| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * sonic.c |
| * |
| * (C) 2005 Finn Thain |
| * |
| * Converted to DMA API, added zero-copy buffer handling, and |
| * (from the mac68k project) introduced dhd's support for 16-bit cards. |
| * |
| * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de) |
| * |
| * This driver is based on work from Andreas Busse, but most of |
| * the code is rewritten. |
| * |
| * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de) |
| * |
| * Core code included by system sonic drivers |
| * |
| * And... partially rewritten again by David Huggins-Daines in order |
| * to cope with screwed up Macintosh NICs that may or may not use |
| * 16-bit DMA. |
| * |
| * (C) 1999 David Huggins-Daines <dhd@debian.org> |
| * |
| */ |
| |
| /* |
| * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook, |
| * National Semiconductors data sheet for the DP83932B Sonic Ethernet |
| * controller, and the files "8390.c" and "skeleton.c" in this directory. |
| * |
| * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi |
| * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also |
| * the NetBSD file "sys/arch/mac68k/dev/if_sn.c". |
| */ |
| |
| static unsigned int version_printed; |
| |
| static int sonic_debug = -1; |
| module_param(sonic_debug, int, 0); |
| MODULE_PARM_DESC(sonic_debug, "debug message level"); |
| |
| static void sonic_msg_init(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| |
| lp->msg_enable = netif_msg_init(sonic_debug, 0); |
| |
| if (version_printed++ == 0) |
| netif_dbg(lp, drv, dev, "%s", version); |
| } |
| |
| /* |
| * Open/initialize the SONIC controller. |
| * |
| * This routine should set everything up anew at each open, even |
| * registers that "should" only need to be set once at boot, so that |
| * there is non-reboot way to recover if something goes wrong. |
| */ |
| static int sonic_open(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| int i; |
| |
| netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__); |
| |
| spin_lock_init(&lp->lock); |
| |
| for (i = 0; i < SONIC_NUM_RRS; i++) { |
| struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); |
| if (skb == NULL) { |
| while(i > 0) { /* free any that were allocated successfully */ |
| i--; |
| dev_kfree_skb(lp->rx_skb[i]); |
| lp->rx_skb[i] = NULL; |
| } |
| printk(KERN_ERR "%s: couldn't allocate receive buffers\n", |
| dev->name); |
| return -ENOMEM; |
| } |
| /* align IP header unless DMA requires otherwise */ |
| if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) |
| skb_reserve(skb, 2); |
| lp->rx_skb[i] = skb; |
| } |
| |
| for (i = 0; i < SONIC_NUM_RRS; i++) { |
| dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE), |
| SONIC_RBSIZE, DMA_FROM_DEVICE); |
| if (dma_mapping_error(lp->device, laddr)) { |
| while(i > 0) { /* free any that were mapped successfully */ |
| i--; |
| dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); |
| lp->rx_laddr[i] = (dma_addr_t)0; |
| } |
| for (i = 0; i < SONIC_NUM_RRS; i++) { |
| dev_kfree_skb(lp->rx_skb[i]); |
| lp->rx_skb[i] = NULL; |
| } |
| printk(KERN_ERR "%s: couldn't map rx DMA buffers\n", |
| dev->name); |
| return -ENOMEM; |
| } |
| lp->rx_laddr[i] = laddr; |
| } |
| |
| /* |
| * Initialize the SONIC |
| */ |
| sonic_init(dev); |
| |
| netif_start_queue(dev); |
| |
| netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__); |
| |
| return 0; |
| } |
| |
| /* Wait for the SONIC to become idle. */ |
| static void sonic_quiesce(struct net_device *dev, u16 mask) |
| { |
| struct sonic_local * __maybe_unused lp = netdev_priv(dev); |
| int i; |
| u16 bits; |
| |
| for (i = 0; i < 1000; ++i) { |
| bits = SONIC_READ(SONIC_CMD) & mask; |
| if (!bits) |
| return; |
| if (irqs_disabled() || in_interrupt()) |
| udelay(20); |
| else |
| usleep_range(100, 200); |
| } |
| WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits); |
| } |
| |
| /* |
| * Close the SONIC device |
| */ |
| static int sonic_close(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| int i; |
| |
| netif_dbg(lp, ifdown, dev, "%s\n", __func__); |
| |
| netif_stop_queue(dev); |
| |
| /* |
| * stop the SONIC, disable interrupts |
| */ |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); |
| sonic_quiesce(dev, SONIC_CR_ALL); |
| |
| SONIC_WRITE(SONIC_IMR, 0); |
| SONIC_WRITE(SONIC_ISR, 0x7fff); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); |
| |
| /* unmap and free skbs that haven't been transmitted */ |
| for (i = 0; i < SONIC_NUM_TDS; i++) { |
| if(lp->tx_laddr[i]) { |
| dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); |
| lp->tx_laddr[i] = (dma_addr_t)0; |
| } |
| if(lp->tx_skb[i]) { |
| dev_kfree_skb(lp->tx_skb[i]); |
| lp->tx_skb[i] = NULL; |
| } |
| } |
| |
| /* unmap and free the receive buffers */ |
| for (i = 0; i < SONIC_NUM_RRS; i++) { |
| if(lp->rx_laddr[i]) { |
| dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE); |
| lp->rx_laddr[i] = (dma_addr_t)0; |
| } |
| if(lp->rx_skb[i]) { |
| dev_kfree_skb(lp->rx_skb[i]); |
| lp->rx_skb[i] = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| int i; |
| /* |
| * put the Sonic into software-reset mode and |
| * disable all interrupts before releasing DMA buffers |
| */ |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS); |
| sonic_quiesce(dev, SONIC_CR_ALL); |
| |
| SONIC_WRITE(SONIC_IMR, 0); |
| SONIC_WRITE(SONIC_ISR, 0x7fff); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); |
| /* We could resend the original skbs. Easier to re-initialise. */ |
| for (i = 0; i < SONIC_NUM_TDS; i++) { |
| if(lp->tx_laddr[i]) { |
| dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE); |
| lp->tx_laddr[i] = (dma_addr_t)0; |
| } |
| if(lp->tx_skb[i]) { |
| dev_kfree_skb(lp->tx_skb[i]); |
| lp->tx_skb[i] = NULL; |
| } |
| } |
| /* Try to restart the adaptor. */ |
| sonic_init(dev); |
| lp->stats.tx_errors++; |
| netif_trans_update(dev); /* prevent tx timeout */ |
| netif_wake_queue(dev); |
| } |
| |
| /* |
| * transmit packet |
| * |
| * Appends new TD during transmission thus avoiding any TX interrupts |
| * until we run out of TDs. |
| * This routine interacts closely with the ISR in that it may, |
| * set tx_skb[i] |
| * reset the status flags of the new TD |
| * set and reset EOL flags |
| * stop the tx queue |
| * The ISR interacts with this routine in various ways. It may, |
| * reset tx_skb[i] |
| * test the EOL and status flags of the TDs |
| * wake the tx queue |
| * Concurrently with all of this, the SONIC is potentially writing to |
| * the status flags of the TDs. |
| */ |
| |
| static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| dma_addr_t laddr; |
| int length; |
| int entry; |
| unsigned long flags; |
| |
| netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb); |
| |
| length = skb->len; |
| if (length < ETH_ZLEN) { |
| if (skb_padto(skb, ETH_ZLEN)) |
| return NETDEV_TX_OK; |
| length = ETH_ZLEN; |
| } |
| |
| /* |
| * Map the packet data into the logical DMA address space |
| */ |
| |
| laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE); |
| if (!laddr) { |
| pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| spin_lock_irqsave(&lp->lock, flags); |
| |
| entry = lp->next_tx; |
| |
| sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */ |
| sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */ |
| sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */ |
| sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff); |
| sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16); |
| sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length); |
| sonic_tda_put(dev, entry, SONIC_TD_LINK, |
| sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL); |
| |
| wmb(); |
| lp->tx_len[entry] = length; |
| lp->tx_laddr[entry] = laddr; |
| lp->tx_skb[entry] = skb; |
| |
| wmb(); |
| sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, |
| sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL); |
| lp->eol_tx = entry; |
| |
| lp->next_tx = (entry + 1) & SONIC_TDS_MASK; |
| if (lp->tx_skb[lp->next_tx] != NULL) { |
| /* The ring is full, the ISR has yet to process the next TD. */ |
| netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__); |
| netif_stop_queue(dev); |
| /* after this packet, wait for ISR to free up some TDAs */ |
| } else netif_start_queue(dev); |
| |
| netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__); |
| |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); |
| |
| spin_unlock_irqrestore(&lp->lock, flags); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * The typical workload of the driver: |
| * Handle the network interface interrupts. |
| */ |
| static irqreturn_t sonic_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct sonic_local *lp = netdev_priv(dev); |
| int status; |
| unsigned long flags; |
| |
| /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt() |
| * with sonic_send_packet() so that the two functions can share state. |
| * Secondly, it makes sonic_interrupt() re-entrant, as that is required |
| * by macsonic which must use two IRQs with different priority levels. |
| */ |
| spin_lock_irqsave(&lp->lock, flags); |
| |
| status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; |
| if (!status) { |
| spin_unlock_irqrestore(&lp->lock, flags); |
| |
| return IRQ_NONE; |
| } |
| |
| do { |
| SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */ |
| |
| if (status & SONIC_INT_PKTRX) { |
| netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__); |
| sonic_rx(dev); /* got packet(s) */ |
| } |
| |
| if (status & SONIC_INT_TXDN) { |
| int entry = lp->cur_tx; |
| int td_status; |
| int freed_some = 0; |
| |
| /* The state of a Transmit Descriptor may be inferred |
| * from { tx_skb[entry], td_status } as follows. |
| * { clear, clear } => the TD has never been used |
| * { set, clear } => the TD was handed to SONIC |
| * { set, set } => the TD was handed back |
| * { clear, set } => the TD is available for re-use |
| */ |
| |
| netif_dbg(lp, intr, dev, "%s: tx done\n", __func__); |
| |
| while (lp->tx_skb[entry] != NULL) { |
| if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0) |
| break; |
| |
| if (td_status & SONIC_TCR_PTX) { |
| lp->stats.tx_packets++; |
| lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE); |
| } else { |
| if (td_status & (SONIC_TCR_EXD | |
| SONIC_TCR_EXC | SONIC_TCR_BCM)) |
| lp->stats.tx_aborted_errors++; |
| if (td_status & |
| (SONIC_TCR_NCRS | SONIC_TCR_CRLS)) |
| lp->stats.tx_carrier_errors++; |
| if (td_status & SONIC_TCR_OWC) |
| lp->stats.tx_window_errors++; |
| if (td_status & SONIC_TCR_FU) |
| lp->stats.tx_fifo_errors++; |
| } |
| |
| /* We must free the original skb */ |
| dev_consume_skb_irq(lp->tx_skb[entry]); |
| lp->tx_skb[entry] = NULL; |
| /* and unmap DMA buffer */ |
| dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE); |
| lp->tx_laddr[entry] = (dma_addr_t)0; |
| freed_some = 1; |
| |
| if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) { |
| entry = (entry + 1) & SONIC_TDS_MASK; |
| break; |
| } |
| entry = (entry + 1) & SONIC_TDS_MASK; |
| } |
| |
| if (freed_some || lp->tx_skb[entry] == NULL) |
| netif_wake_queue(dev); /* The ring is no longer full */ |
| lp->cur_tx = entry; |
| } |
| |
| /* |
| * check error conditions |
| */ |
| if (status & SONIC_INT_RFO) { |
| netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n", |
| __func__); |
| } |
| if (status & SONIC_INT_RDE) { |
| netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n", |
| __func__); |
| } |
| if (status & SONIC_INT_RBAE) { |
| netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n", |
| __func__); |
| } |
| |
| /* counter overruns; all counters are 16bit wide */ |
| if (status & SONIC_INT_FAE) |
| lp->stats.rx_frame_errors += 65536; |
| if (status & SONIC_INT_CRC) |
| lp->stats.rx_crc_errors += 65536; |
| if (status & SONIC_INT_MP) |
| lp->stats.rx_missed_errors += 65536; |
| |
| /* transmit error */ |
| if (status & SONIC_INT_TXER) { |
| u16 tcr = SONIC_READ(SONIC_TCR); |
| |
| netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n", |
| __func__, tcr); |
| |
| if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC | |
| SONIC_TCR_FU | SONIC_TCR_BCM)) { |
| /* Aborted transmission. Try again. */ |
| netif_stop_queue(dev); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP); |
| } |
| } |
| |
| /* bus retry */ |
| if (status & SONIC_INT_BR) { |
| printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n", |
| dev->name); |
| /* ... to help debug DMA problems causing endless interrupts. */ |
| /* Bounce the eth interface to turn on the interrupt again. */ |
| SONIC_WRITE(SONIC_IMR, 0); |
| } |
| |
| status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT; |
| } while (status); |
| |
| spin_unlock_irqrestore(&lp->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* Return the array index corresponding to a given Receive Buffer pointer. */ |
| static int index_from_addr(struct sonic_local *lp, dma_addr_t addr, |
| unsigned int last) |
| { |
| unsigned int i = last; |
| |
| do { |
| i = (i + 1) & SONIC_RRS_MASK; |
| if (addr == lp->rx_laddr[i]) |
| return i; |
| } while (i != last); |
| |
| return -ENOENT; |
| } |
| |
| /* Allocate and map a new skb to be used as a receive buffer. */ |
| static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp, |
| struct sk_buff **new_skb, dma_addr_t *new_addr) |
| { |
| *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2); |
| if (!*new_skb) |
| return false; |
| |
| if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2) |
| skb_reserve(*new_skb, 2); |
| |
| *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE), |
| SONIC_RBSIZE, DMA_FROM_DEVICE); |
| if (!*new_addr) { |
| dev_kfree_skb(*new_skb); |
| *new_skb = NULL; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Place a new receive resource in the Receive Resource Area and update RWP. */ |
| static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp, |
| dma_addr_t old_addr, dma_addr_t new_addr) |
| { |
| unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP)); |
| unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP)); |
| u32 buf; |
| |
| /* The resources in the range [RRP, RWP) belong to the SONIC. This loop |
| * scans the other resources in the RRA, those in the range [RWP, RRP). |
| */ |
| do { |
| buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) | |
| sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L); |
| |
| if (buf == old_addr) |
| break; |
| |
| entry = (entry + 1) & SONIC_RRS_MASK; |
| } while (entry != end); |
| |
| WARN_ONCE(buf != old_addr, "failed to find resource!\n"); |
| |
| sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16); |
| sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff); |
| |
| entry = (entry + 1) & SONIC_RRS_MASK; |
| |
| SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry)); |
| } |
| |
| /* |
| * We have a good packet(s), pass it/them up the network stack. |
| */ |
| static void sonic_rx(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| int entry = lp->cur_rx; |
| int prev_entry = lp->eol_rx; |
| bool rbe = false; |
| |
| while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) { |
| u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS); |
| |
| /* If the RD has LPKT set, the chip has finished with the RB */ |
| if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) { |
| struct sk_buff *new_skb; |
| dma_addr_t new_laddr; |
| u32 addr = (sonic_rda_get(dev, entry, |
| SONIC_RD_PKTPTR_H) << 16) | |
| sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L); |
| int i = index_from_addr(lp, addr, entry); |
| |
| if (i < 0) { |
| WARN_ONCE(1, "failed to find buffer!\n"); |
| break; |
| } |
| |
| if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) { |
| struct sk_buff *used_skb = lp->rx_skb[i]; |
| int pkt_len; |
| |
| /* Pass the used buffer up the stack */ |
| dma_unmap_single(lp->device, addr, SONIC_RBSIZE, |
| DMA_FROM_DEVICE); |
| |
| pkt_len = sonic_rda_get(dev, entry, |
| SONIC_RD_PKTLEN); |
| skb_trim(used_skb, pkt_len); |
| used_skb->protocol = eth_type_trans(used_skb, |
| dev); |
| netif_rx(used_skb); |
| lp->stats.rx_packets++; |
| lp->stats.rx_bytes += pkt_len; |
| |
| lp->rx_skb[i] = new_skb; |
| lp->rx_laddr[i] = new_laddr; |
| } else { |
| /* Failed to obtain a new buffer so re-use it */ |
| new_laddr = addr; |
| lp->stats.rx_dropped++; |
| } |
| /* If RBE is already asserted when RWP advances then |
| * it's safe to clear RBE after processing this packet. |
| */ |
| rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE; |
| sonic_update_rra(dev, lp, addr, new_laddr); |
| } |
| /* |
| * give back the descriptor |
| */ |
| sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0); |
| sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1); |
| |
| prev_entry = entry; |
| entry = (entry + 1) & SONIC_RDS_MASK; |
| } |
| |
| lp->cur_rx = entry; |
| |
| if (prev_entry != lp->eol_rx) { |
| /* Advance the EOL flag to put descriptors back into service */ |
| sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL | |
| sonic_rda_get(dev, prev_entry, SONIC_RD_LINK)); |
| sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL & |
| sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK)); |
| lp->eol_rx = prev_entry; |
| } |
| |
| if (rbe) |
| SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); |
| /* |
| * If any worth-while packets have been received, netif_rx() |
| * has done a mark_bh(NET_BH) for us and will work on them |
| * when we get to the bottom-half routine. |
| */ |
| } |
| |
| |
| /* |
| * Get the current statistics. |
| * This may be called with the device open or closed. |
| */ |
| static struct net_device_stats *sonic_get_stats(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| |
| /* read the tally counter from the SONIC and reset them */ |
| lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT); |
| SONIC_WRITE(SONIC_CRCT, 0xffff); |
| lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET); |
| SONIC_WRITE(SONIC_FAET, 0xffff); |
| lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT); |
| SONIC_WRITE(SONIC_MPT, 0xffff); |
| |
| return &lp->stats; |
| } |
| |
| |
| /* |
| * Set or clear the multicast filter for this adaptor. |
| */ |
| static void sonic_multicast_list(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| unsigned int rcr; |
| struct netdev_hw_addr *ha; |
| unsigned char *addr; |
| int i; |
| |
| rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC); |
| rcr |= SONIC_RCR_BRD; /* accept broadcast packets */ |
| |
| if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ |
| rcr |= SONIC_RCR_PRO; |
| } else { |
| if ((dev->flags & IFF_ALLMULTI) || |
| (netdev_mc_count(dev) > 15)) { |
| rcr |= SONIC_RCR_AMC; |
| } else { |
| unsigned long flags; |
| |
| netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__, |
| netdev_mc_count(dev)); |
| sonic_set_cam_enable(dev, 1); /* always enable our own address */ |
| i = 1; |
| netdev_for_each_mc_addr(ha, dev) { |
| addr = ha->addr; |
| sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]); |
| sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]); |
| sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]); |
| sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i)); |
| i++; |
| } |
| SONIC_WRITE(SONIC_CDC, 16); |
| SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); |
| |
| /* LCAM and TXP commands can't be used simultaneously */ |
| spin_lock_irqsave(&lp->lock, flags); |
| sonic_quiesce(dev, SONIC_CR_TXP); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); |
| sonic_quiesce(dev, SONIC_CR_LCAM); |
| spin_unlock_irqrestore(&lp->lock, flags); |
| } |
| } |
| |
| netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr); |
| |
| SONIC_WRITE(SONIC_RCR, rcr); |
| } |
| |
| |
| /* |
| * Initialize the SONIC ethernet controller. |
| */ |
| static int sonic_init(struct net_device *dev) |
| { |
| struct sonic_local *lp = netdev_priv(dev); |
| int i; |
| |
| /* |
| * put the Sonic into software-reset mode and |
| * disable all interrupts |
| */ |
| SONIC_WRITE(SONIC_IMR, 0); |
| SONIC_WRITE(SONIC_ISR, 0x7fff); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RST); |
| |
| /* While in reset mode, clear CAM Enable register */ |
| SONIC_WRITE(SONIC_CE, 0); |
| |
| /* |
| * clear software reset flag, disable receiver, clear and |
| * enable interrupts, then completely initialize the SONIC |
| */ |
| SONIC_WRITE(SONIC_CMD, 0); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP); |
| sonic_quiesce(dev, SONIC_CR_ALL); |
| |
| /* |
| * initialize the receive resource area |
| */ |
| netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n", |
| __func__); |
| |
| for (i = 0; i < SONIC_NUM_RRS; i++) { |
| u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff; |
| u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16; |
| sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l); |
| sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h); |
| sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1); |
| sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0); |
| } |
| |
| /* initialize all RRA registers */ |
| SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0)); |
| SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS)); |
| SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0)); |
| SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1)); |
| SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16); |
| SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1)); |
| |
| /* load the resource pointers */ |
| netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__); |
| |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA); |
| sonic_quiesce(dev, SONIC_CR_RRRA); |
| |
| /* |
| * Initialize the receive descriptors so that they |
| * become a circular linked list, ie. let the last |
| * descriptor point to the first again. |
| */ |
| netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n", |
| __func__); |
| |
| for (i=0; i<SONIC_NUM_RDS; i++) { |
| sonic_rda_put(dev, i, SONIC_RD_STATUS, 0); |
| sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0); |
| sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0); |
| sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0); |
| sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0); |
| sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1); |
| sonic_rda_put(dev, i, SONIC_RD_LINK, |
| lp->rda_laddr + |
| ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode))); |
| } |
| /* fix last descriptor */ |
| sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK, |
| (lp->rda_laddr & 0xffff) | SONIC_EOL); |
| lp->eol_rx = SONIC_NUM_RDS - 1; |
| lp->cur_rx = 0; |
| SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16); |
| SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff); |
| |
| /* |
| * initialize transmit descriptors |
| */ |
| netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n", |
| __func__); |
| |
| for (i = 0; i < SONIC_NUM_TDS; i++) { |
| sonic_tda_put(dev, i, SONIC_TD_STATUS, 0); |
| sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0); |
| sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0); |
| sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0); |
| sonic_tda_put(dev, i, SONIC_TD_LINK, |
| (lp->tda_laddr & 0xffff) + |
| (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode)); |
| lp->tx_skb[i] = NULL; |
| } |
| /* fix last descriptor */ |
| sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK, |
| (lp->tda_laddr & 0xffff)); |
| |
| SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16); |
| SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff); |
| lp->cur_tx = lp->next_tx = 0; |
| lp->eol_tx = SONIC_NUM_TDS - 1; |
| |
| /* |
| * put our own address to CAM desc[0] |
| */ |
| sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]); |
| sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]); |
| sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]); |
| sonic_set_cam_enable(dev, 1); |
| |
| for (i = 0; i < 16; i++) |
| sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i); |
| |
| /* |
| * initialize CAM registers |
| */ |
| SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff); |
| SONIC_WRITE(SONIC_CDC, 16); |
| |
| /* |
| * load the CAM |
| */ |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM); |
| sonic_quiesce(dev, SONIC_CR_LCAM); |
| |
| /* |
| * enable receiver, disable loopback |
| * and enable all interrupts |
| */ |
| SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT); |
| SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT); |
| SONIC_WRITE(SONIC_ISR, 0x7fff); |
| SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT); |
| SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN); |
| |
| netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__, |
| SONIC_READ(SONIC_CMD)); |
| |
| return 0; |
| } |
| |
| MODULE_LICENSE("GPL"); |