blob: 8247d21d0432aaffbfa73200e9e959a53be6115c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTx2 RVU Ethernet driver
*
* Copyright (C) 2020 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <net/tso.h>
#include "otx2_reg.h"
#include "otx2_common.h"
#include "otx2_struct.h"
static void otx2_nix_rq_op_stats(struct queue_stats *stats,
struct otx2_nic *pfvf, int qidx)
{
u64 incr = (u64)qidx << 32;
u64 *ptr;
ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
stats->bytes = otx2_atomic64_add(incr, ptr);
ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
stats->pkts = otx2_atomic64_add(incr, ptr);
}
static void otx2_nix_sq_op_stats(struct queue_stats *stats,
struct otx2_nic *pfvf, int qidx)
{
u64 incr = (u64)qidx << 32;
u64 *ptr;
ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
stats->bytes = otx2_atomic64_add(incr, ptr);
ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
stats->pkts = otx2_atomic64_add(incr, ptr);
}
void otx2_update_lmac_stats(struct otx2_nic *pfvf)
{
struct msg_req *req;
if (!netif_running(pfvf->netdev))
return;
otx2_mbox_lock(&pfvf->mbox);
req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
if (!req) {
otx2_mbox_unlock(&pfvf->mbox);
return;
}
otx2_sync_mbox_msg(&pfvf->mbox);
otx2_mbox_unlock(&pfvf->mbox);
}
int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
{
struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
if (!pfvf->qset.rq)
return 0;
otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
return 1;
}
int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
{
struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
if (!pfvf->qset.sq)
return 0;
otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
return 1;
}
void otx2_get_dev_stats(struct otx2_nic *pfvf)
{
struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
#define OTX2_GET_RX_STATS(reg) \
otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
#define OTX2_GET_TX_STATS(reg) \
otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
dev_stats->rx_frames = dev_stats->rx_bcast_frames +
dev_stats->rx_mcast_frames +
dev_stats->rx_ucast_frames;
dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
dev_stats->tx_frames = dev_stats->tx_bcast_frames +
dev_stats->tx_mcast_frames +
dev_stats->tx_ucast_frames;
}
void otx2_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct otx2_nic *pfvf = netdev_priv(netdev);
struct otx2_dev_stats *dev_stats;
otx2_get_dev_stats(pfvf);
dev_stats = &pfvf->hw.dev_stats;
stats->rx_bytes = dev_stats->rx_bytes;
stats->rx_packets = dev_stats->rx_frames;
stats->rx_dropped = dev_stats->rx_drops;
stats->multicast = dev_stats->rx_mcast_frames;
stats->tx_bytes = dev_stats->tx_bytes;
stats->tx_packets = dev_stats->tx_frames;
stats->tx_dropped = dev_stats->tx_drops;
}
/* Sync MAC address with RVU AF */
static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
{
struct nix_set_mac_addr *req;
int err;
otx2_mbox_lock(&pfvf->mbox);
req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
if (!req) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
ether_addr_copy(req->mac_addr, mac);
err = otx2_sync_mbox_msg(&pfvf->mbox);
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
struct net_device *netdev)
{
struct nix_get_mac_addr_rsp *rsp;
struct mbox_msghdr *msghdr;
struct msg_req *req;
int err;
otx2_mbox_lock(&pfvf->mbox);
req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
if (!req) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err) {
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
if (!msghdr) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
rsp = (struct nix_get_mac_addr_rsp *)msghdr;
ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
otx2_mbox_unlock(&pfvf->mbox);
return 0;
}
int otx2_set_mac_address(struct net_device *netdev, void *p)
{
struct otx2_nic *pfvf = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data))
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
else
return -EPERM;
return 0;
}
int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
{
struct nix_frs_cfg *req;
int err;
otx2_mbox_lock(&pfvf->mbox);
req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
if (!req) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
/* SMQ config limits maximum pkt size that can be transmitted */
req->update_smq = true;
pfvf->max_frs = mtu + OTX2_ETH_HLEN;
req->maxlen = pfvf->max_frs;
err = otx2_sync_mbox_msg(&pfvf->mbox);
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
{
struct otx2_rss_info *rss = &pfvf->hw.rss_info;
struct nix_rss_flowkey_cfg *req;
int err;
otx2_mbox_lock(&pfvf->mbox);
req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
if (!req) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
req->mcam_index = -1; /* Default or reserved index */
req->flowkey_cfg = rss->flowkey_cfg;
req->group = DEFAULT_RSS_CONTEXT_GROUP;
err = otx2_sync_mbox_msg(&pfvf->mbox);
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
int otx2_set_rss_table(struct otx2_nic *pfvf)
{
struct otx2_rss_info *rss = &pfvf->hw.rss_info;
struct mbox *mbox = &pfvf->mbox;
struct nix_aq_enq_req *aq;
int idx, err;
otx2_mbox_lock(mbox);
/* Get memory to put this msg */
for (idx = 0; idx < rss->rss_size; idx++) {
aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
if (!aq) {
/* The shared memory buffer can be full.
* Flush it and retry
*/
err = otx2_sync_mbox_msg(mbox);
if (err) {
otx2_mbox_unlock(mbox);
return err;
}
aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
if (!aq) {
otx2_mbox_unlock(mbox);
return -ENOMEM;
}
}
aq->rss.rq = rss->ind_tbl[idx];
/* Fill AQ info */
aq->qidx = idx;
aq->ctype = NIX_AQ_CTYPE_RSS;
aq->op = NIX_AQ_INSTOP_INIT;
}
err = otx2_sync_mbox_msg(mbox);
otx2_mbox_unlock(mbox);
return err;
}
void otx2_set_rss_key(struct otx2_nic *pfvf)
{
struct otx2_rss_info *rss = &pfvf->hw.rss_info;
u64 *key = (u64 *)&rss->key[4];
int idx;
/* 352bit or 44byte key needs to be configured as below
* NIX_LF_RX_SECRETX0 = key<351:288>
* NIX_LF_RX_SECRETX1 = key<287:224>
* NIX_LF_RX_SECRETX2 = key<223:160>
* NIX_LF_RX_SECRETX3 = key<159:96>
* NIX_LF_RX_SECRETX4 = key<95:32>
* NIX_LF_RX_SECRETX5<63:32> = key<31:0>
*/
otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
(u64)(*((u32 *)&rss->key)) << 32);
idx = sizeof(rss->key) / sizeof(u64);
while (idx > 0) {
idx--;
otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
}
}
int otx2_rss_init(struct otx2_nic *pfvf)
{
struct otx2_rss_info *rss = &pfvf->hw.rss_info;
int idx, ret = 0;
rss->rss_size = sizeof(rss->ind_tbl);
/* Init RSS key if it is not setup already */
if (!rss->enable)
netdev_rss_key_fill(rss->key, sizeof(rss->key));
otx2_set_rss_key(pfvf);
if (!netif_is_rxfh_configured(pfvf->netdev)) {
/* Default indirection table */
for (idx = 0; idx < rss->rss_size; idx++)
rss->ind_tbl[idx] =
ethtool_rxfh_indir_default(idx,
pfvf->hw.rx_queues);
}
ret = otx2_set_rss_table(pfvf);
if (ret)
return ret;
/* Flowkey or hash config to be used for generating flow tag */
rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
NIX_FLOW_KEY_TYPE_SCTP;
ret = otx2_set_flowkey_cfg(pfvf);
if (ret)
return ret;
rss->enable = true;
return 0;
}
void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
{
/* Configure CQE interrupt coalescing parameters
*
* HW triggers an irq when ECOUNT > cq_ecount_wait, hence
* set 1 less than cq_ecount_wait. And cq_time_wait is in
* usecs, convert that to 100ns count.
*/
otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
((u64)pfvf->hw.cq_qcount_wait << 32) |
(pfvf->hw.cq_ecount_wait - 1));
}
dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
gfp_t gfp)
{
dma_addr_t iova;
/* Check if request can be accommodated in previous allocated page */
if (pool->page && ((pool->page_offset + pool->rbsize) <=
(PAGE_SIZE << pool->rbpage_order))) {
pool->pageref++;
goto ret;
}
otx2_get_page(pool);
/* Allocate a new page */
pool->page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
pool->rbpage_order);
if (unlikely(!pool->page))
return -ENOMEM;
pool->page_offset = 0;
ret:
iova = (u64)otx2_dma_map_page(pfvf, pool->page, pool->page_offset,
pool->rbsize, DMA_FROM_DEVICE);
if (!iova) {
if (!pool->page_offset)
__free_pages(pool->page, pool->rbpage_order);
pool->page = NULL;
return -ENOMEM;
}
pool->page_offset += pool->rbsize;
return iova;
}
void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
{
struct otx2_nic *pfvf = netdev_priv(netdev);
schedule_work(&pfvf->reset_task);
}
void otx2_get_mac_from_af(struct net_device *netdev)
{
struct otx2_nic *pfvf = netdev_priv(netdev);
int err;
err = otx2_hw_get_mac_addr(pfvf, netdev);
if (err)
dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
/* If AF doesn't provide a valid MAC, generate a random one */
if (!is_valid_ether_addr(netdev->dev_addr))
eth_hw_addr_random(netdev);
}
static int otx2_get_link(struct otx2_nic *pfvf)
{
int link = 0;
u16 map;
/* cgx lmac link */
if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
map = pfvf->hw.tx_chan_base & 0x7FF;
link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
}
/* LBK channel */
if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE)
link = 12;
return link;
}
int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
{
struct otx2_hw *hw = &pfvf->hw;
struct nix_txschq_config *req;
u64 schq, parent;
req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
if (!req)
return -ENOMEM;
req->lvl = lvl;
req->num_regs = 1;
schq = hw->txschq_list[lvl][0];
/* Set topology e.t.c configuration */
if (lvl == NIX_TXSCH_LVL_SMQ) {
req->reg[0] = NIX_AF_SMQX_CFG(schq);
req->regval[0] = ((pfvf->netdev->mtu + OTX2_ETH_HLEN) << 8) |
OTX2_MIN_MTU;
req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
(0x2ULL << 36);
req->num_regs++;
/* MDQ config */
parent = hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
req->reg[1] = NIX_AF_MDQX_PARENT(schq);
req->regval[1] = parent << 16;
req->num_regs++;
/* Set DWRR quantum */
req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
req->regval[2] = DFLT_RR_QTM;
} else if (lvl == NIX_TXSCH_LVL_TL4) {
parent = hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
req->reg[0] = NIX_AF_TL4X_PARENT(schq);
req->regval[0] = parent << 16;
req->num_regs++;
req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
req->regval[1] = DFLT_RR_QTM;
} else if (lvl == NIX_TXSCH_LVL_TL3) {
parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
req->reg[0] = NIX_AF_TL3X_PARENT(schq);
req->regval[0] = parent << 16;
req->num_regs++;
req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
req->regval[1] = DFLT_RR_QTM;
} else if (lvl == NIX_TXSCH_LVL_TL2) {
parent = hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
req->reg[0] = NIX_AF_TL2X_PARENT(schq);
req->regval[0] = parent << 16;
req->num_regs++;
req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
req->num_regs++;
req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
otx2_get_link(pfvf));
/* Enable this queue and backpressure */
req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
} else if (lvl == NIX_TXSCH_LVL_TL1) {
/* Default config for TL1.
* For VF this is always ignored.
*/
/* Set DWRR quantum */
req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
req->num_regs++;
req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
req->num_regs++;
req->reg[2] = NIX_AF_TL1X_CIR(schq);
req->regval[2] = 0;
}
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int otx2_txsch_alloc(struct otx2_nic *pfvf)
{
struct nix_txsch_alloc_req *req;
int lvl;
/* Get memory to put this msg */
req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
if (!req)
return -ENOMEM;
/* Request one schq per level */
for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
req->schq[lvl] = 1;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int otx2_txschq_stop(struct otx2_nic *pfvf)
{
struct nix_txsch_free_req *free_req;
int lvl, schq, err;
otx2_mbox_lock(&pfvf->mbox);
/* Free the transmit schedulers */
free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
if (!free_req) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
free_req->flags = TXSCHQ_FREE_ALL;
err = otx2_sync_mbox_msg(&pfvf->mbox);
otx2_mbox_unlock(&pfvf->mbox);
/* Clear the txschq list */
for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
pfvf->hw.txschq_list[lvl][schq] = 0;
}
return err;
}
void otx2_sqb_flush(struct otx2_nic *pfvf)
{
int qidx, sqe_tail, sqe_head;
u64 incr, *ptr, val;
ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
incr = (u64)qidx << 32;
while (1) {
val = otx2_atomic64_add(incr, ptr);
sqe_head = (val >> 20) & 0x3F;
sqe_tail = (val >> 28) & 0x3F;
if (sqe_head == sqe_tail)
break;
usleep_range(1, 3);
}
}
}
/* RED and drop levels of CQ on packet reception.
* For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
*/
#define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
#define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
/* RED and drop levels of AURA for packet reception.
* For AURA level is measure of fullness (0x0 = empty, 255 = full).
* Eg: For RQ length 1K, for pass/drop level 204/230.
* RED accepts pkts if free pointers > 102 & <= 205.
* Drops pkts if free pointers < 102.
*/
#define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
#define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
/* Send skid of 2000 packets required for CQ size of 4K CQEs. */
#define SEND_CQ_SKID 2000
static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
{
struct otx2_qset *qset = &pfvf->qset;
struct nix_aq_enq_req *aq;
/* Get memory to put this msg */
aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
aq->rq.cq = qidx;
aq->rq.ena = 1;
aq->rq.pb_caching = 1;
aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
aq->rq.qint_idx = 0;
aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
/* Fill AQ info */
aq->qidx = qidx;
aq->ctype = NIX_AQ_CTYPE_RQ;
aq->op = NIX_AQ_INSTOP_INIT;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
{
struct otx2_qset *qset = &pfvf->qset;
struct otx2_snd_queue *sq;
struct nix_aq_enq_req *aq;
struct otx2_pool *pool;
int err;
pool = &pfvf->qset.pool[sqb_aura];
sq = &qset->sq[qidx];
sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
sq->sqe_cnt = qset->sqe_cnt;
err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
if (err)
return err;
err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
TSO_HEADER_SIZE);
if (err)
return err;
sq->sqe_base = sq->sqe->base;
sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
if (!sq->sg)
return -ENOMEM;
sq->head = 0;
sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
/* Set SQE threshold to 10% of total SQEs */
sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
sq->aura_id = sqb_aura;
sq->aura_fc_addr = pool->fc_addr->base;
sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
sq->stats.bytes = 0;
sq->stats.pkts = 0;
/* Get memory to put this msg */
aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
aq->sq.cq = pfvf->hw.rx_queues + qidx;
aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
aq->sq.cq_ena = 1;
aq->sq.ena = 1;
/* Only one SMQ is allocated, map all SQ's to that SMQ */
aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
aq->sq.smq_rr_quantum = DFLT_RR_QTM;
aq->sq.default_chan = pfvf->hw.tx_chan_base;
aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
aq->sq.sqb_aura = sqb_aura;
aq->sq.sq_int_ena = NIX_SQINT_BITS;
aq->sq.qint_idx = 0;
/* Due pipelining impact minimum 2000 unused SQ CQE's
* need to maintain to avoid CQ overflow.
*/
aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt));
/* Fill AQ info */
aq->qidx = qidx;
aq->ctype = NIX_AQ_CTYPE_SQ;
aq->op = NIX_AQ_INSTOP_INIT;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
{
struct otx2_qset *qset = &pfvf->qset;
struct nix_aq_enq_req *aq;
struct otx2_cq_queue *cq;
int err, pool_id;
cq = &qset->cq[qidx];
cq->cq_idx = qidx;
if (qidx < pfvf->hw.rx_queues) {
cq->cq_type = CQ_RX;
cq->cint_idx = qidx;
cq->cqe_cnt = qset->rqe_cnt;
} else {
cq->cq_type = CQ_TX;
cq->cint_idx = qidx - pfvf->hw.rx_queues;
cq->cqe_cnt = qset->sqe_cnt;
}
cq->cqe_size = pfvf->qset.xqe_size;
/* Allocate memory for CQEs */
err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
if (err)
return err;
/* Save CQE CPU base for faster reference */
cq->cqe_base = cq->cqe->base;
/* In case where all RQs auras point to single pool,
* all CQs receive buffer pool also point to same pool.
*/
pool_id = ((cq->cq_type == CQ_RX) &&
(pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
cq->rbpool = &qset->pool[pool_id];
cq->refill_task_sched = false;
/* Get memory to put this msg */
aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
aq->cq.ena = 1;
aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
aq->cq.caching = 1;
aq->cq.base = cq->cqe->iova;
aq->cq.cint_idx = cq->cint_idx;
aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
aq->cq.qint_idx = 0;
aq->cq.avg_level = 255;
if (qidx < pfvf->hw.rx_queues) {
aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
aq->cq.drop_ena = 1;
}
/* Fill AQ info */
aq->qidx = qidx;
aq->ctype = NIX_AQ_CTYPE_CQ;
aq->op = NIX_AQ_INSTOP_INIT;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
static void otx2_pool_refill_task(struct work_struct *work)
{
struct otx2_cq_queue *cq;
struct otx2_pool *rbpool;
struct refill_work *wrk;
int qidx, free_ptrs = 0;
struct otx2_nic *pfvf;
s64 bufptr;
wrk = container_of(work, struct refill_work, pool_refill_work.work);
pfvf = wrk->pf;
qidx = wrk - pfvf->refill_wrk;
cq = &pfvf->qset.cq[qidx];
rbpool = cq->rbpool;
free_ptrs = cq->pool_ptrs;
while (cq->pool_ptrs) {
bufptr = otx2_alloc_rbuf(pfvf, rbpool, GFP_KERNEL);
if (bufptr <= 0) {
/* Schedule a WQ if we fails to free atleast half of the
* pointers else enable napi for this RQ.
*/
if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
struct delayed_work *dwork;
dwork = &wrk->pool_refill_work;
schedule_delayed_work(dwork,
msecs_to_jiffies(100));
} else {
cq->refill_task_sched = false;
}
return;
}
otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
cq->pool_ptrs--;
}
cq->refill_task_sched = false;
}
int otx2_config_nix_queues(struct otx2_nic *pfvf)
{
int qidx, err;
/* Initialize RX queues */
for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
err = otx2_rq_init(pfvf, qidx, lpb_aura);
if (err)
return err;
}
/* Initialize TX queues */
for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
err = otx2_sq_init(pfvf, qidx, sqb_aura);
if (err)
return err;
}
/* Initialize completion queues */
for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
err = otx2_cq_init(pfvf, qidx);
if (err)
return err;
}
/* Initialize work queue for receive buffer refill */
pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
sizeof(struct refill_work), GFP_KERNEL);
if (!pfvf->refill_wrk)
return -ENOMEM;
for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
pfvf->refill_wrk[qidx].pf = pfvf;
INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
otx2_pool_refill_task);
}
return 0;
}
int otx2_config_nix(struct otx2_nic *pfvf)
{
struct nix_lf_alloc_req *nixlf;
struct nix_lf_alloc_rsp *rsp;
int err;
pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
/* Get memory to put this msg */
nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
if (!nixlf)
return -ENOMEM;
/* Set RQ/SQ/CQ counts */
nixlf->rq_cnt = pfvf->hw.rx_queues;
nixlf->sq_cnt = pfvf->hw.tx_queues;
nixlf->cq_cnt = pfvf->qset.cq_cnt;
nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */
nixlf->xqe_sz = NIX_XQESZ_W16;
/* We don't know absolute NPA LF idx attached.
* AF will replace 'RVU_DEFAULT_PF_FUNC' with
* NPA LF attached to this RVU PF/VF.
*/
nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
/* Disable alignment pad, enable L2 length check,
* enable L4 TCP/UDP checksum verification.
*/
nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err)
return err;
rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
&nixlf->hdr);
if (IS_ERR(rsp))
return PTR_ERR(rsp);
if (rsp->qints < 1)
return -ENXIO;
return rsp->hdr.rc;
}
void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
{
struct otx2_qset *qset = &pfvf->qset;
struct otx2_hw *hw = &pfvf->hw;
struct otx2_snd_queue *sq;
int sqb, qidx;
u64 iova, pa;
for (qidx = 0; qidx < hw->tx_queues; qidx++) {
sq = &qset->sq[qidx];
if (!sq->sqb_ptrs)
continue;
for (sqb = 0; sqb < sq->sqb_count; sqb++) {
if (!sq->sqb_ptrs[sqb])
continue;
iova = sq->sqb_ptrs[sqb];
pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
put_page(virt_to_page(phys_to_virt(pa)));
}
sq->sqb_count = 0;
}
}
void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
{
int pool_id, pool_start = 0, pool_end = 0, size = 0;
u64 iova, pa;
if (type == AURA_NIX_SQ) {
pool_start = otx2_get_pool_idx(pfvf, type, 0);
pool_end = pool_start + pfvf->hw.sqpool_cnt;
size = pfvf->hw.sqb_size;
}
if (type == AURA_NIX_RQ) {
pool_start = otx2_get_pool_idx(pfvf, type, 0);
pool_end = pfvf->hw.rqpool_cnt;
size = pfvf->rbsize;
}
/* Free SQB and RQB pointers from the aura pool */
for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
iova = otx2_aura_allocptr(pfvf, pool_id);
while (iova) {
if (type == AURA_NIX_RQ)
iova -= OTX2_HEAD_ROOM;
pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
dma_unmap_page_attrs(pfvf->dev, iova, size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
put_page(virt_to_page(phys_to_virt(pa)));
iova = otx2_aura_allocptr(pfvf, pool_id);
}
}
}
void otx2_aura_pool_free(struct otx2_nic *pfvf)
{
struct otx2_pool *pool;
int pool_id;
if (!pfvf->qset.pool)
return;
for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
pool = &pfvf->qset.pool[pool_id];
qmem_free(pfvf->dev, pool->stack);
qmem_free(pfvf->dev, pool->fc_addr);
}
devm_kfree(pfvf->dev, pfvf->qset.pool);
}
static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
int pool_id, int numptrs)
{
struct npa_aq_enq_req *aq;
struct otx2_pool *pool;
int err;
pool = &pfvf->qset.pool[pool_id];
/* Allocate memory for HW to update Aura count.
* Alloc one cache line, so that it fits all FC_STYPE modes.
*/
if (!pool->fc_addr) {
err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
if (err)
return err;
}
/* Initialize this aura's context via AF */
aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
if (!aq) {
/* Shared mbox memory buffer is full, flush it and retry */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err)
return err;
aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
if (!aq)
return -ENOMEM;
}
aq->aura_id = aura_id;
/* Will be filled by AF with correct pool context address */
aq->aura.pool_addr = pool_id;
aq->aura.pool_caching = 1;
aq->aura.shift = ilog2(numptrs) - 8;
aq->aura.count = numptrs;
aq->aura.limit = numptrs;
aq->aura.avg_level = 255;
aq->aura.ena = 1;
aq->aura.fc_ena = 1;
aq->aura.fc_addr = pool->fc_addr->iova;
aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
/* Fill AQ info */
aq->ctype = NPA_AQ_CTYPE_AURA;
aq->op = NPA_AQ_INSTOP_INIT;
return 0;
}
static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
int stack_pages, int numptrs, int buf_size)
{
struct npa_aq_enq_req *aq;
struct otx2_pool *pool;
int err;
pool = &pfvf->qset.pool[pool_id];
/* Alloc memory for stack which is used to store buffer pointers */
err = qmem_alloc(pfvf->dev, &pool->stack,
stack_pages, pfvf->hw.stack_pg_bytes);
if (err)
return err;
pool->rbsize = buf_size;
pool->rbpage_order = get_order(buf_size);
/* Initialize this pool's context via AF */
aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
if (!aq) {
/* Shared mbox memory buffer is full, flush it and retry */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err) {
qmem_free(pfvf->dev, pool->stack);
return err;
}
aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
if (!aq) {
qmem_free(pfvf->dev, pool->stack);
return -ENOMEM;
}
}
aq->aura_id = pool_id;
aq->pool.stack_base = pool->stack->iova;
aq->pool.stack_caching = 1;
aq->pool.ena = 1;
aq->pool.buf_size = buf_size / 128;
aq->pool.stack_max_pages = stack_pages;
aq->pool.shift = ilog2(numptrs) - 8;
aq->pool.ptr_start = 0;
aq->pool.ptr_end = ~0ULL;
/* Fill AQ info */
aq->ctype = NPA_AQ_CTYPE_POOL;
aq->op = NPA_AQ_INSTOP_INIT;
return 0;
}
int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
{
int qidx, pool_id, stack_pages, num_sqbs;
struct otx2_qset *qset = &pfvf->qset;
struct otx2_hw *hw = &pfvf->hw;
struct otx2_snd_queue *sq;
struct otx2_pool *pool;
int err, ptr;
s64 bufptr;
/* Calculate number of SQBs needed.
*
* For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
* Last SQE is used for pointing to next SQB.
*/
num_sqbs = (hw->sqb_size / 128) - 1;
num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
/* Get no of stack pages needed */
stack_pages =
(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
for (qidx = 0; qidx < hw->tx_queues; qidx++) {
pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
/* Initialize aura context */
err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
if (err)
goto fail;
/* Initialize pool context */
err = otx2_pool_init(pfvf, pool_id, stack_pages,
num_sqbs, hw->sqb_size);
if (err)
goto fail;
}
/* Flush accumulated messages */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err)
goto fail;
/* Allocate pointers and free them to aura/pool */
for (qidx = 0; qidx < hw->tx_queues; qidx++) {
pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
pool = &pfvf->qset.pool[pool_id];
sq = &qset->sq[qidx];
sq->sqb_count = 0;
sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(u64 *), GFP_KERNEL);
if (!sq->sqb_ptrs)
return -ENOMEM;
for (ptr = 0; ptr < num_sqbs; ptr++) {
bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL);
if (bufptr <= 0)
return bufptr;
otx2_aura_freeptr(pfvf, pool_id, bufptr);
sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
}
otx2_get_page(pool);
}
return 0;
fail:
otx2_mbox_reset(&pfvf->mbox.mbox, 0);
otx2_aura_pool_free(pfvf);
return err;
}
int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
{
struct otx2_hw *hw = &pfvf->hw;
int stack_pages, pool_id, rq;
struct otx2_pool *pool;
int err, ptr, num_ptrs;
s64 bufptr;
num_ptrs = pfvf->qset.rqe_cnt;
stack_pages =
(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
for (rq = 0; rq < hw->rx_queues; rq++) {
pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
/* Initialize aura context */
err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
if (err)
goto fail;
}
for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
err = otx2_pool_init(pfvf, pool_id, stack_pages,
num_ptrs, pfvf->rbsize);
if (err)
goto fail;
}
/* Flush accumulated messages */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err)
goto fail;
/* Allocate pointers and free them to aura/pool */
for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
pool = &pfvf->qset.pool[pool_id];
for (ptr = 0; ptr < num_ptrs; ptr++) {
bufptr = otx2_alloc_rbuf(pfvf, pool, GFP_KERNEL);
if (bufptr <= 0)
return bufptr;
otx2_aura_freeptr(pfvf, pool_id,
bufptr + OTX2_HEAD_ROOM);
}
otx2_get_page(pool);
}
return 0;
fail:
otx2_mbox_reset(&pfvf->mbox.mbox, 0);
otx2_aura_pool_free(pfvf);
return err;
}
int otx2_config_npa(struct otx2_nic *pfvf)
{
struct otx2_qset *qset = &pfvf->qset;
struct npa_lf_alloc_req *npalf;
struct otx2_hw *hw = &pfvf->hw;
int aura_cnt;
/* Pool - Stack of free buffer pointers
* Aura - Alloc/frees pointers from/to pool for NIX DMA.
*/
if (!hw->pool_cnt)
return -EINVAL;
qset->pool = devm_kzalloc(pfvf->dev, sizeof(struct otx2_pool) *
hw->pool_cnt, GFP_KERNEL);
if (!qset->pool)
return -ENOMEM;
/* Get memory to put this msg */
npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
if (!npalf)
return -ENOMEM;
/* Set aura and pool counts */
npalf->nr_pools = hw->pool_cnt;
aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
return otx2_sync_mbox_msg(&pfvf->mbox);
}
int otx2_detach_resources(struct mbox *mbox)
{
struct rsrc_detach *detach;
otx2_mbox_lock(mbox);
detach = otx2_mbox_alloc_msg_detach_resources(mbox);
if (!detach) {
otx2_mbox_unlock(mbox);
return -ENOMEM;
}
/* detach all */
detach->partial = false;
/* Send detach request to AF */
otx2_mbox_msg_send(&mbox->mbox, 0);
otx2_mbox_unlock(mbox);
return 0;
}
int otx2_attach_npa_nix(struct otx2_nic *pfvf)
{
struct rsrc_attach *attach;
struct msg_req *msix;
int err;
otx2_mbox_lock(&pfvf->mbox);
/* Get memory to put this msg */
attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
if (!attach) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
attach->npalf = true;
attach->nixlf = true;
/* Send attach request to AF */
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err) {
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
pfvf->nix_blkaddr = BLKADDR_NIX0;
/* If the platform has two NIX blocks then LF may be
* allocated from NIX1.
*/
if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
pfvf->nix_blkaddr = BLKADDR_NIX1;
/* Get NPA and NIX MSIX vector offsets */
msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
if (!msix) {
otx2_mbox_unlock(&pfvf->mbox);
return -ENOMEM;
}
err = otx2_sync_mbox_msg(&pfvf->mbox);
if (err) {
otx2_mbox_unlock(&pfvf->mbox);
return err;
}
otx2_mbox_unlock(&pfvf->mbox);
if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
dev_err(pfvf->dev,
"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
return -EINVAL;
}
return 0;
}
void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
{
struct hwctx_disable_req *req;
otx2_mbox_lock(mbox);
/* Request AQ to disable this context */
if (npa)
req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
else
req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
if (!req) {
otx2_mbox_unlock(mbox);
return;
}
req->ctype = type;
if (otx2_sync_mbox_msg(mbox))
dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
__func__);
otx2_mbox_unlock(mbox);
}
/* Mbox message handlers */
void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
struct cgx_stats_rsp *rsp)
{
int id;
for (id = 0; id < CGX_RX_STATS_COUNT; id++)
pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
for (id = 0; id < CGX_TX_STATS_COUNT; id++)
pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
}
void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
struct nix_txsch_alloc_rsp *rsp)
{
int lvl, schq;
/* Setup transmit scheduler list */
for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
for (schq = 0; schq < rsp->schq[lvl]; schq++)
pf->hw.txschq_list[lvl][schq] =
rsp->schq_list[lvl][schq];
}
void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
struct npa_lf_alloc_rsp *rsp)
{
pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
}
void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
struct nix_lf_alloc_rsp *rsp)
{
pfvf->hw.sqb_size = rsp->sqb_size;
pfvf->hw.rx_chan_base = rsp->rx_chan_base;
pfvf->hw.tx_chan_base = rsp->tx_chan_base;
pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
}
void mbox_handler_msix_offset(struct otx2_nic *pfvf,
struct msix_offset_rsp *rsp)
{
pfvf->hw.npa_msixoff = rsp->npa_msixoff;
pfvf->hw.nix_msixoff = rsp->nix_msixoff;
}
void otx2_free_cints(struct otx2_nic *pfvf, int n)
{
struct otx2_qset *qset = &pfvf->qset;
struct otx2_hw *hw = &pfvf->hw;
int irq, qidx;
for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
qidx < n;
qidx++, irq++) {
int vector = pci_irq_vector(pfvf->pdev, irq);
irq_set_affinity_hint(vector, NULL);
free_cpumask_var(hw->affinity_mask[irq]);
free_irq(vector, &qset->napi[qidx]);
}
}
void otx2_set_cints_affinity(struct otx2_nic *pfvf)
{
struct otx2_hw *hw = &pfvf->hw;
int vec, cpu, irq, cint;
vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
cpu = cpumask_first(cpu_online_mask);
/* CQ interrupts */
for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
return;
cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
irq = pci_irq_vector(pfvf->pdev, vec);
irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
cpu = cpumask_next(cpu, cpu_online_mask);
if (unlikely(cpu >= nr_cpu_ids))
cpu = 0;
}
}
#define M(_name, _id, _fn_name, _req_type, _rsp_type) \
int __weak \
otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
struct _req_type *req, \
struct _rsp_type *rsp) \
{ \
/* Nothing to do here */ \
return 0; \
} \
EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
MBOX_UP_CGX_MESSAGES
#undef M