blob: 181c992f448c068b4cabf8880eb9cf20716475d6 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_RESCTRL_INTERNAL_H
#define _ASM_X86_RESCTRL_INTERNAL_H
#include <linux/sched.h>
#include <linux/kernfs.h>
#include <linux/fs_context.h>
#include <linux/jump_label.h>
#define MSR_IA32_L3_QOS_CFG 0xc81
#define MSR_IA32_L2_QOS_CFG 0xc82
#define MSR_IA32_L3_CBM_BASE 0xc90
#define MSR_IA32_L2_CBM_BASE 0xd10
#define MSR_IA32_MBA_THRTL_BASE 0xd50
#define MSR_IA32_MBA_BW_BASE 0xc0000200
#define MSR_IA32_QM_CTR 0x0c8e
#define MSR_IA32_QM_EVTSEL 0x0c8d
#define L3_QOS_CDP_ENABLE 0x01ULL
#define L2_QOS_CDP_ENABLE 0x01ULL
/*
* Event IDs are used to program IA32_QM_EVTSEL before reading event
* counter from IA32_QM_CTR
*/
#define QOS_L3_OCCUP_EVENT_ID 0x01
#define QOS_L3_MBM_TOTAL_EVENT_ID 0x02
#define QOS_L3_MBM_LOCAL_EVENT_ID 0x03
#define CQM_LIMBOCHECK_INTERVAL 1000
#define MBM_CNTR_WIDTH 24
#define MBM_OVERFLOW_INTERVAL 1000
#define MAX_MBA_BW 100u
#define MBA_IS_LINEAR 0x4
#define MBA_MAX_MBPS U32_MAX
#define MAX_MBA_BW_AMD 0x800
#define RMID_VAL_ERROR BIT_ULL(63)
#define RMID_VAL_UNAVAIL BIT_ULL(62)
struct rdt_fs_context {
struct kernfs_fs_context kfc;
bool enable_cdpl2;
bool enable_cdpl3;
bool enable_mba_mbps;
};
static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
{
struct kernfs_fs_context *kfc = fc->fs_private;
return container_of(kfc, struct rdt_fs_context, kfc);
}
DECLARE_STATIC_KEY_FALSE(rdt_enable_key);
DECLARE_STATIC_KEY_FALSE(rdt_mon_enable_key);
/**
* struct mon_evt - Entry in the event list of a resource
* @evtid: event id
* @name: name of the event
*/
struct mon_evt {
u32 evtid;
char *name;
struct list_head list;
};
/**
* struct mon_data_bits - Monitoring details for each event file
* @rid: Resource id associated with the event file.
* @evtid: Event id associated with the event file
* @domid: The domain to which the event file belongs
*/
union mon_data_bits {
void *priv;
struct {
unsigned int rid : 10;
unsigned int evtid : 8;
unsigned int domid : 14;
} u;
};
struct rmid_read {
struct rdtgroup *rgrp;
struct rdt_domain *d;
int evtid;
bool first;
u64 val;
};
extern unsigned int resctrl_cqm_threshold;
extern bool rdt_alloc_capable;
extern bool rdt_mon_capable;
extern unsigned int rdt_mon_features;
enum rdt_group_type {
RDTCTRL_GROUP = 0,
RDTMON_GROUP,
RDT_NUM_GROUP,
};
/**
* enum rdtgrp_mode - Mode of a RDT resource group
* @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
* @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
* @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
* @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
* allowed AND the allocations are Cache Pseudo-Locked
*
* The mode of a resource group enables control over the allowed overlap
* between allocations associated with different resource groups (classes
* of service). User is able to modify the mode of a resource group by
* writing to the "mode" resctrl file associated with the resource group.
*
* The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
* writing the appropriate text to the "mode" file. A resource group enters
* "pseudo-locked" mode after the schemata is written while the resource
* group is in "pseudo-locksetup" mode.
*/
enum rdtgrp_mode {
RDT_MODE_SHAREABLE = 0,
RDT_MODE_EXCLUSIVE,
RDT_MODE_PSEUDO_LOCKSETUP,
RDT_MODE_PSEUDO_LOCKED,
/* Must be last */
RDT_NUM_MODES,
};
/**
* struct mongroup - store mon group's data in resctrl fs.
* @mon_data_kn kernlfs node for the mon_data directory
* @parent: parent rdtgrp
* @crdtgrp_list: child rdtgroup node list
* @rmid: rmid for this rdtgroup
*/
struct mongroup {
struct kernfs_node *mon_data_kn;
struct rdtgroup *parent;
struct list_head crdtgrp_list;
u32 rmid;
};
/**
* struct pseudo_lock_region - pseudo-lock region information
* @r: RDT resource to which this pseudo-locked region
* belongs
* @d: RDT domain to which this pseudo-locked region
* belongs
* @cbm: bitmask of the pseudo-locked region
* @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread
* completion
* @thread_done: variable used by waitqueue to test if pseudo-locking
* thread completed
* @cpu: core associated with the cache on which the setup code
* will be run
* @line_size: size of the cache lines
* @size: size of pseudo-locked region in bytes
* @kmem: the kernel memory associated with pseudo-locked region
* @minor: minor number of character device associated with this
* region
* @debugfs_dir: pointer to this region's directory in the debugfs
* filesystem
* @pm_reqs: Power management QoS requests related to this region
*/
struct pseudo_lock_region {
struct rdt_resource *r;
struct rdt_domain *d;
u32 cbm;
wait_queue_head_t lock_thread_wq;
int thread_done;
int cpu;
unsigned int line_size;
unsigned int size;
void *kmem;
unsigned int minor;
struct dentry *debugfs_dir;
struct list_head pm_reqs;
};
/**
* struct rdtgroup - store rdtgroup's data in resctrl file system.
* @kn: kernfs node
* @rdtgroup_list: linked list for all rdtgroups
* @closid: closid for this rdtgroup
* @cpu_mask: CPUs assigned to this rdtgroup
* @flags: status bits
* @waitcount: how many cpus expect to find this
* group when they acquire rdtgroup_mutex
* @type: indicates type of this rdtgroup - either
* monitor only or ctrl_mon group
* @mon: mongroup related data
* @mode: mode of resource group
* @plr: pseudo-locked region
*/
struct rdtgroup {
struct kernfs_node *kn;
struct list_head rdtgroup_list;
u32 closid;
struct cpumask cpu_mask;
int flags;
atomic_t waitcount;
enum rdt_group_type type;
struct mongroup mon;
enum rdtgrp_mode mode;
struct pseudo_lock_region *plr;
};
/* rdtgroup.flags */
#define RDT_DELETED 1
/* rftype.flags */
#define RFTYPE_FLAGS_CPUS_LIST 1
/*
* Define the file type flags for base and info directories.
*/
#define RFTYPE_INFO BIT(0)
#define RFTYPE_BASE BIT(1)
#define RF_CTRLSHIFT 4
#define RF_MONSHIFT 5
#define RF_TOPSHIFT 6
#define RFTYPE_CTRL BIT(RF_CTRLSHIFT)
#define RFTYPE_MON BIT(RF_MONSHIFT)
#define RFTYPE_TOP BIT(RF_TOPSHIFT)
#define RFTYPE_RES_CACHE BIT(8)
#define RFTYPE_RES_MB BIT(9)
#define RF_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
#define RF_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
#define RF_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
#define RF_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
/* List of all resource groups */
extern struct list_head rdt_all_groups;
extern int max_name_width, max_data_width;
int __init rdtgroup_init(void);
void __exit rdtgroup_exit(void);
/**
* struct rftype - describe each file in the resctrl file system
* @name: File name
* @mode: Access mode
* @kf_ops: File operations
* @flags: File specific RFTYPE_FLAGS_* flags
* @fflags: File specific RF_* or RFTYPE_* flags
* @seq_show: Show content of the file
* @write: Write to the file
*/
struct rftype {
char *name;
umode_t mode;
struct kernfs_ops *kf_ops;
unsigned long flags;
unsigned long fflags;
int (*seq_show)(struct kernfs_open_file *of,
struct seq_file *sf, void *v);
/*
* write() is the generic write callback which maps directly to
* kernfs write operation and overrides all other operations.
* Maximum write size is determined by ->max_write_len.
*/
ssize_t (*write)(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
};
/**
* struct mbm_state - status for each MBM counter in each domain
* @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
* @prev_msr Value of IA32_QM_CTR for this RMID last time we read it
* @chunks_bw Total local data moved. Used for bandwidth calculation
* @prev_bw_msr:Value of previous IA32_QM_CTR for bandwidth counting
* @prev_bw The most recent bandwidth in MBps
* @delta_bw Difference between the current and previous bandwidth
* @delta_comp Indicates whether to compute the delta_bw
*/
struct mbm_state {
u64 chunks;
u64 prev_msr;
u64 chunks_bw;
u64 prev_bw_msr;
u32 prev_bw;
u32 delta_bw;
bool delta_comp;
};
/**
* struct rdt_domain - group of cpus sharing an RDT resource
* @list: all instances of this resource
* @id: unique id for this instance
* @cpu_mask: which cpus share this resource
* @rmid_busy_llc:
* bitmap of which limbo RMIDs are above threshold
* @mbm_total: saved state for MBM total bandwidth
* @mbm_local: saved state for MBM local bandwidth
* @mbm_over: worker to periodically read MBM h/w counters
* @cqm_limbo: worker to periodically read CQM h/w counters
* @mbm_work_cpu:
* worker cpu for MBM h/w counters
* @cqm_work_cpu:
* worker cpu for CQM h/w counters
* @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
* @mbps_val: When mba_sc is enabled, this holds the bandwidth in MBps
* @new_ctrl: new ctrl value to be loaded
* @have_new_ctrl: did user provide new_ctrl for this domain
* @plr: pseudo-locked region (if any) associated with domain
*/
struct rdt_domain {
struct list_head list;
int id;
struct cpumask cpu_mask;
unsigned long *rmid_busy_llc;
struct mbm_state *mbm_total;
struct mbm_state *mbm_local;
struct delayed_work mbm_over;
struct delayed_work cqm_limbo;
int mbm_work_cpu;
int cqm_work_cpu;
u32 *ctrl_val;
u32 *mbps_val;
u32 new_ctrl;
bool have_new_ctrl;
struct pseudo_lock_region *plr;
};
/**
* struct msr_param - set a range of MSRs from a domain
* @res: The resource to use
* @low: Beginning index from base MSR
* @high: End index
*/
struct msr_param {
struct rdt_resource *res;
int low;
int high;
};
/**
* struct rdt_cache - Cache allocation related data
* @cbm_len: Length of the cache bit mask
* @min_cbm_bits: Minimum number of consecutive bits to be set
* @cbm_idx_mult: Multiplier of CBM index
* @cbm_idx_offset: Offset of CBM index. CBM index is computed by:
* closid * cbm_idx_multi + cbm_idx_offset
* in a cache bit mask
* @shareable_bits: Bitmask of shareable resource with other
* executing entities
*/
struct rdt_cache {
unsigned int cbm_len;
unsigned int min_cbm_bits;
unsigned int cbm_idx_mult;
unsigned int cbm_idx_offset;
unsigned int shareable_bits;
};
/**
* struct rdt_membw - Memory bandwidth allocation related data
* @max_delay: Max throttle delay. Delay is the hardware
* representation for memory bandwidth.
* @min_bw: Minimum memory bandwidth percentage user can request
* @bw_gran: Granularity at which the memory bandwidth is allocated
* @delay_linear: True if memory B/W delay is in linear scale
* @mba_sc: True if MBA software controller(mba_sc) is enabled
* @mb_map: Mapping of memory B/W percentage to memory B/W delay
*/
struct rdt_membw {
u32 max_delay;
u32 min_bw;
u32 bw_gran;
u32 delay_linear;
bool mba_sc;
u32 *mb_map;
};
static inline bool is_llc_occupancy_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
}
static inline bool is_mbm_total_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
}
static inline bool is_mbm_local_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
}
static inline bool is_mbm_enabled(void)
{
return (is_mbm_total_enabled() || is_mbm_local_enabled());
}
static inline bool is_mbm_event(int e)
{
return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
e <= QOS_L3_MBM_LOCAL_EVENT_ID);
}
struct rdt_parse_data {
struct rdtgroup *rdtgrp;
char *buf;
};
/**
* struct rdt_resource - attributes of an RDT resource
* @rid: The index of the resource
* @alloc_enabled: Is allocation enabled on this machine
* @mon_enabled: Is monitoring enabled for this feature
* @alloc_capable: Is allocation available on this machine
* @mon_capable: Is monitor feature available on this machine
* @name: Name to use in "schemata" file
* @num_closid: Number of CLOSIDs available
* @cache_level: Which cache level defines scope of this resource
* @default_ctrl: Specifies default cache cbm or memory B/W percent.
* @msr_base: Base MSR address for CBMs
* @msr_update: Function pointer to update QOS MSRs
* @data_width: Character width of data when displaying
* @domains: All domains for this resource
* @cache: Cache allocation related data
* @format_str: Per resource format string to show domain value
* @parse_ctrlval: Per resource function pointer to parse control values
* @cbm_validate Cache bitmask validate function
* @evt_list: List of monitoring events
* @num_rmid: Number of RMIDs available
* @mon_scale: cqm counter * mon_scale = occupancy in bytes
* @fflags: flags to choose base and info files
*/
struct rdt_resource {
int rid;
bool alloc_enabled;
bool mon_enabled;
bool alloc_capable;
bool mon_capable;
char *name;
int num_closid;
int cache_level;
u32 default_ctrl;
unsigned int msr_base;
void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
struct rdt_resource *r);
int data_width;
struct list_head domains;
struct rdt_cache cache;
struct rdt_membw membw;
const char *format_str;
int (*parse_ctrlval)(struct rdt_parse_data *data,
struct rdt_resource *r,
struct rdt_domain *d);
bool (*cbm_validate)(char *buf, u32 *data, struct rdt_resource *r);
struct list_head evt_list;
int num_rmid;
unsigned int mon_scale;
unsigned long fflags;
};
int parse_cbm(struct rdt_parse_data *data, struct rdt_resource *r,
struct rdt_domain *d);
int parse_bw_intel(struct rdt_parse_data *data, struct rdt_resource *r,
struct rdt_domain *d);
int parse_bw_amd(struct rdt_parse_data *data, struct rdt_resource *r,
struct rdt_domain *d);
extern struct mutex rdtgroup_mutex;
extern struct rdt_resource rdt_resources_all[];
extern struct rdtgroup rdtgroup_default;
DECLARE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
extern struct dentry *debugfs_resctrl;
enum {
RDT_RESOURCE_L3,
RDT_RESOURCE_L3DATA,
RDT_RESOURCE_L3CODE,
RDT_RESOURCE_L2,
RDT_RESOURCE_L2DATA,
RDT_RESOURCE_L2CODE,
RDT_RESOURCE_MBA,
/* Must be the last */
RDT_NUM_RESOURCES,
};
#define for_each_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++)
#define for_each_capable_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++) \
if (r->alloc_capable || r->mon_capable)
#define for_each_alloc_capable_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++) \
if (r->alloc_capable)
#define for_each_mon_capable_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++) \
if (r->mon_capable)
#define for_each_alloc_enabled_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++) \
if (r->alloc_enabled)
#define for_each_mon_enabled_rdt_resource(r) \
for (r = rdt_resources_all; r < rdt_resources_all + RDT_NUM_RESOURCES;\
r++) \
if (r->mon_enabled)
/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
union cpuid_0x10_1_eax {
struct {
unsigned int cbm_len:5;
} split;
unsigned int full;
};
/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
union cpuid_0x10_3_eax {
struct {
unsigned int max_delay:12;
} split;
unsigned int full;
};
/* CPUID.(EAX=10H, ECX=ResID).EDX */
union cpuid_0x10_x_edx {
struct {
unsigned int cos_max:16;
} split;
unsigned int full;
};
void rdt_last_cmd_clear(void);
void rdt_last_cmd_puts(const char *s);
void rdt_last_cmd_printf(const char *fmt, ...);
void rdt_ctrl_update(void *arg);
struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
void rdtgroup_kn_unlock(struct kernfs_node *kn);
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
umode_t mask);
struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
struct list_head **pos);
ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
int rdtgroup_schemata_show(struct kernfs_open_file *of,
struct seq_file *s, void *v);
bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
unsigned long cbm, int closid, bool exclusive);
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
unsigned long cbm);
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
int rdtgroup_tasks_assigned(struct rdtgroup *r);
int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
int rdt_pseudo_lock_init(void);
void rdt_pseudo_lock_release(void);
int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
int update_domains(struct rdt_resource *r, int closid);
int closids_supported(void);
void closid_free(int closid);
int alloc_rmid(void);
void free_rmid(u32 rmid);
int rdt_get_mon_l3_config(struct rdt_resource *r);
void mon_event_count(void *info);
int rdtgroup_mondata_show(struct seq_file *m, void *arg);
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
unsigned int dom_id);
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
struct rdt_domain *d);
void mon_event_read(struct rmid_read *rr, struct rdt_domain *d,
struct rdtgroup *rdtgrp, int evtid, int first);
void mbm_setup_overflow_handler(struct rdt_domain *dom,
unsigned long delay_ms);
void mbm_handle_overflow(struct work_struct *work);
bool is_mba_sc(struct rdt_resource *r);
void setup_default_ctrlval(struct rdt_resource *r, u32 *dc, u32 *dm);
u32 delay_bw_map(unsigned long bw, struct rdt_resource *r);
void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms);
void cqm_handle_limbo(struct work_struct *work);
bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d);
void __check_limbo(struct rdt_domain *d, bool force_free);
bool cbm_validate_intel(char *buf, u32 *data, struct rdt_resource *r);
bool cbm_validate_amd(char *buf, u32 *data, struct rdt_resource *r);
#endif /* _ASM_X86_RESCTRL_INTERNAL_H */