| /* |
| * Copyright 2014-2018 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| #include "amdgpu.h" |
| #include "amdgpu_amdkfd.h" |
| #include "gc/gc_9_0_offset.h" |
| #include "gc/gc_9_0_sh_mask.h" |
| #include "vega10_enum.h" |
| #include "sdma0/sdma0_4_0_offset.h" |
| #include "sdma0/sdma0_4_0_sh_mask.h" |
| #include "sdma1/sdma1_4_0_offset.h" |
| #include "sdma1/sdma1_4_0_sh_mask.h" |
| #include "athub/athub_1_0_offset.h" |
| #include "athub/athub_1_0_sh_mask.h" |
| #include "oss/osssys_4_0_offset.h" |
| #include "oss/osssys_4_0_sh_mask.h" |
| #include "soc15_common.h" |
| #include "v9_structs.h" |
| #include "soc15.h" |
| #include "soc15d.h" |
| #include "gfx_v9_0.h" |
| #include "amdgpu_amdkfd_gfx_v9.h" |
| #include <uapi/linux/kfd_ioctl.h> |
| |
| enum hqd_dequeue_request_type { |
| NO_ACTION = 0, |
| DRAIN_PIPE, |
| RESET_WAVES, |
| SAVE_WAVES |
| }; |
| |
| static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, |
| uint32_t queue, uint32_t vmid, uint32_t inst) |
| { |
| mutex_lock(&adev->srbm_mutex); |
| soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst)); |
| } |
| |
| static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst) |
| { |
| soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst)); |
| mutex_unlock(&adev->srbm_mutex); |
| } |
| |
| void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, |
| uint32_t queue_id, uint32_t inst) |
| { |
| uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; |
| uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); |
| |
| kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst); |
| } |
| |
| uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev, |
| uint32_t pipe_id, uint32_t queue_id) |
| { |
| unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + |
| queue_id; |
| |
| return 1ull << bit; |
| } |
| |
| void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst) |
| { |
| kgd_gfx_v9_unlock_srbm(adev, inst); |
| } |
| |
| void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, |
| uint32_t sh_mem_config, |
| uint32_t sh_mem_ape1_base, |
| uint32_t sh_mem_ape1_limit, |
| uint32_t sh_mem_bases, uint32_t inst) |
| { |
| kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst); |
| |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases); |
| /* APE1 no longer exists on GFX9 */ |
| |
| kgd_gfx_v9_unlock_srbm(adev, inst); |
| } |
| |
| int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, |
| unsigned int vmid, uint32_t inst) |
| { |
| /* |
| * We have to assume that there is no outstanding mapping. |
| * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because |
| * a mapping is in progress or because a mapping finished |
| * and the SW cleared it. |
| * So the protocol is to always wait & clear. |
| */ |
| uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | |
| ATC_VMID0_PASID_MAPPING__VALID_MASK; |
| |
| /* |
| * need to do this twice, once for gfx and once for mmhub |
| * for ATC add 16 to VMID for mmhub, for IH different registers. |
| * ATC_VMID0..15 registers are separate from ATC_VMID16..31. |
| */ |
| |
| WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, |
| pasid_mapping); |
| |
| while (!(RREG32(SOC15_REG_OFFSET( |
| ATHUB, 0, |
| mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & |
| (1U << vmid))) |
| cpu_relax(); |
| |
| WREG32(SOC15_REG_OFFSET(ATHUB, 0, |
| mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), |
| 1U << vmid); |
| |
| /* Mapping vmid to pasid also for IH block */ |
| WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, |
| pasid_mapping); |
| |
| WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid, |
| pasid_mapping); |
| |
| while (!(RREG32(SOC15_REG_OFFSET( |
| ATHUB, 0, |
| mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & |
| (1U << (vmid + 16)))) |
| cpu_relax(); |
| |
| WREG32(SOC15_REG_OFFSET(ATHUB, 0, |
| mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), |
| 1U << (vmid + 16)); |
| |
| /* Mapping vmid to pasid also for IH block */ |
| WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid, |
| pasid_mapping); |
| return 0; |
| } |
| |
| /* TODO - RING0 form of field is obsolete, seems to date back to SI |
| * but still works |
| */ |
| |
| int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id, |
| uint32_t inst) |
| { |
| uint32_t mec; |
| uint32_t pipe; |
| |
| mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; |
| pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); |
| |
| kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst); |
| |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL, |
| CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | |
| CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); |
| |
| kgd_gfx_v9_unlock_srbm(adev, inst); |
| |
| return 0; |
| } |
| |
| static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, |
| unsigned int engine_id, |
| unsigned int queue_id) |
| { |
| uint32_t sdma_engine_reg_base = 0; |
| uint32_t sdma_rlc_reg_offset; |
| |
| switch (engine_id) { |
| default: |
| dev_warn(adev->dev, |
| "Invalid sdma engine id (%d), using engine id 0\n", |
| engine_id); |
| fallthrough; |
| case 0: |
| sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0, |
| mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; |
| break; |
| case 1: |
| sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0, |
| mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; |
| break; |
| } |
| |
| sdma_rlc_reg_offset = sdma_engine_reg_base |
| + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); |
| |
| pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, |
| queue_id, sdma_rlc_reg_offset); |
| |
| return sdma_rlc_reg_offset; |
| } |
| |
| static inline struct v9_mqd *get_mqd(void *mqd) |
| { |
| return (struct v9_mqd *)mqd; |
| } |
| |
| static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd) |
| { |
| return (struct v9_sdma_mqd *)mqd; |
| } |
| |
| int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd, |
| uint32_t pipe_id, uint32_t queue_id, |
| uint32_t __user *wptr, uint32_t wptr_shift, |
| uint32_t wptr_mask, struct mm_struct *mm, |
| uint32_t inst) |
| { |
| struct v9_mqd *m; |
| uint32_t *mqd_hqd; |
| uint32_t reg, hqd_base, data; |
| |
| m = get_mqd(mqd); |
| |
| kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); |
| |
| /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ |
| mqd_hqd = &m->cp_mqd_base_addr_lo; |
| hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR); |
| |
| for (reg = hqd_base; |
| reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++) |
| WREG32_RLC(reg, mqd_hqd[reg - hqd_base]); |
| |
| |
| /* Activate doorbell logic before triggering WPTR poll. */ |
| data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, |
| CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL), |
| data); |
| |
| if (wptr) { |
| /* Don't read wptr with get_user because the user |
| * context may not be accessible (if this function |
| * runs in a work queue). Instead trigger a one-shot |
| * polling read from memory in the CP. This assumes |
| * that wptr is GPU-accessible in the queue's VMID via |
| * ATC or SVM. WPTR==RPTR before starting the poll so |
| * the CP starts fetching new commands from the right |
| * place. |
| * |
| * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit |
| * tricky. Assume that the queue didn't overflow. The |
| * number of valid bits in the 32-bit RPTR depends on |
| * the queue size. The remaining bits are taken from |
| * the saved 64-bit WPTR. If the WPTR wrapped, add the |
| * queue size. |
| */ |
| uint32_t queue_size = |
| 2 << REG_GET_FIELD(m->cp_hqd_pq_control, |
| CP_HQD_PQ_CONTROL, QUEUE_SIZE); |
| uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); |
| |
| if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) |
| guessed_wptr += queue_size; |
| guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); |
| guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; |
| |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO), |
| lower_32_bits(guessed_wptr)); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI), |
| upper_32_bits(guessed_wptr)); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR), |
| lower_32_bits((uintptr_t)wptr)); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI), |
| upper_32_bits((uintptr_t)wptr)); |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1, |
| (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id)); |
| } |
| |
| /* Start the EOP fetcher */ |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR), |
| REG_SET_FIELD(m->cp_hqd_eop_rptr, |
| CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); |
| |
| data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data); |
| |
| kgd_gfx_v9_release_queue(adev, inst); |
| |
| return 0; |
| } |
| |
| int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, |
| uint32_t pipe_id, uint32_t queue_id, |
| uint32_t doorbell_off, uint32_t inst) |
| { |
| struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring; |
| struct v9_mqd *m; |
| uint32_t mec, pipe; |
| int r; |
| |
| m = get_mqd(mqd); |
| |
| kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); |
| |
| mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; |
| pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); |
| |
| pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", |
| mec, pipe, queue_id); |
| |
| spin_lock(&adev->gfx.kiq[inst].ring_lock); |
| r = amdgpu_ring_alloc(kiq_ring, 7); |
| if (r) { |
| pr_err("Failed to alloc KIQ (%d).\n", r); |
| goto out_unlock; |
| } |
| |
| amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); |
| amdgpu_ring_write(kiq_ring, |
| PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ |
| PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ |
| PACKET3_MAP_QUEUES_QUEUE(queue_id) | |
| PACKET3_MAP_QUEUES_PIPE(pipe) | |
| PACKET3_MAP_QUEUES_ME((mec - 1)) | |
| PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ |
| PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ |
| PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ |
| PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ |
| amdgpu_ring_write(kiq_ring, |
| PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); |
| amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); |
| amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); |
| amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); |
| amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); |
| amdgpu_ring_commit(kiq_ring); |
| |
| out_unlock: |
| spin_unlock(&adev->gfx.kiq[inst].ring_lock); |
| kgd_gfx_v9_release_queue(adev, inst); |
| |
| return r; |
| } |
| |
| int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev, |
| uint32_t pipe_id, uint32_t queue_id, |
| uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst) |
| { |
| uint32_t i = 0, reg; |
| #define HQD_N_REGS 56 |
| #define DUMP_REG(addr) do { \ |
| if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ |
| break; \ |
| (*dump)[i][0] = (addr) << 2; \ |
| (*dump)[i++][1] = RREG32(addr); \ |
| } while (0) |
| |
| *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); |
| if (*dump == NULL) |
| return -ENOMEM; |
| |
| kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); |
| |
| for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR); |
| reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++) |
| DUMP_REG(reg); |
| |
| kgd_gfx_v9_release_queue(adev, inst); |
| |
| WARN_ON_ONCE(i != HQD_N_REGS); |
| *n_regs = i; |
| |
| return 0; |
| } |
| |
| static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, |
| uint32_t __user *wptr, struct mm_struct *mm) |
| { |
| struct v9_sdma_mqd *m; |
| uint32_t sdma_rlc_reg_offset; |
| unsigned long end_jiffies; |
| uint32_t data; |
| uint64_t data64; |
| uint64_t __user *wptr64 = (uint64_t __user *)wptr; |
| |
| m = get_sdma_mqd(mqd); |
| sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, |
| m->sdma_queue_id); |
| |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, |
| m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); |
| |
| end_jiffies = msecs_to_jiffies(2000) + jiffies; |
| while (true) { |
| data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); |
| if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) |
| break; |
| if (time_after(jiffies, end_jiffies)) { |
| pr_err("SDMA RLC not idle in %s\n", __func__); |
| return -ETIME; |
| } |
| usleep_range(500, 1000); |
| } |
| |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, |
| m->sdmax_rlcx_doorbell_offset); |
| |
| data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, |
| ENABLE, 1); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, |
| m->sdmax_rlcx_rb_rptr); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, |
| m->sdmax_rlcx_rb_rptr_hi); |
| |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); |
| if (read_user_wptr(mm, wptr64, data64)) { |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, |
| lower_32_bits(data64)); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, |
| upper_32_bits(data64)); |
| } else { |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, |
| m->sdmax_rlcx_rb_rptr); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, |
| m->sdmax_rlcx_rb_rptr_hi); |
| } |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); |
| |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, |
| m->sdmax_rlcx_rb_base_hi); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, |
| m->sdmax_rlcx_rb_rptr_addr_lo); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, |
| m->sdmax_rlcx_rb_rptr_addr_hi); |
| |
| data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, |
| RB_ENABLE, 1); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); |
| |
| return 0; |
| } |
| |
| static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, |
| uint32_t engine_id, uint32_t queue_id, |
| uint32_t (**dump)[2], uint32_t *n_regs) |
| { |
| uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, |
| engine_id, queue_id); |
| uint32_t i = 0, reg; |
| #undef HQD_N_REGS |
| #define HQD_N_REGS (19+6+7+10) |
| |
| *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); |
| if (*dump == NULL) |
| return -ENOMEM; |
| |
| for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) |
| DUMP_REG(sdma_rlc_reg_offset + reg); |
| for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) |
| DUMP_REG(sdma_rlc_reg_offset + reg); |
| for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; |
| reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) |
| DUMP_REG(sdma_rlc_reg_offset + reg); |
| for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; |
| reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) |
| DUMP_REG(sdma_rlc_reg_offset + reg); |
| |
| WARN_ON_ONCE(i != HQD_N_REGS); |
| *n_regs = i; |
| |
| return 0; |
| } |
| |
| bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev, |
| uint64_t queue_address, uint32_t pipe_id, |
| uint32_t queue_id, uint32_t inst) |
| { |
| uint32_t act; |
| bool retval = false; |
| uint32_t low, high; |
| |
| kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); |
| act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE); |
| if (act) { |
| low = lower_32_bits(queue_address >> 8); |
| high = upper_32_bits(queue_address >> 8); |
| |
| if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) && |
| high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI)) |
| retval = true; |
| } |
| kgd_gfx_v9_release_queue(adev, inst); |
| return retval; |
| } |
| |
| static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) |
| { |
| struct v9_sdma_mqd *m; |
| uint32_t sdma_rlc_reg_offset; |
| uint32_t sdma_rlc_rb_cntl; |
| |
| m = get_sdma_mqd(mqd); |
| sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, |
| m->sdma_queue_id); |
| |
| sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); |
| |
| if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) |
| return true; |
| |
| return false; |
| } |
| |
| int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd, |
| enum kfd_preempt_type reset_type, |
| unsigned int utimeout, uint32_t pipe_id, |
| uint32_t queue_id, uint32_t inst) |
| { |
| enum hqd_dequeue_request_type type; |
| unsigned long end_jiffies; |
| uint32_t temp; |
| struct v9_mqd *m = get_mqd(mqd); |
| |
| if (amdgpu_in_reset(adev)) |
| return -EIO; |
| |
| kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); |
| |
| if (m->cp_hqd_vmid == 0) |
| WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0); |
| |
| switch (reset_type) { |
| case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: |
| type = DRAIN_PIPE; |
| break; |
| case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: |
| type = RESET_WAVES; |
| break; |
| case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: |
| type = SAVE_WAVES; |
| break; |
| default: |
| type = DRAIN_PIPE; |
| break; |
| } |
| |
| WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type); |
| |
| end_jiffies = (utimeout * HZ / 1000) + jiffies; |
| while (true) { |
| temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE); |
| if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) |
| break; |
| if (time_after(jiffies, end_jiffies)) { |
| pr_err("cp queue preemption time out.\n"); |
| kgd_gfx_v9_release_queue(adev, inst); |
| return -ETIME; |
| } |
| usleep_range(500, 1000); |
| } |
| |
| kgd_gfx_v9_release_queue(adev, inst); |
| return 0; |
| } |
| |
| static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, |
| unsigned int utimeout) |
| { |
| struct v9_sdma_mqd *m; |
| uint32_t sdma_rlc_reg_offset; |
| uint32_t temp; |
| unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; |
| |
| m = get_sdma_mqd(mqd); |
| sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, |
| m->sdma_queue_id); |
| |
| temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); |
| temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); |
| |
| while (true) { |
| temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); |
| if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) |
| break; |
| if (time_after(jiffies, end_jiffies)) { |
| pr_err("SDMA RLC not idle in %s\n", __func__); |
| return -ETIME; |
| } |
| usleep_range(500, 1000); |
| } |
| |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); |
| WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, |
| RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | |
| SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); |
| |
| m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); |
| m->sdmax_rlcx_rb_rptr_hi = |
| RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); |
| |
| return 0; |
| } |
| |
| bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, |
| uint8_t vmid, uint16_t *p_pasid) |
| { |
| uint32_t value; |
| |
| value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) |
| + vmid); |
| *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; |
| |
| return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); |
| } |
| |
| int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev, |
| uint32_t gfx_index_val, |
| uint32_t sq_cmd, uint32_t inst) |
| { |
| uint32_t data = 0; |
| |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val); |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd); |
| |
| data = REG_SET_FIELD(data, GRBM_GFX_INDEX, |
| INSTANCE_BROADCAST_WRITES, 1); |
| data = REG_SET_FIELD(data, GRBM_GFX_INDEX, |
| SH_BROADCAST_WRITES, 1); |
| data = REG_SET_FIELD(data, GRBM_GFX_INDEX, |
| SE_BROADCAST_WRITES, 1); |
| |
| WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data); |
| mutex_unlock(&adev->grbm_idx_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * GFX9 helper for wave launch stall requirements on debug trap setting. |
| * |
| * vmid: |
| * Target VMID to stall/unstall. |
| * |
| * stall: |
| * 0-unstall wave launch (enable), 1-stall wave launch (disable). |
| * After wavefront launch has been stalled, allocated waves must drain from |
| * SPI in order for debug trap settings to take effect on those waves. |
| * This is roughly a ~96 clock cycle wait on SPI where a read on |
| * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles. |
| * KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required. |
| * |
| * NOTE: We can afford to clear the entire STALL_VMID field on unstall |
| * because GFX9.4.1 cannot support multi-process debugging due to trap |
| * configuration and masking being limited to global scope. Always assume |
| * single process conditions. |
| */ |
| #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY 3 |
| void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev, |
| uint32_t vmid, |
| bool stall) |
| { |
| int i; |
| uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); |
| |
| if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 1)) |
| data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID, |
| stall ? 1 << vmid : 0); |
| else |
| data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, |
| stall ? 1 : 0); |
| |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data); |
| |
| if (!stall) |
| return; |
| |
| for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++) |
| RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); |
| } |
| |
| /* |
| * restore_dbg_registers is ignored here but is a general interface requirement |
| * for devices that support GFXOFF and where the RLC save/restore list |
| * does not support hw registers for debugging i.e. the driver has to manually |
| * initialize the debug mode registers after it has disabled GFX off during the |
| * debug session. |
| */ |
| uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev, |
| bool restore_dbg_registers, |
| uint32_t vmid) |
| { |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); |
| |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); |
| |
| mutex_unlock(&adev->grbm_idx_mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * keep_trap_enabled is ignored here but is a general interface requirement |
| * for devices that support multi-process debugging where the performance |
| * overhead from trap temporary setup needs to be bypassed when the debug |
| * session has ended. |
| */ |
| uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev, |
| bool keep_trap_enabled, |
| uint32_t vmid) |
| { |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); |
| |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); |
| |
| mutex_unlock(&adev->grbm_idx_mutex); |
| |
| return 0; |
| } |
| |
| int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev, |
| uint32_t trap_override, |
| uint32_t *trap_mask_supported) |
| { |
| *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH; |
| |
| /* The SPI_GDBG_TRAP_MASK register is global and affects all |
| * processes. Only allow OR-ing the address-watch bit, since |
| * this only affects processes under the debugger. Other bits |
| * should stay 0 to avoid the debugger interfering with other |
| * processes. |
| */ |
| if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev, |
| uint32_t vmid, |
| uint32_t trap_override, |
| uint32_t trap_mask_bits, |
| uint32_t trap_mask_request, |
| uint32_t *trap_mask_prev, |
| uint32_t kfd_dbg_cntl_prev) |
| { |
| uint32_t data, wave_cntl_prev; |
| |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); |
| |
| data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK)); |
| *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN); |
| |
| trap_mask_bits = (trap_mask_bits & trap_mask_request) | |
| (*trap_mask_prev & ~trap_mask_request); |
| |
| data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits); |
| data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override); |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data); |
| |
| /* We need to preserve wave launch mode stall settings. */ |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev); |
| |
| mutex_unlock(&adev->grbm_idx_mutex); |
| |
| return 0; |
| } |
| |
| uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev, |
| uint8_t wave_launch_mode, |
| uint32_t vmid) |
| { |
| uint32_t data = 0; |
| bool is_mode_set = !!wave_launch_mode; |
| |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); |
| |
| data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, |
| VMID_MASK, is_mode_set ? 1 << vmid : 0); |
| data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, |
| MODE, is_mode_set ? wave_launch_mode : 0); |
| WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data); |
| |
| kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); |
| |
| mutex_unlock(&adev->grbm_idx_mutex); |
| |
| return 0; |
| } |
| |
| #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H) |
| uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev, |
| uint64_t watch_address, |
| uint32_t watch_address_mask, |
| uint32_t watch_id, |
| uint32_t watch_mode, |
| uint32_t debug_vmid, |
| uint32_t inst) |
| { |
| uint32_t watch_address_high; |
| uint32_t watch_address_low; |
| uint32_t watch_address_cntl; |
| |
| watch_address_cntl = 0; |
| |
| watch_address_low = lower_32_bits(watch_address); |
| watch_address_high = upper_32_bits(watch_address) & 0xffff; |
| |
| watch_address_cntl = REG_SET_FIELD(watch_address_cntl, |
| TCP_WATCH0_CNTL, |
| VMID, |
| debug_vmid); |
| watch_address_cntl = REG_SET_FIELD(watch_address_cntl, |
| TCP_WATCH0_CNTL, |
| MODE, |
| watch_mode); |
| watch_address_cntl = REG_SET_FIELD(watch_address_cntl, |
| TCP_WATCH0_CNTL, |
| MASK, |
| watch_address_mask >> 6); |
| |
| /* Turning off this watch point until we set all the registers */ |
| watch_address_cntl = REG_SET_FIELD(watch_address_cntl, |
| TCP_WATCH0_CNTL, |
| VALID, |
| 0); |
| |
| WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + |
| (watch_id * TCP_WATCH_STRIDE)), |
| watch_address_cntl); |
| |
| WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) + |
| (watch_id * TCP_WATCH_STRIDE)), |
| watch_address_high); |
| |
| WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) + |
| (watch_id * TCP_WATCH_STRIDE)), |
| watch_address_low); |
| |
| /* Enable the watch point */ |
| watch_address_cntl = REG_SET_FIELD(watch_address_cntl, |
| TCP_WATCH0_CNTL, |
| VALID, |
| 1); |
| |
| WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + |
| (watch_id * TCP_WATCH_STRIDE)), |
| watch_address_cntl); |
| |
| return 0; |
| } |
| |
| uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev, |
| uint32_t watch_id) |
| { |
| uint32_t watch_address_cntl; |
| |
| watch_address_cntl = 0; |
| |
| WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + |
| (watch_id * TCP_WATCH_STRIDE)), |
| watch_address_cntl); |
| |
| return 0; |
| } |
| |
| /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values |
| * The values read are: |
| * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads. |
| * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads. |
| * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads. |
| * gws_wait_time -- Wait Count for Global Wave Syncs. |
| * que_sleep_wait_time -- Wait Count for Dequeue Retry. |
| * sch_wave_wait_time -- Wait Count for Scheduling Wave Message. |
| * sem_rearm_wait_time -- Wait Count for Semaphore re-arm. |
| * deq_retry_wait_time -- Wait Count for Global Wave Syncs. |
| */ |
| void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev, |
| uint32_t *wait_times, |
| uint32_t inst) |
| |
| { |
| *wait_times = RREG32(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), |
| mmCP_IQ_WAIT_TIME2)); |
| } |
| |
| void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev, |
| uint32_t vmid, uint64_t page_table_base) |
| { |
| if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { |
| pr_err("trying to set page table base for wrong VMID %u\n", |
| vmid); |
| return; |
| } |
| |
| adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); |
| |
| adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); |
| } |
| |
| static void lock_spi_csq_mutexes(struct amdgpu_device *adev) |
| { |
| mutex_lock(&adev->srbm_mutex); |
| mutex_lock(&adev->grbm_idx_mutex); |
| |
| } |
| |
| static void unlock_spi_csq_mutexes(struct amdgpu_device *adev) |
| { |
| mutex_unlock(&adev->grbm_idx_mutex); |
| mutex_unlock(&adev->srbm_mutex); |
| } |
| |
| /** |
| * get_wave_count: Read device registers to get number of waves in flight for |
| * a particular queue. The method also returns the VMID associated with the |
| * queue. |
| * |
| * @adev: Handle of device whose registers are to be read |
| * @queue_idx: Index of queue in the queue-map bit-field |
| * @wave_cnt: Output parameter updated with number of waves in flight |
| * @vmid: Output parameter updated with VMID of queue whose wave count |
| * is being collected |
| * @inst: xcc's instance number on a multi-XCC setup |
| */ |
| static void get_wave_count(struct amdgpu_device *adev, int queue_idx, |
| int *wave_cnt, int *vmid, uint32_t inst) |
| { |
| int pipe_idx; |
| int queue_slot; |
| unsigned int reg_val; |
| |
| /* |
| * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID |
| * parameters to read out waves in flight. Get VMID if there are |
| * non-zero waves in flight. |
| */ |
| *vmid = 0xFF; |
| *wave_cnt = 0; |
| pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe; |
| queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe; |
| soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst); |
| reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) + |
| queue_slot); |
| *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK; |
| if (*wave_cnt != 0) |
| *vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) & |
| CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT; |
| } |
| |
| /** |
| * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each |
| * shader engine and aggregates the number of waves that are in flight for the |
| * process whose pasid is provided as a parameter. The process could have ZERO |
| * or more queues running and submitting waves to compute units. |
| * |
| * @adev: Handle of device from which to get number of waves in flight |
| * @pasid: Identifies the process for which this query call is invoked |
| * @pasid_wave_cnt: Output parameter updated with number of waves in flight that |
| * belong to process with given pasid |
| * @max_waves_per_cu: Output parameter updated with maximum number of waves |
| * possible per Compute Unit |
| * @inst: xcc's instance number on a multi-XCC setup |
| * |
| * Note: It's possible that the device has too many queues (oversubscription) |
| * in which case a VMID could be remapped to a different PASID. This could lead |
| * to an inaccurate wave count. Following is a high-level sequence: |
| * Time T1: vmid = getVmid(); vmid is associated with Pasid P1 |
| * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2 |
| * In the sequence above wave count obtained from time T1 will be incorrectly |
| * lost or added to total wave count. |
| * |
| * The registers that provide the waves in flight are: |
| * |
| * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a |
| * queue is slotted, OFF if there is no queue. A process could have ZERO or |
| * more queues slotted and submitting waves to be run on compute units. Even |
| * when there is a queue it is possible there could be zero wave fronts, this |
| * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem |
| * command |
| * |
| * For each bit that is ON from above: |
| * |
| * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the |
| * number of waves that are in flight for the queue at specified index. The |
| * index ranges from 0 to 7. |
| * |
| * If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID |
| * of the wave(s). |
| * |
| * Determine if VMID from above step maps to pasid provided as parameter. If |
| * it matches agrregate the wave count. That the VMID will not match pasid is |
| * a normal condition i.e. a device is expected to support multiple queues |
| * from multiple proceses. |
| * |
| * Reading registers referenced above involves programming GRBM appropriately |
| */ |
| void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid, |
| int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst) |
| { |
| int qidx; |
| int vmid; |
| int se_idx; |
| int sh_idx; |
| int se_cnt; |
| int sh_cnt; |
| int wave_cnt; |
| int queue_map; |
| int pasid_tmp; |
| int max_queue_cnt; |
| int vmid_wave_cnt = 0; |
| DECLARE_BITMAP(cp_queue_bitmap, AMDGPU_MAX_QUEUES); |
| |
| lock_spi_csq_mutexes(adev); |
| soc15_grbm_select(adev, 1, 0, 0, 0, inst); |
| |
| /* |
| * Iterate through the shader engines and arrays of the device |
| * to get number of waves in flight |
| */ |
| bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap, |
| AMDGPU_MAX_QUEUES); |
| max_queue_cnt = adev->gfx.mec.num_pipe_per_mec * |
| adev->gfx.mec.num_queue_per_pipe; |
| sh_cnt = adev->gfx.config.max_sh_per_se; |
| se_cnt = adev->gfx.config.max_shader_engines; |
| for (se_idx = 0; se_idx < se_cnt; se_idx++) { |
| for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) { |
| |
| amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst); |
| queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS); |
| |
| /* |
| * Assumption: queue map encodes following schema: four |
| * pipes per each micro-engine, with each pipe mapping |
| * eight queues. This schema is true for GFX9 devices |
| * and must be verified for newer device families |
| */ |
| for (qidx = 0; qidx < max_queue_cnt; qidx++) { |
| |
| /* Skip qeueus that are not associated with |
| * compute functions |
| */ |
| if (!test_bit(qidx, cp_queue_bitmap)) |
| continue; |
| |
| if (!(queue_map & (1 << qidx))) |
| continue; |
| |
| /* Get number of waves in flight and aggregate them */ |
| get_wave_count(adev, qidx, &wave_cnt, &vmid, |
| inst); |
| if (wave_cnt != 0) { |
| pasid_tmp = |
| RREG32(SOC15_REG_OFFSET(OSSSYS, inst, |
| mmIH_VMID_0_LUT) + vmid); |
| if (pasid_tmp == pasid) |
| vmid_wave_cnt += wave_cnt; |
| } |
| } |
| } |
| } |
| |
| amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst); |
| soc15_grbm_select(adev, 0, 0, 0, 0, inst); |
| unlock_spi_csq_mutexes(adev); |
| |
| /* Update the output parameters and return */ |
| *pasid_wave_cnt = vmid_wave_cnt; |
| *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu * |
| adev->gfx.cu_info.max_waves_per_simd; |
| } |
| |
| void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev, |
| uint32_t wait_times, |
| uint32_t grace_period, |
| uint32_t *reg_offset, |
| uint32_t *reg_data) |
| { |
| *reg_data = wait_times; |
| |
| /* |
| * The CP cannot handle a 0 grace period input and will result in |
| * an infinite grace period being set so set to 1 to prevent this. |
| */ |
| if (grace_period == 0) |
| grace_period = 1; |
| |
| *reg_data = REG_SET_FIELD(*reg_data, |
| CP_IQ_WAIT_TIME2, |
| SCH_WAVE, |
| grace_period); |
| |
| *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2); |
| } |
| |
| void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev, |
| uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst) |
| { |
| kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst); |
| |
| /* |
| * Program TBA registers |
| */ |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO, |
| lower_32_bits(tba_addr >> 8)); |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI, |
| upper_32_bits(tba_addr >> 8)); |
| |
| /* |
| * Program TMA registers |
| */ |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO, |
| lower_32_bits(tma_addr >> 8)); |
| WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI, |
| upper_32_bits(tma_addr >> 8)); |
| |
| kgd_gfx_v9_unlock_srbm(adev, inst); |
| } |
| |
| const struct kfd2kgd_calls gfx_v9_kfd2kgd = { |
| .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings, |
| .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping, |
| .init_interrupts = kgd_gfx_v9_init_interrupts, |
| .hqd_load = kgd_gfx_v9_hqd_load, |
| .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load, |
| .hqd_sdma_load = kgd_hqd_sdma_load, |
| .hqd_dump = kgd_gfx_v9_hqd_dump, |
| .hqd_sdma_dump = kgd_hqd_sdma_dump, |
| .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied, |
| .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, |
| .hqd_destroy = kgd_gfx_v9_hqd_destroy, |
| .hqd_sdma_destroy = kgd_hqd_sdma_destroy, |
| .wave_control_execute = kgd_gfx_v9_wave_control_execute, |
| .get_atc_vmid_pasid_mapping_info = |
| kgd_gfx_v9_get_atc_vmid_pasid_mapping_info, |
| .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base, |
| .enable_debug_trap = kgd_gfx_v9_enable_debug_trap, |
| .disable_debug_trap = kgd_gfx_v9_disable_debug_trap, |
| .validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request, |
| .set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override, |
| .set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode, |
| .set_address_watch = kgd_gfx_v9_set_address_watch, |
| .clear_address_watch = kgd_gfx_v9_clear_address_watch, |
| .get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times, |
| .build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info, |
| .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy, |
| .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings, |
| }; |