't use t4_fw_config_file()
* because we want the ability to modify various features after we've
* processed the configuration file ...
*/
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write =
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
caps_cmd.cfvalid_to_len16 =
htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
* Configuration File in FLASH), our last gasp effort is to use the
* Firmware Configuration File which is embedded in the firmware. A
* very few early versions of the firmware didn't have one embedded
* but we can ignore those.
*/
if (ret == -ENOENT) {
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write =
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
sizeof(caps_cmd), &caps_cmd);
config_name = "Firmware Default";
}
config_issued = 1;
if (ret < 0)
goto bye;
finiver = ntohl(caps_cmd.finiver);
finicsum = ntohl(caps_cmd.finicsum);
cfcsum = ntohl(caps_cmd.cfcsum);
if (finicsum != cfcsum)
dev_warn(adapter->pdev_dev, "Configuration File checksum "\
"mismatch: [fini] csum=%#x, computed csum=%#x\n",
finicsum, cfcsum);
/*
* And now tell the firmware to use the configuration we just loaded.
*/
caps_cmd.op_to_write =
htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
NULL);
if (ret < 0)
goto bye;
/*
* Tweak configuration based on system architecture, module
* parameters, etc.
*/
ret = adap_init0_tweaks(adapter);
if (ret < 0)
goto bye;
/* We will proceed even if HMA init fails. */
ret = adap_config_hma(adapter);
if (ret)
dev_err(adapter->pdev_dev,
"HMA configuration failed with error %d\n", ret);
if (is_t6(adapter->params.chip)) {
adap_config_hpfilter(adapter);
ret = setup_ppod_edram(adapter);
if (!ret)
dev_info(adapter->pdev_dev, "Successfully enabled "
"ppod edram feature\n");
}
/*
* And finally tell the firmware to initialize itself using the
* parameters from the Configuration File.
*/
ret = t4_fw_initialize(adapter, adapter->mbox);
if (ret < 0)
goto bye;
/* Emit Firmware Configuration File information and return
* successfully.
*/
dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
"Configuration File \"%s\", version %#x, computed checksum %#x\n",
config_name, finiver, cfcsum);
return 0;
/*
* Something bad happened. Return the error ... (If the "error"
* is that there's no Configuration File on the adapter we don't
* want to issue a warning since this is fairly common.)
*/
bye:
if (config_issued && ret != -ENOENT)
dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
config_name, -ret);
return ret;
}
static struct fw_info fw_info_array[] = {
{
.chip = CHELSIO_T4,
.fs_name = FW4_CFNAME,
.fw_mod_name = FW4_FNAME,
.fw_hdr = {
.chip = FW_HDR_CHIP_T4,
.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
.intfver_nic = FW_INTFVER(T4, NIC),
.intfver_vnic = FW_INTFVER(T4, VNIC),
.intfver_ri = FW_INTFVER(T4, RI),
.intfver_iscsi = FW_INTFVER(T4, ISCSI),
.intfver_fcoe = FW_INTFVER(T4, FCOE),
},
}, {
.chip = CHELSIO_T5,
.fs_name = FW5_CFNAME,
.fw_mod_name = FW5_FNAME,
.fw_hdr = {
.chip = FW_HDR_CHIP_T5,
.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
.intfver_nic = FW_INTFVER(T5, NIC),
.intfver_vnic = FW_INTFVER(T5, VNIC),
.intfver_ri = FW_INTFVER(T5, RI),
.intfver_iscsi = FW_INTFVER(T5, ISCSI),
.intfver_fcoe = FW_INTFVER(T5, FCOE),
},
}, {
.chip = CHELSIO_T6,
.fs_name = FW6_CFNAME,
.fw_mod_name = FW6_FNAME,
.fw_hdr = {
.chip = FW_HDR_CHIP_T6,
.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
.intfver_nic = FW_INTFVER(T6, NIC),
.intfver_vnic = FW_INTFVER(T6, VNIC),
.intfver_ofld = FW_INTFVER(T6, OFLD),
.intfver_ri = FW_INTFVER(T6, RI),
.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
.intfver_iscsi = FW_INTFVER(T6, ISCSI),
.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
.intfver_fcoe = FW_INTFVER(T6, FCOE),
},
}
};
static struct fw_info *find_fw_info(int chip)
{
int i;
for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
if (fw_info_array[i].chip == chip)
return &fw_info_array[i];
}
return NULL;
}
/*
* Phase 0 of initialization: contact FW, obtain config, perform basic init.
*/
static int adap_init0(struct adapter *adap, int vpd_skip)
{
struct fw_caps_config_cmd caps_cmd;
u32 params[7], val[7];
enum dev_state state;
u32 v, port_vec;
int reset = 1;
int ret;
/* Grab Firmware Device Log parameters as early as possible so we have
* access to it for debugging, etc.
*/
ret = t4_init_devlog_params(adap);
if (ret < 0)
return ret;
/* Contact FW, advertising Master capability */
ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
if (ret < 0) {
dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
ret);
return ret;
}
if (ret == adap->mbox)
adap->flags |= CXGB4_MASTER_PF;
/*
* If we're the Master PF Driver and the device is uninitialized,
* then let's consider upgrading the firmware ... (We always want
* to check the firmware version number in order to A. get it for
* later reporting and B. to warn if the currently loaded firmware
* is excessively mismatched relative to the driver.)
*/
t4_get_version_info(adap);
ret = t4_check_fw_version(adap);
/* If firmware is too old (not supported by driver) force an update. */
if (ret)
state = DEV_STATE_UNINIT;
if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
struct fw_info *fw_info;
struct fw_hdr *card_fw;
const struct firmware *fw;
const u8 *fw_data = NULL;
unsigned int fw_size = 0;
/* This is the firmware whose headers the driver was compiled
* against
*/
fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
if (fw_info == NULL) {
dev_err(adap->pdev_dev,
"unable to get firmware info for chip %d.\n",
CHELSIO_CHIP_VERSION(adap->params.chip));
return -EINVAL;
}
/* allocate memory to read the header of the firmware on the
* card
*/
card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
if (!card_fw) {
ret = -ENOMEM;
goto bye;
}
/* Get FW from from /lib/firmware/ */
ret = request_firmware(&fw, fw_info->fw_mod_name,
adap->pdev_dev);
if (ret < 0) {
dev_err(adap->pdev_dev,
"unable to load firmware image %s, error %d\n",
fw_info->fw_mod_name, ret);
} else {
fw_data = fw->data;
fw_size = fw->size;
}
/* upgrade FW logic */
ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
state, &reset);
/* Cleaning up */
release_firmware(fw);
kvfree(card_fw);
if (ret < 0)
goto bye;
}
/* If the firmware is initialized already, emit a simply note to that
* effect. Otherwise, it's time to try initializing the adapter.
*/
if (state == DEV_STATE_INIT) {
ret = adap_config_hma(adap);
if (ret)
dev_err(adap->pdev_dev,
"HMA configuration failed with error %d\n",
ret);
dev_info(adap->pdev_dev, "Coming up as %s: "\
"Adapter already initialized\n",
adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
} else {
dev_info(adap->pdev_dev, "Coming up as MASTER: "\
"Initializing adapter\n");
/* Find out whether we're dealing with a version of the
* firmware which has configuration file support.
*/
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
params, val);
/* If the firmware doesn't support Configuration Files,
* return an error.
*/
if (ret < 0) {
dev_err(adap->pdev_dev, "firmware doesn't support "
"Firmware Configuration Files\n");
goto bye;
}
/* The firmware provides us with a memory buffer where we can
* load a Configuration File from the host if we want to
* override the Configuration File in flash.
*/
ret = adap_init0_config(adap, reset);
if (ret == -ENOENT) {
dev_err(adap->pdev_dev, "no Configuration File "
"present on adapter.\n");
goto bye;
}
if (ret < 0) {
dev_err(adap->pdev_dev, "could not initialize "
"adapter, error %d\n", -ret);
goto bye;
}
}
/* Now that we've successfully configured and initialized the adapter
* (or found it already initialized), we can ask the Firmware what
* resources it has provisioned for us.
*/
ret = t4_get_pfres(adap);
if (ret) {
dev_err(adap->pdev_dev,
"Unable to retrieve resource provisioning information\n");
goto bye;
}
/* Grab VPD parameters. This should be done after we establish a
* connection to the firmware since some of the VPD parameters
* (notably the Core Clock frequency) are retrieved via requests to
* the firmware. On the other hand, we need these fairly early on
* so we do this right after getting ahold of the firmware.
*
* We need to do this after initializing the adapter because someone
* could have FLASHed a new VPD which won't be read by the firmware
* until we do the RESET ...
*/
if (!vpd_skip) {
ret = t4_get_vpd_params(adap, &adap->params.vpd);
if (ret < 0)
goto bye;
}
/* Find out what ports are available to us. Note that we need to do
* this before calling adap_init0_no_config() since it needs nports
* and portvec ...
*/
v =
FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
if (ret < 0)
goto bye;
adap->params.nports = hweight32(port_vec);
adap->params.portvec = port_vec;
/* Give the SGE code a chance to pull in anything that it needs ...
* Note that this must be called after we retrieve our VPD parameters
* in order to know how to convert core ticks to seconds, etc.
*/
ret = t4_sge_init(adap);
if (ret < 0)
goto bye;
/* Grab the SGE Doorbell Queue Timer values. If successful, that
* indicates that the Firmware and Hardware support this.
*/
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
if (!ret) {
adap->sge.dbqtimer_tick = val[0];
ret = t4_read_sge_dbqtimers(adap,
ARRAY_SIZE(adap->sge.dbqtimer_val),
adap->sge.dbqtimer_val);
}
if (!ret)
adap->flags |= CXGB4_SGE_DBQ_TIMER;
if (is_bypass_device(adap->pdev->device))
adap->params.bypass = 1;
/*
* Grab some of our basic fundamental operating parameters.
*/
params[0] = FW_PARAM_PFVF(EQ_START);
params[1] = FW_PARAM_PFVF(L2T_START);
params[2] = FW_PARAM_PFVF(L2T_END);
params[3] = FW_PARAM_PFVF(FILTER_START);
params[4] = FW_PARAM_PFVF(FILTER_END);
params[5] = FW_PARAM_PFVF(IQFLINT_START);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
if (ret < 0)
goto bye;
adap->sge.egr_start = val[0];
adap->l2t_start = val[1];
adap->l2t_end = val[2];
adap->tids.ftid_base = val[3];
adap->tids.nftids = val[4] - val[3] + 1;
adap->sge.ingr_start = val[5];
if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
params[0] = FW_PARAM_PFVF(HPFILTER_START);
params[1] = FW_PARAM_PFVF(HPFILTER_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (ret < 0)
goto bye;
adap->tids.hpftid_base = val[0];
adap->tids.nhpftids = val[1] - val[0] + 1;
/* Read the raw mps entries. In T6, the last 2 tcam entries
* are reserved for raw mac addresses (rawf = 2, one per port).
*/
params[0] = FW_PARAM_PFVF(RAWF_START);
params[1] = FW_PARAM_PFVF(RAWF_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (ret == 0) {
adap->rawf_start = val[0];
adap->rawf_cnt = val[1] - val[0] + 1;
}
adap->tids.tid_base =
t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
}
/* qids (ingress/egress) returned from firmware can be anywhere
* in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
* Hence driver needs to allocate memory for this range to
* store the queue info. Get the highest IQFLINT/EQ index returned
* in FW_EQ_*_CMD.alloc command.
*/
params[0] = FW_PARAM_PFVF(EQ_END);
params[1] = FW_PARAM_PFVF(IQFLINT_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
if (ret < 0)
goto bye;
adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
sizeof(*adap->sge.egr_map), GFP_KERNEL);
if (!adap->sge.egr_map) {
ret = -ENOMEM;
goto bye;
}
adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
sizeof(*adap->sge.ingr_map), GFP_KERNEL);
if (!adap->sge.ingr_map) {
ret = -ENOMEM;
goto bye;
}
/* Allocate the memory for the vaious egress queue bitmaps
* ie starving_fl, txq_maperr and blocked_fl.
*/
adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
sizeof(long), GFP_KERNEL);
if (!adap->sge.starving_fl) {
ret = -ENOMEM;
goto bye;
}
adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
sizeof(long), GFP_KERNEL);
if (!adap->sge.txq_maperr) {
ret = -ENOMEM;
goto bye;
}
#ifdef CONFIG_DEBUG_FS
adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
sizeof(long), GFP_KERNEL);
if (!adap->sge.blocked_fl) {
ret = -ENOMEM;
goto bye;
}
#endif
params[0] = FW_PARAM_PFVF(CLIP_START);
params[1] = FW_PARAM_PFVF(CLIP_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
if (ret < 0)
goto bye;
adap->clipt_start = val[0];
adap->clipt_end = val[1];
/* Get the supported number of traffic classes */
params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
if (ret < 0) {
/* We couldn't retrieve the number of Traffic Classes
* supported by the hardware/firmware. So we hard
* code it here.
*/
adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
} else {
adap->params.nsched_cls = val[0];
}
/* query params related to active filter region */
params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
/* If Active filter size is set we enable establishing
* offload connection through firmware work request
*/
if ((val[0] != val[1]) && (ret >= 0)) {
adap->flags |= CXGB4_FW_OFLD_CONN;
adap->tids.aftid_base = val[0];
adap->tids.aftid_end = val[1];
}
/* If we're running on newer firmware, let it know that we're
* prepared to deal with encapsulated CPL messages. Older
* firmware won't understand this and we'll just get
* unencapsulated messages ...
*/
params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
val[0] = 1;
(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
/*
* Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
* capability. Earlier versions of the firmware didn't have the
* ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
* permission to use ULPTX MEMWRITE DSGL.
*/
if (is_t4(adap->params.chip)) {
adap->params.ulptx_memwrite_dsgl = false;
} else {
params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
}
/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
/* See if FW supports FW_FILTER2 work request */
if (is_t4(adap->params.chip)) {
adap->params.filter2_wr_support = false;
} else {
params[0] = FW_PARAM_DEV(FILTER2_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
}
/* Check if FW supports returning vin and smt index.
* If this is not supported, driver will interpret
* these values from viid.
*/
params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1, params, val);
adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
/*
* Get device capabilities so we can determine what resources we need
* to manage.
*/
memset(&caps_cmd, 0, sizeof(caps_cmd));
caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F);
caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
&caps_cmd);
if (ret < 0)
goto bye;
/* hash filter has some mandatory register settings to be tested and for
* that it needs to test whether offload is enabled or not, hence
* checking and setting it here.
*/
if (caps_cmd.ofldcaps)
adap->params.offload = 1;
if (caps_cmd.ofldcaps ||
(caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
(caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
/* query offload-related parameters */
params[0] = FW_PARAM_DEV(NTID);
params[1] = FW_PARAM_PFVF(SERVER_START);
params[2] = FW_PARAM_PFVF(SERVER_END);
params[3] = FW_PARAM_PFVF(TDDP_START);
params[4] = FW_PARAM_PFVF(TDDP_END);
params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
params, val);
if (ret < 0)
goto bye;
adap->tids.ntids = val[0];
adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
adap->tids.stid_base = val[1];
adap->tids.nstids = val[2] - val[1] + 1;
/*
* Setup server filter region. Divide the available filter
* region into two parts. Regular filters get 1/3rd and server
* filters get 2/3rd part. This is only enabled if workarond
* path is enabled.
* 1. For regular filters.
* 2. Server filter: This are special filters which are used
* to redirect SYN packets to offload queue.
*/
if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
adap->tids.sftid_base = adap->tids.ftid_base +
DIV_ROUND_UP(adap->tids.nftids, 3);
adap->tids.nsftids = adap->tids.nftids -
DIV_ROUND_UP(adap->tids.nftids, 3);
adap->tids.nftids = adap->tids.sftid_base -
adap->tids.ftid_base;
}
adap->vres.ddp.start = val[3];
adap->vres.ddp.size = val[4] - val[3] + 1;
adap->params.ofldq_wr_cred = val[5];
if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
init_hash_filter(adap);
} else {
adap->num_ofld_uld += 1;
}
if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
params[0] = FW_PARAM_PFVF(ETHOFLD_START);
params[1] = FW_PARAM_PFVF(ETHOFLD_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (!ret) {
adap->tids.eotid_base = val[0];
adap->tids.neotids = min_t(u32, MAX_ATIDS,
val[1] - val[0] + 1);
adap->params.ethofld = 1;
}
}
}
if (caps_cmd.rdmacaps) {
params[0] = FW_PARAM_PFVF(STAG_START);
params[1] = FW_PARAM_PFVF(STAG_END);
params[2] = FW_PARAM_PFVF(RQ_START);
params[3] = FW_PARAM_PFVF(RQ_END);
params[4] = FW_PARAM_PFVF(PBL_START);
params[5] = FW_PARAM_PFVF(PBL_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
params, val);
if (ret < 0)
goto bye;
adap->vres.stag.start = val[0];
adap->vres.stag.size = val[1] - val[0] + 1;
adap->vres.rq.start = val[2];
adap->vres.rq.size = val[3] - val[2] + 1;
adap->vres.pbl.start = val[4];
adap->vres.pbl.size = val[5] - val[4] + 1;
params[0] = FW_PARAM_PFVF(SRQ_START);
params[1] = FW_PARAM_PFVF(SRQ_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (!ret) {
adap->vres.srq.start = val[0];
adap->vres.srq.size = val[1] - val[0] + 1;
}
if (adap->vres.srq.size) {
adap->srq = t4_init_srq(adap->vres.srq.size);
if (!adap->srq)
dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
}
params[0] = FW_PARAM_PFVF(SQRQ_START);
params[1] = FW_PARAM_PFVF(SQRQ_END);
params[2] = FW_PARAM_PFVF(CQ_START);
params[3] = FW_PARAM_PFVF(CQ_END);
params[4] = FW_PARAM_PFVF(OCQ_START);
params[5] = FW_PARAM_PFVF(OCQ_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
val);
if (ret < 0)
goto bye;
adap->vres.qp.start = val[0];
adap->vres.qp.size = val[1] - val[0] + 1;
adap->vres.cq.start = val[2];
adap->vres.cq.size = val[3] - val[2] + 1;
adap->vres.ocq.start = val[4];
adap->vres.ocq.size = val[5] - val[4] + 1;
params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
val);
if (ret < 0) {
adap->params.max_ordird_qp = 8;
adap->params.max_ird_adapter = 32 * adap->tids.ntids;
ret = 0;
} else {
adap->params.max_ordird_qp = val[0];
adap->params.max_ird_adapter = val[1];
}
dev_info(adap->pdev_dev,
"max_ordird_qp %d max_ird_adapter %d\n",
adap->params.max_ordird_qp,
adap->params.max_ird_adapter);
/* Enable write_with_immediate if FW supports it */
params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
val);
adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
/* Enable write_cmpl if FW supports it */
params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
val);
adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
adap->num_ofld_uld += 2;
}
if (caps_cmd.iscsicaps) {
params[0] = FW_PARAM_PFVF(ISCSI_START);
params[1] = FW_PARAM_PFVF(ISCSI_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (ret < 0)
goto bye;
adap->vres.iscsi.start = val[0];
adap->vres.iscsi.size = val[1] - val[0] + 1;
if (is_t6(adap->params.chip)) {
params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
params, val);
if (!ret) {
adap->vres.ppod_edram.start = val[0];
adap->vres.ppod_edram.size =
val[1] - val[0] + 1;
dev_info(adap->pdev_dev,
"ppod edram start 0x%x end 0x%x size 0x%x\n",
val[0], val[1],
adap->vres.ppod_edram.size);
}
}
/* LIO target and cxgb4i initiaitor */
adap->num_ofld_uld += 2;
}
if (caps_cmd.cryptocaps) {
if (ntohs(caps_cmd.cryptocaps) &
FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
2, params, val);
if (ret < 0) {
if (ret != -EINVAL)
goto bye;
} else {
adap->vres.ncrypto_fc = val[0];
}
adap->num_ofld_uld += 1;
}
if (ntohs(caps_cmd.cryptocaps) &
FW_CAPS_CONFIG_TLS_INLINE) {
params[0] = FW_PARAM_PFVF(TLS_START);
params[1] = FW_PARAM_PFVF(TLS_END);
ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
2, params, val);
if (ret < 0)
goto bye;
adap->vres.key.start = val[0];
adap->vres.key.size = val[1] - val[0] + 1;
adap->num_uld += 1;
}
adap->params.crypto = ntohs(caps_cmd.cryptocaps);
}
/* The MTU/MSS Table is initialized by now, so load their values. If
* we're initializing the adapter, then we'll make any modifications
* we want to the MTU/MSS Table and also initialize the congestion
* parameters.
*/
t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
if (state != DEV_STATE_INIT) {
int i;
/* The default MTU Table contains values 1492 and 1500.
* However, for TCP, it's better to have two values which are
* a multiple of 8 +/- 4 bytes apart near this popular MTU.
* This allows us to have a TCP Data Payload which is a
* multiple of 8 regardless of what combination of TCP Options
* are in use (always a multiple of 4 bytes) which is
* important for performance reasons. For instance, if no
* options are in use, then we have a 20-byte IP header and a
* 20-byte TCP header. In this case, a 1500-byte MSS would
* result in a TCP Data Payload of 1500 - 40 == 1460 bytes
* which is not a multiple of 8. So using an MSS of 1488 in
* this case results in a TCP Data Payload of 1448 bytes which
* is a multiple of 8. On the other hand, if 12-byte TCP Time
* Stamps have been negotiated, then an MTU of 1500 bytes
* results in a TCP Data Payload of 1448 bytes which, as
* above, is a multiple of 8 bytes ...
*/
for (i = 0; i < NMTUS; i++)
if (adap->params.mtus[i] == 1492) {
adap->params.mtus[i] = 1488;
break;
}
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
adap->params.b_wnd);
}
t4_init_sge_params(adap);
adap->flags |= CXGB4_FW_OK;
t4_init_tp_params(adap, true);
return 0;
/*
* Something bad happened. If a command timed out or failed with EIO
* FW does not operate within its spec or something catastrophic
* happened to HW/FW, stop issuing commands.
*/
bye:
adap_free_hma_mem(adap);
kfree(adap->sge.egr_map);
kfree(adap->sge.ingr_map);
kfree(adap->sge.starving_fl);
kfree(adap->sge.txq_maperr);
#ifdef CONFIG_DEBUG_FS
kfree(adap->sge.blocked_fl);
#endif
if (ret != -ETIMEDOUT && ret != -EIO)
t4_fw_bye(adap, adap->mbox);
return ret;
}
/* EEH callbacks */
static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
int i;
struct adapter *adap = pci_get_drvdata(pdev);
if (!adap)
goto out;
rtnl_lock();
adap->flags &= ~CXGB4_FW_OK;
notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
spin_lock(&adap->stats_lock);
for_each_port(adap, i) {
struct net_device *dev = adap->port[i];
if (dev) {
netif_device_detach(dev);
netif_carrier_off(dev);
}
}
spin_unlock(&adap->stats_lock);
disable_interrupts(adap);
if (adap->flags & CXGB4_FULL_INIT_DONE)
cxgb_down(adap);
rtnl_unlock();
if ((adap->flags & CXGB4_DEV_ENABLED)) {
pci_disable_device(pdev);
adap->flags &= ~CXGB4_DEV_ENABLED;
}
out: return state == pci_channel_io_perm_failure ?
PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}
static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
int i, ret;
struct fw_caps_config_cmd c;
struct adapter *adap = pci_get_drvdata(pdev);
if (!adap) {
pci_restore_state(pdev);
pci_save_state(pdev);
return PCI_ERS_RESULT_RECOVERED;
}
if (!(adap->flags & CXGB4_DEV_ENABLED)) {
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev, "Cannot reenable PCI "
"device after reset\n");
return PCI_ERS_RESULT_DISCONNECT;
}
adap->flags |= CXGB4_DEV_ENABLED;
}
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
if (t4_wait_dev_ready(adap->regs) < 0)
return PCI_ERS_RESULT_DISCONNECT;
if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
return PCI_ERS_RESULT_DISCONNECT;
adap->flags |= CXGB4_FW_OK;
if (adap_init1(adap, &c))
return PCI_ERS_RESULT_DISCONNECT;
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
u8 vivld = 0, vin = 0;
ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
NULL, NULL, &vivld, &vin);
if (ret < 0)
return PCI_ERS_RESULT_DISCONNECT;
pi->viid = ret;
pi->xact_addr_filt = -1;
/* If fw supports returning the VIN as part of FW_VI_CMD,
* save the returned values.
*/
if (adap->params.viid_smt_extn_support) {
pi->vivld = vivld;
pi->vin = vin;
} else {
/* Retrieve the values from VIID */
pi->vivld = FW_VIID_VIVLD_G(pi->viid);
pi->vin = FW_VIID_VIN_G(pi->viid);
}
}
t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
adap->params.b_wnd);
setup_memwin(adap);
if (cxgb_up(adap))
return PCI_ERS_RESULT_DISCONNECT;
return PCI_ERS_RESULT_RECOVERED;
}
static void eeh_resume(struct pci_dev *pdev)
{
int i;
struct adapter *adap = pci_get_drvdata(pdev);
if (!adap)
return;
rtnl_lock();
for_each_port(adap, i) {
struct net_device *dev = adap->port[i];
if (dev) {
if (netif_running(dev)) {
link_start(dev);
cxgb_set_rxmode(dev);
}
netif_device_attach(dev);
}
}
rtnl_unlock();
}
static void eeh_reset_prepare(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
int i;
if (adapter->pf != 4)
return;
adapter->flags &= ~CXGB4_FW_OK;
notify_ulds(adapter, CXGB4_STATE_DOWN);
for_each_port(adapter, i)
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
cxgb_close(adapter->port[i]);
disable_interrupts(adapter);
cxgb4_free_mps_ref_entries(adapter);
adap_free_hma_mem(adapter);
if (adapter->flags & CXGB4_FULL_INIT_DONE)
cxgb_down(adapter);
}
static void eeh_reset_done(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
int err, i;
if (adapter->pf != 4)
return;
err = t4_wait_dev_ready(adapter->regs);
if (err < 0) {
dev_err(adapter->pdev_dev,
"Device not ready, err %d", err);
return;
}
setup_memwin(adapter);
err = adap_init0(adapter, 1);
if (err) {
dev_err(adapter->pdev_dev,
"Adapter init failed, err %d", err);
return;
}
setup_memwin_rdma(adapter);
if (adapter->flags & CXGB4_FW_OK) {
err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
if (err) {
dev_err(adapter->pdev_dev,
"Port init failed, err %d", err);
return;
}
}
err = cfg_queues(adapter);
if (err) {
dev_err(adapter->pdev_dev,
"Config queues failed, err %d", err);
return;
}
cxgb4_init_mps_ref_entries(adapter);
err = setup_fw_sge_queues(adapter);
if (err) {
dev_err(adapter->pdev_dev,
"FW sge queue allocation failed, err %d", err);
return;
}
for_each_port(adapter, i)
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
cxgb_open(adapter->port[i]);
}
static const struct pci_error_handlers cxgb4_eeh = {
.error_detected = eeh_err_detected,
.slot_reset = eeh_slot_reset,
.resume = eeh_resume,
.reset_prepare = eeh_reset_prepare,
.reset_done = eeh_reset_done,
};
/* Return true if the Link Configuration supports "High Speeds" (those greater
* than 1Gb/s).
*/
static inline bool is_x_10g_port(const struct link_config *lc)
{
unsigned int speeds, high_speeds;
speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
high_speeds = speeds &
~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
return high_speeds != 0;
}
/* Perform default configuration of DMA queues depending on the number and type
* of ports we found and the number of available CPUs. Most settings can be
* modified by the admin prior to actual use.
*/
static int cfg_queues(struct adapter *adap)
{
u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
u32 ncpus = num_online_cpus();
u32 niqflint, neq, num_ulds;
struct sge *s = &adap->sge;
u32 i, n10g = 0, qidx = 0;
u32 q10g = 0, q1g;
/* Reduce memory usage in kdump environment, disable all offload. */
if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
adap->params.offload = 0;
adap->params.crypto = 0;
adap->params.ethofld = 0;
}
/* Calculate the number of Ethernet Queue Sets available based on
* resources provisioned for us. We always have an Asynchronous
* Firmware Event Ingress Queue. If we're operating in MSI or Legacy
* IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
* Ingress Queue. Meanwhile, we need two Egress Queues for each
* Queue Set: one for the Free List and one for the Ethernet TX Queue.
*
* Note that we should also take into account all of the various
* Offload Queues. But, in any situation where we're operating in
* a Resource Constrained Provisioning environment, doing any Offload
* at all is problematic ...
*/
niqflint = adap->params.pfres.niqflint - 1;
if (!(adap->flags & CXGB4_USING_MSIX))
niqflint--;
neq = adap->params.pfres.neq / 2;
avail_qsets = min(niqflint, neq);
if (avail_qsets < adap->params.nports) {
dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
avail_qsets, adap->params.nports);
return -ENOMEM;
}
/* Count the number of 10Gb/s or better ports */
for_each_port(adap, i)
n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
/* We default to 1 queue per non-10G port and up to # of cores queues
* per 10G port.
*/
if (n10g)
q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
#ifdef CONFIG_CHELSIO_T4_DCB
/* For Data Center Bridging support we need to be able to support up
* to 8 Traffic Priorities; each of which will be assigned to its
* own TX Queue in order to prevent Head-Of-Line Blocking.
*/
q1g = 8;
if (adap->params.nports * 8 > avail_eth_qsets) {
dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
avail_eth_qsets, adap->params.nports * 8);
return -ENOMEM;
}
if (adap->params.nports * ncpus < avail_eth_qsets)
q10g = max(8U, ncpus);
else
q10g = max(8U, q10g);
while ((q10g * n10g) >
(avail_eth_qsets - (adap->params.nports - n10g) * q1g))
q10g--;
#else /* !CONFIG_CHELSIO_T4_DCB */
q1g = 1;
q10g = min(q10g, ncpus);
#endif /* !CONFIG_CHELSIO_T4_DCB */
if (is_kdump_kernel()) {
q10g = 1;
q1g = 1;
}
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
pi->first_qset = qidx;
pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
qidx += pi->nqsets;
}
s->ethqsets = qidx;
s->max_ethqsets = qidx; /* MSI-X may lower it later */
avail_qsets -= qidx;
if (is_uld(adap)) {
/* For offload we use 1 queue/channel if all ports are up to 1G,
* otherwise we divide all available queues amongst the channels
* capped by the number of available cores.
*/
num_ulds = adap->num_uld + adap->num_ofld_uld;
i = min_t(u32, MAX_OFLD_QSETS, ncpus);
avail_uld_qsets = roundup(i, adap->params.nports);
if (avail_qsets < num_ulds * adap->params.nports) {
adap->params.offload = 0;
adap->params.crypto = 0;
s->ofldqsets = 0;
} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
s->ofldqsets = adap->params.nports;
} else {
s->ofldqsets = avail_uld_qsets;
}
avail_qsets -= num_ulds * s->ofldqsets;
}
/* ETHOFLD Queues used for QoS offload should follow same
* allocation scheme as normal Ethernet Queues.
*/
if (is_ethofld(adap)) {
if (avail_qsets < s->max_ethqsets) {
adap->params.ethofld = 0;
s->eoqsets = 0;
} else {
s->eoqsets = s->max_ethqsets;
}
avail_qsets -= s->eoqsets;
}
/* Mirror queues must follow same scheme as normal Ethernet
* Queues, when there are enough queues available. Otherwise,
* allocate at least 1 queue per port. If even 1 queue is not
* available, then disable mirror queues support.
*/
if (avail_qsets >= s->max_ethqsets)
s->mirrorqsets = s->max_ethqsets;
else if (avail_qsets >= adap->params.nports)
s->mirrorqsets = adap->params.nports;
else
s->mirrorqsets = 0;
avail_qsets -= s->mirrorqsets;
for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
struct sge_eth_rxq *r = &s->ethrxq[i];
init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
r->fl.size = 72;
}
for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
s->ethtxq[i].q.size = 1024;
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
s->ctrlq[i].q.size = 512;
if (!is_t4(adap->params.chip))
s->ptptxq.q.size = 8;
init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
init_rspq(adap, &s->intrq, 0, 1, 512, 64);
return 0;
}
/*
* Reduce the number of Ethernet queues across all ports to at most n.
* n provides at least one queue per port.
*/
static void reduce_ethqs(struct adapter *adap, int n)
{
int i;
struct port_info *pi;
while (n < adap->sge.ethqsets)
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
if (pi->nqsets > 1) {
pi->nqsets--;
adap->sge.ethqsets--;
if (adap->sge.ethqsets <= n)
break;
}
}
n = 0;
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
pi->first_qset = n;
n += pi->nqsets;
}
}
static int alloc_msix_info(struct adapter *adap, u32 num_vec)
{
struct msix_info *msix_info;
msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
if (!msix_info)
return -ENOMEM;
adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
sizeof(long), GFP_KERNEL);
if (!adap->msix_bmap.msix_bmap) {
kfree(msix_info);
return -ENOMEM;
}
spin_lock_init(&adap->msix_bmap.lock);
adap->msix_bmap.mapsize = num_vec;
adap->msix_info = msix_info;
return 0;
}
static void free_msix_info(struct adapter *adap)
{
kfree(adap->msix_bmap.msix_bmap);
kfree(adap->msix_info);
}
int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
{
struct msix_bmap *bmap = &adap->msix_bmap;
unsigned int msix_idx;
unsigned long flags;
spin_lock_irqsave(&bmap->lock, flags);
msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
if (msix_idx < bmap->mapsize) {
__set_bit(msix_idx, bmap->msix_bmap);
} else {
spin_unlock_irqrestore(&bmap->lock, flags);
return -ENOSPC;
}
spin_unlock_irqrestore(&bmap->lock, flags);
return msix_idx;
}
void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
unsigned int msix_idx)
{
struct msix_bmap *bmap = &adap->msix_bmap;
unsigned long flags;
spin_lock_irqsave(&bmap->lock, flags);
__clear_bit(msix_idx, bmap->msix_bmap);
spin_unlock_irqrestore(&bmap->lock, flags);
}
/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2
static int enable_msix(struct adapter *adap)
{
u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
u8 num_uld = 0, nchan = adap->params.nports;
u32 i, want, need, num_vec;
struct sge *s = &adap->sge;
struct msix_entry *entries;
struct port_info *pi;
int allocated, ret;
want = s->max_ethqsets;
#ifdef CONFIG_CHELSIO_T4_DCB
/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
* each port.
*/
need = 8 * nchan;
#else
need = nchan;
#endif
eth_need = need;
if (is_uld(adap)) {
num_uld = adap->num_ofld_uld + adap->num_uld;
want += num_uld * s->ofldqsets;
uld_need = num_uld * nchan;
need += uld_need;
}
if (is_ethofld(adap)) {
want += s->eoqsets;
ethofld_need = eth_need;
need += ethofld_need;
}
if (s->mirrorqsets) {
want += s->mirrorqsets;
mirror_need = nchan;
need += mirror_need;
}
want += EXTRA_VECS;
need += EXTRA_VECS;
entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
if (!entries)
return -ENOMEM;
for (i = 0; i < want; i++)
entries[i].entry = i;
allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
if (allocated < 0) {
/* Disable offload and attempt to get vectors for NIC
* only mode.
*/
want = s->max_ethqsets + EXTRA_VECS;
need = eth_need + EXTRA_VECS;
allocated = pci_enable_msix_range(adap->pdev, entries,
need, want);
if (allocated < 0) {
dev_info(adap->pdev_dev,
"Disabling MSI-X due to insufficient MSI-X vectors\n");
ret = allocated;
goto out_free;
}
dev_info(adap->pdev_dev,
"Disabling offload due to insufficient MSI-X vectors\n");
adap->params.offload = 0;
adap->params.crypto = 0;
adap->params.ethofld = 0;
s->ofldqsets = 0;
s->eoqsets = 0;
s->mirrorqsets = 0;
uld_need = 0;
ethofld_need = 0;
mirror_need = 0;
}
num_vec = allocated;
if (num_vec < want) {
/* Distribute available vectors to the various queue groups.
* Every group gets its minimum requirement and NIC gets top
* priority for leftovers.
*/
ethqsets = eth_need;
if (is_uld(adap))
ofldqsets = nchan;
if (is_ethofld(adap))
eoqsets = ethofld_need;
if (s->mirrorqsets)
mirrorqsets = mirror_need;
num_vec -= need;
while (num_vec) {
if (num_vec < eth_need + ethofld_need ||
ethqsets > s->max_ethqsets)
break;
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
if (pi->nqsets < 2)
continue;
ethqsets++;
num_vec--;
if (ethofld_need) {
eoqsets++;
num_vec--;
}
}
}
if (is_uld(adap)) {
while (num_vec) {
if (num_vec < uld_need ||
ofldqsets > s->ofldqsets)
break;
ofldqsets++;
num_vec -= uld_need;
}
}
if (s->mirrorqsets) {
while (num_vec) {
if (num_vec < mirror_need ||
mirrorqsets > s->mirrorqsets)
break;
mirrorqsets++;
num_vec -= mirror_need;
}
}
} else {
ethqsets = s->max_ethqsets;
if (is_uld(adap))
ofldqsets = s->ofldqsets;
if (is_ethofld(adap))
eoqsets = s->eoqsets;
if (s->mirrorqsets)
mirrorqsets = s->mirrorqsets;
}
if (ethqsets < s->max_ethqsets) {
s->max_ethqsets = ethqsets;
reduce_ethqs(adap, ethqsets);
}
if (is_uld(adap)) {
s->ofldqsets = ofldqsets;
s->nqs_per_uld = s->ofldqsets;
}
if (is_ethofld(adap))
s->eoqsets = eoqsets;
if (s->mirrorqsets) {
s->mirrorqsets = mirrorqsets;
for_each_port(adap, i) {
pi = adap2pinfo(adap, i);
pi->nmirrorqsets = s->mirrorqsets / nchan;
mutex_init(&pi->vi_mirror_mutex);
}
}
/* map for msix */
ret = alloc_msix_info(adap, allocated);
if (ret)
goto out_disable_msix;
for (i = 0; i < allocated; i++) {
adap->msix_info[i].vec = entries[i].vector;
adap->msix_info[i].idx = i;
}
dev_info(adap->pdev_dev,
"%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
s->mirrorqsets);
kfree(entries);
return 0;
out_disable_msix:
pci_disable_msix(adap->pdev);
out_free:
kfree(entries);
return ret;
}
#undef EXTRA_VECS
static int init_rss(struct adapter *adap)
{
unsigned int i;
int err;
err = t4_init_rss_mode(adap, adap->mbox);
if (err)
return err;
for_each_port(adap, i) {
struct port_info *pi = adap2pinfo(adap, i);
pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
if (!pi->rss)
return -ENOMEM;
}
return 0;
}
/* Dump basic information about the adapter */
static void print_adapter_info(struct adapter *adapter)
{
/* Hardware/Firmware/etc. Version/Revision IDs */
t4_dump_version_info(adapter);
/* Software/Hardware configuration */
dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
is_offload(adapter) ? "R" : "",
((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
(adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
is_offload(adapter) ? "Offload" : "non-Offload");
}
static void print_port_info(const struct net_device *dev)
{
char buf[80];
char *bufp = buf;
const struct port_info *pi = netdev_priv(dev);
const struct adapter *adap = pi->adapter;
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
bufp += sprintf(bufp, "100M/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
bufp += sprintf(bufp, "1G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
bufp += sprintf(bufp, "10G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
bufp += sprintf(bufp, "25G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
bufp += sprintf(bufp, "40G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
bufp += sprintf(bufp, "50G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
bufp += sprintf(bufp, "100G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
bufp += sprintf(bufp, "200G/");
if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
bufp += sprintf(bufp, "400G/");
if (bufp != buf)
--bufp;
sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
dev->name, adap->params.vpd.id, adap->name, buf);
}
/*
* Free the following resources:
* - memory used for tables
* - MSI/MSI-X
* - net devices
* - resources FW is holding for us
*/
static void free_some_resources(struct adapter *adapter)
{
unsigned int i;
kvfree(adapter->smt);
kvfree(adapter->l2t);
kvfree(adapter->srq);
t4_cleanup_sched(adapter);
kvfree(adapter->tids.tid_tab);
cxgb4_cleanup_tc_matchall(adapter);
cxgb4_cleanup_tc_mqprio(adapter);
cxgb4_cleanup_tc_flower(adapter);
cxgb4_cleanup_tc_u32(adapter);
cxgb4_cleanup_ethtool_filters(adapter);
kfree(adapter->sge.egr_map);
kfree(adapter->sge.ingr_map);
kfree(adapter->sge.starving_fl);
kfree(adapter->sge.txq_maperr);
#ifdef CONFIG_DEBUG_FS
kfree(adapter->sge.blocked_fl);
#endif
disable_msi(adapter);
for_each_port(adapter, i)
if (adapter->port[i]) {
struct port_info *pi = adap2pinfo(adapter, i);
if (pi->viid != 0)
t4_free_vi(adapter, adapter->mbox, adapter->pf,
0, pi->viid);
kfree(adap2pinfo(adapter, i)->rss);
free_netdev(adapter->port[i]);
}
if (adapter->flags & CXGB4_FW_OK)
t4_fw_bye(adapter, adapter->pf);
}
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
NETIF_F_GSO_UDP_L4)
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
#define SEGMENT_SIZE 128
static int t4_get_chip_type(struct adapter *adap, int ver)
{
u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
switch (ver) {
case CHELSIO_T4:
return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
case CHELSIO_T5:
return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
case CHELSIO_T6:
return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
default:
break;
}
return -EINVAL;
}
#ifdef CONFIG_PCI_IOV
static void cxgb4_mgmt_setup(struct net_device *dev)
{
dev->type = ARPHRD_NONE;
dev->mtu = 0;
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->tx_queue_len = 0;
dev->flags |= IFF_NOARP;
dev->priv_flags |= IFF_NO_QUEUE;
/* Initialize the device structure. */
dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
}
static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
{
struct adapter *adap = pci_get_drvdata(pdev);
int err = 0;
int current_vfs = pci_num_vf(pdev);
u32 pcie_fw;
pcie_fw = readl(adap->regs + PCIE_FW_A);
/* Check if fw is initialized */
if (!(pcie_fw & PCIE_FW_INIT_F)) {
dev_warn(&pdev->dev, "Device not initialized\n");
return -EOPNOTSUPP;
}
/* If any of the VF's is already assigned to Guest OS, then
* SRIOV for the same cannot be modified
*/
if (current_vfs && pci_vfs_assigned(pdev)) {
dev_err(&pdev->dev,
"Cannot modify SR-IOV while VFs are assigned\n");
return current_vfs;
}
/* Note that the upper-level code ensures that we're never called with
* a non-zero "num_vfs" when we already have VFs instantiated. But
* it never hurts to code defensively.
*/
if (num_vfs != 0 && current_vfs != 0)
return -EBUSY;
/* Nothing to do for no change. */
if (num_vfs == current_vfs)
return num_vfs;
/* Disable SRIOV when zero is passed. */
if (!num_vfs) {
pci_disable_sriov(pdev);
/* free VF Management Interface */
unregister_netdev(adap->port[0]);
free_netdev(adap->port[0]);
adap->port[0] = NULL;
/* free VF resources */
adap->num_vfs = 0;
kfree(adap->vfinfo);
adap->vfinfo = NULL;
return 0;
}
if (!current_vfs) {
struct fw_pfvf_cmd port_cmd, port_rpl;
struct net_device *netdev;
unsigned int pmask, port;
struct pci_dev *pbridge;
struct port_info *pi;
char name[IFNAMSIZ];
u32 devcap2;
u16 flags;
/* If we want to instantiate Virtual Functions, then our
* parent bridge's PCI-E needs to support Alternative Routing
* ID (ARI) because our VFs will show up at function offset 8
* and above.
*/
pbridge = pdev->bus->self;
pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
!(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
/* Our parent bridge does not support ARI so issue a
* warning and skip instantiating the VFs. They
* won't be reachable.
*/
dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
pbridge->bus->number, PCI_SLOT(pbridge->devfn),
PCI_FUNC(pbridge->devfn));
return -ENOTSUPP;
}
memset(&port_cmd, 0, sizeof(port_cmd));
port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F |
FW_PFVF_CMD_PFN_V(adap->pf) |
FW_PFVF_CMD_VFN_V(0));
port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
&port_rpl);
if (err)
return err;
pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
port = ffs(pmask) - 1;
/* Allocate VF Management Interface. */
snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
adap->pf);
netdev = alloc_netdev(sizeof(struct port_info),
name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
if (!netdev)
return -ENOMEM;
pi = netdev_priv(netdev);
pi->adapter = adap;
pi->lport = port;
pi->tx_chan = port;
SET_NETDEV_DEV(netdev, &pdev->dev);
adap->port[0] = netdev;
pi->port_id = 0;
err = register_netdev(adap->port[0]);
if (err) {
pr_info("Unable to register VF mgmt netdev %s\n", name);
free_netdev(adap->port[0]);
adap->port[0] = NULL;
return err;
}
/* Allocate and set up VF Information. */
adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
sizeof(struct vf_info), GFP_KERNEL);
if (!adap->vfinfo) {
unregister_netdev(adap->port[0]);
free_netdev(adap->port[0]);
adap->port[0] = NULL;
return -ENOMEM;
}
cxgb4_mgmt_fill_vf_station_mac_addr(adap);
}
/* Instantiate the requested number of VFs. */
err = pci_enable_sriov(pdev, num_vfs);
if (err) {
pr_info("Unable to instantiate %d VFs\n", num_vfs);
if (!current_vfs) {
unregister_netdev(adap->port[0]);
free_netdev(adap->port[0]);
adap->port[0] = NULL;
kfree(adap->vfinfo);
adap->vfinfo = NULL;
}
return err;
}
adap->num_vfs = num_vfs;
return num_vfs;
}
#endif /* CONFIG_PCI_IOV */
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
static int chcr_offload_state(struct adapter *adap,
enum cxgb4_netdev_tls_ops op_val)
{
switch (op_val) {
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
case CXGB4_TLSDEV_OPS:
if (!adap->uld[CXGB4_ULD_KTLS].handle) {
dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
return -EOPNOTSUPP;
}
if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
dev_dbg(adap->pdev_dev,
"ch_ktls driver has no registered tlsdev_ops\n");
return -EOPNOTSUPP;
}
break;
#endif /* CONFIG_CHELSIO_TLS_DEVICE */
#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
case CXGB4_XFRMDEV_OPS:
if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
return -EOPNOTSUPP;
}
if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
dev_dbg(adap->pdev_dev,
"chipsec driver has no registered xfrmdev_ops\n");
return -EOPNOTSUPP;
}
break;
#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
default:
dev_dbg(adap->pdev_dev,
"driver has no support for offload %d\n", op_val);
return -EOPNOTSUPP;
}
return 0;
}
#endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
enum tls_offload_ctx_dir direction,
struct tls_crypto_info *crypto_info,
u32 tcp_sn)
{
struct adapter *adap = netdev2adap(netdev);
int ret;
mutex_lock(&uld_mutex);
ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
if (ret)
goto out_unlock;
ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
if (ret)
goto out_unlock;
ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
direction,
crypto_info,
tcp_sn);
/* if there is a failure, clear the refcount */
if (ret)
cxgb4_set_ktls_feature(adap,
FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
out_unlock:
mutex_unlock(&uld_mutex);
return ret;
}
static void cxgb4_ktls_dev_del(struct net_device *netdev,
struct tls_context *tls_ctx,
enum tls_offload_ctx_dir direction)
{
struct adapter *adap = netdev2adap(netdev);
mutex_lock(&uld_mutex);
if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
goto out_unlock;
adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
direction);
cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
out_unlock:
mutex_unlock(&uld_mutex);
}
static const struct tlsdev_ops cxgb4_ktls_ops = {
.tls_dev_add = cxgb4_ktls_dev_add,
.tls_dev_del = cxgb4_ktls_dev_del,
};
#endif /* CONFIG_CHELSIO_TLS_DEVICE */
#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
static int cxgb4_xfrm_add_state(struct xfrm_state *x)
{
struct adapter *adap = netdev2adap(x->xso.dev);
int ret;
if (!mutex_trylock(&uld_mutex)) {
dev_dbg(adap->pdev_dev,
"crypto uld critical resource is under use\n");
return -EBUSY;
}
ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
if (ret)
goto out_unlock;
ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
out_unlock:
mutex_unlock(&uld_mutex);
return ret;
}
static void cxgb4_xfrm_del_state(struct xfrm_state *x)
{
struct adapter *adap = netdev2adap(x->xso.dev);
if (!mutex_trylock(&uld_mutex)) {
dev_dbg(adap->pdev_dev,
"crypto uld critical resource is under use\n");
return;
}
if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
goto out_unlock;
adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
out_unlock:
mutex_unlock(&uld_mutex);
}
static void cxgb4_xfrm_free_state(struct xfrm_state *x)
{
struct adapter *adap = netdev2adap(x->xso.dev);
if (!mutex_trylock(&uld_mutex)) {
dev_dbg(adap->pdev_dev,
"crypto uld critical resource is under use\n");
return;
}
if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
goto out_unlock;
adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
out_unlock:
mutex_unlock(&uld_mutex);
}
static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
{
struct adapter *adap = netdev2adap(x->xso.dev);
bool ret = false;
if (!mutex_trylock(&uld_mutex)) {
dev_dbg(adap->pdev_dev,
"crypto uld critical resource is under use\n");
return ret;
}
if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
goto out_unlock;
ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
out_unlock:
mutex_unlock(&uld_mutex);
return ret;
}
static void cxgb4_advance_esn_state(struct xfrm_state *x)
{
struct adapter *adap = netdev2adap(x->xso.dev);
if (!mutex_trylock(&uld_mutex)) {
dev_dbg(adap->pdev_dev,
"crypto uld critical resource is under use\n");
return;
}
if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
goto out_unlock;
adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
out_unlock:
mutex_unlock(&uld_mutex);
}
static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
.xdo_dev_state_add = cxgb4_xfrm_add_state,
.xdo_dev_state_delete = cxgb4_xfrm_del_state,
.xdo_dev_state_free = cxgb4_xfrm_free_state,
.xdo_dev_offload_ok = cxgb4_ipsec_offload_ok,
.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
};
#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct adapter *adapter;
static int adap_idx = 1;
int s_qpp, qpp, num_seg;
struct port_info *pi;
bool highdma = false;
enum chip_type chip;
void __iomem *regs;
int func, chip_ver;
u16 device_id;
int i, err;
u32 whoami;
err = pci_request_regions(pdev, KBUILD_MODNAME);
if (err) {
/* Just info, some other driver may have claimed the device. */
dev_info(&pdev->dev, "cannot obtain PCI resources\n");
return err;
}
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
goto out_release_regions;
}
regs = pci_ioremap_bar(pdev, 0);
if (!regs) {
dev_err(&pdev->dev, "cannot map device registers\n");
err = -ENOMEM;
goto out_disable_device;
}
adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
if (!adapter) {
err = -ENOMEM;
goto out_unmap_bar0;
}
adapter->regs = regs;
err = t4_wait_dev_ready(regs);
if (err < 0)
goto out_free_adapter;
/* We control everything through one PF */
whoami = t4_read_reg(adapter, PL_WHOAMI_A);
pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
if ((int)chip < 0) {
dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
err = chip;
goto out_free_adapter;
}
chip_ver = CHELSIO_CHIP_VERSION(chip);
func = chip_ver <= CHELSIO_T5 ?
SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
adapter->pdev = pdev;
adapter->pdev_dev = &pdev->dev;
adapter->name = pci_name(pdev);
adapter->mbox = func;
adapter->pf = func;
adapter->params.chip = chip;
adapter->adap_idx = adap_idx;
adapter->msg_enable = DFLT_MSG_ENABLE;
adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
(sizeof(struct mbox_cmd) *
T4_OS_LOG_MBOX_CMDS),
GFP_KERNEL);
if (!adapter->mbox_log) {
err = -ENOMEM;
goto out_free_adapter;
}
spin_lock_init(&adapter->mbox_lock);
INIT_LIST_HEAD(&adapter->mlist.list);
adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
pci_set_drvdata(pdev, adapter);
if (func != ent->driver_data) {
pci_disable_device(pdev);
pci_save_state(pdev); /* to restore SR-IOV later */
return 0;
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
highdma = true;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
if (err) {
dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
"coherent allocations\n");
goto out_free_adapter;
}
} else {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "no usable DMA configuration\n");
goto out_free_adapter;
}
}
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
pci_save_state(pdev);
adap_idx++;
adapter->workq = create_singlethread_workqueue("cxgb4");
if (!adapter->workq) {
err = -ENOMEM;
goto out_free_adapter;
}
/* PCI device has been enabled */
adapter->flags |= CXGB4_DEV_ENABLED;
memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
* Ingress Packet Data to Free List Buffers in order to allow for
* chipset performance optimizations between the Root Complex and
* Memory Controllers. (Messages to the associated Ingress Queue
* notifying new Packet Placement in the Free Lists Buffers will be
* send without the Relaxed Ordering Attribute thus guaranteeing that
* all preceding PCIe Transaction Layer Packets will be processed
* first.) But some Root Complexes have various issues with Upstream
* Transaction Layer Packets with the Relaxed Ordering Attribute set.
* The PCIe devices which under the Root Complexes will be cleared the
* Relaxed Ordering bit in the configuration space, So we check our
* PCIe configuration space to see if it's flagged with advice against
* using Relaxed Ordering.
*/
if (!pcie_relaxed_ordering_enabled(pdev))
adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
spin_lock_init(&adapter->stats_lock);
spin_lock_init(&adapter->tid_release_lock);
spin_lock_init(&adapter->win0_lock);
INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
INIT_WORK(&adapter->db_full_task, process_db_full);
INIT_WORK(&adapter->db_drop_task, process_db_drop);
INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
err = t4_prep_adapter(adapter);
if (err)
goto out_free_adapter;
if (is_kdump_kernel()) {
/* Collect hardware state and append to /proc/vmcore */
err = cxgb4_cudbg_vmcore_add_dump(adapter);
if (err) {
dev_warn(adapter->pdev_dev,
"Fail collecting vmcore device dump, err: %d. Continuing\n",
err);
err = 0;
}
}
if (!is_t4(adapter->params.chip)) {
s_qpp = (QUEUESPERPAGEPF0_S +
(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
adapter->pf);
qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
num_seg = PAGE_SIZE / SEGMENT_SIZE;
/* Each segment size is 128B. Write coalescing is enabled only
* when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
* queue is less no of segments that can be accommodated in
* a page size.
*/
if (qpp > num_seg) {
dev_err(&pdev->dev,
"Incorrect number of egress queues per page\n");
err = -EINVAL;
goto out_free_adapter;
}
adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
if (!adapter->bar2) {
dev_err(&pdev->dev, "cannot map device bar2 region\n");
err = -ENOMEM;
goto out_free_adapter;
}
}
setup_memwin(adapter);
err = adap_init0(adapter, 0);
#ifdef CONFIG_DEBUG_FS
bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
setup_memwin_rdma(adapter);
if (err)
goto out_unmap_bar;
/* configure SGE_STAT_CFG_A to read WC stats */
if (!is_t4(adapter->params.chip))
t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
(is_t5(adapter->params.chip) ? STATMODE_V(0) :
T6_STATMODE_V(0)));
/* Initialize hash mac addr list */
INIT_LIST_HEAD(&adapter->mac_hlist);
for_each_port(adapter, i) {
/* For supporting MQPRIO Offload, need some extra
* queues for each ETHOFLD TIDs. Keep it equal to
* MAX_ATIDs for now. Once we connect to firmware
* later and query the EOTID params, we'll come to
* know the actual # of EOTIDs supported.
*/
netdev = alloc_etherdev_mq(sizeof(struct port_info),
MAX_ETH_QSETS + MAX_ATIDS);
if (!netdev) {
err = -ENOMEM;
goto out_free_dev;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
adapter->port[i] = netdev;
pi = netdev_priv(netdev);
pi->adapter = adapter;
pi->xact_addr_filt = -1;
pi->port_id = i;
netdev->irq = pdev->irq;
netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_TC | NETIF_F_NTUPLE;
if (chip_ver > CHELSIO_T5) {
netdev->hw_enc_features |= NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_TSO | NETIF_F_TSO6;
netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM |
NETIF_F_HW_TLS_RECORD;
if (adapter->rawf_cnt)
netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
}
if (highdma)
netdev->hw_features |= NETIF_F_HIGHDMA;
netdev->features |= netdev->hw_features;
netdev->vlan_features = netdev->features & VLAN_FEAT;
#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
netdev->hw_features |= NETIF_F_HW_TLS_TX;
netdev->tlsdev_ops = &cxgb4_ktls_ops;
/* initialize the refcount */
refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
}
#endif /* CONFIG_CHELSIO_TLS_DEVICE */
#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
netdev->hw_enc_features |= NETIF_F_HW_ESP;
netdev->features |= NETIF_F_HW_ESP;
netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
}
#endif /* CONFIG_CHELSIO_IPSEC_INLINE */
netdev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 81 - 9600 */
netdev->min_mtu = 81; /* accommodate SACK */
netdev->max_mtu = MAX_MTU;
netdev->netdev_ops = &cxgb4_netdev_ops;
#ifdef CONFIG_CHELSIO_T4_DCB
netdev->dcbnl_ops = &cxgb4_dcb_ops;
cxgb4_dcb_state_init(netdev);
cxgb4_dcb_version_init(netdev);
#endif
cxgb4_set_ethtool_ops(netdev);
}
cxgb4_init_ethtool_dump(adapter);
pci_set_drvdata(pdev, adapter);
if (adapter->flags & CXGB4_FW_OK) {
err = t4_port_init(adapter, func, func, 0);
if (err)
goto out_free_dev;
} else if (adapter->params.nports == 1) {
/* If we don't have a connection to the firmware -- possibly
* because of an error -- grab the raw VPD parameters so we
* can set the proper MAC Address on the debug network
* interface that we've created.
*/
u8 hw_addr[ETH_ALEN];
u8 *na = adapter->params.vpd.na;
err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
if (!err) {
for (i = 0; i < ETH_ALEN; i++)
hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
hex2val(na[2 * i + 1]));
t4_set_hw_addr(adapter, 0, hw_addr);
}
}
if (!(adapter->flags & CXGB4_FW_OK))
goto fw_attach_fail;
/* Configure queues and allocate tables now, they can be needed as
* soon as the first register_netdev completes.
*/
err = cfg_queues(adapter);
if (err)
goto out_free_dev;
adapter->smt = t4_init_smt();
if (!adapter->smt) {
/* We tolerate a lack of SMT, giving up some functionality */
dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
}
adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
if (!adapter->l2t) {
/* We tolerate a lack of L2T, giving up some functionality */
dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
adapter->params.offload = 0;
}
#if IS_ENABLED(CONFIG_IPV6)
if (chip_ver <= CHELSIO_T5 &&
(!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
/* CLIP functionality is not present in hardware,
* hence disable all offload features
*/
dev_warn(&pdev->dev,
"CLIP not enabled in hardware, continuing\n");
adapter->params.offload = 0;
} else {
adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
adapter->clipt_end);
if (!adapter->clipt) {
/* We tolerate a lack of clip_table, giving up
* some functionality
*/
dev_warn(&pdev->dev,
"could not allocate Clip table, continuing\n");
adapter->params.offload = 0;
}
}
#endif
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
if (!pi->sched_tbl)
dev_warn(&pdev->dev,
"could not activate scheduling on port %d\n",
i);
}
if (is_offload(adapter) || is_hashfilter(adapter)) {
if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
u32 v;
v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
if (chip_ver <= CHELSIO_T5) {
adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
adapter->tids.hash_base = v / 4;
} else {
adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
v = t4_read_reg(adapter,
T6_LE_DB_HASH_TID_BASE_A);
adapter->tids.hash_base = v;
}
}
}
if (tid_init(&adapter->tids) < 0) {
dev_warn(&pdev->dev, "could not allocate TID table, "
"continuing\n");
adapter->params.offload = 0;
} else {
adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
if (!adapter->tc_u32)
dev_warn(&pdev->dev,
"could not offload tc u32, continuing\n");
if (cxgb4_init_tc_flower(adapter))
dev_warn(&pdev->dev,
"could not offload tc flower, continuing\n");
if (cxgb4_init_tc_mqprio(adapter))
dev_warn(&pdev->dev,
"could not offload tc mqprio, continuing\n");
if (cxgb4_init_tc_matchall(adapter))
dev_warn(&pdev->dev,
"could not offload tc matchall, continuing\n");
if (cxgb4_init_ethtool_filters(adapter))
dev_warn(&pdev->dev,
"could not initialize ethtool filters, continuing\n");
}
/* See what interrupts we'll be using */
if (msi > 1 && enable_msix(adapter) == 0)
adapter->flags |= CXGB4_USING_MSIX;
else if (msi > 0 && pci_enable_msi(pdev) == 0) {
adapter->flags |= CXGB4_USING_MSI;
if (msi > 1)
free_msix_info(adapter);
}
/* check for PCI Express bandwidth capabiltites */
pcie_print_link_status(pdev);
cxgb4_init_mps_ref_entries(adapter);
err = init_rss(adapter);
if (err)
goto out_free_dev;
err = setup_non_data_intr(adapter);
if (err) {
dev_err(adapter->pdev_dev,
"Non Data interrupt allocation failed, err: %d\n", err);
goto out_free_dev;
}
err = setup_fw_sge_queues(adapter);
if (err) {
dev_err(adapter->pdev_dev,
"FW sge queue allocation failed, err %d", err);
goto out_free_dev;
}
fw_attach_fail:
/*
* The card is now ready to go. If any errors occur during device
* registration we do not fail the whole card but rather proceed only
* with the ports we manage to register successfully. However we must
* register at least one net device.
*/
for_each_port(adapter, i) {
pi = adap2pinfo(adapter, i);
adapter->port[i]->dev_port = pi->lport;
netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
netif_carrier_off(adapter->port[i]);
err = register_netdev(adapter->port[i]);
if (err)
break;
adapter->chan_map[pi->tx_chan] = i;
print_port_info(adapter->port[i]);
}
if (i == 0) {
dev_err(&pdev->dev, "could not register any net devices\n");
goto out_free_dev;
}
if (err) {
dev_warn(&pdev->dev, "only %d net devices registered\n", i);
err = 0;
}
if (cxgb4_debugfs_root) {
adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
cxgb4_debugfs_root);
setup_debugfs(adapter);
}
/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
pdev->needs_freset = 1;
if (is_uld(adapter))
cxgb4_uld_enable(adapter);
if (!is_t4(adapter->params.chip))
cxgb4_ptp_init(adapter);
if (IS_REACHABLE(CONFIG_THERMAL) &&
!is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
cxgb4_thermal_init(adapter);
print_adapter_info(adapter);
return 0;
out_free_dev:
t4_free_sge_resources(adapter);
free_some_resources(adapter);
if (adapter->flags & CXGB4_USING_MSIX)
free_msix_info(adapter);
if (adapter->num_uld || adapter->num_ofld_uld)
t4_uld_mem_free(adapter);
out_unmap_bar:
if (!is_t4(adapter->params.chip))
iounmap(adapter->bar2);
out_free_adapter:
if (adapter->workq)
destroy_workqueue(adapter->workq);
kfree(adapter->mbox_log);
kfree(adapter);
out_unmap_bar0:
iounmap(regs);
out_disable_device:
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
out_release_regions:
pci_release_regions(pdev);
return err;
}
static void remove_one(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
struct hash_mac_addr *entry, *tmp;
if (!adapter) {
pci_release_regions(pdev);
return;
}
/* If we allocated filters, free up state associated with any
* valid filters ...
*/
clear_all_filters(adapter);
adapter->flags |= CXGB4_SHUTTING_DOWN;
if (adapter->pf == 4) {
int i;
/* Tear down per-adapter Work Queue first since it can contain
* references to our adapter data structure.
*/
destroy_workqueue(adapter->workq);
if (is_uld(adapter)) {
detach_ulds(adapter);
t4_uld_clean_up(adapter);
}
adap_free_hma_mem(adapter);
disable_interrupts(adapter);
cxgb4_free_mps_ref_entries(adapter);
for_each_port(adapter, i)
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
unregister_netdev(adapter->port[i]);
debugfs_remove_recursive(adapter->debugfs_root);
if (!is_t4(adapter->params.chip))
cxgb4_ptp_stop(adapter);
if (IS_REACHABLE(CONFIG_THERMAL))
cxgb4_thermal_remove(adapter);
if (adapter->flags & CXGB4_FULL_INIT_DONE)
cxgb_down(adapter);
if (adapter->flags & CXGB4_USING_MSIX)
free_msix_info(adapter);
if (adapter->num_uld || adapter->num_ofld_uld)
t4_uld_mem_free(adapter);
free_some_resources(adapter);
list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
list) {
list_del(&entry->list);
kfree(entry);
}
#if IS_ENABLED(CONFIG_IPV6)
t4_cleanup_clip_tbl(adapter);
#endif
if (!is_t4(adapter->params.chip))
iounmap(adapter->bar2);
}
#ifdef CONFIG_PCI_IOV
else {
cxgb4_iov_configure(adapter->pdev, 0);
}
#endif
iounmap(adapter->regs);
pci_disable_pcie_error_reporting(pdev);
if ((adapter->flags & CXGB4_DEV_ENABLED)) {
pci_disable_device(pdev);
adapter->flags &= ~CXGB4_DEV_ENABLED;
}
pci_release_regions(pdev);
kfree(adapter->mbox_log);
synchronize_rcu();
kfree(adapter);
}
/* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
* delivery. This is essentially a stripped down version of the PCI remove()
* function where we do the minimal amount of work necessary to shutdown any
* further activity.
*/
static void shutdown_one(struct pci_dev *pdev)
{
struct adapter *adapter = pci_get_drvdata(pdev);
/* As with remove_one() above (see extended comment), we only want do
* do cleanup on PCI Devices which went all the way through init_one()
* ...
*/
if (!adapter) {
pci_release_regions(pdev);
return;
}
adapter->flags |= CXGB4_SHUTTING_DOWN;
if (adapter->pf == 4) {
int i;
for_each_port(adapter, i)
if (adapter->port[i]->reg_state == NETREG_REGISTERED)
cxgb_close(adapter->port[i]);
rtnl_lock();
cxgb4_mqprio_stop_offload(adapter);
rtnl_unlock();
if (is_uld(adapter)) {
detach_ulds(adapter);
t4_uld_clean_up(adapter);
}
disable_interrupts(adapter);
disable_msi(adapter);
t4_sge_stop(adapter);
if (adapter->flags & CXGB4_FW_OK)
t4_fw_bye(adapter, adapter->mbox);
}
}
static struct pci_driver cxgb4_driver = {
.name = KBUILD_MODNAME,
.id_table = cxgb4_pci_tbl,
.probe = init_one,
.remove = remove_one,
.shutdown = shutdown_one,
#ifdef CONFIG_PCI_IOV
.sriov_configure = cxgb4_iov_configure,
#endif
.err_handler = &cxgb4_eeh,
};
static int __init cxgb4_init_module(void)
{
int ret;
cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
ret = pci_register_driver(&cxgb4_driver);
if (ret < 0)
goto err_pci;
#if IS_ENABLED(CONFIG_IPV6)
if (!inet6addr_registered) {
ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
if (ret)
pci_unregister_driver(&cxgb4_driver);
else
inet6addr_registered = true;
}
#endif
if (ret == 0)
return ret;
err_pci:
debugfs_remove(cxgb4_debugfs_root);
return ret;
}
static void __exit cxgb4_cleanup_module(void)
{
#if IS_ENABLED(CONFIG_IPV6)
if (inet6addr_registered) {
unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
inet6addr_registered = false;
}
#endif
pci_unregister_driver(&cxgb4_driver);
debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
}
module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);