| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Xilinx Axi Ethernet device driver |
| * |
| * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi |
| * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> |
| * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. |
| * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu> |
| * Copyright (c) 2010 - 2011 PetaLogix |
| * Copyright (c) 2019 - 2022 Calian Advanced Technologies |
| * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved. |
| * |
| * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6 |
| * and Spartan6. |
| * |
| * TODO: |
| * - Add Axi Fifo support. |
| * - Factor out Axi DMA code into separate driver. |
| * - Test and fix basic multicast filtering. |
| * - Add support for extended multicast filtering. |
| * - Test basic VLAN support. |
| * - Add support for extended VLAN support. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/of.h> |
| #include <linux/of_mdio.h> |
| #include <linux/of_net.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/skbuff.h> |
| #include <linux/math64.h> |
| #include <linux/phy.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dma/xilinx_dma.h> |
| #include <linux/circ_buf.h> |
| #include <net/netdev_queues.h> |
| |
| #include "xilinx_axienet.h" |
| |
| /* Descriptors defines for Tx and Rx DMA */ |
| #define TX_BD_NUM_DEFAULT 128 |
| #define RX_BD_NUM_DEFAULT 1024 |
| #define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1) |
| #define TX_BD_NUM_MAX 4096 |
| #define RX_BD_NUM_MAX 4096 |
| #define DMA_NUM_APP_WORDS 5 |
| #define LEN_APP 4 |
| #define RX_BUF_NUM_DEFAULT 128 |
| |
| /* Must be shorter than length of ethtool_drvinfo.driver field to fit */ |
| #define DRIVER_NAME "xaxienet" |
| #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver" |
| #define DRIVER_VERSION "1.00a" |
| |
| #define AXIENET_REGS_N 40 |
| |
| static void axienet_rx_submit_desc(struct net_device *ndev); |
| |
| /* Match table for of_platform binding */ |
| static const struct of_device_id axienet_of_match[] = { |
| { .compatible = "xlnx,axi-ethernet-1.00.a", }, |
| { .compatible = "xlnx,axi-ethernet-1.01.a", }, |
| { .compatible = "xlnx,axi-ethernet-2.01.a", }, |
| {}, |
| }; |
| |
| MODULE_DEVICE_TABLE(of, axienet_of_match); |
| |
| /* Option table for setting up Axi Ethernet hardware options */ |
| static struct axienet_option axienet_options[] = { |
| /* Turn on jumbo packet support for both Rx and Tx */ |
| { |
| .opt = XAE_OPTION_JUMBO, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_JUM_MASK, |
| }, { |
| .opt = XAE_OPTION_JUMBO, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_JUM_MASK, |
| }, { /* Turn on VLAN packet support for both Rx and Tx */ |
| .opt = XAE_OPTION_VLAN, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_VLAN_MASK, |
| }, { |
| .opt = XAE_OPTION_VLAN, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_VLAN_MASK, |
| }, { /* Turn on FCS stripping on receive packets */ |
| .opt = XAE_OPTION_FCS_STRIP, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_FCS_MASK, |
| }, { /* Turn on FCS insertion on transmit packets */ |
| .opt = XAE_OPTION_FCS_INSERT, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_FCS_MASK, |
| }, { /* Turn off length/type field checking on receive packets */ |
| .opt = XAE_OPTION_LENTYPE_ERR, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_LT_DIS_MASK, |
| }, { /* Turn on Rx flow control */ |
| .opt = XAE_OPTION_FLOW_CONTROL, |
| .reg = XAE_FCC_OFFSET, |
| .m_or = XAE_FCC_FCRX_MASK, |
| }, { /* Turn on Tx flow control */ |
| .opt = XAE_OPTION_FLOW_CONTROL, |
| .reg = XAE_FCC_OFFSET, |
| .m_or = XAE_FCC_FCTX_MASK, |
| }, { /* Turn on promiscuous frame filtering */ |
| .opt = XAE_OPTION_PROMISC, |
| .reg = XAE_FMI_OFFSET, |
| .m_or = XAE_FMI_PM_MASK, |
| }, { /* Enable transmitter */ |
| .opt = XAE_OPTION_TXEN, |
| .reg = XAE_TC_OFFSET, |
| .m_or = XAE_TC_TX_MASK, |
| }, { /* Enable receiver */ |
| .opt = XAE_OPTION_RXEN, |
| .reg = XAE_RCW1_OFFSET, |
| .m_or = XAE_RCW1_RX_MASK, |
| }, |
| {} |
| }; |
| |
| static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i) |
| { |
| return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)]; |
| } |
| |
| static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i) |
| { |
| return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)]; |
| } |
| |
| /** |
| * axienet_dma_in32 - Memory mapped Axi DMA register read |
| * @lp: Pointer to axienet local structure |
| * @reg: Address offset from the base address of the Axi DMA core |
| * |
| * Return: The contents of the Axi DMA register |
| * |
| * This function returns the contents of the corresponding Axi DMA register. |
| */ |
| static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg) |
| { |
| return ioread32(lp->dma_regs + reg); |
| } |
| |
| static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr, |
| struct axidma_bd *desc) |
| { |
| desc->phys = lower_32_bits(addr); |
| if (lp->features & XAE_FEATURE_DMA_64BIT) |
| desc->phys_msb = upper_32_bits(addr); |
| } |
| |
| static dma_addr_t desc_get_phys_addr(struct axienet_local *lp, |
| struct axidma_bd *desc) |
| { |
| dma_addr_t ret = desc->phys; |
| |
| if (lp->features & XAE_FEATURE_DMA_64BIT) |
| ret |= ((dma_addr_t)desc->phys_msb << 16) << 16; |
| |
| return ret; |
| } |
| |
| /** |
| * axienet_dma_bd_release - Release buffer descriptor rings |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is used to release the descriptors allocated in |
| * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet |
| * driver stop api is called. |
| */ |
| static void axienet_dma_bd_release(struct net_device *ndev) |
| { |
| int i; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| /* If we end up here, tx_bd_v must have been DMA allocated. */ |
| dma_free_coherent(lp->dev, |
| sizeof(*lp->tx_bd_v) * lp->tx_bd_num, |
| lp->tx_bd_v, |
| lp->tx_bd_p); |
| |
| if (!lp->rx_bd_v) |
| return; |
| |
| for (i = 0; i < lp->rx_bd_num; i++) { |
| dma_addr_t phys; |
| |
| /* A NULL skb means this descriptor has not been initialised |
| * at all. |
| */ |
| if (!lp->rx_bd_v[i].skb) |
| break; |
| |
| dev_kfree_skb(lp->rx_bd_v[i].skb); |
| |
| /* For each descriptor, we programmed cntrl with the (non-zero) |
| * descriptor size, after it had been successfully allocated. |
| * So a non-zero value in there means we need to unmap it. |
| */ |
| if (lp->rx_bd_v[i].cntrl) { |
| phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]); |
| dma_unmap_single(lp->dev, phys, |
| lp->max_frm_size, DMA_FROM_DEVICE); |
| } |
| } |
| |
| dma_free_coherent(lp->dev, |
| sizeof(*lp->rx_bd_v) * lp->rx_bd_num, |
| lp->rx_bd_v, |
| lp->rx_bd_p); |
| } |
| |
| /** |
| * axienet_usec_to_timer - Calculate IRQ delay timer value |
| * @lp: Pointer to the axienet_local structure |
| * @coalesce_usec: Microseconds to convert into timer value |
| */ |
| static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec) |
| { |
| u32 result; |
| u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */ |
| |
| if (lp->axi_clk) |
| clk_rate = clk_get_rate(lp->axi_clk); |
| |
| /* 1 Timeout Interval = 125 * (clock period of SG clock) */ |
| result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate, |
| (u64)125000000); |
| if (result > 255) |
| result = 255; |
| |
| return result; |
| } |
| |
| /** |
| * axienet_dma_start - Set up DMA registers and start DMA operation |
| * @lp: Pointer to the axienet_local structure |
| */ |
| static void axienet_dma_start(struct axienet_local *lp) |
| { |
| /* Start updating the Rx channel control register */ |
| lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) | |
| XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; |
| /* Only set interrupt delay timer if not generating an interrupt on |
| * the first RX packet. Otherwise leave at 0 to disable delay interrupt. |
| */ |
| if (lp->coalesce_count_rx > 1) |
| lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx) |
| << XAXIDMA_DELAY_SHIFT) | |
| XAXIDMA_IRQ_DELAY_MASK; |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); |
| |
| /* Start updating the Tx channel control register */ |
| lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) | |
| XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK; |
| /* Only set interrupt delay timer if not generating an interrupt on |
| * the first TX packet. Otherwise leave at 0 to disable delay interrupt. |
| */ |
| if (lp->coalesce_count_tx > 1) |
| lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx) |
| << XAXIDMA_DELAY_SHIFT) | |
| XAXIDMA_IRQ_DELAY_MASK; |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); |
| |
| /* Populate the tail pointer and bring the Rx Axi DMA engine out of |
| * halted state. This will make the Rx side ready for reception. |
| */ |
| axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); |
| lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); |
| axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + |
| (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1))); |
| |
| /* Write to the RS (Run-stop) bit in the Tx channel control register. |
| * Tx channel is now ready to run. But only after we write to the |
| * tail pointer register that the Tx channel will start transmitting. |
| */ |
| axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); |
| lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK; |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); |
| } |
| |
| /** |
| * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA |
| * @ndev: Pointer to the net_device structure |
| * |
| * Return: 0, on success -ENOMEM, on failure |
| * |
| * This function is called to initialize the Rx and Tx DMA descriptor |
| * rings. This initializes the descriptors with required default values |
| * and is called when Axi Ethernet driver reset is called. |
| */ |
| static int axienet_dma_bd_init(struct net_device *ndev) |
| { |
| int i; |
| struct sk_buff *skb; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| /* Reset the indexes which are used for accessing the BDs */ |
| lp->tx_bd_ci = 0; |
| lp->tx_bd_tail = 0; |
| lp->rx_bd_ci = 0; |
| |
| /* Allocate the Tx and Rx buffer descriptors. */ |
| lp->tx_bd_v = dma_alloc_coherent(lp->dev, |
| sizeof(*lp->tx_bd_v) * lp->tx_bd_num, |
| &lp->tx_bd_p, GFP_KERNEL); |
| if (!lp->tx_bd_v) |
| return -ENOMEM; |
| |
| lp->rx_bd_v = dma_alloc_coherent(lp->dev, |
| sizeof(*lp->rx_bd_v) * lp->rx_bd_num, |
| &lp->rx_bd_p, GFP_KERNEL); |
| if (!lp->rx_bd_v) |
| goto out; |
| |
| for (i = 0; i < lp->tx_bd_num; i++) { |
| dma_addr_t addr = lp->tx_bd_p + |
| sizeof(*lp->tx_bd_v) * |
| ((i + 1) % lp->tx_bd_num); |
| |
| lp->tx_bd_v[i].next = lower_32_bits(addr); |
| if (lp->features & XAE_FEATURE_DMA_64BIT) |
| lp->tx_bd_v[i].next_msb = upper_32_bits(addr); |
| } |
| |
| for (i = 0; i < lp->rx_bd_num; i++) { |
| dma_addr_t addr; |
| |
| addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * |
| ((i + 1) % lp->rx_bd_num); |
| lp->rx_bd_v[i].next = lower_32_bits(addr); |
| if (lp->features & XAE_FEATURE_DMA_64BIT) |
| lp->rx_bd_v[i].next_msb = upper_32_bits(addr); |
| |
| skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size); |
| if (!skb) |
| goto out; |
| |
| lp->rx_bd_v[i].skb = skb; |
| addr = dma_map_single(lp->dev, skb->data, |
| lp->max_frm_size, DMA_FROM_DEVICE); |
| if (dma_mapping_error(lp->dev, addr)) { |
| netdev_err(ndev, "DMA mapping error\n"); |
| goto out; |
| } |
| desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]); |
| |
| lp->rx_bd_v[i].cntrl = lp->max_frm_size; |
| } |
| |
| axienet_dma_start(lp); |
| |
| return 0; |
| out: |
| axienet_dma_bd_release(ndev); |
| return -ENOMEM; |
| } |
| |
| /** |
| * axienet_set_mac_address - Write the MAC address |
| * @ndev: Pointer to the net_device structure |
| * @address: 6 byte Address to be written as MAC address |
| * |
| * This function is called to initialize the MAC address of the Axi Ethernet |
| * core. It writes to the UAW0 and UAW1 registers of the core. |
| */ |
| static void axienet_set_mac_address(struct net_device *ndev, |
| const void *address) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (address) |
| eth_hw_addr_set(ndev, address); |
| if (!is_valid_ether_addr(ndev->dev_addr)) |
| eth_hw_addr_random(ndev); |
| |
| /* Set up unicast MAC address filter set its mac address */ |
| axienet_iow(lp, XAE_UAW0_OFFSET, |
| (ndev->dev_addr[0]) | |
| (ndev->dev_addr[1] << 8) | |
| (ndev->dev_addr[2] << 16) | |
| (ndev->dev_addr[3] << 24)); |
| axienet_iow(lp, XAE_UAW1_OFFSET, |
| (((axienet_ior(lp, XAE_UAW1_OFFSET)) & |
| ~XAE_UAW1_UNICASTADDR_MASK) | |
| (ndev->dev_addr[4] | |
| (ndev->dev_addr[5] << 8)))); |
| } |
| |
| /** |
| * netdev_set_mac_address - Write the MAC address (from outside the driver) |
| * @ndev: Pointer to the net_device structure |
| * @p: 6 byte Address to be written as MAC address |
| * |
| * Return: 0 for all conditions. Presently, there is no failure case. |
| * |
| * This function is called to initialize the MAC address of the Axi Ethernet |
| * core. It calls the core specific axienet_set_mac_address. This is the |
| * function that goes into net_device_ops structure entry ndo_set_mac_address. |
| */ |
| static int netdev_set_mac_address(struct net_device *ndev, void *p) |
| { |
| struct sockaddr *addr = p; |
| axienet_set_mac_address(ndev, addr->sa_data); |
| return 0; |
| } |
| |
| /** |
| * axienet_set_multicast_list - Prepare the multicast table |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is called to initialize the multicast table during |
| * initialization. The Axi Ethernet basic multicast support has a four-entry |
| * multicast table which is initialized here. Additionally this function |
| * goes into the net_device_ops structure entry ndo_set_multicast_list. This |
| * means whenever the multicast table entries need to be updated this |
| * function gets called. |
| */ |
| static void axienet_set_multicast_list(struct net_device *ndev) |
| { |
| int i; |
| u32 reg, af0reg, af1reg; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || |
| netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) { |
| /* We must make the kernel realize we had to move into |
| * promiscuous mode. If it was a promiscuous mode request |
| * the flag is already set. If not we set it. |
| */ |
| ndev->flags |= IFF_PROMISC; |
| reg = axienet_ior(lp, XAE_FMI_OFFSET); |
| reg |= XAE_FMI_PM_MASK; |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); |
| } else if (!netdev_mc_empty(ndev)) { |
| struct netdev_hw_addr *ha; |
| |
| i = 0; |
| netdev_for_each_mc_addr(ha, ndev) { |
| if (i >= XAE_MULTICAST_CAM_TABLE_NUM) |
| break; |
| |
| af0reg = (ha->addr[0]); |
| af0reg |= (ha->addr[1] << 8); |
| af0reg |= (ha->addr[2] << 16); |
| af0reg |= (ha->addr[3] << 24); |
| |
| af1reg = (ha->addr[4]); |
| af1reg |= (ha->addr[5] << 8); |
| |
| reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
| reg |= i; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| axienet_iow(lp, XAE_AF0_OFFSET, af0reg); |
| axienet_iow(lp, XAE_AF1_OFFSET, af1reg); |
| i++; |
| } |
| } else { |
| reg = axienet_ior(lp, XAE_FMI_OFFSET); |
| reg &= ~XAE_FMI_PM_MASK; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| |
| for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) { |
| reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00; |
| reg |= i; |
| |
| axienet_iow(lp, XAE_FMI_OFFSET, reg); |
| axienet_iow(lp, XAE_AF0_OFFSET, 0); |
| axienet_iow(lp, XAE_AF1_OFFSET, 0); |
| } |
| |
| dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); |
| } |
| } |
| |
| /** |
| * axienet_setoptions - Set an Axi Ethernet option |
| * @ndev: Pointer to the net_device structure |
| * @options: Option to be enabled/disabled |
| * |
| * The Axi Ethernet core has multiple features which can be selectively turned |
| * on or off. The typical options could be jumbo frame option, basic VLAN |
| * option, promiscuous mode option etc. This function is used to set or clear |
| * these options in the Axi Ethernet hardware. This is done through |
| * axienet_option structure . |
| */ |
| static void axienet_setoptions(struct net_device *ndev, u32 options) |
| { |
| int reg; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct axienet_option *tp = &axienet_options[0]; |
| |
| while (tp->opt) { |
| reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or)); |
| if (options & tp->opt) |
| reg |= tp->m_or; |
| axienet_iow(lp, tp->reg, reg); |
| tp++; |
| } |
| |
| lp->options |= options; |
| } |
| |
| static int __axienet_device_reset(struct axienet_local *lp) |
| { |
| u32 value; |
| int ret; |
| |
| /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset |
| * process of Axi DMA takes a while to complete as all pending |
| * commands/transfers will be flushed or completed during this |
| * reset process. |
| * Note that even though both TX and RX have their own reset register, |
| * they both reset the entire DMA core, so only one needs to be used. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK); |
| ret = read_poll_timeout(axienet_dma_in32, value, |
| !(value & XAXIDMA_CR_RESET_MASK), |
| DELAY_OF_ONE_MILLISEC, 50000, false, lp, |
| XAXIDMA_TX_CR_OFFSET); |
| if (ret) { |
| dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__); |
| return ret; |
| } |
| |
| /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */ |
| ret = read_poll_timeout(axienet_ior, value, |
| value & XAE_INT_PHYRSTCMPLT_MASK, |
| DELAY_OF_ONE_MILLISEC, 50000, false, lp, |
| XAE_IS_OFFSET); |
| if (ret) { |
| dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * axienet_dma_stop - Stop DMA operation |
| * @lp: Pointer to the axienet_local structure |
| */ |
| static void axienet_dma_stop(struct axienet_local *lp) |
| { |
| int count; |
| u32 cr, sr; |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| synchronize_irq(lp->rx_irq); |
| |
| cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK); |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| synchronize_irq(lp->tx_irq); |
| |
| /* Give DMAs a chance to halt gracefully */ |
| sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { |
| msleep(20); |
| sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| } |
| |
| sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) { |
| msleep(20); |
| sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| } |
| |
| /* Do a reset to ensure DMA is really stopped */ |
| axienet_lock_mii(lp); |
| __axienet_device_reset(lp); |
| axienet_unlock_mii(lp); |
| } |
| |
| /** |
| * axienet_device_reset - Reset and initialize the Axi Ethernet hardware. |
| * @ndev: Pointer to the net_device structure |
| * |
| * This function is called to reset and initialize the Axi Ethernet core. This |
| * is typically called during initialization. It does a reset of the Axi DMA |
| * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines |
| * are connected to Axi Ethernet reset lines, this in turn resets the Axi |
| * Ethernet core. No separate hardware reset is done for the Axi Ethernet |
| * core. |
| * Returns 0 on success or a negative error number otherwise. |
| */ |
| static int axienet_device_reset(struct net_device *ndev) |
| { |
| u32 axienet_status; |
| struct axienet_local *lp = netdev_priv(ndev); |
| int ret; |
| |
| lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE; |
| lp->options |= XAE_OPTION_VLAN; |
| lp->options &= (~XAE_OPTION_JUMBO); |
| |
| if ((ndev->mtu > XAE_MTU) && |
| (ndev->mtu <= XAE_JUMBO_MTU)) { |
| lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN + |
| XAE_TRL_SIZE; |
| |
| if (lp->max_frm_size <= lp->rxmem) |
| lp->options |= XAE_OPTION_JUMBO; |
| } |
| |
| if (!lp->use_dmaengine) { |
| ret = __axienet_device_reset(lp); |
| if (ret) |
| return ret; |
| |
| ret = axienet_dma_bd_init(ndev); |
| if (ret) { |
| netdev_err(ndev, "%s: descriptor allocation failed\n", |
| __func__); |
| return ret; |
| } |
| } |
| |
| axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| axienet_status &= ~XAE_RCW1_RX_MASK; |
| axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
| |
| axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| if (axienet_status & XAE_INT_RXRJECT_MASK) |
| axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? |
| XAE_INT_RECV_ERROR_MASK : 0); |
| |
| axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| |
| /* Sync default options with HW but leave receiver and |
| * transmitter disabled. |
| */ |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| axienet_set_mac_address(ndev, NULL); |
| axienet_set_multicast_list(ndev); |
| axienet_setoptions(ndev, lp->options); |
| |
| netif_trans_update(ndev); |
| |
| return 0; |
| } |
| |
| /** |
| * axienet_free_tx_chain - Clean up a series of linked TX descriptors. |
| * @lp: Pointer to the axienet_local structure |
| * @first_bd: Index of first descriptor to clean up |
| * @nr_bds: Max number of descriptors to clean up |
| * @force: Whether to clean descriptors even if not complete |
| * @sizep: Pointer to a u32 filled with the total sum of all bytes |
| * in all cleaned-up descriptors. Ignored if NULL. |
| * @budget: NAPI budget (use 0 when not called from NAPI poll) |
| * |
| * Would either be called after a successful transmit operation, or after |
| * there was an error when setting up the chain. |
| * Returns the number of descriptors handled. |
| */ |
| static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd, |
| int nr_bds, bool force, u32 *sizep, int budget) |
| { |
| struct axidma_bd *cur_p; |
| unsigned int status; |
| dma_addr_t phys; |
| int i; |
| |
| for (i = 0; i < nr_bds; i++) { |
| cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num]; |
| status = cur_p->status; |
| |
| /* If force is not specified, clean up only descriptors |
| * that have been completed by the MAC. |
| */ |
| if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK)) |
| break; |
| |
| /* Ensure we see complete descriptor update */ |
| dma_rmb(); |
| phys = desc_get_phys_addr(lp, cur_p); |
| dma_unmap_single(lp->dev, phys, |
| (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK), |
| DMA_TO_DEVICE); |
| |
| if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) |
| napi_consume_skb(cur_p->skb, budget); |
| |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app4 = 0; |
| cur_p->skb = NULL; |
| /* ensure our transmit path and device don't prematurely see status cleared */ |
| wmb(); |
| cur_p->cntrl = 0; |
| cur_p->status = 0; |
| |
| if (sizep) |
| *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; |
| } |
| |
| return i; |
| } |
| |
| /** |
| * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy |
| * @lp: Pointer to the axienet_local structure |
| * @num_frag: The number of BDs to check for |
| * |
| * Return: 0, on success |
| * NETDEV_TX_BUSY, if any of the descriptors are not free |
| * |
| * This function is invoked before BDs are allocated and transmission starts. |
| * This function returns 0 if a BD or group of BDs can be allocated for |
| * transmission. If the BD or any of the BDs are not free the function |
| * returns a busy status. |
| */ |
| static inline int axienet_check_tx_bd_space(struct axienet_local *lp, |
| int num_frag) |
| { |
| struct axidma_bd *cur_p; |
| |
| /* Ensure we see all descriptor updates from device or TX polling */ |
| rmb(); |
| cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) % |
| lp->tx_bd_num]; |
| if (cur_p->cntrl) |
| return NETDEV_TX_BUSY; |
| return 0; |
| } |
| |
| /** |
| * axienet_dma_tx_cb - DMA engine callback for TX channel. |
| * @data: Pointer to the axienet_local structure. |
| * @result: error reporting through dmaengine_result. |
| * This function is called by dmaengine driver for TX channel to notify |
| * that the transmit is done. |
| */ |
| static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result) |
| { |
| struct skbuf_dma_descriptor *skbuf_dma; |
| struct axienet_local *lp = data; |
| struct netdev_queue *txq; |
| int len; |
| |
| skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++); |
| len = skbuf_dma->skb->len; |
| txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb); |
| u64_stats_update_begin(&lp->tx_stat_sync); |
| u64_stats_add(&lp->tx_bytes, len); |
| u64_stats_add(&lp->tx_packets, 1); |
| u64_stats_update_end(&lp->tx_stat_sync); |
| dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE); |
| dev_consume_skb_any(skbuf_dma->skb); |
| netif_txq_completed_wake(txq, 1, len, |
| CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), |
| 2 * MAX_SKB_FRAGS); |
| } |
| |
| /** |
| * axienet_start_xmit_dmaengine - Starts the transmission. |
| * @skb: sk_buff pointer that contains data to be Txed. |
| * @ndev: Pointer to net_device structure. |
| * |
| * Return: NETDEV_TX_OK on success or any non space errors. |
| * NETDEV_TX_BUSY when free element in TX skb ring buffer |
| * is not available. |
| * |
| * This function is invoked to initiate transmission. The |
| * function sets the skbs, register dma callback API and submit |
| * the dma transaction. |
| * Additionally if checksum offloading is supported, |
| * it populates AXI Stream Control fields with appropriate values. |
| */ |
| static netdev_tx_t |
| axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev) |
| { |
| struct dma_async_tx_descriptor *dma_tx_desc = NULL; |
| struct axienet_local *lp = netdev_priv(ndev); |
| u32 app_metadata[DMA_NUM_APP_WORDS] = {0}; |
| struct skbuf_dma_descriptor *skbuf_dma; |
| struct dma_device *dma_dev; |
| struct netdev_queue *txq; |
| u32 csum_start_off; |
| u32 csum_index_off; |
| int sg_len; |
| int ret; |
| |
| dma_dev = lp->tx_chan->device; |
| sg_len = skb_shinfo(skb)->nr_frags + 1; |
| if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) { |
| netif_stop_queue(ndev); |
| if (net_ratelimit()) |
| netdev_warn(ndev, "TX ring unexpectedly full\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head); |
| if (!skbuf_dma) |
| goto xmit_error_drop_skb; |
| |
| lp->tx_ring_head++; |
| sg_init_table(skbuf_dma->sgl, sg_len); |
| ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len); |
| if (ret < 0) |
| goto xmit_error_drop_skb; |
| |
| ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); |
| if (!ret) |
| goto xmit_error_drop_skb; |
| |
| /* Fill up app fields for checksum */ |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
| /* Tx Full Checksum Offload Enabled */ |
| app_metadata[0] |= 2; |
| } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { |
| csum_start_off = skb_transport_offset(skb); |
| csum_index_off = csum_start_off + skb->csum_offset; |
| /* Tx Partial Checksum Offload Enabled */ |
| app_metadata[0] |= 1; |
| app_metadata[1] = (csum_start_off << 16) | csum_index_off; |
| } |
| } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */ |
| } |
| |
| dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl, |
| sg_len, DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT, (void *)app_metadata); |
| if (!dma_tx_desc) |
| goto xmit_error_unmap_sg; |
| |
| skbuf_dma->skb = skb; |
| skbuf_dma->sg_len = sg_len; |
| dma_tx_desc->callback_param = lp; |
| dma_tx_desc->callback_result = axienet_dma_tx_cb; |
| dmaengine_submit(dma_tx_desc); |
| dma_async_issue_pending(lp->tx_chan); |
| txq = skb_get_tx_queue(lp->ndev, skb); |
| netdev_tx_sent_queue(txq, skb->len); |
| netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX), |
| MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS); |
| |
| return NETDEV_TX_OK; |
| |
| xmit_error_unmap_sg: |
| dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE); |
| xmit_error_drop_skb: |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * axienet_tx_poll - Invoked once a transmit is completed by the |
| * Axi DMA Tx channel. |
| * @napi: Pointer to NAPI structure. |
| * @budget: Max number of TX packets to process. |
| * |
| * Return: Number of TX packets processed. |
| * |
| * This function is invoked from the NAPI processing to notify the completion |
| * of transmit operation. It clears fields in the corresponding Tx BDs and |
| * unmaps the corresponding buffer so that CPU can regain ownership of the |
| * buffer. It finally invokes "netif_wake_queue" to restart transmission if |
| * required. |
| */ |
| static int axienet_tx_poll(struct napi_struct *napi, int budget) |
| { |
| struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx); |
| struct net_device *ndev = lp->ndev; |
| u32 size = 0; |
| int packets; |
| |
| packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, budget, false, &size, budget); |
| |
| if (packets) { |
| lp->tx_bd_ci += packets; |
| if (lp->tx_bd_ci >= lp->tx_bd_num) |
| lp->tx_bd_ci %= lp->tx_bd_num; |
| |
| u64_stats_update_begin(&lp->tx_stat_sync); |
| u64_stats_add(&lp->tx_packets, packets); |
| u64_stats_add(&lp->tx_bytes, size); |
| u64_stats_update_end(&lp->tx_stat_sync); |
| |
| /* Matches barrier in axienet_start_xmit */ |
| smp_mb(); |
| |
| if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) |
| netif_wake_queue(ndev); |
| } |
| |
| if (packets < budget && napi_complete_done(napi, packets)) { |
| /* Re-enable TX completion interrupts. This should |
| * cause an immediate interrupt if any TX packets are |
| * already pending. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr); |
| } |
| return packets; |
| } |
| |
| /** |
| * axienet_start_xmit - Starts the transmission. |
| * @skb: sk_buff pointer that contains data to be Txed. |
| * @ndev: Pointer to net_device structure. |
| * |
| * Return: NETDEV_TX_OK, on success |
| * NETDEV_TX_BUSY, if any of the descriptors are not free |
| * |
| * This function is invoked from upper layers to initiate transmission. The |
| * function uses the next available free BDs and populates their fields to |
| * start the transmission. Additionally if checksum offloading is supported, |
| * it populates AXI Stream Control fields with appropriate values. |
| */ |
| static netdev_tx_t |
| axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev) |
| { |
| u32 ii; |
| u32 num_frag; |
| u32 csum_start_off; |
| u32 csum_index_off; |
| skb_frag_t *frag; |
| dma_addr_t tail_p, phys; |
| u32 orig_tail_ptr, new_tail_ptr; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct axidma_bd *cur_p; |
| |
| orig_tail_ptr = lp->tx_bd_tail; |
| new_tail_ptr = orig_tail_ptr; |
| |
| num_frag = skb_shinfo(skb)->nr_frags; |
| cur_p = &lp->tx_bd_v[orig_tail_ptr]; |
| |
| if (axienet_check_tx_bd_space(lp, num_frag + 1)) { |
| /* Should not happen as last start_xmit call should have |
| * checked for sufficient space and queue should only be |
| * woken when sufficient space is available. |
| */ |
| netif_stop_queue(ndev); |
| if (net_ratelimit()) |
| netdev_warn(ndev, "TX ring unexpectedly full\n"); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| if (lp->features & XAE_FEATURE_FULL_TX_CSUM) { |
| /* Tx Full Checksum Offload Enabled */ |
| cur_p->app0 |= 2; |
| } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) { |
| csum_start_off = skb_transport_offset(skb); |
| csum_index_off = csum_start_off + skb->csum_offset; |
| /* Tx Partial Checksum Offload Enabled */ |
| cur_p->app0 |= 1; |
| cur_p->app1 = (csum_start_off << 16) | csum_index_off; |
| } |
| } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { |
| cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */ |
| } |
| |
| phys = dma_map_single(lp->dev, skb->data, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| if (net_ratelimit()) |
| netdev_err(ndev, "TX DMA mapping error\n"); |
| ndev->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| desc_set_phys_addr(lp, phys, cur_p); |
| cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; |
| |
| for (ii = 0; ii < num_frag; ii++) { |
| if (++new_tail_ptr >= lp->tx_bd_num) |
| new_tail_ptr = 0; |
| cur_p = &lp->tx_bd_v[new_tail_ptr]; |
| frag = &skb_shinfo(skb)->frags[ii]; |
| phys = dma_map_single(lp->dev, |
| skb_frag_address(frag), |
| skb_frag_size(frag), |
| DMA_TO_DEVICE); |
| if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| if (net_ratelimit()) |
| netdev_err(ndev, "TX DMA mapping error\n"); |
| ndev->stats.tx_dropped++; |
| axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1, |
| true, NULL, 0); |
| return NETDEV_TX_OK; |
| } |
| desc_set_phys_addr(lp, phys, cur_p); |
| cur_p->cntrl = skb_frag_size(frag); |
| } |
| |
| cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; |
| cur_p->skb = skb; |
| |
| tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr; |
| if (++new_tail_ptr >= lp->tx_bd_num) |
| new_tail_ptr = 0; |
| WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr); |
| |
| /* Start the transfer */ |
| axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p); |
| |
| /* Stop queue if next transmit may not have space */ |
| if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) { |
| netif_stop_queue(ndev); |
| |
| /* Matches barrier in axienet_tx_poll */ |
| smp_mb(); |
| |
| /* Space might have just been freed - check again */ |
| if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) |
| netif_wake_queue(ndev); |
| } |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * axienet_dma_rx_cb - DMA engine callback for RX channel. |
| * @data: Pointer to the skbuf_dma_descriptor structure. |
| * @result: error reporting through dmaengine_result. |
| * This function is called by dmaengine driver for RX channel to notify |
| * that the packet is received. |
| */ |
| static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result) |
| { |
| struct skbuf_dma_descriptor *skbuf_dma; |
| size_t meta_len, meta_max_len, rx_len; |
| struct axienet_local *lp = data; |
| struct sk_buff *skb; |
| u32 *app_metadata; |
| |
| skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++); |
| skb = skbuf_dma->skb; |
| app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len, |
| &meta_max_len); |
| dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| /* TODO: Derive app word index programmatically */ |
| rx_len = (app_metadata[LEN_APP] & 0xFFFF); |
| skb_put(skb, rx_len); |
| skb->protocol = eth_type_trans(skb, lp->ndev); |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| __netif_rx(skb); |
| u64_stats_update_begin(&lp->rx_stat_sync); |
| u64_stats_add(&lp->rx_packets, 1); |
| u64_stats_add(&lp->rx_bytes, rx_len); |
| u64_stats_update_end(&lp->rx_stat_sync); |
| axienet_rx_submit_desc(lp->ndev); |
| dma_async_issue_pending(lp->rx_chan); |
| } |
| |
| /** |
| * axienet_rx_poll - Triggered by RX ISR to complete the BD processing. |
| * @napi: Pointer to NAPI structure. |
| * @budget: Max number of RX packets to process. |
| * |
| * Return: Number of RX packets processed. |
| */ |
| static int axienet_rx_poll(struct napi_struct *napi, int budget) |
| { |
| u32 length; |
| u32 csumstatus; |
| u32 size = 0; |
| int packets = 0; |
| dma_addr_t tail_p = 0; |
| struct axidma_bd *cur_p; |
| struct sk_buff *skb, *new_skb; |
| struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx); |
| |
| cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| |
| while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) { |
| dma_addr_t phys; |
| |
| /* Ensure we see complete descriptor update */ |
| dma_rmb(); |
| |
| skb = cur_p->skb; |
| cur_p->skb = NULL; |
| |
| /* skb could be NULL if a previous pass already received the |
| * packet for this slot in the ring, but failed to refill it |
| * with a newly allocated buffer. In this case, don't try to |
| * receive it again. |
| */ |
| if (likely(skb)) { |
| length = cur_p->app4 & 0x0000FFFF; |
| |
| phys = desc_get_phys_addr(lp, cur_p); |
| dma_unmap_single(lp->dev, phys, lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| |
| skb_put(skb, length); |
| skb->protocol = eth_type_trans(skb, lp->ndev); |
| /*skb_checksum_none_assert(skb);*/ |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* if we're doing Rx csum offload, set it up */ |
| if (lp->features & XAE_FEATURE_FULL_RX_CSUM) { |
| csumstatus = (cur_p->app2 & |
| XAE_FULL_CSUM_STATUS_MASK) >> 3; |
| if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED || |
| csumstatus == XAE_IP_UDP_CSUM_VALIDATED) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } |
| } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 && |
| skb->protocol == htons(ETH_P_IP) && |
| skb->len > 64) { |
| skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| |
| napi_gro_receive(napi, skb); |
| |
| size += length; |
| packets++; |
| } |
| |
| new_skb = napi_alloc_skb(napi, lp->max_frm_size); |
| if (!new_skb) |
| break; |
| |
| phys = dma_map_single(lp->dev, new_skb->data, |
| lp->max_frm_size, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(lp->dev, phys))) { |
| if (net_ratelimit()) |
| netdev_err(lp->ndev, "RX DMA mapping error\n"); |
| dev_kfree_skb(new_skb); |
| break; |
| } |
| desc_set_phys_addr(lp, phys, cur_p); |
| |
| cur_p->cntrl = lp->max_frm_size; |
| cur_p->status = 0; |
| cur_p->skb = new_skb; |
| |
| /* Only update tail_p to mark this slot as usable after it has |
| * been successfully refilled. |
| */ |
| tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; |
| |
| if (++lp->rx_bd_ci >= lp->rx_bd_num) |
| lp->rx_bd_ci = 0; |
| cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; |
| } |
| |
| u64_stats_update_begin(&lp->rx_stat_sync); |
| u64_stats_add(&lp->rx_packets, packets); |
| u64_stats_add(&lp->rx_bytes, size); |
| u64_stats_update_end(&lp->rx_stat_sync); |
| |
| if (tail_p) |
| axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p); |
| |
| if (packets < budget && napi_complete_done(napi, packets)) { |
| /* Re-enable RX completion interrupts. This should |
| * cause an immediate interrupt if any RX packets are |
| * already pending. |
| */ |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr); |
| } |
| return packets; |
| } |
| |
| /** |
| * axienet_tx_irq - Tx Done Isr. |
| * @irq: irq number |
| * @_ndev: net_device pointer |
| * |
| * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise. |
| * |
| * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the |
| * TX BD processing. |
| */ |
| static irqreturn_t axienet_tx_irq(int irq, void *_ndev) |
| { |
| unsigned int status; |
| struct net_device *ndev = _ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| |
| if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| return IRQ_NONE; |
| |
| axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status); |
| |
| if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { |
| netdev_err(ndev, "DMA Tx error 0x%x\n", status); |
| netdev_err(ndev, "Current BD is at: 0x%x%08x\n", |
| (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb, |
| (lp->tx_bd_v[lp->tx_bd_ci]).phys); |
| schedule_work(&lp->dma_err_task); |
| } else { |
| /* Disable further TX completion interrupts and schedule |
| * NAPI to handle the completions. |
| */ |
| u32 cr = lp->tx_dma_cr; |
| |
| cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); |
| axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr); |
| |
| napi_schedule(&lp->napi_tx); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * axienet_rx_irq - Rx Isr. |
| * @irq: irq number |
| * @_ndev: net_device pointer |
| * |
| * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise. |
| * |
| * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD |
| * processing. |
| */ |
| static irqreturn_t axienet_rx_irq(int irq, void *_ndev) |
| { |
| unsigned int status; |
| struct net_device *ndev = _ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| |
| if (!(status & XAXIDMA_IRQ_ALL_MASK)) |
| return IRQ_NONE; |
| |
| axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status); |
| |
| if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) { |
| netdev_err(ndev, "DMA Rx error 0x%x\n", status); |
| netdev_err(ndev, "Current BD is at: 0x%x%08x\n", |
| (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb, |
| (lp->rx_bd_v[lp->rx_bd_ci]).phys); |
| schedule_work(&lp->dma_err_task); |
| } else { |
| /* Disable further RX completion interrupts and schedule |
| * NAPI receive. |
| */ |
| u32 cr = lp->rx_dma_cr; |
| |
| cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); |
| axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr); |
| |
| napi_schedule(&lp->napi_rx); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * axienet_eth_irq - Ethernet core Isr. |
| * @irq: irq number |
| * @_ndev: net_device pointer |
| * |
| * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise. |
| * |
| * Handle miscellaneous conditions indicated by Ethernet core IRQ. |
| */ |
| static irqreturn_t axienet_eth_irq(int irq, void *_ndev) |
| { |
| struct net_device *ndev = _ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| unsigned int pending; |
| |
| pending = axienet_ior(lp, XAE_IP_OFFSET); |
| if (!pending) |
| return IRQ_NONE; |
| |
| if (pending & XAE_INT_RXFIFOOVR_MASK) |
| ndev->stats.rx_missed_errors++; |
| |
| if (pending & XAE_INT_RXRJECT_MASK) |
| ndev->stats.rx_frame_errors++; |
| |
| axienet_iow(lp, XAE_IS_OFFSET, pending); |
| return IRQ_HANDLED; |
| } |
| |
| static void axienet_dma_err_handler(struct work_struct *work); |
| |
| /** |
| * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine. |
| * allocate skbuff, map the scatterlist and obtain a descriptor |
| * and then add the callback information and submit descriptor. |
| * |
| * @ndev: net_device pointer |
| * |
| */ |
| static void axienet_rx_submit_desc(struct net_device *ndev) |
| { |
| struct dma_async_tx_descriptor *dma_rx_desc = NULL; |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct skbuf_dma_descriptor *skbuf_dma; |
| struct sk_buff *skb; |
| dma_addr_t addr; |
| |
| skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head); |
| if (!skbuf_dma) |
| return; |
| |
| lp->rx_ring_head++; |
| skb = netdev_alloc_skb(ndev, lp->max_frm_size); |
| if (!skb) |
| return; |
| |
| sg_init_table(skbuf_dma->sgl, 1); |
| addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(lp->dev, addr))) { |
| if (net_ratelimit()) |
| netdev_err(ndev, "DMA mapping error\n"); |
| goto rx_submit_err_free_skb; |
| } |
| sg_dma_address(skbuf_dma->sgl) = addr; |
| sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size; |
| dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl, |
| 1, DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT); |
| if (!dma_rx_desc) |
| goto rx_submit_err_unmap_skb; |
| |
| skbuf_dma->skb = skb; |
| skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl); |
| skbuf_dma->desc = dma_rx_desc; |
| dma_rx_desc->callback_param = lp; |
| dma_rx_desc->callback_result = axienet_dma_rx_cb; |
| dmaengine_submit(dma_rx_desc); |
| |
| return; |
| |
| rx_submit_err_unmap_skb: |
| dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE); |
| rx_submit_err_free_skb: |
| dev_kfree_skb(skb); |
| } |
| |
| /** |
| * axienet_init_dmaengine - init the dmaengine code. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * non-zero error value on failure |
| * |
| * This is the dmaengine initialization code. |
| */ |
| static int axienet_init_dmaengine(struct net_device *ndev) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| struct skbuf_dma_descriptor *skbuf_dma; |
| int i, ret; |
| |
| lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0"); |
| if (IS_ERR(lp->tx_chan)) { |
| dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n"); |
| return PTR_ERR(lp->tx_chan); |
| } |
| |
| lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0"); |
| if (IS_ERR(lp->rx_chan)) { |
| ret = PTR_ERR(lp->rx_chan); |
| dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n"); |
| goto err_dma_release_tx; |
| } |
| |
| lp->tx_ring_tail = 0; |
| lp->tx_ring_head = 0; |
| lp->rx_ring_tail = 0; |
| lp->rx_ring_head = 0; |
| lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring), |
| GFP_KERNEL); |
| if (!lp->tx_skb_ring) { |
| ret = -ENOMEM; |
| goto err_dma_release_rx; |
| } |
| for (i = 0; i < TX_BD_NUM_MAX; i++) { |
| skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); |
| if (!skbuf_dma) { |
| ret = -ENOMEM; |
| goto err_free_tx_skb_ring; |
| } |
| lp->tx_skb_ring[i] = skbuf_dma; |
| } |
| |
| lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring), |
| GFP_KERNEL); |
| if (!lp->rx_skb_ring) { |
| ret = -ENOMEM; |
| goto err_free_tx_skb_ring; |
| } |
| for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) { |
| skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL); |
| if (!skbuf_dma) { |
| ret = -ENOMEM; |
| goto err_free_rx_skb_ring; |
| } |
| lp->rx_skb_ring[i] = skbuf_dma; |
| } |
| /* TODO: Instead of BD_NUM_DEFAULT use runtime support */ |
| for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| axienet_rx_submit_desc(ndev); |
| dma_async_issue_pending(lp->rx_chan); |
| |
| return 0; |
| |
| err_free_rx_skb_ring: |
| for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| kfree(lp->rx_skb_ring[i]); |
| kfree(lp->rx_skb_ring); |
| err_free_tx_skb_ring: |
| for (i = 0; i < TX_BD_NUM_MAX; i++) |
| kfree(lp->tx_skb_ring[i]); |
| kfree(lp->tx_skb_ring); |
| err_dma_release_rx: |
| dma_release_channel(lp->rx_chan); |
| err_dma_release_tx: |
| dma_release_channel(lp->tx_chan); |
| return ret; |
| } |
| |
| /** |
| * axienet_init_legacy_dma - init the dma legacy code. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * non-zero error value on failure |
| * |
| * This is the dma initialization code. It also allocates interrupt |
| * service routines, enables the interrupt lines and ISR handling. |
| * |
| */ |
| static int axienet_init_legacy_dma(struct net_device *ndev) |
| { |
| int ret; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| /* Enable worker thread for Axi DMA error handling */ |
| INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler); |
| |
| napi_enable(&lp->napi_rx); |
| napi_enable(&lp->napi_tx); |
| |
| /* Enable interrupts for Axi DMA Tx */ |
| ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED, |
| ndev->name, ndev); |
| if (ret) |
| goto err_tx_irq; |
| /* Enable interrupts for Axi DMA Rx */ |
| ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED, |
| ndev->name, ndev); |
| if (ret) |
| goto err_rx_irq; |
| /* Enable interrupts for Axi Ethernet core (if defined) */ |
| if (lp->eth_irq > 0) { |
| ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, |
| ndev->name, ndev); |
| if (ret) |
| goto err_eth_irq; |
| } |
| |
| return 0; |
| |
| err_eth_irq: |
| free_irq(lp->rx_irq, ndev); |
| err_rx_irq: |
| free_irq(lp->tx_irq, ndev); |
| err_tx_irq: |
| napi_disable(&lp->napi_tx); |
| napi_disable(&lp->napi_rx); |
| cancel_work_sync(&lp->dma_err_task); |
| dev_err(lp->dev, "request_irq() failed\n"); |
| return ret; |
| } |
| |
| /** |
| * axienet_open - Driver open routine. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * non-zero error value on failure |
| * |
| * This is the driver open routine. It calls phylink_start to start the |
| * PHY device. |
| * It also allocates interrupt service routines, enables the interrupt lines |
| * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer |
| * descriptors are initialized. |
| */ |
| static int axienet_open(struct net_device *ndev) |
| { |
| int ret; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| dev_dbg(&ndev->dev, "%s\n", __func__); |
| |
| /* When we do an Axi Ethernet reset, it resets the complete core |
| * including the MDIO. MDIO must be disabled before resetting. |
| * Hold MDIO bus lock to avoid MDIO accesses during the reset. |
| */ |
| axienet_lock_mii(lp); |
| ret = axienet_device_reset(ndev); |
| axienet_unlock_mii(lp); |
| |
| ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0); |
| if (ret) { |
| dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret); |
| return ret; |
| } |
| |
| phylink_start(lp->phylink); |
| |
| if (lp->use_dmaengine) { |
| /* Enable interrupts for Axi Ethernet core (if defined) */ |
| if (lp->eth_irq > 0) { |
| ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED, |
| ndev->name, ndev); |
| if (ret) |
| goto err_phy; |
| } |
| |
| ret = axienet_init_dmaengine(ndev); |
| if (ret < 0) |
| goto err_free_eth_irq; |
| } else { |
| ret = axienet_init_legacy_dma(ndev); |
| if (ret) |
| goto err_phy; |
| } |
| |
| return 0; |
| |
| err_free_eth_irq: |
| if (lp->eth_irq > 0) |
| free_irq(lp->eth_irq, ndev); |
| err_phy: |
| phylink_stop(lp->phylink); |
| phylink_disconnect_phy(lp->phylink); |
| return ret; |
| } |
| |
| /** |
| * axienet_stop - Driver stop routine. |
| * @ndev: Pointer to net_device structure |
| * |
| * Return: 0, on success. |
| * |
| * This is the driver stop routine. It calls phylink_disconnect to stop the PHY |
| * device. It also removes the interrupt handlers and disables the interrupts. |
| * The Axi DMA Tx/Rx BDs are released. |
| */ |
| static int axienet_stop(struct net_device *ndev) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| int i; |
| |
| dev_dbg(&ndev->dev, "axienet_close()\n"); |
| |
| if (!lp->use_dmaengine) { |
| napi_disable(&lp->napi_tx); |
| napi_disable(&lp->napi_rx); |
| } |
| |
| phylink_stop(lp->phylink); |
| phylink_disconnect_phy(lp->phylink); |
| |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| |
| if (!lp->use_dmaengine) { |
| axienet_dma_stop(lp); |
| cancel_work_sync(&lp->dma_err_task); |
| free_irq(lp->tx_irq, ndev); |
| free_irq(lp->rx_irq, ndev); |
| axienet_dma_bd_release(ndev); |
| } else { |
| dmaengine_terminate_sync(lp->tx_chan); |
| dmaengine_synchronize(lp->tx_chan); |
| dmaengine_terminate_sync(lp->rx_chan); |
| dmaengine_synchronize(lp->rx_chan); |
| |
| for (i = 0; i < TX_BD_NUM_MAX; i++) |
| kfree(lp->tx_skb_ring[i]); |
| kfree(lp->tx_skb_ring); |
| for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) |
| kfree(lp->rx_skb_ring[i]); |
| kfree(lp->rx_skb_ring); |
| |
| dma_release_channel(lp->rx_chan); |
| dma_release_channel(lp->tx_chan); |
| } |
| |
| axienet_iow(lp, XAE_IE_OFFSET, 0); |
| |
| if (lp->eth_irq > 0) |
| free_irq(lp->eth_irq, ndev); |
| return 0; |
| } |
| |
| /** |
| * axienet_change_mtu - Driver change mtu routine. |
| * @ndev: Pointer to net_device structure |
| * @new_mtu: New mtu value to be applied |
| * |
| * Return: Always returns 0 (success). |
| * |
| * This is the change mtu driver routine. It checks if the Axi Ethernet |
| * hardware supports jumbo frames before changing the mtu. This can be |
| * called only when the device is not up. |
| */ |
| static int axienet_change_mtu(struct net_device *ndev, int new_mtu) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) |
| return -EBUSY; |
| |
| if ((new_mtu + VLAN_ETH_HLEN + |
| XAE_TRL_SIZE) > lp->rxmem) |
| return -EINVAL; |
| |
| WRITE_ONCE(ndev->mtu, new_mtu); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /** |
| * axienet_poll_controller - Axi Ethernet poll mechanism. |
| * @ndev: Pointer to net_device structure |
| * |
| * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior |
| * to polling the ISRs and are enabled back after the polling is done. |
| */ |
| static void axienet_poll_controller(struct net_device *ndev) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| disable_irq(lp->tx_irq); |
| disable_irq(lp->rx_irq); |
| axienet_rx_irq(lp->tx_irq, ndev); |
| axienet_tx_irq(lp->rx_irq, ndev); |
| enable_irq(lp->tx_irq); |
| enable_irq(lp->rx_irq); |
| } |
| #endif |
| |
| static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct axienet_local *lp = netdev_priv(dev); |
| |
| if (!netif_running(dev)) |
| return -EINVAL; |
| |
| return phylink_mii_ioctl(lp->phylink, rq, cmd); |
| } |
| |
| static void |
| axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) |
| { |
| struct axienet_local *lp = netdev_priv(dev); |
| unsigned int start; |
| |
| netdev_stats_to_stats64(stats, &dev->stats); |
| |
| do { |
| start = u64_stats_fetch_begin(&lp->rx_stat_sync); |
| stats->rx_packets = u64_stats_read(&lp->rx_packets); |
| stats->rx_bytes = u64_stats_read(&lp->rx_bytes); |
| } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start)); |
| |
| do { |
| start = u64_stats_fetch_begin(&lp->tx_stat_sync); |
| stats->tx_packets = u64_stats_read(&lp->tx_packets); |
| stats->tx_bytes = u64_stats_read(&lp->tx_bytes); |
| } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start)); |
| } |
| |
| static const struct net_device_ops axienet_netdev_ops = { |
| .ndo_open = axienet_open, |
| .ndo_stop = axienet_stop, |
| .ndo_start_xmit = axienet_start_xmit, |
| .ndo_get_stats64 = axienet_get_stats64, |
| .ndo_change_mtu = axienet_change_mtu, |
| .ndo_set_mac_address = netdev_set_mac_address, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_eth_ioctl = axienet_ioctl, |
| .ndo_set_rx_mode = axienet_set_multicast_list, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = axienet_poll_controller, |
| #endif |
| }; |
| |
| static const struct net_device_ops axienet_netdev_dmaengine_ops = { |
| .ndo_open = axienet_open, |
| .ndo_stop = axienet_stop, |
| .ndo_start_xmit = axienet_start_xmit_dmaengine, |
| .ndo_get_stats64 = axienet_get_stats64, |
| .ndo_change_mtu = axienet_change_mtu, |
| .ndo_set_mac_address = netdev_set_mac_address, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_eth_ioctl = axienet_ioctl, |
| .ndo_set_rx_mode = axienet_set_multicast_list, |
| }; |
| |
| /** |
| * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information. |
| * @ndev: Pointer to net_device structure |
| * @ed: Pointer to ethtool_drvinfo structure |
| * |
| * This implements ethtool command for getting the driver information. |
| * Issue "ethtool -i ethX" under linux prompt to execute this function. |
| */ |
| static void axienet_ethtools_get_drvinfo(struct net_device *ndev, |
| struct ethtool_drvinfo *ed) |
| { |
| strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver)); |
| strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version)); |
| } |
| |
| /** |
| * axienet_ethtools_get_regs_len - Get the total regs length present in the |
| * AxiEthernet core. |
| * @ndev: Pointer to net_device structure |
| * |
| * This implements ethtool command for getting the total register length |
| * information. |
| * |
| * Return: the total regs length |
| */ |
| static int axienet_ethtools_get_regs_len(struct net_device *ndev) |
| { |
| return sizeof(u32) * AXIENET_REGS_N; |
| } |
| |
| /** |
| * axienet_ethtools_get_regs - Dump the contents of all registers present |
| * in AxiEthernet core. |
| * @ndev: Pointer to net_device structure |
| * @regs: Pointer to ethtool_regs structure |
| * @ret: Void pointer used to return the contents of the registers. |
| * |
| * This implements ethtool command for getting the Axi Ethernet register dump. |
| * Issue "ethtool -d ethX" to execute this function. |
| */ |
| static void axienet_ethtools_get_regs(struct net_device *ndev, |
| struct ethtool_regs *regs, void *ret) |
| { |
| u32 *data = (u32 *)ret; |
| size_t len = sizeof(u32) * AXIENET_REGS_N; |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| regs->version = 0; |
| regs->len = len; |
| |
| memset(data, 0, len); |
| data[0] = axienet_ior(lp, XAE_RAF_OFFSET); |
| data[1] = axienet_ior(lp, XAE_TPF_OFFSET); |
| data[2] = axienet_ior(lp, XAE_IFGP_OFFSET); |
| data[3] = axienet_ior(lp, XAE_IS_OFFSET); |
| data[4] = axienet_ior(lp, XAE_IP_OFFSET); |
| data[5] = axienet_ior(lp, XAE_IE_OFFSET); |
| data[6] = axienet_ior(lp, XAE_TTAG_OFFSET); |
| data[7] = axienet_ior(lp, XAE_RTAG_OFFSET); |
| data[8] = axienet_ior(lp, XAE_UAWL_OFFSET); |
| data[9] = axienet_ior(lp, XAE_UAWU_OFFSET); |
| data[10] = axienet_ior(lp, XAE_TPID0_OFFSET); |
| data[11] = axienet_ior(lp, XAE_TPID1_OFFSET); |
| data[12] = axienet_ior(lp, XAE_PPST_OFFSET); |
| data[13] = axienet_ior(lp, XAE_RCW0_OFFSET); |
| data[14] = axienet_ior(lp, XAE_RCW1_OFFSET); |
| data[15] = axienet_ior(lp, XAE_TC_OFFSET); |
| data[16] = axienet_ior(lp, XAE_FCC_OFFSET); |
| data[17] = axienet_ior(lp, XAE_EMMC_OFFSET); |
| data[18] = axienet_ior(lp, XAE_PHYC_OFFSET); |
| data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET); |
| data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET); |
| data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET); |
| data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET); |
| data[27] = axienet_ior(lp, XAE_UAW0_OFFSET); |
| data[28] = axienet_ior(lp, XAE_UAW1_OFFSET); |
| data[29] = axienet_ior(lp, XAE_FMI_OFFSET); |
| data[30] = axienet_ior(lp, XAE_AF0_OFFSET); |
| data[31] = axienet_ior(lp, XAE_AF1_OFFSET); |
| if (!lp->use_dmaengine) { |
| data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET); |
| data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET); |
| data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET); |
| data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET); |
| data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET); |
| data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET); |
| data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET); |
| data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET); |
| } |
| } |
| |
| static void |
| axienet_ethtools_get_ringparam(struct net_device *ndev, |
| struct ethtool_ringparam *ering, |
| struct kernel_ethtool_ringparam *kernel_ering, |
| struct netlink_ext_ack *extack) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| ering->rx_max_pending = RX_BD_NUM_MAX; |
| ering->rx_mini_max_pending = 0; |
| ering->rx_jumbo_max_pending = 0; |
| ering->tx_max_pending = TX_BD_NUM_MAX; |
| ering->rx_pending = lp->rx_bd_num; |
| ering->rx_mini_pending = 0; |
| ering->rx_jumbo_pending = 0; |
| ering->tx_pending = lp->tx_bd_num; |
| } |
| |
| static int |
| axienet_ethtools_set_ringparam(struct net_device *ndev, |
| struct ethtool_ringparam *ering, |
| struct kernel_ethtool_ringparam *kernel_ering, |
| struct netlink_ext_ack *extack) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (ering->rx_pending > RX_BD_NUM_MAX || |
| ering->rx_mini_pending || |
| ering->rx_jumbo_pending || |
| ering->tx_pending < TX_BD_NUM_MIN || |
| ering->tx_pending > TX_BD_NUM_MAX) |
| return -EINVAL; |
| |
| if (netif_running(ndev)) |
| return -EBUSY; |
| |
| lp->rx_bd_num = ering->rx_pending; |
| lp->tx_bd_num = ering->tx_pending; |
| return 0; |
| } |
| |
| /** |
| * axienet_ethtools_get_pauseparam - Get the pause parameter setting for |
| * Tx and Rx paths. |
| * @ndev: Pointer to net_device structure |
| * @epauseparm: Pointer to ethtool_pauseparam structure. |
| * |
| * This implements ethtool command for getting axi ethernet pause frame |
| * setting. Issue "ethtool -a ethX" to execute this function. |
| */ |
| static void |
| axienet_ethtools_get_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *epauseparm) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| phylink_ethtool_get_pauseparam(lp->phylink, epauseparm); |
| } |
| |
| /** |
| * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control) |
| * settings. |
| * @ndev: Pointer to net_device structure |
| * @epauseparm:Pointer to ethtool_pauseparam structure |
| * |
| * This implements ethtool command for enabling flow control on Rx and Tx |
| * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this |
| * function. |
| * |
| * Return: 0 on success, -EFAULT if device is running |
| */ |
| static int |
| axienet_ethtools_set_pauseparam(struct net_device *ndev, |
| struct ethtool_pauseparam *epauseparm) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm); |
| } |
| |
| /** |
| * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count. |
| * @ndev: Pointer to net_device structure |
| * @ecoalesce: Pointer to ethtool_coalesce structure |
| * @kernel_coal: ethtool CQE mode setting structure |
| * @extack: extack for reporting error messages |
| * |
| * This implements ethtool command for getting the DMA interrupt coalescing |
| * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to |
| * execute this function. |
| * |
| * Return: 0 always |
| */ |
| static int |
| axienet_ethtools_get_coalesce(struct net_device *ndev, |
| struct ethtool_coalesce *ecoalesce, |
| struct kernel_ethtool_coalesce *kernel_coal, |
| struct netlink_ext_ack *extack) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx; |
| ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx; |
| ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx; |
| ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx; |
| return 0; |
| } |
| |
| /** |
| * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count. |
| * @ndev: Pointer to net_device structure |
| * @ecoalesce: Pointer to ethtool_coalesce structure |
| * @kernel_coal: ethtool CQE mode setting structure |
| * @extack: extack for reporting error messages |
| * |
| * This implements ethtool command for setting the DMA interrupt coalescing |
| * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux |
| * prompt to execute this function. |
| * |
| * Return: 0, on success, Non-zero error value on failure. |
| */ |
| static int |
| axienet_ethtools_set_coalesce(struct net_device *ndev, |
| struct ethtool_coalesce *ecoalesce, |
| struct kernel_ethtool_coalesce *kernel_coal, |
| struct netlink_ext_ack *extack) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (netif_running(ndev)) { |
| netdev_err(ndev, |
| "Please stop netif before applying configuration\n"); |
| return -EFAULT; |
| } |
| |
| if (ecoalesce->rx_max_coalesced_frames) |
| lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; |
| if (ecoalesce->rx_coalesce_usecs) |
| lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs; |
| if (ecoalesce->tx_max_coalesced_frames) |
| lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; |
| if (ecoalesce->tx_coalesce_usecs) |
| lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs; |
| |
| return 0; |
| } |
| |
| static int |
| axienet_ethtools_get_link_ksettings(struct net_device *ndev, |
| struct ethtool_link_ksettings *cmd) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| return phylink_ethtool_ksettings_get(lp->phylink, cmd); |
| } |
| |
| static int |
| axienet_ethtools_set_link_ksettings(struct net_device *ndev, |
| const struct ethtool_link_ksettings *cmd) |
| { |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| return phylink_ethtool_ksettings_set(lp->phylink, cmd); |
| } |
| |
| static int axienet_ethtools_nway_reset(struct net_device *dev) |
| { |
| struct axienet_local *lp = netdev_priv(dev); |
| |
| return phylink_ethtool_nway_reset(lp->phylink); |
| } |
| |
| static const struct ethtool_ops axienet_ethtool_ops = { |
| .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES | |
| ETHTOOL_COALESCE_USECS, |
| .get_drvinfo = axienet_ethtools_get_drvinfo, |
| .get_regs_len = axienet_ethtools_get_regs_len, |
| .get_regs = axienet_ethtools_get_regs, |
| .get_link = ethtool_op_get_link, |
| .get_ringparam = axienet_ethtools_get_ringparam, |
| .set_ringparam = axienet_ethtools_set_ringparam, |
| .get_pauseparam = axienet_ethtools_get_pauseparam, |
| .set_pauseparam = axienet_ethtools_set_pauseparam, |
| .get_coalesce = axienet_ethtools_get_coalesce, |
| .set_coalesce = axienet_ethtools_set_coalesce, |
| .get_link_ksettings = axienet_ethtools_get_link_ksettings, |
| .set_link_ksettings = axienet_ethtools_set_link_ksettings, |
| .nway_reset = axienet_ethtools_nway_reset, |
| }; |
| |
| static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs) |
| { |
| return container_of(pcs, struct axienet_local, pcs); |
| } |
| |
| static void axienet_pcs_get_state(struct phylink_pcs *pcs, |
| struct phylink_link_state *state) |
| { |
| struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| |
| phylink_mii_c22_pcs_get_state(pcs_phy, state); |
| } |
| |
| static void axienet_pcs_an_restart(struct phylink_pcs *pcs) |
| { |
| struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| |
| phylink_mii_c22_pcs_an_restart(pcs_phy); |
| } |
| |
| static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, |
| phy_interface_t interface, |
| const unsigned long *advertising, |
| bool permit_pause_to_mac) |
| { |
| struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy; |
| struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev; |
| struct axienet_local *lp = netdev_priv(ndev); |
| int ret; |
| |
| if (lp->switch_x_sgmii) { |
| ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG, |
| interface == PHY_INTERFACE_MODE_SGMII ? |
| XLNX_MII_STD_SELECT_SGMII : 0); |
| if (ret < 0) { |
| netdev_warn(ndev, |
| "Failed to switch PHY interface: %d\n", |
| ret); |
| return ret; |
| } |
| } |
| |
| ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising, |
| neg_mode); |
| if (ret < 0) |
| netdev_warn(ndev, "Failed to configure PCS: %d\n", ret); |
| |
| return ret; |
| } |
| |
| static const struct phylink_pcs_ops axienet_pcs_ops = { |
| .pcs_get_state = axienet_pcs_get_state, |
| .pcs_config = axienet_pcs_config, |
| .pcs_an_restart = axienet_pcs_an_restart, |
| }; |
| |
| static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config, |
| phy_interface_t interface) |
| { |
| struct net_device *ndev = to_net_dev(config->dev); |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| if (interface == PHY_INTERFACE_MODE_1000BASEX || |
| interface == PHY_INTERFACE_MODE_SGMII) |
| return &lp->pcs; |
| |
| return NULL; |
| } |
| |
| static void axienet_mac_config(struct phylink_config *config, unsigned int mode, |
| const struct phylink_link_state *state) |
| { |
| /* nothing meaningful to do */ |
| } |
| |
| static void axienet_mac_link_down(struct phylink_config *config, |
| unsigned int mode, |
| phy_interface_t interface) |
| { |
| /* nothing meaningful to do */ |
| } |
| |
| static void axienet_mac_link_up(struct phylink_config *config, |
| struct phy_device *phy, |
| unsigned int mode, phy_interface_t interface, |
| int speed, int duplex, |
| bool tx_pause, bool rx_pause) |
| { |
| struct net_device *ndev = to_net_dev(config->dev); |
| struct axienet_local *lp = netdev_priv(ndev); |
| u32 emmc_reg, fcc_reg; |
| |
| emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET); |
| emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK; |
| |
| switch (speed) { |
| case SPEED_1000: |
| emmc_reg |= XAE_EMMC_LINKSPD_1000; |
| break; |
| case SPEED_100: |
| emmc_reg |= XAE_EMMC_LINKSPD_100; |
| break; |
| case SPEED_10: |
| emmc_reg |= XAE_EMMC_LINKSPD_10; |
| break; |
| default: |
| dev_err(&ndev->dev, |
| "Speed other than 10, 100 or 1Gbps is not supported\n"); |
| break; |
| } |
| |
| axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg); |
| |
| fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET); |
| if (tx_pause) |
| fcc_reg |= XAE_FCC_FCTX_MASK; |
| else |
| fcc_reg &= ~XAE_FCC_FCTX_MASK; |
| if (rx_pause) |
| fcc_reg |= XAE_FCC_FCRX_MASK; |
| else |
| fcc_reg &= ~XAE_FCC_FCRX_MASK; |
| axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg); |
| } |
| |
| static const struct phylink_mac_ops axienet_phylink_ops = { |
| .mac_select_pcs = axienet_mac_select_pcs, |
| .mac_config = axienet_mac_config, |
| .mac_link_down = axienet_mac_link_down, |
| .mac_link_up = axienet_mac_link_up, |
| }; |
| |
| /** |
| * axienet_dma_err_handler - Work queue task for Axi DMA Error |
| * @work: pointer to work_struct |
| * |
| * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the |
| * Tx/Rx BDs. |
| */ |
| static void axienet_dma_err_handler(struct work_struct *work) |
| { |
| u32 i; |
| u32 axienet_status; |
| struct axidma_bd *cur_p; |
| struct axienet_local *lp = container_of(work, struct axienet_local, |
| dma_err_task); |
| struct net_device *ndev = lp->ndev; |
| |
| napi_disable(&lp->napi_tx); |
| napi_disable(&lp->napi_rx); |
| |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| |
| axienet_dma_stop(lp); |
| |
| for (i = 0; i < lp->tx_bd_num; i++) { |
| cur_p = &lp->tx_bd_v[i]; |
| if (cur_p->cntrl) { |
| dma_addr_t addr = desc_get_phys_addr(lp, cur_p); |
| |
| dma_unmap_single(lp->dev, addr, |
| (cur_p->cntrl & |
| XAXIDMA_BD_CTRL_LENGTH_MASK), |
| DMA_TO_DEVICE); |
| } |
| if (cur_p->skb) |
| dev_kfree_skb_irq(cur_p->skb); |
| cur_p->phys = 0; |
| cur_p->phys_msb = 0; |
| cur_p->cntrl = 0; |
| cur_p->status = 0; |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app3 = 0; |
| cur_p->app4 = 0; |
| cur_p->skb = NULL; |
| } |
| |
| for (i = 0; i < lp->rx_bd_num; i++) { |
| cur_p = &lp->rx_bd_v[i]; |
| cur_p->status = 0; |
| cur_p->app0 = 0; |
| cur_p->app1 = 0; |
| cur_p->app2 = 0; |
| cur_p->app3 = 0; |
| cur_p->app4 = 0; |
| } |
| |
| lp->tx_bd_ci = 0; |
| lp->tx_bd_tail = 0; |
| lp->rx_bd_ci = 0; |
| |
| axienet_dma_start(lp); |
| |
| axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET); |
| axienet_status &= ~XAE_RCW1_RX_MASK; |
| axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status); |
| |
| axienet_status = axienet_ior(lp, XAE_IP_OFFSET); |
| if (axienet_status & XAE_INT_RXRJECT_MASK) |
| axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK); |
| axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ? |
| XAE_INT_RECV_ERROR_MASK : 0); |
| axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK); |
| |
| /* Sync default options with HW but leave receiver and |
| * transmitter disabled. |
| */ |
| axienet_setoptions(ndev, lp->options & |
| ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN)); |
| axienet_set_mac_address(ndev, NULL); |
| axienet_set_multicast_list(ndev); |
| axienet_setoptions(ndev, lp->options); |
| napi_enable(&lp->napi_rx); |
| napi_enable(&lp->napi_tx); |
| } |
| |
| /** |
| * axienet_probe - Axi Ethernet probe function. |
| * @pdev: Pointer to platform device structure. |
| * |
| * Return: 0, on success |
| * Non-zero error value on failure. |
| * |
| * This is the probe routine for Axi Ethernet driver. This is called before |
| * any other driver routines are invoked. It allocates and sets up the Ethernet |
| * device. Parses through device tree and populates fields of |
| * axienet_local. It registers the Ethernet device. |
| */ |
| static int axienet_probe(struct platform_device *pdev) |
| { |
| int ret; |
| struct device_node *np; |
| struct axienet_local *lp; |
| struct net_device *ndev; |
| struct resource *ethres; |
| u8 mac_addr[ETH_ALEN]; |
| int addr_width = 32; |
| u32 value; |
| |
| ndev = alloc_etherdev(sizeof(*lp)); |
| if (!ndev) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, ndev); |
| |
| SET_NETDEV_DEV(ndev, &pdev->dev); |
| ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ |
| ndev->features = NETIF_F_SG; |
| ndev->ethtool_ops = &axienet_ethtool_ops; |
| |
| /* MTU range: 64 - 9000 */ |
| ndev->min_mtu = 64; |
| ndev->max_mtu = XAE_JUMBO_MTU; |
| |
| lp = netdev_priv(ndev); |
| lp->ndev = ndev; |
| lp->dev = &pdev->dev; |
| lp->options = XAE_OPTION_DEFAULTS; |
| lp->rx_bd_num = RX_BD_NUM_DEFAULT; |
| lp->tx_bd_num = TX_BD_NUM_DEFAULT; |
| |
| u64_stats_init(&lp->rx_stat_sync); |
| u64_stats_init(&lp->tx_stat_sync); |
| |
| lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk"); |
| if (!lp->axi_clk) { |
| /* For backward compatibility, if named AXI clock is not present, |
| * treat the first clock specified as the AXI clock. |
| */ |
| lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL); |
| } |
| if (IS_ERR(lp->axi_clk)) { |
| ret = PTR_ERR(lp->axi_clk); |
| goto free_netdev; |
| } |
| ret = clk_prepare_enable(lp->axi_clk); |
| if (ret) { |
| dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret); |
| goto free_netdev; |
| } |
| |
| lp->misc_clks[0].id = "axis_clk"; |
| lp->misc_clks[1].id = "ref_clk"; |
| lp->misc_clks[2].id = "mgt_clk"; |
| |
| ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks); |
| if (ret) |
| goto cleanup_clk; |
| |
| ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks); |
| if (ret) |
| goto cleanup_clk; |
| |
| /* Map device registers */ |
| lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres); |
| if (IS_ERR(lp->regs)) { |
| ret = PTR_ERR(lp->regs); |
| goto cleanup_clk; |
| } |
| lp->regs_start = ethres->start; |
| |
| /* Setup checksum offload, but default to off if not specified */ |
| lp->features = 0; |
| |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value); |
| if (!ret) { |
| switch (value) { |
| case 1: |
| lp->csum_offload_on_tx_path = |
| XAE_FEATURE_PARTIAL_TX_CSUM; |
| lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM; |
| /* Can checksum TCP/UDP over IPv4. */ |
| ndev->features |= NETIF_F_IP_CSUM; |
| break; |
| case 2: |
| lp->csum_offload_on_tx_path = |
| XAE_FEATURE_FULL_TX_CSUM; |
| lp->features |= XAE_FEATURE_FULL_TX_CSUM; |
| /* Can checksum TCP/UDP over IPv4. */ |
| ndev->features |= NETIF_F_IP_CSUM; |
| break; |
| default: |
| lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD; |
| } |
| } |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value); |
| if (!ret) { |
| switch (value) { |
| case 1: |
| lp->csum_offload_on_rx_path = |
| XAE_FEATURE_PARTIAL_RX_CSUM; |
| lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM; |
| break; |
| case 2: |
| lp->csum_offload_on_rx_path = |
| XAE_FEATURE_FULL_RX_CSUM; |
| lp->features |= XAE_FEATURE_FULL_RX_CSUM; |
| break; |
| default: |
| lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD; |
| } |
| } |
| /* For supporting jumbo frames, the Axi Ethernet hardware must have |
| * a larger Rx/Tx Memory. Typically, the size must be large so that |
| * we can enable jumbo option and start supporting jumbo frames. |
| * Here we check for memory allocated for Rx/Tx in the hardware from |
| * the device-tree and accordingly set flags. |
| */ |
| of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem); |
| |
| lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node, |
| "xlnx,switch-x-sgmii"); |
| |
| /* Start with the proprietary, and broken phy_type */ |
| ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value); |
| if (!ret) { |
| netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode"); |
| switch (value) { |
| case XAE_PHY_TYPE_MII: |
| lp->phy_mode = PHY_INTERFACE_MODE_MII; |
| break; |
| case XAE_PHY_TYPE_GMII: |
| lp->phy_mode = PHY_INTERFACE_MODE_GMII; |
| break; |
| case XAE_PHY_TYPE_RGMII_2_0: |
| lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID; |
| break; |
| case XAE_PHY_TYPE_SGMII: |
| lp->phy_mode = PHY_INTERFACE_MODE_SGMII; |
| break; |
| case XAE_PHY_TYPE_1000BASE_X: |
| lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX; |
| break; |
| default: |
| ret = -EINVAL; |
| goto cleanup_clk; |
| } |
| } else { |
| ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode); |
| if (ret) |
| goto cleanup_clk; |
| } |
| if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII && |
| lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) { |
| dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n"); |
| ret = -EINVAL; |
| goto cleanup_clk; |
| } |
| |
| if (!of_find_property(pdev->dev.of_node, "dmas", NULL)) { |
| /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ |
| np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0); |
| |
| if (np) { |
| struct resource dmares; |
| |
| ret = of_address_to_resource(np, 0, &dmares); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "unable to get DMA resource\n"); |
| of_node_put(np); |
| goto cleanup_clk; |
| } |
| lp->dma_regs = devm_ioremap_resource(&pdev->dev, |
| &dmares); |
| lp->rx_irq = irq_of_parse_and_map(np, 1); |
| lp->tx_irq = irq_of_parse_and_map(np, 0); |
| of_node_put(np); |
| lp->eth_irq = platform_get_irq_optional(pdev, 0); |
| } else { |
| /* Check for these resources directly on the Ethernet node. */ |
| lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL); |
| lp->rx_irq = platform_get_irq(pdev, 1); |
| lp->tx_irq = platform_get_irq(pdev, 0); |
| lp->eth_irq = platform_get_irq_optional(pdev, 2); |
| } |
| if (IS_ERR(lp->dma_regs)) { |
| dev_err(&pdev->dev, "could not map DMA regs\n"); |
| ret = PTR_ERR(lp->dma_regs); |
| goto cleanup_clk; |
| } |
| if (lp->rx_irq <= 0 || lp->tx_irq <= 0) { |
| dev_err(&pdev->dev, "could not determine irqs\n"); |
| ret = -ENOMEM; |
| goto cleanup_clk; |
| } |
| |
| /* Reset core now that clocks are enabled, prior to accessing MDIO */ |
| ret = __axienet_device_reset(lp); |
| if (ret) |
| goto cleanup_clk; |
| |
| /* Autodetect the need for 64-bit DMA pointers. |
| * When the IP is configured for a bus width bigger than 32 bits, |
| * writing the MSB registers is mandatory, even if they are all 0. |
| * We can detect this case by writing all 1's to one such register |
| * and see if that sticks: when the IP is configured for 32 bits |
| * only, those registers are RES0. |
| * Those MSB registers were introduced in IP v7.1, which we check first. |
| */ |
| if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) { |
| void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4; |
| |
| iowrite32(0x0, desc); |
| if (ioread32(desc) == 0) { /* sanity check */ |
| iowrite32(0xffffffff, desc); |
| if (ioread32(desc) > 0) { |
| lp->features |= XAE_FEATURE_DMA_64BIT; |
| addr_width = 64; |
| dev_info(&pdev->dev, |
| "autodetected 64-bit DMA range\n"); |
| } |
| iowrite32(0x0, desc); |
| } |
| } |
| if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) { |
| dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n"); |
| ret = -EINVAL; |
| goto cleanup_clk; |
| } |
| |
| ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width)); |
| if (ret) { |
| dev_err(&pdev->dev, "No suitable DMA available\n"); |
| goto cleanup_clk; |
| } |
| netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll); |
| netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll); |
| } else { |
| struct xilinx_vdma_config cfg; |
| struct dma_chan *tx_chan; |
| |
| lp->eth_irq = platform_get_irq_optional(pdev, 0); |
| if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) { |
| ret = lp->eth_irq; |
| goto cleanup_clk; |
| } |
| tx_chan = dma_request_chan(lp->dev, "tx_chan0"); |
| if (IS_ERR(tx_chan)) { |
| ret = PTR_ERR(tx_chan); |
| dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n"); |
| goto cleanup_clk; |
| } |
| |
| cfg.reset = 1; |
| /* As name says VDMA but it has support for DMA channel reset */ |
| ret = xilinx_vdma_channel_set_config(tx_chan, &cfg); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "Reset channel failed\n"); |
| dma_release_channel(tx_chan); |
| goto cleanup_clk; |
| } |
| |
| dma_release_channel(tx_chan); |
| lp->use_dmaengine = 1; |
| } |
| |
| if (lp->use_dmaengine) |
| ndev->netdev_ops = &axienet_netdev_dmaengine_ops; |
| else |
| ndev->netdev_ops = &axienet_netdev_ops; |
| /* Check for Ethernet core IRQ (optional) */ |
| if (lp->eth_irq <= 0) |
| dev_info(&pdev->dev, "Ethernet core IRQ not defined\n"); |
| |
| /* Retrieve the MAC address */ |
| ret = of_get_mac_address(pdev->dev.of_node, mac_addr); |
| if (!ret) { |
| axienet_set_mac_address(ndev, mac_addr); |
| } else { |
| dev_warn(&pdev->dev, "could not find MAC address property: %d\n", |
| ret); |
| axienet_set_mac_address(ndev, NULL); |
| } |
| |
| lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; |
| lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; |
| lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC; |
| lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC; |
| |
| ret = axienet_mdio_setup(lp); |
| if (ret) |
| dev_warn(&pdev->dev, |
| "error registering MDIO bus: %d\n", ret); |
| |
| if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII || |
| lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) { |
| np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0); |
| if (!np) { |
| /* Deprecated: Always use "pcs-handle" for pcs_phy. |
| * Falling back to "phy-handle" here is only for |
| * backward compatibility with old device trees. |
| */ |
| np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); |
| } |
| if (!np) { |
| dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n"); |
| ret = -EINVAL; |
| goto cleanup_mdio; |
| } |
| lp->pcs_phy = of_mdio_find_device(np); |
| if (!lp->pcs_phy) { |
| ret = -EPROBE_DEFER; |
| of_node_put(np); |
| goto cleanup_mdio; |
| } |
| of_node_put(np); |
| lp->pcs.ops = &axienet_pcs_ops; |
| lp->pcs.neg_mode = true; |
| lp->pcs.poll = true; |
| } |
| |
| lp->phylink_config.dev = &ndev->dev; |
| lp->phylink_config.type = PHYLINK_NETDEV; |
| lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE | |
| MAC_10FD | MAC_100FD | MAC_1000FD; |
| |
| __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces); |
| if (lp->switch_x_sgmii) { |
| __set_bit(PHY_INTERFACE_MODE_1000BASEX, |
| lp->phylink_config.supported_interfaces); |
| __set_bit(PHY_INTERFACE_MODE_SGMII, |
| lp->phylink_config.supported_interfaces); |
| } |
| |
| lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode, |
| lp->phy_mode, |
| &axienet_phylink_ops); |
| if (IS_ERR(lp->phylink)) { |
| ret = PTR_ERR(lp->phylink); |
| dev_err(&pdev->dev, "phylink_create error (%i)\n", ret); |
| goto cleanup_mdio; |
| } |
| |
| ret = register_netdev(lp->ndev); |
| if (ret) { |
| dev_err(lp->dev, "register_netdev() error (%i)\n", ret); |
| goto cleanup_phylink; |
| } |
| |
| return 0; |
| |
| cleanup_phylink: |
| phylink_destroy(lp->phylink); |
| |
| cleanup_mdio: |
| if (lp->pcs_phy) |
| put_device(&lp->pcs_phy->dev); |
| if (lp->mii_bus) |
| axienet_mdio_teardown(lp); |
| cleanup_clk: |
| clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); |
| clk_disable_unprepare(lp->axi_clk); |
| |
| free_netdev: |
| free_netdev(ndev); |
| |
| return ret; |
| } |
| |
| static void axienet_remove(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| struct axienet_local *lp = netdev_priv(ndev); |
| |
| unregister_netdev(ndev); |
| |
| if (lp->phylink) |
| phylink_destroy(lp->phylink); |
| |
| if (lp->pcs_phy) |
| put_device(&lp->pcs_phy->dev); |
| |
| axienet_mdio_teardown(lp); |
| |
| clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks); |
| clk_disable_unprepare(lp->axi_clk); |
| |
| free_netdev(ndev); |
| } |
| |
| static void axienet_shutdown(struct platform_device *pdev) |
| { |
| struct net_device *ndev = platform_get_drvdata(pdev); |
| |
| rtnl_lock(); |
| netif_device_detach(ndev); |
| |
| if (netif_running(ndev)) |
| dev_close(ndev); |
| |
| rtnl_unlock(); |
| } |
| |
| static int axienet_suspend(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| netif_device_detach(ndev); |
| |
| rtnl_lock(); |
| axienet_stop(ndev); |
| rtnl_unlock(); |
| |
| return 0; |
| } |
| |
| static int axienet_resume(struct device *dev) |
| { |
| struct net_device *ndev = dev_get_drvdata(dev); |
| |
| if (!netif_running(ndev)) |
| return 0; |
| |
| rtnl_lock(); |
| axienet_open(ndev); |
| rtnl_unlock(); |
| |
| netif_device_attach(ndev); |
| |
| return 0; |
| } |
| |
| static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops, |
| axienet_suspend, axienet_resume); |
| |
| static struct platform_driver axienet_driver = { |
| .probe = axienet_probe, |
| .remove_new = axienet_remove, |
| .shutdown = axienet_shutdown, |
| .driver = { |
| .name = "xilinx_axienet", |
| .pm = &axienet_pm_ops, |
| .of_match_table = axienet_of_match, |
| }, |
| }; |
| |
| module_platform_driver(axienet_driver); |
| |
| MODULE_DESCRIPTION("Xilinx Axi Ethernet driver"); |
| MODULE_AUTHOR("Xilinx"); |
| MODULE_LICENSE("GPL"); |