blob: f07ac0e0af59d94265b8670b741d03f02a30028e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Broadcom BCM7xxx System Port Ethernet MAC driver
*
* Copyright (C) 2014 Broadcom Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <net/dsa.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include "bcmsysport.h"
/* I/O accessors register helpers */
#define BCM_SYSPORT_IO_MACRO(name, offset) \
static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off) \
{ \
u32 reg = readl_relaxed(priv->base + offset + off); \
return reg; \
} \
static inline void name##_writel(struct bcm_sysport_priv *priv, \
u32 val, u32 off) \
{ \
writel_relaxed(val, priv->base + offset + off); \
} \
BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
BCM_SYSPORT_IO_MACRO(gib, SYS_PORT_GIB_OFFSET);
BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);
/* On SYSTEMPORT Lite, any register after RDMA_STATUS has the exact
* same layout, except it has been moved by 4 bytes up, *sigh*
*/
static inline u32 rdma_readl(struct bcm_sysport_priv *priv, u32 off)
{
if (priv->is_lite && off >= RDMA_STATUS)
off += 4;
return readl_relaxed(priv->base + SYS_PORT_RDMA_OFFSET + off);
}
static inline void rdma_writel(struct bcm_sysport_priv *priv, u32 val, u32 off)
{
if (priv->is_lite && off >= RDMA_STATUS)
off += 4;
writel_relaxed(val, priv->base + SYS_PORT_RDMA_OFFSET + off);
}
static inline u32 tdma_control_bit(struct bcm_sysport_priv *priv, u32 bit)
{
if (!priv->is_lite) {
return BIT(bit);
} else {
if (bit >= ACB_ALGO)
return BIT(bit + 1);
else
return BIT(bit);
}
}
/* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
* mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
*/
#define BCM_SYSPORT_INTR_L2(which) \
static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
u32 mask) \
{ \
priv->irq##which##_mask &= ~(mask); \
intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR); \
} \
static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
u32 mask) \
{ \
intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET); \
priv->irq##which##_mask |= (mask); \
} \
BCM_SYSPORT_INTR_L2(0)
BCM_SYSPORT_INTR_L2(1)
/* Register accesses to GISB/RBUS registers are expensive (few hundred
* nanoseconds), so keep the check for 64-bits explicit here to save
* one register write per-packet on 32-bits platforms.
*/
static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
void __iomem *d,
dma_addr_t addr)
{
#ifdef CONFIG_PHYS_ADDR_T_64BIT
writel_relaxed(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
d + DESC_ADDR_HI_STATUS_LEN);
#endif
writel_relaxed(lower_32_bits(addr), d + DESC_ADDR_LO);
}
/* Ethtool operations */
static void bcm_sysport_set_rx_csum(struct net_device *dev,
netdev_features_t wanted)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
reg = rxchk_readl(priv, RXCHK_CONTROL);
/* Clear L2 header checks, which would prevent BPDUs
* from being received.
*/
reg &= ~RXCHK_L2_HDR_DIS;
if (priv->rx_chk_en)
reg |= RXCHK_EN;
else
reg &= ~RXCHK_EN;
/* If UniMAC forwards CRC, we need to skip over it to get
* a valid CHK bit to be set in the per-packet status word
*/
if (priv->rx_chk_en && priv->crc_fwd)
reg |= RXCHK_SKIP_FCS;
else
reg &= ~RXCHK_SKIP_FCS;
/* If Broadcom tags are enabled (e.g: using a switch), make
* sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
* tag after the Ethernet MAC Source Address.
*/
if (netdev_uses_dsa(dev))
reg |= RXCHK_BRCM_TAG_EN;
else
reg &= ~RXCHK_BRCM_TAG_EN;
rxchk_writel(priv, reg, RXCHK_CONTROL);
}
static void bcm_sysport_set_tx_csum(struct net_device *dev,
netdev_features_t wanted)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
/* Hardware transmit checksum requires us to enable the Transmit status
* block prepended to the packet contents
*/
priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
reg = tdma_readl(priv, TDMA_CONTROL);
if (priv->tsb_en)
reg |= tdma_control_bit(priv, TSB_EN);
else
reg &= ~tdma_control_bit(priv, TSB_EN);
tdma_writel(priv, reg, TDMA_CONTROL);
}
static int bcm_sysport_set_features(struct net_device *dev,
netdev_features_t features)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
/* Read CRC forward */
if (!priv->is_lite)
priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
else
priv->crc_fwd = !((gib_readl(priv, GIB_CONTROL) &
GIB_FCS_STRIP) >> GIB_FCS_STRIP_SHIFT);
bcm_sysport_set_rx_csum(dev, features);
bcm_sysport_set_tx_csum(dev, features);
return 0;
}
/* Hardware counters must be kept in sync because the order/offset
* is important here (order in structure declaration = order in hardware)
*/
static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
/* general stats */
STAT_NETDEV64(rx_packets),
STAT_NETDEV64(tx_packets),
STAT_NETDEV64(rx_bytes),
STAT_NETDEV64(tx_bytes),
STAT_NETDEV(rx_errors),
STAT_NETDEV(tx_errors),
STAT_NETDEV(rx_dropped),
STAT_NETDEV(tx_dropped),
STAT_NETDEV(multicast),
/* UniMAC RSV counters */
STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
STAT_MIB_RX("rx_pkts", mib.rx.pkt),
STAT_MIB_RX("rx_bytes", mib.rx.bytes),
STAT_MIB_RX("rx_multicast", mib.rx.mca),
STAT_MIB_RX("rx_broadcast", mib.rx.bca),
STAT_MIB_RX("rx_fcs", mib.rx.fcs),
STAT_MIB_RX("rx_control", mib.rx.cf),
STAT_MIB_RX("rx_pause", mib.rx.pf),
STAT_MIB_RX("rx_unknown", mib.rx.uo),
STAT_MIB_RX("rx_align", mib.rx.aln),
STAT_MIB_RX("rx_outrange", mib.rx.flr),
STAT_MIB_RX("rx_code", mib.rx.cde),
STAT_MIB_RX("rx_carrier", mib.rx.fcr),
STAT_MIB_RX("rx_oversize", mib.rx.ovr),
STAT_MIB_RX("rx_jabber", mib.rx.jbr),
STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
STAT_MIB_RX("rx_unicast", mib.rx.uc),
STAT_MIB_RX("rx_ppp", mib.rx.ppp),
STAT_MIB_RX("rx_crc", mib.rx.rcrc),
/* UniMAC TSV counters */
STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
STAT_MIB_TX("tx_pkts", mib.tx.pkts),
STAT_MIB_TX("tx_multicast", mib.tx.mca),
STAT_MIB_TX("tx_broadcast", mib.tx.bca),
STAT_MIB_TX("tx_pause", mib.tx.pf),
STAT_MIB_TX("tx_control", mib.tx.cf),
STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
STAT_MIB_TX("tx_oversize", mib.tx.ovr),
STAT_MIB_TX("tx_defer", mib.tx.drf),
STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
STAT_MIB_TX("tx_single_col", mib.tx.scl),
STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
STAT_MIB_TX("tx_late_col", mib.tx.lcl),
STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
STAT_MIB_TX("tx_frags", mib.tx.frg),
STAT_MIB_TX("tx_total_col", mib.tx.ncl),
STAT_MIB_TX("tx_jabber", mib.tx.jbr),
STAT_MIB_TX("tx_bytes", mib.tx.bytes),
STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
STAT_MIB_TX("tx_unicast", mib.tx.uc),
/* UniMAC RUNT counters */
STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
/* RXCHK misc statistics */
STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
RXCHK_OTHER_DISC_CNTR),
/* RBUF misc statistics */
STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed),
STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed),
STAT_MIB_SOFT("tx_realloc_tsb", mib.tx_realloc_tsb),
STAT_MIB_SOFT("tx_realloc_tsb_failed", mib.tx_realloc_tsb_failed),
/* Per TX-queue statistics are dynamically appended */
};
#define BCM_SYSPORT_STATS_LEN ARRAY_SIZE(bcm_sysport_gstrings_stats)
static void bcm_sysport_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
strlcpy(info->version, "0.1", sizeof(info->version));
strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
}
static u32 bcm_sysport_get_msglvl(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
return priv->msg_enable;
}
static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
priv->msg_enable = enable;
}
static inline bool bcm_sysport_lite_stat_valid(enum bcm_sysport_stat_type type)
{
switch (type) {
case BCM_SYSPORT_STAT_NETDEV:
case BCM_SYSPORT_STAT_NETDEV64:
case BCM_SYSPORT_STAT_RXCHK:
case BCM_SYSPORT_STAT_RBUF:
case BCM_SYSPORT_STAT_SOFT:
return true;
default:
return false;
}
}
static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
const struct bcm_sysport_stats *s;
unsigned int i, j;
switch (string_set) {
case ETH_SS_STATS:
for (i = 0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
s = &bcm_sysport_gstrings_stats[i];
if (priv->is_lite &&
!bcm_sysport_lite_stat_valid(s->type))
continue;
j++;
}
/* Include per-queue statistics */
return j + dev->num_tx_queues * NUM_SYSPORT_TXQ_STAT;
default:
return -EOPNOTSUPP;
}
}
static void bcm_sysport_get_strings(struct net_device *dev,
u32 stringset, u8 *data)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
const struct bcm_sysport_stats *s;
char buf[128];
int i, j;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
s = &bcm_sysport_gstrings_stats[i];
if (priv->is_lite &&
!bcm_sysport_lite_stat_valid(s->type))
continue;
memcpy(data + j * ETH_GSTRING_LEN, s->stat_string,
ETH_GSTRING_LEN);
j++;
}
for (i = 0; i < dev->num_tx_queues; i++) {
snprintf(buf, sizeof(buf), "txq%d_packets", i);
memcpy(data + j * ETH_GSTRING_LEN, buf,
ETH_GSTRING_LEN);
j++;
snprintf(buf, sizeof(buf), "txq%d_bytes", i);
memcpy(data + j * ETH_GSTRING_LEN, buf,
ETH_GSTRING_LEN);
j++;
}
break;
default:
break;
}
}
static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
{
int i, j = 0;
for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
const struct bcm_sysport_stats *s;
u8 offset = 0;
u32 val = 0;
char *p;
s = &bcm_sysport_gstrings_stats[i];
switch (s->type) {
case BCM_SYSPORT_STAT_NETDEV:
case BCM_SYSPORT_STAT_NETDEV64:
case BCM_SYSPORT_STAT_SOFT:
continue;
case BCM_SYSPORT_STAT_MIB_RX:
case BCM_SYSPORT_STAT_MIB_TX:
case BCM_SYSPORT_STAT_RUNT:
if (priv->is_lite)
continue;
if (s->type != BCM_SYSPORT_STAT_MIB_RX)
offset = UMAC_MIB_STAT_OFFSET;
val = umac_readl(priv, UMAC_MIB_START + j + offset);
break;
case BCM_SYSPORT_STAT_RXCHK:
val = rxchk_readl(priv, s->reg_offset);
if (val == ~0)
rxchk_writel(priv, 0, s->reg_offset);
break;
case BCM_SYSPORT_STAT_RBUF:
val = rbuf_readl(priv, s->reg_offset);
if (val == ~0)
rbuf_writel(priv, 0, s->reg_offset);
break;
}
j += s->stat_sizeof;
p = (char *)priv + s->stat_offset;
*(u32 *)p = val;
}
netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
}
static void bcm_sysport_update_tx_stats(struct bcm_sysport_priv *priv,
u64 *tx_bytes, u64 *tx_packets)
{
struct bcm_sysport_tx_ring *ring;
u64 bytes = 0, packets = 0;
unsigned int start;
unsigned int q;
for (q = 0; q < priv->netdev->num_tx_queues; q++) {
ring = &priv->tx_rings[q];
do {
start = u64_stats_fetch_begin_irq(&priv->syncp);
bytes = ring->bytes;
packets = ring->packets;
} while (u64_stats_fetch_retry_irq(&priv->syncp, start));
*tx_bytes += bytes;
*tx_packets += packets;
}
}
static void bcm_sysport_get_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct bcm_sysport_stats64 *stats64 = &priv->stats64;
struct u64_stats_sync *syncp = &priv->syncp;
struct bcm_sysport_tx_ring *ring;
u64 tx_bytes = 0, tx_packets = 0;
unsigned int start;
int i, j;
if (netif_running(dev)) {
bcm_sysport_update_mib_counters(priv);
bcm_sysport_update_tx_stats(priv, &tx_bytes, &tx_packets);
stats64->tx_bytes = tx_bytes;
stats64->tx_packets = tx_packets;
}
for (i = 0, j = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
const struct bcm_sysport_stats *s;
char *p;
s = &bcm_sysport_gstrings_stats[i];
if (s->type == BCM_SYSPORT_STAT_NETDEV)
p = (char *)&dev->stats;
else if (s->type == BCM_SYSPORT_STAT_NETDEV64)
p = (char *)stats64;
else
p = (char *)priv;
if (priv->is_lite && !bcm_sysport_lite_stat_valid(s->type))
continue;
p += s->stat_offset;
if (s->stat_sizeof == sizeof(u64) &&
s->type == BCM_SYSPORT_STAT_NETDEV64) {
do {
start = u64_stats_fetch_begin_irq(syncp);
data[i] = *(u64 *)p;
} while (u64_stats_fetch_retry_irq(syncp, start));
} else
data[i] = *(u32 *)p;
j++;
}
/* For SYSTEMPORT Lite since we have holes in our statistics, j would
* be equal to BCM_SYSPORT_STATS_LEN at the end of the loop, but it
* needs to point to how many total statistics we have minus the
* number of per TX queue statistics
*/
j = bcm_sysport_get_sset_count(dev, ETH_SS_STATS) -
dev->num_tx_queues * NUM_SYSPORT_TXQ_STAT;
for (i = 0; i < dev->num_tx_queues; i++) {
ring = &priv->tx_rings[i];
data[j] = ring->packets;
j++;
data[j] = ring->bytes;
j++;
}
}
static void bcm_sysport_get_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_FILTER;
wol->wolopts = priv->wolopts;
if (!(priv->wolopts & WAKE_MAGICSECURE))
return;
memcpy(wol->sopass, priv->sopass, sizeof(priv->sopass));
}
static int bcm_sysport_set_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_FILTER;
if (!device_can_wakeup(kdev))
return -ENOTSUPP;
if (wol->wolopts & ~supported)
return -EINVAL;
if (wol->wolopts & WAKE_MAGICSECURE)
memcpy(priv->sopass, wol->sopass, sizeof(priv->sopass));
/* Flag the device and relevant IRQ as wakeup capable */
if (wol->wolopts) {
device_set_wakeup_enable(kdev, 1);
if (priv->wol_irq_disabled)
enable_irq_wake(priv->wol_irq);
priv->wol_irq_disabled = 0;
} else {
device_set_wakeup_enable(kdev, 0);
/* Avoid unbalanced disable_irq_wake calls */
if (!priv->wol_irq_disabled)
disable_irq_wake(priv->wol_irq);
priv->wol_irq_disabled = 1;
}
priv->wolopts = wol->wolopts;
return 0;
}
static void bcm_sysport_set_rx_coalesce(struct bcm_sysport_priv *priv,
u32 usecs, u32 pkts)
{
u32 reg;
reg = rdma_readl(priv, RDMA_MBDONE_INTR);
reg &= ~(RDMA_INTR_THRESH_MASK |
RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT);
reg |= pkts;
reg |= DIV_ROUND_UP(usecs * 1000, 8192) << RDMA_TIMEOUT_SHIFT;
rdma_writel(priv, reg, RDMA_MBDONE_INTR);
}
static void bcm_sysport_set_tx_coalesce(struct bcm_sysport_tx_ring *ring,
struct ethtool_coalesce *ec)
{
struct bcm_sysport_priv *priv = ring->priv;
u32 reg;
reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(ring->index));
reg &= ~(RING_INTR_THRESH_MASK |
RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT);
reg |= ec->tx_max_coalesced_frames;
reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) <<
RING_TIMEOUT_SHIFT;
tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(ring->index));
}
static int bcm_sysport_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0));
ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000;
ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK;
reg = rdma_readl(priv, RDMA_MBDONE_INTR);
ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000;
ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK;
ec->use_adaptive_rx_coalesce = priv->dim.use_dim;
return 0;
}
static int bcm_sysport_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct dim_cq_moder moder;
u32 usecs, pkts;
unsigned int i;
/* Base system clock is 125Mhz, DMA timeout is this reference clock
* divided by 1024, which yield roughly 8.192 us, our maximum value has
* to fit in the RING_TIMEOUT_MASK (16 bits).
*/
if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK ||
ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 ||
ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK ||
ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1)
return -EINVAL;
if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) ||
(ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) ||
ec->use_adaptive_tx_coalesce)
return -EINVAL;
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_set_tx_coalesce(&priv->tx_rings[i], ec);
priv->rx_coalesce_usecs = ec->rx_coalesce_usecs;
priv->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
usecs = priv->rx_coalesce_usecs;
pkts = priv->rx_max_coalesced_frames;
if (ec->use_adaptive_rx_coalesce && !priv->dim.use_dim) {
moder = net_dim_get_def_rx_moderation(priv->dim.dim.mode);
usecs = moder.usec;
pkts = moder.pkts;
}
priv->dim.use_dim = ec->use_adaptive_rx_coalesce;
/* Apply desired coalescing parameters */
bcm_sysport_set_rx_coalesce(priv, usecs, pkts);
return 0;
}
static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
{
dev_consume_skb_any(cb->skb);
cb->skb = NULL;
dma_unmap_addr_set(cb, dma_addr, 0);
}
static struct sk_buff *bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
struct bcm_sysport_cb *cb)
{
struct device *kdev = &priv->pdev->dev;
struct net_device *ndev = priv->netdev;
struct sk_buff *skb, *rx_skb;
dma_addr_t mapping;
/* Allocate a new SKB for a new packet */
skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
if (!skb) {
priv->mib.alloc_rx_buff_failed++;
netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
return NULL;
}
mapping = dma_map_single(kdev, skb->data,
RX_BUF_LENGTH, DMA_FROM_DEVICE);
if (dma_mapping_error(kdev, mapping)) {
priv->mib.rx_dma_failed++;
dev_kfree_skb_any(skb);
netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
return NULL;
}
/* Grab the current SKB on the ring */
rx_skb = cb->skb;
if (likely(rx_skb))
dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
RX_BUF_LENGTH, DMA_FROM_DEVICE);
/* Put the new SKB on the ring */
cb->skb = skb;
dma_unmap_addr_set(cb, dma_addr, mapping);
dma_desc_set_addr(priv, cb->bd_addr, mapping);
netif_dbg(priv, rx_status, ndev, "RX refill\n");
/* Return the current SKB to the caller */
return rx_skb;
}
static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_cb *cb;
struct sk_buff *skb;
unsigned int i;
for (i = 0; i < priv->num_rx_bds; i++) {
cb = &priv->rx_cbs[i];
skb = bcm_sysport_rx_refill(priv, cb);
dev_kfree_skb(skb);
if (!cb->skb)
return -ENOMEM;
}
return 0;
}
/* Poll the hardware for up to budget packets to process */
static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
unsigned int budget)
{
struct bcm_sysport_stats64 *stats64 = &priv->stats64;
struct net_device *ndev = priv->netdev;
unsigned int processed = 0, to_process;
unsigned int processed_bytes = 0;
struct bcm_sysport_cb *cb;
struct sk_buff *skb;
unsigned int p_index;
u16 len, status;
struct bcm_rsb *rsb;
/* Clear status before servicing to reduce spurious interrupts */
intrl2_0_writel(priv, INTRL2_0_RDMA_MBDONE, INTRL2_CPU_CLEAR);
/* Determine how much we should process since last call, SYSTEMPORT Lite
* groups the producer and consumer indexes into the same 32-bit
* which we access using RDMA_CONS_INDEX
*/
if (!priv->is_lite)
p_index = rdma_readl(priv, RDMA_PROD_INDEX);
else
p_index = rdma_readl(priv, RDMA_CONS_INDEX);
p_index &= RDMA_PROD_INDEX_MASK;
to_process = (p_index - priv->rx_c_index) & RDMA_CONS_INDEX_MASK;
netif_dbg(priv, rx_status, ndev,
"p_index=%d rx_c_index=%d to_process=%d\n",
p_index, priv->rx_c_index, to_process);
while ((processed < to_process) && (processed < budget)) {
cb = &priv->rx_cbs[priv->rx_read_ptr];
skb = bcm_sysport_rx_refill(priv, cb);
/* We do not have a backing SKB, so we do not a corresponding
* DMA mapping for this incoming packet since
* bcm_sysport_rx_refill always either has both skb and mapping
* or none.
*/
if (unlikely(!skb)) {
netif_err(priv, rx_err, ndev, "out of memory!\n");
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
goto next;
}
/* Extract the Receive Status Block prepended */
rsb = (struct bcm_rsb *)skb->data;
len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
DESC_STATUS_MASK;
netif_dbg(priv, rx_status, ndev,
"p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
p_index, priv->rx_c_index, priv->rx_read_ptr,
len, status);
if (unlikely(len > RX_BUF_LENGTH)) {
netif_err(priv, rx_status, ndev, "oversized packet\n");
ndev->stats.rx_length_errors++;
ndev->stats.rx_errors++;
dev_kfree_skb_any(skb);
goto next;
}
if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
netif_err(priv, rx_status, ndev, "fragmented packet!\n");
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
dev_kfree_skb_any(skb);
goto next;
}
if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
netif_err(priv, rx_err, ndev, "error packet\n");
if (status & RX_STATUS_OVFLOW)
ndev->stats.rx_over_errors++;
ndev->stats.rx_dropped++;
ndev->stats.rx_errors++;
dev_kfree_skb_any(skb);
goto next;
}
skb_put(skb, len);
/* Hardware validated our checksum */
if (likely(status & DESC_L4_CSUM))
skb->ip_summed = CHECKSUM_UNNECESSARY;
/* Hardware pre-pends packets with 2bytes before Ethernet
* header plus we have the Receive Status Block, strip off all
* of this from the SKB.
*/
skb_pull(skb, sizeof(*rsb) + 2);
len -= (sizeof(*rsb) + 2);
processed_bytes += len;
/* UniMAC may forward CRC */
if (priv->crc_fwd) {
skb_trim(skb, len - ETH_FCS_LEN);
len -= ETH_FCS_LEN;
}
skb->protocol = eth_type_trans(skb, ndev);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
u64_stats_update_begin(&priv->syncp);
stats64->rx_packets++;
stats64->rx_bytes += len;
u64_stats_update_end(&priv->syncp);
napi_gro_receive(&priv->napi, skb);
next:
processed++;
priv->rx_read_ptr++;
if (priv->rx_read_ptr == priv->num_rx_bds)
priv->rx_read_ptr = 0;
}
priv->dim.packets = processed;
priv->dim.bytes = processed_bytes;
return processed;
}
static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_tx_ring *ring,
struct bcm_sysport_cb *cb,
unsigned int *bytes_compl,
unsigned int *pkts_compl)
{
struct bcm_sysport_priv *priv = ring->priv;
struct device *kdev = &priv->pdev->dev;
if (cb->skb) {
*bytes_compl += cb->skb->len;
dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len),
DMA_TO_DEVICE);
(*pkts_compl)++;
bcm_sysport_free_cb(cb);
/* SKB fragment */
} else if (dma_unmap_addr(cb, dma_addr)) {
*bytes_compl += dma_unmap_len(cb, dma_len);
dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
dma_unmap_addr_set(cb, dma_addr, 0);
}
}
/* Reclaim queued SKBs for transmission completion, lockless version */
static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
struct bcm_sysport_tx_ring *ring)
{
unsigned int pkts_compl = 0, bytes_compl = 0;
struct net_device *ndev = priv->netdev;
unsigned int txbds_processed = 0;
struct bcm_sysport_cb *cb;
unsigned int txbds_ready;
unsigned int c_index;
u32 hw_ind;
/* Clear status before servicing to reduce spurious interrupts */
if (!ring->priv->is_lite)
intrl2_1_writel(ring->priv, BIT(ring->index), INTRL2_CPU_CLEAR);
else
intrl2_0_writel(ring->priv, BIT(ring->index +
INTRL2_0_TDMA_MBDONE_SHIFT), INTRL2_CPU_CLEAR);
/* Compute how many descriptors have been processed since last call */
hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
txbds_ready = (c_index - ring->c_index) & RING_CONS_INDEX_MASK;
netif_dbg(priv, tx_done, ndev,
"ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
ring->index, ring->c_index, c_index, txbds_ready);
while (txbds_processed < txbds_ready) {
cb = &ring->cbs[ring->clean_index];
bcm_sysport_tx_reclaim_one(ring, cb, &bytes_compl, &pkts_compl);
ring->desc_count++;
txbds_processed++;
if (likely(ring->clean_index < ring->size - 1))
ring->clean_index++;
else
ring->clean_index = 0;
}
u64_stats_update_begin(&priv->syncp);
ring->packets += pkts_compl;
ring->bytes += bytes_compl;
u64_stats_update_end(&priv->syncp);
ring->c_index = c_index;
netif_dbg(priv, tx_done, ndev,
"ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
ring->index, ring->c_index, pkts_compl, bytes_compl);
return pkts_compl;
}
/* Locked version of the per-ring TX reclaim routine */
static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
struct bcm_sysport_tx_ring *ring)
{
struct netdev_queue *txq;
unsigned int released;
unsigned long flags;
txq = netdev_get_tx_queue(priv->netdev, ring->index);
spin_lock_irqsave(&ring->lock, flags);
released = __bcm_sysport_tx_reclaim(priv, ring);
if (released)
netif_tx_wake_queue(txq);
spin_unlock_irqrestore(&ring->lock, flags);
return released;
}
/* Locked version of the per-ring TX reclaim, but does not wake the queue */
static void bcm_sysport_tx_clean(struct bcm_sysport_priv *priv,
struct bcm_sysport_tx_ring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
__bcm_sysport_tx_reclaim(priv, ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
{
struct bcm_sysport_tx_ring *ring =
container_of(napi, struct bcm_sysport_tx_ring, napi);
unsigned int work_done = 0;
work_done = bcm_sysport_tx_reclaim(ring->priv, ring);
if (work_done == 0) {
napi_complete(napi);
/* re-enable TX interrupt */
if (!ring->priv->is_lite)
intrl2_1_mask_clear(ring->priv, BIT(ring->index));
else
intrl2_0_mask_clear(ring->priv, BIT(ring->index +
INTRL2_0_TDMA_MBDONE_SHIFT));
return 0;
}
return budget;
}
static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
{
unsigned int q;
for (q = 0; q < priv->netdev->num_tx_queues; q++)
bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
}
static int bcm_sysport_poll(struct napi_struct *napi, int budget)
{
struct bcm_sysport_priv *priv =
container_of(napi, struct bcm_sysport_priv, napi);
struct dim_sample dim_sample = {};
unsigned int work_done = 0;
work_done = bcm_sysport_desc_rx(priv, budget);
priv->rx_c_index += work_done;
priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
/* SYSTEMPORT Lite groups the producer/consumer index, producer is
* maintained by HW, but writes to it will be ignore while RDMA
* is active
*/
if (!priv->is_lite)
rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
else
rdma_writel(priv, priv->rx_c_index << 16, RDMA_CONS_INDEX);
if (work_done < budget) {
napi_complete_done(napi, work_done);
/* re-enable RX interrupts */
intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
}
if (priv->dim.use_dim) {
dim_update_sample(priv->dim.event_ctr, priv->dim.packets,
priv->dim.bytes, &dim_sample);
net_dim(&priv->dim.dim, dim_sample);
}
return work_done;
}
static void mpd_enable_set(struct bcm_sysport_priv *priv, bool enable)
{
u32 reg, bit;
reg = umac_readl(priv, UMAC_MPD_CTRL);
if (enable)
reg |= MPD_EN;
else
reg &= ~MPD_EN;
umac_writel(priv, reg, UMAC_MPD_CTRL);
if (priv->is_lite)
bit = RBUF_ACPI_EN_LITE;
else
bit = RBUF_ACPI_EN;
reg = rbuf_readl(priv, RBUF_CONTROL);
if (enable)
reg |= bit;
else
reg &= ~bit;
rbuf_writel(priv, reg, RBUF_CONTROL);
}
static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
{
unsigned int index;
u32 reg;
/* Disable RXCHK, active filters and Broadcom tag matching */
reg = rxchk_readl(priv, RXCHK_CONTROL);
reg &= ~(RXCHK_BRCM_TAG_MATCH_MASK <<
RXCHK_BRCM_TAG_MATCH_SHIFT | RXCHK_EN | RXCHK_BRCM_TAG_EN);
rxchk_writel(priv, reg, RXCHK_CONTROL);
/* Make sure we restore correct CID index in case HW lost
* its context during deep idle state
*/
for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
rxchk_writel(priv, priv->filters_loc[index] <<
RXCHK_BRCM_TAG_CID_SHIFT, RXCHK_BRCM_TAG(index));
rxchk_writel(priv, 0xff00ffff, RXCHK_BRCM_TAG_MASK(index));
}
/* Clear the MagicPacket detection logic */
mpd_enable_set(priv, false);
reg = intrl2_0_readl(priv, INTRL2_CPU_STATUS);
if (reg & INTRL2_0_MPD)
netdev_info(priv->netdev, "Wake-on-LAN (MPD) interrupt!\n");
if (reg & INTRL2_0_BRCM_MATCH_TAG) {
reg = rxchk_readl(priv, RXCHK_BRCM_TAG_MATCH_STATUS) &
RXCHK_BRCM_TAG_MATCH_MASK;
netdev_info(priv->netdev,
"Wake-on-LAN (filters 0x%02x) interrupt!\n", reg);
}
netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
}
static void bcm_sysport_dim_work(struct work_struct *work)
{
struct dim *dim = container_of(work, struct dim, work);
struct bcm_sysport_net_dim *ndim =
container_of(dim, struct bcm_sysport_net_dim, dim);
struct bcm_sysport_priv *priv =
container_of(ndim, struct bcm_sysport_priv, dim);
struct dim_cq_moder cur_profile = net_dim_get_rx_moderation(dim->mode,
dim->profile_ix);
bcm_sysport_set_rx_coalesce(priv, cur_profile.usec, cur_profile.pkts);
dim->state = DIM_START_MEASURE;
}
/* RX and misc interrupt routine */
static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct bcm_sysport_tx_ring *txr;
unsigned int ring, ring_bit;
priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
if (unlikely(priv->irq0_stat == 0)) {
netdev_warn(priv->netdev, "spurious RX interrupt\n");
return IRQ_NONE;
}
if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
priv->dim.event_ctr++;
if (likely(napi_schedule_prep(&priv->napi))) {
/* disable RX interrupts */
intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
__napi_schedule_irqoff(&priv->napi);
}
}
/* TX ring is full, perform a full reclaim since we do not know
* which one would trigger this interrupt
*/
if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
bcm_sysport_tx_reclaim_all(priv);
if (!priv->is_lite)
goto out;
for (ring = 0; ring < dev->num_tx_queues; ring++) {
ring_bit = BIT(ring + INTRL2_0_TDMA_MBDONE_SHIFT);
if (!(priv->irq0_stat & ring_bit))
continue;
txr = &priv->tx_rings[ring];
if (likely(napi_schedule_prep(&txr->napi))) {
intrl2_0_mask_set(priv, ring_bit);
__napi_schedule(&txr->napi);
}
}
out:
return IRQ_HANDLED;
}
/* TX interrupt service routine */
static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct bcm_sysport_tx_ring *txr;
unsigned int ring;
priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
if (unlikely(priv->irq1_stat == 0)) {
netdev_warn(priv->netdev, "spurious TX interrupt\n");
return IRQ_NONE;
}
for (ring = 0; ring < dev->num_tx_queues; ring++) {
if (!(priv->irq1_stat & BIT(ring)))
continue;
txr = &priv->tx_rings[ring];
if (likely(napi_schedule_prep(&txr->napi))) {
intrl2_1_mask_set(priv, BIT(ring));
__napi_schedule_irqoff(&txr->napi);
}
}
return IRQ_HANDLED;
}
static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
{
struct bcm_sysport_priv *priv = dev_id;
pm_wakeup_event(&priv->pdev->dev, 0);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcm_sysport_poll_controller(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
disable_irq(priv->irq0);
bcm_sysport_rx_isr(priv->irq0, priv);
enable_irq(priv->irq0);
if (!priv->is_lite) {
disable_irq(priv->irq1);
bcm_sysport_tx_isr(priv->irq1, priv);
enable_irq(priv->irq1);
}
}
#endif
static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct sk_buff *nskb;
struct bcm_tsb *tsb;
u32 csum_info;
u8 ip_proto;
u16 csum_start;
__be16 ip_ver;
/* Re-allocate SKB if needed */
if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
nskb = skb_realloc_headroom(skb, sizeof(*tsb));
if (!nskb) {
dev_kfree_skb_any(skb);
priv->mib.tx_realloc_tsb_failed++;
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
return NULL;
}
dev_consume_skb_any(skb);
skb = nskb;
priv->mib.tx_realloc_tsb++;
}
tsb = skb_push(skb, sizeof(*tsb));
/* Zero-out TSB by default */
memset(tsb, 0, sizeof(*tsb));
if (skb->ip_summed == CHECKSUM_PARTIAL) {
ip_ver = skb->protocol;
switch (ip_ver) {
case htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
return skb;
}
/* Get the checksum offset and the L4 (transport) offset */
csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
csum_info |= (csum_start << L4_PTR_SHIFT);
if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
csum_info |= L4_LENGTH_VALID;
if (ip_proto == IPPROTO_UDP &&
ip_ver == htons(ETH_P_IP))
csum_info |= L4_UDP;
} else {
csum_info = 0;
}
tsb->l4_ptr_dest_map = csum_info;
}
return skb;
}
static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct device *kdev = &priv->pdev->dev;
struct bcm_sysport_tx_ring *ring;
struct bcm_sysport_cb *cb;
struct netdev_queue *txq;
u32 len_status, addr_lo;
unsigned int skb_len;
unsigned long flags;
dma_addr_t mapping;
u16 queue;
int ret;
queue = skb_get_queue_mapping(skb);
txq = netdev_get_tx_queue(dev, queue);
ring = &priv->tx_rings[queue];
/* lock against tx reclaim in BH context and TX ring full interrupt */
spin_lock_irqsave(&ring->lock, flags);
if (unlikely(ring->desc_count == 0)) {
netif_tx_stop_queue(txq);
netdev_err(dev, "queue %d awake and ring full!\n", queue);
ret = NETDEV_TX_BUSY;
goto out;
}
/* Insert TSB and checksum infos */
if (priv->tsb_en) {
skb = bcm_sysport_insert_tsb(skb, dev);
if (!skb) {
ret = NETDEV_TX_OK;
goto out;
}
}
skb_len = skb->len;
mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
if (dma_mapping_error(kdev, mapping)) {
priv->mib.tx_dma_failed++;
netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
skb->data, skb_len);
ret = NETDEV_TX_OK;
goto out;
}
/* Remember the SKB for future freeing */
cb = &ring->cbs[ring->curr_desc];
cb->skb = skb;
dma_unmap_addr_set(cb, dma_addr, mapping);
dma_unmap_len_set(cb, dma_len, skb_len);
addr_lo = lower_32_bits(mapping);
len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
len_status |= (skb_len << DESC_LEN_SHIFT);
len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
DESC_STATUS_SHIFT;
if (skb->ip_summed == CHECKSUM_PARTIAL)
len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);
ring->curr_desc++;
if (ring->curr_desc == ring->size)
ring->curr_desc = 0;
ring->desc_count--;
/* Ports are latched, so write upper address first */
tdma_writel(priv, len_status, TDMA_WRITE_PORT_HI(ring->index));
tdma_writel(priv, addr_lo, TDMA_WRITE_PORT_LO(ring->index));
/* Check ring space and update SW control flow */
if (ring->desc_count == 0)
netif_tx_stop_queue(txq);
netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
ring->index, ring->desc_count, ring->curr_desc);
ret = NETDEV_TX_OK;
out:
spin_unlock_irqrestore(&ring->lock, flags);
return ret;
}
static void bcm_sysport_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
netdev_warn(dev, "transmit timeout!\n");
netif_trans_update(dev);
dev->stats.tx_errors++;
netif_tx_wake_all_queues(dev);
}
/* phylib adjust link callback */
static void bcm_sysport_adj_link(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
unsigned int changed = 0;
u32 cmd_bits = 0, reg;
if (priv->old_link != phydev->link) {
changed = 1;
priv->old_link = phydev->link;
}
if (priv->old_duplex != phydev->duplex) {
changed = 1;
priv->old_duplex = phydev->duplex;
}
if (priv->is_lite)
goto out;
switch (phydev->speed) {
case SPEED_2500:
cmd_bits = CMD_SPEED_2500;
break;
case SPEED_1000:
cmd_bits = CMD_SPEED_1000;
break;
case SPEED_100:
cmd_bits = CMD_SPEED_100;
break;
case SPEED_10:
cmd_bits = CMD_SPEED_10;
break;
default:
break;
}
cmd_bits <<= CMD_SPEED_SHIFT;
if (phydev->duplex == DUPLEX_HALF)
cmd_bits |= CMD_HD_EN;
if (priv->old_pause != phydev->pause) {
changed = 1;
priv->old_pause = phydev->pause;
}
if (!phydev->pause)
cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;
if (!changed)
return;
if (phydev->link) {
reg = umac_readl(priv, UMAC_CMD);
reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
CMD_TX_PAUSE_IGNORE);
reg |= cmd_bits;
umac_writel(priv, reg, UMAC_CMD);
}
out:
if (changed)
phy_print_status(phydev);
}
static void bcm_sysport_init_dim(struct bcm_sysport_priv *priv,
void (*cb)(struct work_struct *work))
{
struct bcm_sysport_net_dim *dim = &priv->dim;
INIT_WORK(&dim->dim.work, cb);
dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
dim->event_ctr = 0;
dim->packets = 0;
dim->bytes = 0;
}
static void bcm_sysport_init_rx_coalesce(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_net_dim *dim = &priv->dim;
struct dim_cq_moder moder;
u32 usecs, pkts;
usecs = priv->rx_coalesce_usecs;
pkts = priv->rx_max_coalesced_frames;
/* If DIM was enabled, re-apply default parameters */
if (dim->use_dim) {
moder = net_dim_get_def_rx_moderation(dim->dim.mode);
usecs = moder.usec;
pkts = moder.pkts;
}
bcm_sysport_set_rx_coalesce(priv, usecs, pkts);
}
static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
unsigned int index)
{
struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
size_t size;
u32 reg;
/* Simple descriptors partitioning for now */
size = 256;
ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
if (!ring->cbs) {
netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
return -ENOMEM;
}
/* Initialize SW view of the ring */
spin_lock_init(&ring->lock);
ring->priv = priv;
netif_tx_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
ring->index = index;
ring->size = size;
ring->clean_index = 0;
ring->alloc_size = ring->size;
ring->desc_count = ring->size;
ring->curr_desc = 0;
/* Initialize HW ring */
tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
/* Configure QID and port mapping */
reg = tdma_readl(priv, TDMA_DESC_RING_MAPPING(index));
reg &= ~(RING_QID_MASK | RING_PORT_ID_MASK << RING_PORT_ID_SHIFT);
if (ring->inspect) {
reg |= ring->switch_queue & RING_QID_MASK;
reg |= ring->switch_port << RING_PORT_ID_SHIFT;
} else {
reg |= RING_IGNORE_STATUS;
}
tdma_writel(priv, reg, TDMA_DESC_RING_MAPPING(index));
tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));
/* Enable ACB algorithm 2 */
reg = tdma_readl(priv, TDMA_CONTROL);
reg |= tdma_control_bit(priv, ACB_ALGO);
tdma_writel(priv, reg, TDMA_CONTROL);
/* Do not use tdma_control_bit() here because TSB_SWAP1 collides
* with the original definition of ACB_ALGO
*/
reg = tdma_readl(priv, TDMA_CONTROL);
if (priv->is_lite)
reg &= ~BIT(TSB_SWAP1);
/* Set a correct TSB format based on host endian */
if (!IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
reg |= tdma_control_bit(priv, TSB_SWAP0);
else
reg &= ~tdma_control_bit(priv, TSB_SWAP0);
tdma_writel(priv, reg, TDMA_CONTROL);
/* Program the number of descriptors as MAX_THRESHOLD and half of
* its size for the hysteresis trigger
*/
tdma_writel(priv, ring->size |
1 << RING_HYST_THRESH_SHIFT,
TDMA_DESC_RING_MAX_HYST(index));
/* Enable the ring queue in the arbiter */
reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
reg |= (1 << index);
tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);
napi_enable(&ring->napi);
netif_dbg(priv, hw, priv->netdev,
"TDMA cfg, size=%d, switch q=%d,port=%d\n",
ring->size, ring->switch_queue,
ring->switch_port);
return 0;
}
static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
unsigned int index)
{
struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
u32 reg;
/* Caller should stop the TDMA engine */
reg = tdma_readl(priv, TDMA_STATUS);
if (!(reg & TDMA_DISABLED))
netdev_warn(priv->netdev, "TDMA not stopped!\n");
/* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
* fail, so by checking this pointer we know whether the TX ring was
* fully initialized or not.
*/
if (!ring->cbs)
return;
napi_disable(&ring->napi);
netif_napi_del(&ring->napi);
bcm_sysport_tx_clean(priv, ring);
kfree(ring->cbs);
ring->cbs = NULL;
ring->size = 0;
ring->alloc_size = 0;
netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
}
/* RDMA helper */
static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
unsigned int enable)
{
unsigned int timeout = 1000;
u32 reg;
reg = rdma_readl(priv, RDMA_CONTROL);
if (enable)
reg |= RDMA_EN;
else
reg &= ~RDMA_EN;
rdma_writel(priv, reg, RDMA_CONTROL);
/* Poll for RMDA disabling completion */
do {
reg = rdma_readl(priv, RDMA_STATUS);
if (!!(reg & RDMA_DISABLED) == !enable)
return 0;
usleep_range(1000, 2000);
} while (timeout-- > 0);
netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");
return -ETIMEDOUT;
}
/* TDMA helper */
static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
unsigned int enable)
{
unsigned int timeout = 1000;
u32 reg;
reg = tdma_readl(priv, TDMA_CONTROL);
if (enable)
reg |= tdma_control_bit(priv, TDMA_EN);
else
reg &= ~tdma_control_bit(priv, TDMA_EN);
tdma_writel(priv, reg, TDMA_CONTROL);
/* Poll for TMDA disabling completion */
do {
reg = tdma_readl(priv, TDMA_STATUS);
if (!!(reg & TDMA_DISABLED) == !enable)
return 0;
usleep_range(1000, 2000);
} while (timeout-- > 0);
netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");
return -ETIMEDOUT;
}
static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_cb *cb;
u32 reg;
int ret;
int i;
/* Initialize SW view of the RX ring */
priv->num_rx_bds = priv->num_rx_desc_words / WORDS_PER_DESC;
priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
priv->rx_c_index = 0;
priv->rx_read_ptr = 0;
priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
GFP_KERNEL);
if (!priv->rx_cbs) {
netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
return -ENOMEM;
}
for (i = 0; i < priv->num_rx_bds; i++) {
cb = priv->rx_cbs + i;
cb->bd_addr = priv->rx_bds + i * DESC_SIZE;
}
ret = bcm_sysport_alloc_rx_bufs(priv);
if (ret) {
netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
return ret;
}
/* Initialize HW, ensure RDMA is disabled */
reg = rdma_readl(priv, RDMA_STATUS);
if (!(reg & RDMA_DISABLED))
rdma_enable_set(priv, 0);
rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
rdma_writel(priv, 0, RDMA_PROD_INDEX);
rdma_writel(priv, 0, RDMA_CONS_INDEX);
rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
/* Operate the queue in ring mode */
rdma_writel(priv, 0, RDMA_START_ADDR_HI);
rdma_writel(priv, 0, RDMA_START_ADDR_LO);
rdma_writel(priv, 0, RDMA_END_ADDR_HI);
rdma_writel(priv, priv->num_rx_desc_words - 1, RDMA_END_ADDR_LO);
netif_dbg(priv, hw, priv->netdev,
"RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
priv->num_rx_bds, priv->rx_bds);
return 0;
}
static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
{
struct bcm_sysport_cb *cb;
unsigned int i;
u32 reg;
/* Caller should ensure RDMA is disabled */
reg = rdma_readl(priv, RDMA_STATUS);
if (!(reg & RDMA_DISABLED))
netdev_warn(priv->netdev, "RDMA not stopped!\n");
for (i = 0; i < priv->num_rx_bds; i++) {
cb = &priv->rx_cbs[i];
if (dma_unmap_addr(cb, dma_addr))
dma_unmap_single(&priv->pdev->dev,
dma_unmap_addr(cb, dma_addr),
RX_BUF_LENGTH, DMA_FROM_DEVICE);
bcm_sysport_free_cb(cb);
}
kfree(priv->rx_cbs);
priv->rx_cbs = NULL;
netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
}
static void bcm_sysport_set_rx_mode(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u32 reg;
if (priv->is_lite)
return;
reg = umac_readl(priv, UMAC_CMD);
if (dev->flags & IFF_PROMISC)
reg |= CMD_PROMISC;
else
reg &= ~CMD_PROMISC;
umac_writel(priv, reg, UMAC_CMD);
/* No support for ALLMULTI */
if (dev->flags & IFF_ALLMULTI)
return;
}
static inline void umac_enable_set(struct bcm_sysport_priv *priv,
u32 mask, unsigned int enable)
{
u32 reg;
if (!priv->is_lite) {
reg = umac_readl(priv, UMAC_CMD);
if (enable)
reg |= mask;
else
reg &= ~mask;
umac_writel(priv, reg, UMAC_CMD);
} else {
reg = gib_readl(priv, GIB_CONTROL);
if (enable)
reg |= mask;
else
reg &= ~mask;
gib_writel(priv, reg, GIB_CONTROL);
}
/* UniMAC stops on a packet boundary, wait for a full-sized packet
* to be processed (1 msec).
*/
if (enable == 0)
usleep_range(1000, 2000);
}
static inline void umac_reset(struct bcm_sysport_priv *priv)
{
u32 reg;
if (priv->is_lite)
return;
reg = umac_readl(priv, UMAC_CMD);
reg |= CMD_SW_RESET;
umac_writel(priv, reg, UMAC_CMD);
udelay(10);
reg = umac_readl(priv, UMAC_CMD);
reg &= ~CMD_SW_RESET;
umac_writel(priv, reg, UMAC_CMD);
}
static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
unsigned char *addr)
{
u32 mac0 = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) |
addr[3];
u32 mac1 = (addr[4] << 8) | addr[5];
if (!priv->is_lite) {
umac_writel(priv, mac0, UMAC_MAC0);
umac_writel(priv, mac1, UMAC_MAC1);
} else {
gib_writel(priv, mac0, GIB_MAC0);
gib_writel(priv, mac1, GIB_MAC1);
}
}
static void topctrl_flush(struct bcm_sysport_priv *priv)
{
topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
mdelay(1);
topctrl_writel(priv, 0, RX_FLUSH_CNTL);
topctrl_writel(priv, 0, TX_FLUSH_CNTL);
}
static int bcm_sysport_change_mac(struct net_device *dev, void *p)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* interface is disabled, changes to MAC will be reflected on next
* open call
*/
if (!netif_running(dev))
return 0;
umac_set_hw_addr(priv, dev->dev_addr);
return 0;
}
static void bcm_sysport_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct bcm_sysport_stats64 *stats64 = &priv->stats64;
unsigned int start;
netdev_stats_to_stats64(stats, &dev->stats);
bcm_sysport_update_tx_stats(priv, &stats->tx_bytes,
&stats->tx_packets);
do {
start = u64_stats_fetch_begin_irq(&priv->syncp);
stats->rx_packets = stats64->rx_packets;
stats->rx_bytes = stats64->rx_bytes;
} while (u64_stats_fetch_retry_irq(&priv->syncp, start));
}
static void bcm_sysport_netif_start(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
/* Enable NAPI */
bcm_sysport_init_dim(priv, bcm_sysport_dim_work);
bcm_sysport_init_rx_coalesce(priv);
napi_enable(&priv->napi);
/* Enable RX interrupt and TX ring full interrupt */
intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
phy_start(dev->phydev);
/* Enable TX interrupts for the TXQs */
if (!priv->is_lite)
intrl2_1_mask_clear(priv, 0xffffffff);
else
intrl2_0_mask_clear(priv, INTRL2_0_TDMA_MBDONE_MASK);
}
static void rbuf_init(struct bcm_sysport_priv *priv)
{
u32 reg;
reg = rbuf_readl(priv, RBUF_CONTROL);
reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
/* Set a correct RSB format on SYSTEMPORT Lite */
if (priv->is_lite)
reg &= ~RBUF_RSB_SWAP1;
/* Set a correct RSB format based on host endian */
if (!IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
reg |= RBUF_RSB_SWAP0;
else
reg &= ~RBUF_RSB_SWAP0;
rbuf_writel(priv, reg, RBUF_CONTROL);
}
static inline void bcm_sysport_mask_all_intrs(struct bcm_sysport_priv *priv)
{
intrl2_0_mask_set(priv, 0xffffffff);
intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
if (!priv->is_lite) {
intrl2_1_mask_set(priv, 0xffffffff);
intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
}
}
static inline void gib_set_pad_extension(struct bcm_sysport_priv *priv)
{
u32 reg;
reg = gib_readl(priv, GIB_CONTROL);
/* Include Broadcom tag in pad extension and fix up IPG_LENGTH */
if (netdev_uses_dsa(priv->netdev)) {
reg &= ~(GIB_PAD_EXTENSION_MASK << GIB_PAD_EXTENSION_SHIFT);
reg |= ENET_BRCM_TAG_LEN << GIB_PAD_EXTENSION_SHIFT;
}
reg &= ~(GIB_IPG_LEN_MASK << GIB_IPG_LEN_SHIFT);
reg |= 12 << GIB_IPG_LEN_SHIFT;
gib_writel(priv, reg, GIB_CONTROL);
}
static int bcm_sysport_open(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct phy_device *phydev;
unsigned int i;
int ret;
/* Reset UniMAC */
umac_reset(priv);
/* Flush TX and RX FIFOs at TOPCTRL level */
topctrl_flush(priv);
/* Disable the UniMAC RX/TX */
umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
/* Enable RBUF 2bytes alignment and Receive Status Block */
rbuf_init(priv);
/* Set maximum frame length */
if (!priv->is_lite)
umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
else
gib_set_pad_extension(priv);
/* Apply features again in case we changed them while interface was
* down
*/
bcm_sysport_set_features(dev, dev->features);
/* Set MAC address */
umac_set_hw_addr(priv, dev->dev_addr);
phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
0, priv->phy_interface);
if (!phydev) {
netdev_err(dev, "could not attach to PHY\n");
return -ENODEV;
}
/* Reset house keeping link status */
priv->old_duplex = -1;
priv->old_link = -1;
priv->old_pause = -1;
/* mask all interrupts and request them */
bcm_sysport_mask_all_intrs(priv);
ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
if (ret) {
netdev_err(dev, "failed to request RX interrupt\n");
goto out_phy_disconnect;
}
if (!priv->is_lite) {
ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0,
dev->name, dev);
if (ret) {
netdev_err(dev, "failed to request TX interrupt\n");
goto out_free_irq0;
}
}
/* Initialize both hardware and software ring */
for (i = 0; i < dev->num_tx_queues; i++) {
ret = bcm_sysport_init_tx_ring(priv, i);
if (ret) {
netdev_err(dev, "failed to initialize TX ring %d\n",
i);
goto out_free_tx_ring;
}
}
/* Initialize linked-list */
tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
/* Initialize RX ring */
ret = bcm_sysport_init_rx_ring(priv);
if (ret) {
netdev_err(dev, "failed to initialize RX ring\n");
goto out_free_rx_ring;
}
/* Turn on RDMA */
ret = rdma_enable_set(priv, 1);
if (ret)
goto out_free_rx_ring;
/* Turn on TDMA */
ret = tdma_enable_set(priv, 1);
if (ret)
goto out_clear_rx_int;
/* Turn on UniMAC TX/RX */
umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
bcm_sysport_netif_start(dev);
netif_tx_start_all_queues(dev);
return 0;
out_clear_rx_int:
intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
out_free_rx_ring:
bcm_sysport_fini_rx_ring(priv);
out_free_tx_ring:
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
if (!priv->is_lite)
free_irq(priv->irq1, dev);
out_free_irq0:
free_irq(priv->irq0, dev);
out_phy_disconnect:
phy_disconnect(phydev);
return ret;
}
static void bcm_sysport_netif_stop(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
/* stop all software from updating hardware */
netif_tx_disable(dev);
napi_disable(&priv->napi);
cancel_work_sync(&priv->dim.dim.work);
phy_stop(dev->phydev);
/* mask all interrupts */
bcm_sysport_mask_all_intrs(priv);
}
static int bcm_sysport_stop(struct net_device *dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
unsigned int i;
int ret;
bcm_sysport_netif_stop(dev);
/* Disable UniMAC RX */
umac_enable_set(priv, CMD_RX_EN, 0);
ret = tdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "timeout disabling RDMA\n");
return ret;
}
/* Wait for a maximum packet size to be drained */
usleep_range(2000, 3000);
ret = rdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "timeout disabling TDMA\n");
return ret;
}
/* Disable UniMAC TX */
umac_enable_set(priv, CMD_TX_EN, 0);
/* Free RX/TX rings SW structures */
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
bcm_sysport_fini_rx_ring(priv);
free_irq(priv->irq0, dev);
if (!priv->is_lite)
free_irq(priv->irq1, dev);
/* Disconnect from PHY */
phy_disconnect(dev->phydev);
return 0;
}
static int bcm_sysport_rule_find(struct bcm_sysport_priv *priv,
u64 location)
{
unsigned int index;
u32 reg;
for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
reg = rxchk_readl(priv, RXCHK_BRCM_TAG(index));
reg >>= RXCHK_BRCM_TAG_CID_SHIFT;
reg &= RXCHK_BRCM_TAG_CID_MASK;
if (reg == location)
return index;
}
return -EINVAL;
}
static int bcm_sysport_rule_get(struct bcm_sysport_priv *priv,
struct ethtool_rxnfc *nfc)
{
int index;
/* This is not a rule that we know about */
index = bcm_sysport_rule_find(priv, nfc->fs.location);
if (index < 0)
return -EOPNOTSUPP;
nfc->fs.ring_cookie = RX_CLS_FLOW_WAKE;
return 0;
}
static int bcm_sysport_rule_set(struct bcm_sysport_priv *priv,
struct ethtool_rxnfc *nfc)
{
unsigned int index;
u32 reg;
/* We cannot match locations greater than what the classification ID
* permits (256 entries)
*/
if (nfc->fs.location > RXCHK_BRCM_TAG_CID_MASK)
return -E2BIG;
/* We cannot support flows that are not destined for a wake-up */
if (nfc->fs.ring_cookie != RX_CLS_FLOW_WAKE)
return -EOPNOTSUPP;
/* All filters are already in use, we cannot match more rules */
if (bitmap_weight(priv->filters, RXCHK_BRCM_TAG_MAX) ==
RXCHK_BRCM_TAG_MAX)
return -ENOSPC;
index = find_first_zero_bit(priv->filters, RXCHK_BRCM_TAG_MAX);
if (index > RXCHK_BRCM_TAG_MAX)
return -ENOSPC;
/* Location is the classification ID, and index is the position
* within one of our 8 possible filters to be programmed
*/
reg = rxchk_readl(priv, RXCHK_BRCM_TAG(index));
reg &= ~(RXCHK_BRCM_TAG_CID_MASK << RXCHK_BRCM_TAG_CID_SHIFT);
reg |= nfc->fs.location << RXCHK_BRCM_TAG_CID_SHIFT;
rxchk_writel(priv, reg, RXCHK_BRCM_TAG(index));
rxchk_writel(priv, 0xff00ffff, RXCHK_BRCM_TAG_MASK(index));
priv->filters_loc[index] = nfc->fs.location;
set_bit(index, priv->filters);
return 0;
}
static int bcm_sysport_rule_del(struct bcm_sysport_priv *priv,
u64 location)
{
int index;
/* This is not a rule that we know about */
index = bcm_sysport_rule_find(priv, location);
if (index < 0)
return -EOPNOTSUPP;
/* No need to disable this filter if it was enabled, this will
* be taken care of during suspend time by bcm_sysport_suspend_to_wol
*/
clear_bit(index, priv->filters);
priv->filters_loc[index] = 0;
return 0;
}
static int bcm_sysport_get_rxnfc(struct net_device *dev,
struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (nfc->cmd) {
case ETHTOOL_GRXCLSRULE:
ret = bcm_sysport_rule_get(priv, nfc);
break;
default:
break;
}
return ret;
}
static int bcm_sysport_set_rxnfc(struct net_device *dev,
struct ethtool_rxnfc *nfc)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
int ret = -EOPNOTSUPP;
switch (nfc->cmd) {
case ETHTOOL_SRXCLSRLINS:
ret = bcm_sysport_rule_set(priv, nfc);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = bcm_sysport_rule_del(priv, nfc->fs.location);
break;
default:
break;
}
return ret;
}
static const struct ethtool_ops bcm_sysport_ethtool_ops = {
.get_drvinfo = bcm_sysport_get_drvinfo,
.get_msglevel = bcm_sysport_get_msglvl,
.set_msglevel = bcm_sysport_set_msglvl,
.get_link = ethtool_op_get_link,
.get_strings = bcm_sysport_get_strings,
.get_ethtool_stats = bcm_sysport_get_stats,
.get_sset_count = bcm_sysport_get_sset_count,
.get_wol = bcm_sysport_get_wol,
.set_wol = bcm_sysport_set_wol,
.get_coalesce = bcm_sysport_get_coalesce,
.set_coalesce = bcm_sysport_set_coalesce,
.get_link_ksettings = phy_ethtool_get_link_ksettings,
.set_link_ksettings = phy_ethtool_set_link_ksettings,
.get_rxnfc = bcm_sysport_get_rxnfc,
.set_rxnfc = bcm_sysport_set_rxnfc,
};
static u16 bcm_sysport_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
struct bcm_sysport_priv *priv = netdev_priv(dev);
u16 queue = skb_get_queue_mapping(skb);
struct bcm_sysport_tx_ring *tx_ring;
unsigned int q, port;
if (!netdev_uses_dsa(dev))
return netdev_pick_tx(dev, skb, NULL);
/* DSA tagging layer will have configured the correct queue */
q = BRCM_TAG_GET_QUEUE(queue);
port = BRCM_TAG_GET_PORT(queue);
tx_ring = priv->ring_map[q + port * priv->per_port_num_tx_queues];
if (unlikely(!tx_ring))
return netdev_pick_tx(dev, skb, NULL);
return tx_ring->index;
}
static const struct net_device_ops bcm_sysport_netdev_ops = {
.ndo_start_xmit = bcm_sysport_xmit,
.ndo_tx_timeout = bcm_sysport_tx_timeout,
.ndo_open = bcm_sysport_open,
.ndo_stop = bcm_sysport_stop,
.ndo_set_features = bcm_sysport_set_features,
.ndo_set_rx_mode = bcm_sysport_set_rx_mode,
.ndo_set_mac_address = bcm_sysport_change_mac,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = bcm_sysport_poll_controller,
#endif
.ndo_get_stats64 = bcm_sysport_get_stats64,
.ndo_select_queue = bcm_sysport_select_queue,
};
static int bcm_sysport_map_queues(struct notifier_block *nb,
struct dsa_notifier_register_info *info)
{
struct bcm_sysport_tx_ring *ring;
struct bcm_sysport_priv *priv;
struct net_device *slave_dev;
unsigned int num_tx_queues;
unsigned int q, qp, port;
struct net_device *dev;
priv = container_of(nb, struct bcm_sysport_priv, dsa_notifier);
if (priv->netdev != info->master)
return 0;
dev = info->master;
/* We can't be setting up queue inspection for non directly attached
* switches
*/
if (info->switch_number)
return 0;
if (dev->netdev_ops != &bcm_sysport_netdev_ops)
return 0;
port = info->port_number;
slave_dev = info->info.dev;
/* On SYSTEMPORT Lite we have twice as less queues, so we cannot do a
* 1:1 mapping, we can only do a 2:1 mapping. By reducing the number of
* per-port (slave_dev) network devices queue, we achieve just that.
* This need to happen now before any slave network device is used such
* it accurately reflects the number of real TX queues.
*/
if (priv->is_lite)
netif_set_real_num_tx_queues(slave_dev,
slave_dev->num_tx_queues / 2);
num_tx_queues = slave_dev->real_num_tx_queues;
if (priv->per_port_num_tx_queues &&
priv->per_port_num_tx_queues != num_tx_queues)
netdev_warn(slave_dev, "asymmetric number of per-port queues\n");
priv->per_port_num_tx_queues = num_tx_queues;
for (q = 0, qp = 0; q < dev->num_tx_queues && qp < num_tx_queues;
q++) {
ring = &priv->tx_rings[q];
if (ring->inspect)
continue;
/* Just remember the mapping actual programming done
* during bcm_sysport_init_tx_ring
*/
ring->switch_queue = qp;
ring->switch_port = port;
ring->inspect = true;
priv->ring_map[qp + port * num_tx_queues] = ring;
qp++;
}
return 0;
}
static int bcm_sysport_unmap_queues(struct notifier_block *nb,
struct dsa_notifier_register_info *info)
{
struct bcm_sysport_tx_ring *ring;
struct bcm_sysport_priv *priv;
struct net_device *slave_dev;
unsigned int num_tx_queues;
struct net_device *dev;
unsigned int q, qp, port;
priv = container_of(nb, struct bcm_sysport_priv, dsa_notifier);
if (priv->netdev != info->master)
return 0;
dev = info->master;
if (dev->netdev_ops != &bcm_sysport_netdev_ops)
return 0;
port = info->port_number;
slave_dev = info->info.dev;
num_tx_queues = slave_dev->real_num_tx_queues;
for (q = 0; q < dev->num_tx_queues; q++) {
ring = &priv->tx_rings[q];
if (ring->switch_port != port)
continue;
if (!ring->inspect)
continue;
ring->inspect = false;
qp = ring->switch_queue;
priv->ring_map[qp + port * num_tx_queues] = NULL;
}
return 0;
}
static int bcm_sysport_dsa_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
int ret = NOTIFY_DONE;
switch (event) {
case DSA_PORT_REGISTER:
ret = bcm_sysport_map_queues(nb, ptr);
break;
case DSA_PORT_UNREGISTER:
ret = bcm_sysport_unmap_queues(nb, ptr);
break;
}
return notifier_from_errno(ret);
}
#define REV_FMT "v%2x.%02x"
static const struct bcm_sysport_hw_params bcm_sysport_params[] = {
[SYSTEMPORT] = {
.is_lite = false,
.num_rx_desc_words = SP_NUM_HW_RX_DESC_WORDS,
},
[SYSTEMPORT_LITE] = {
.is_lite = true,
.num_rx_desc_words = SP_LT_NUM_HW_RX_DESC_WORDS,
},
};
static const struct of_device_id bcm_sysport_of_match[] = {
{ .compatible = "brcm,systemportlite-v1.00",
.data = &bcm_sysport_params[SYSTEMPORT_LITE] },
{ .compatible = "brcm,systemport-v1.00",
.data = &bcm_sysport_params[SYSTEMPORT] },
{ .compatible = "brcm,systemport",
.data = &bcm_sysport_params[SYSTEMPORT] },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm_sysport_of_match);
static int bcm_sysport_probe(struct platform_device *pdev)
{
const struct bcm_sysport_hw_params *params;
const struct of_device_id *of_id = NULL;
struct bcm_sysport_priv *priv;
struct device_node *dn;
struct net_device *dev;
const void *macaddr;
u32 txq, rxq;
int ret;
dn = pdev->dev.of_node;
of_id = of_match_node(bcm_sysport_of_match, dn);
if (!of_id || !of_id->data)
return -EINVAL;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
if (ret)
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "unable to set DMA mask: %d\n", ret);
return ret;
}
/* Fairly quickly we need to know the type of adapter we have */
params = of_id->data;
/* Read the Transmit/Receive Queue properties */
if (of_property_read_u32(dn, "systemport,num-txq", &txq))
txq = TDMA_NUM_RINGS;
if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
rxq = 1;
/* Sanity check the number of transmit queues */
if (!txq || txq > TDMA_NUM_RINGS)
return -EINVAL;
dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
if (!dev)
return -ENOMEM;
/* Initialize private members */
priv = netdev_priv(dev);
/* Allocate number of TX rings */
priv->tx_rings = devm_kcalloc(&pdev->dev, txq,
sizeof(struct bcm_sysport_tx_ring),
GFP_KERNEL);
if (!priv->tx_rings)
return -ENOMEM;
priv->is_lite = params->is_lite;
priv->num_rx_desc_words = params->num_rx_desc_words;
priv->irq0 = platform_get_irq(pdev, 0);
if (!priv->is_lite) {
priv->irq1 = platform_get_irq(pdev, 1);
priv->wol_irq = platform_get_irq(pdev, 2);
} else {
priv->wol_irq = platform_get_irq(pdev, 1);
}
if (priv->irq0 <= 0 || (priv->irq1 <= 0 && !priv->is_lite)) {
dev_err(&pdev->dev, "invalid interrupts\n");
ret = -EINVAL;
goto err_free_netdev;
}
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base);
goto err_free_netdev;
}
priv->netdev = dev;
priv->pdev = pdev;
ret = of_get_phy_mode(dn, &priv->phy_interface);
/* Default to GMII interface mode */
if (ret)
priv->phy_interface = PHY_INTERFACE_MODE_GMII;
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
if (of_phy_is_fixed_link(dn)) {
ret = of_phy_register_fixed_link(dn);
if (ret) {
dev_err(&pdev->dev, "failed to register fixed PHY\n");
goto err_free_netdev;
}
priv->phy_dn = dn;
}
/* Initialize netdevice members */
macaddr = of_get_mac_address(dn);
if (IS_ERR(macaddr)) {
dev_warn(&pdev->dev, "using random Ethernet MAC\n");
eth_hw_addr_random(dev);
} else {
ether_addr_copy(dev->dev_addr, macaddr);
}
SET_NETDEV_DEV(dev, &pdev->dev);
dev_set_drvdata(&pdev->dev, dev);
dev->ethtool_ops = &bcm_sysport_ethtool_ops;
dev->netdev_ops = &bcm_sysport_netdev_ops;
netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);
dev->features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
dev->hw_features |= dev->features;
dev->vlan_features |= dev->features;
/* Request the WOL interrupt and advertise suspend if available */
priv->wol_irq_disabled = 1;
ret = devm_request_irq(&pdev->dev, priv->wol_irq,
bcm_sysport_wol_isr, 0, dev->name, priv);
if (!ret)
device_set_wakeup_capable(&pdev->dev, 1);
/* Set the needed headroom once and for all */
BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
dev->needed_headroom += sizeof(struct bcm_tsb);
/* libphy will adjust the link state accordingly */
netif_carrier_off(dev);
priv->rx_max_coalesced_frames = 1;
u64_stats_init(&priv->syncp);
priv->dsa_notifier.notifier_call = bcm_sysport_dsa_notifier;
ret = register_dsa_notifier(&priv->dsa_notifier);
if (ret) {
dev_err(&pdev->dev, "failed to register DSA notifier\n");
goto err_deregister_fixed_link;
}
ret = register_netdev(dev);
if (ret) {
dev_err(&pdev->dev, "failed to register net_device\n");
goto err_deregister_notifier;
}
priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
dev_info(&pdev->dev,
"Broadcom SYSTEMPORT%s " REV_FMT
" (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
priv->is_lite ? " Lite" : "",
(priv->rev >> 8) & 0xff, priv->rev & 0xff,
priv->irq0, priv->irq1, txq, rxq);
return 0;
err_deregister_notifier:
unregister_dsa_notifier(&priv->dsa_notifier);
err_deregister_fixed_link:
if (of_phy_is_fixed_link(dn))
of_phy_deregister_fixed_link(dn);
err_free_netdev:
free_netdev(dev);
return ret;
}
static int bcm_sysport_remove(struct platform_device *pdev)
{
struct net_device *dev = dev_get_drvdata(&pdev->dev);
struct bcm_sysport_priv *priv = netdev_priv(dev);
struct device_node *dn = pdev->dev.of_node;
/* Not much to do, ndo_close has been called
* and we use managed allocations
*/
unregister_dsa_notifier(&priv->dsa_notifier);
unregister_netdev(dev);
if (of_phy_is_fixed_link(dn))
of_phy_deregister_fixed_link(dn);
free_netdev(dev);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
{
struct net_device *ndev = priv->netdev;
unsigned int timeout = 1000;
unsigned int index, i = 0;
u32 reg;
reg = umac_readl(priv, UMAC_MPD_CTRL);
if (priv->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE))
reg |= MPD_EN;
reg &= ~PSW_EN;
if (priv->wolopts & WAKE_MAGICSECURE) {
/* Program the SecureOn password */
umac_writel(priv, get_unaligned_be16(&priv->sopass[0]),
UMAC_PSW_MS);
umac_writel(priv, get_unaligned_be32(&priv->sopass[2]),
UMAC_PSW_LS);
reg |= PSW_EN;
}
umac_writel(priv, reg, UMAC_MPD_CTRL);
if (priv->wolopts & WAKE_FILTER) {
/* Turn on ACPI matching to steal packets from RBUF */
reg = rbuf_readl(priv, RBUF_CONTROL);
if (priv->is_lite)
reg |= RBUF_ACPI_EN_LITE;
else
reg |= RBUF_ACPI_EN;
rbuf_writel(priv, reg, RBUF_CONTROL);
/* Enable RXCHK, active filters and Broadcom tag matching */
reg = rxchk_readl(priv, RXCHK_CONTROL);
reg &= ~(RXCHK_BRCM_TAG_MATCH_MASK <<
RXCHK_BRCM_TAG_MATCH_SHIFT);
for_each_set_bit(index, priv->filters, RXCHK_BRCM_TAG_MAX) {
reg |= BIT(RXCHK_BRCM_TAG_MATCH_SHIFT + i);
i++;
}
reg |= RXCHK_EN | RXCHK_BRCM_TAG_EN;
rxchk_writel(priv, reg, RXCHK_CONTROL);
}
/* Make sure RBUF entered WoL mode as result */
do {
reg = rbuf_readl(priv, RBUF_STATUS);
if (reg & RBUF_WOL_MODE)
break;
udelay(10);
} while (timeout-- > 0);
/* Do not leave the UniMAC RBUF matching only MPD packets */
if (!timeout) {
mpd_enable_set(priv, false);
netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
return -ETIMEDOUT;
}
/* UniMAC receive needs to be turned on */
umac_enable_set(priv, CMD_RX_EN, 1);
netif_dbg(priv, wol, ndev, "entered WOL mode\n");
return 0;
}
static int __maybe_unused bcm_sysport_suspend(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcm_sysport_priv *priv = netdev_priv(dev);
unsigned int i;
int ret = 0;
u32 reg;
if (!netif_running(dev))
return 0;
netif_device_detach(dev);
bcm_sysport_netif_stop(dev);
phy_suspend(dev->phydev);
/* Disable UniMAC RX */
umac_enable_set(priv, CMD_RX_EN, 0);
ret = rdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "RDMA timeout!\n");
return ret;
}
/* Disable RXCHK if enabled */
if (priv->rx_chk_en) {
reg = rxchk_readl(priv, RXCHK_CONTROL);
reg &= ~RXCHK_EN;
rxchk_writel(priv, reg, RXCHK_CONTROL);
}
/* Flush RX pipe */
if (!priv->wolopts)
topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
ret = tdma_enable_set(priv, 0);
if (ret) {
netdev_err(dev, "TDMA timeout!\n");
return ret;
}
/* Wait for a packet boundary */
usleep_range(2000, 3000);
umac_enable_set(priv, CMD_TX_EN, 0);
topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
/* Free RX/TX rings SW structures */
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
bcm_sysport_fini_rx_ring(priv);
/* Get prepared for Wake-on-LAN */
if (device_may_wakeup(d) && priv->wolopts)
ret = bcm_sysport_suspend_to_wol(priv);
return ret;
}
static int __maybe_unused bcm_sysport_resume(struct device *d)
{
struct net_device *dev = dev_get_drvdata(d);
struct bcm_sysport_priv *priv = netdev_priv(dev);
unsigned int i;
int ret;
if (!netif_running(dev))
return 0;
umac_reset(priv);
/* We may have been suspended and never received a WOL event that
* would turn off MPD detection, take care of that now
*/
bcm_sysport_resume_from_wol(priv);
/* Initialize both hardware and software ring */
for (i = 0; i < dev->num_tx_queues; i++) {
ret = bcm_sysport_init_tx_ring(priv, i);
if (ret) {
netdev_err(dev, "failed to initialize TX ring %d\n",
i);
goto out_free_tx_rings;
}
}
/* Initialize linked-list */
tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
/* Initialize RX ring */
ret = bcm_sysport_init_rx_ring(priv);
if (ret) {
netdev_err(dev, "failed to initialize RX ring\n");
goto out_free_rx_ring;
}
/* RX pipe enable */
topctrl_writel(priv, 0, RX_FLUSH_CNTL);
ret = rdma_enable_set(priv, 1);
if (ret) {
netdev_err(dev, "failed to enable RDMA\n");
goto out_free_rx_ring;
}
/* Restore enabled features */
bcm_sysport_set_features(dev, dev->features);
rbuf_init(priv);
/* Set maximum frame length */
if (!priv->is_lite)
umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
else
gib_set_pad_extension(priv);
/* Set MAC address */
umac_set_hw_addr(priv, dev->dev_addr);
umac_enable_set(priv, CMD_RX_EN, 1);
/* TX pipe enable */
topctrl_writel(priv, 0, TX_FLUSH_CNTL);
umac_enable_set(priv, CMD_TX_EN, 1);
ret = tdma_enable_set(priv, 1);
if (ret) {
netdev_err(dev, "TDMA timeout!\n");
goto out_free_rx_ring;
}
phy_resume(dev->phydev);
bcm_sysport_netif_start(dev);
netif_device_attach(dev);
return 0;
out_free_rx_ring:
bcm_sysport_fini_rx_ring(priv);
out_free_tx_rings:
for (i = 0; i < dev->num_tx_queues; i++)
bcm_sysport_fini_tx_ring(priv, i);
return ret;
}
static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
bcm_sysport_suspend, bcm_sysport_resume);
static struct platform_driver bcm_sysport_driver = {
.probe = bcm_sysport_probe,
.remove = bcm_sysport_remove,
.driver = {
.name = "brcm-systemport",
.of_match_table = bcm_sysport_of_match,
.pm = &bcm_sysport_pm_ops,
},
};
module_platform_driver(bcm_sysport_driver);
MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
MODULE_ALIAS("platform:brcm-systemport");
MODULE_LICENSE("GPL");