blob: bec2af11853addb48c658b7e046383ef8025169f [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
/* XDP user-space ring structure
* Copyright(c) 2018 Intel Corporation.
*/
#ifndef _LINUX_XSK_QUEUE_H
#define _LINUX_XSK_QUEUE_H
#include <linux/types.h>
#include <linux/if_xdp.h>
#include <net/xdp_sock.h>
struct xdp_ring {
u32 producer ____cacheline_aligned_in_smp;
u32 consumer ____cacheline_aligned_in_smp;
u32 flags;
};
/* Used for the RX and TX queues for packets */
struct xdp_rxtx_ring {
struct xdp_ring ptrs;
struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
};
/* Used for the fill and completion queues for buffers */
struct xdp_umem_ring {
struct xdp_ring ptrs;
u64 desc[0] ____cacheline_aligned_in_smp;
};
struct xsk_queue {
u64 chunk_mask;
u64 size;
u32 ring_mask;
u32 nentries;
u32 cached_prod;
u32 cached_cons;
struct xdp_ring *ring;
u64 invalid_descs;
};
/* The structure of the shared state of the rings are the same as the
* ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
* ring, the kernel is the producer and user space is the consumer. For
* the Tx and fill rings, the kernel is the consumer and user space is
* the producer.
*
* producer consumer
*
* if (LOAD ->consumer) { LOAD ->producer
* (A) smp_rmb() (C)
* STORE $data LOAD $data
* smp_wmb() (B) smp_mb() (D)
* STORE ->producer STORE ->consumer
* }
*
* (A) pairs with (D), and (B) pairs with (C).
*
* Starting with (B), it protects the data from being written after
* the producer pointer. If this barrier was missing, the consumer
* could observe the producer pointer being set and thus load the data
* before the producer has written the new data. The consumer would in
* this case load the old data.
*
* (C) protects the consumer from speculatively loading the data before
* the producer pointer actually has been read. If we do not have this
* barrier, some architectures could load old data as speculative loads
* are not discarded as the CPU does not know there is a dependency
* between ->producer and data.
*
* (A) is a control dependency that separates the load of ->consumer
* from the stores of $data. In case ->consumer indicates there is no
* room in the buffer to store $data we do not. So no barrier is needed.
*
* (D) protects the load of the data to be observed to happen after the
* store of the consumer pointer. If we did not have this memory
* barrier, the producer could observe the consumer pointer being set
* and overwrite the data with a new value before the consumer got the
* chance to read the old value. The consumer would thus miss reading
* the old entry and very likely read the new entry twice, once right
* now and again after circling through the ring.
*/
/* The operations on the rings are the following:
*
* producer consumer
*
* RESERVE entries PEEK in the ring for entries
* WRITE data into the ring READ data from the ring
* SUBMIT entries RELEASE entries
*
* The producer reserves one or more entries in the ring. It can then
* fill in these entries and finally submit them so that they can be
* seen and read by the consumer.
*
* The consumer peeks into the ring to see if the producer has written
* any new entries. If so, the producer can then read these entries
* and when it is done reading them release them back to the producer
* so that the producer can use these slots to fill in new entries.
*
* The function names below reflect these operations.
*/
/* Functions that read and validate content from consumer rings. */
static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
u64 addr,
u64 length)
{
bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
bool next_pg_contig =
(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
XSK_NEXT_PG_CONTIG_MASK;
return cross_pg && !next_pg_contig;
}
static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
u64 addr,
u64 length,
struct xdp_umem *umem)
{
u64 base_addr = xsk_umem_extract_addr(addr);
addr = xsk_umem_add_offset_to_addr(addr);
if (base_addr >= q->size || addr >= q->size ||
xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
{
if (addr >= q->size) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
struct xdp_umem *umem)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
while (q->cached_cons != q->cached_prod) {
u32 idx = q->cached_cons & q->ring_mask;
*addr = ring->desc[idx] & q->chunk_mask;
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
if (xskq_cons_is_valid_unaligned(q, *addr,
umem->chunk_size_nohr,
umem))
return true;
goto out;
}
if (xskq_cons_is_valid_addr(q, *addr))
return true;
out:
q->cached_cons++;
}
return false;
}
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
struct xdp_desc *d,
struct xdp_umem *umem)
{
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
return false;
if (d->len > umem->chunk_size_nohr || d->options) {
q->invalid_descs++;
return false;
}
return true;
}
if (!xskq_cons_is_valid_addr(q, d->addr))
return false;
if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
d->options) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
struct xdp_desc *desc,
struct xdp_umem *umem)
{
while (q->cached_cons != q->cached_prod) {
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
u32 idx = q->cached_cons & q->ring_mask;
*desc = ring->desc[idx];
if (xskq_cons_is_valid_desc(q, desc, umem))
return true;
q->cached_cons++;
}
return false;
}
/* Functions for consumers */
static inline void __xskq_cons_release(struct xsk_queue *q)
{
smp_mb(); /* D, matches A */
WRITE_ONCE(q->ring->consumer, q->cached_cons);
}
static inline void __xskq_cons_peek(struct xsk_queue *q)
{
/* Refresh the local pointer */
q->cached_prod = READ_ONCE(q->ring->producer);
smp_rmb(); /* C, matches B */
}
static inline void xskq_cons_get_entries(struct xsk_queue *q)
{
__xskq_cons_release(q);
__xskq_cons_peek(q);
}
static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
{
u32 entries = q->cached_prod - q->cached_cons;
if (entries >= cnt)
return true;
__xskq_cons_peek(q);
entries = q->cached_prod - q->cached_cons;
return entries >= cnt;
}
static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
struct xdp_umem *umem)
{
if (q->cached_prod == q->cached_cons)
xskq_cons_get_entries(q);
return xskq_cons_read_addr(q, addr, umem);
}
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
struct xdp_desc *desc,
struct xdp_umem *umem)
{
if (q->cached_prod == q->cached_cons)
xskq_cons_get_entries(q);
return xskq_cons_read_desc(q, desc, umem);
}
static inline void xskq_cons_release(struct xsk_queue *q)
{
/* To improve performance, only update local state here.
* Reflect this to global state when we get new entries
* from the ring in xskq_cons_get_entries().
*/
q->cached_cons++;
}
static inline bool xskq_cons_is_full(struct xsk_queue *q)
{
/* No barriers needed since data is not accessed */
return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
q->nentries;
}
/* Functions for producers */
static inline bool xskq_prod_is_full(struct xsk_queue *q)
{
u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
if (free_entries)
return false;
/* Refresh the local tail pointer */
q->cached_cons = READ_ONCE(q->ring->consumer);
free_entries = q->nentries - (q->cached_prod - q->cached_cons);
return !free_entries;
}
static inline int xskq_prod_reserve(struct xsk_queue *q)
{
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
q->cached_prod++;
return 0;
}
static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
ring->desc[q->cached_prod++ & q->ring_mask] = addr;
return 0;
}
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
u64 addr, u32 len)
{
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
u32 idx;
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
idx = q->cached_prod++ & q->ring_mask;
ring->desc[idx].addr = addr;
ring->desc[idx].len = len;
return 0;
}
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
{
smp_wmb(); /* B, matches C */
WRITE_ONCE(q->ring->producer, idx);
}
static inline void xskq_prod_submit(struct xsk_queue *q)
{
__xskq_prod_submit(q, q->cached_prod);
}
static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
u32 idx = q->ring->producer;
ring->desc[idx++ & q->ring_mask] = addr;
__xskq_prod_submit(q, idx);
}
static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
{
__xskq_prod_submit(q, q->ring->producer + nb_entries);
}
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
{
/* No barriers needed since data is not accessed */
return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
}
/* For both producers and consumers */
static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
{
return q ? q->invalid_descs : 0;
}
void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
void xskq_destroy(struct xsk_queue *q_ops);
/* Executed by the core when the entire UMEM gets freed */
void xsk_reuseq_destroy(struct xdp_umem *umem);
#endif /* _LINUX_XSK_QUEUE_H */