| /* |
| * Performance event support framework for SuperH hardware counters. |
| * |
| * Copyright (C) 2009 Paul Mundt |
| * |
| * Heavily based on the x86 and PowerPC implementations. |
| * |
| * x86: |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2009 Jaswinder Singh Rajput |
| * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> |
| * |
| * ppc: |
| * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/irq.h> |
| #include <linux/perf_event.h> |
| #include <linux/export.h> |
| #include <asm/processor.h> |
| |
| struct cpu_hw_events { |
| struct perf_event *events[MAX_HWEVENTS]; |
| unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; |
| unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; |
| }; |
| |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| |
| static struct sh_pmu *sh_pmu __read_mostly; |
| |
| /* Number of perf_events counting hardware events */ |
| static atomic_t num_events; |
| /* Used to avoid races in calling reserve/release_pmc_hardware */ |
| static DEFINE_MUTEX(pmc_reserve_mutex); |
| |
| /* |
| * Stub these out for now, do something more profound later. |
| */ |
| int reserve_pmc_hardware(void) |
| { |
| return 0; |
| } |
| |
| void release_pmc_hardware(void) |
| { |
| } |
| |
| static inline int sh_pmu_initialized(void) |
| { |
| return !!sh_pmu; |
| } |
| |
| const char *perf_pmu_name(void) |
| { |
| if (!sh_pmu) |
| return NULL; |
| |
| return sh_pmu->name; |
| } |
| EXPORT_SYMBOL_GPL(perf_pmu_name); |
| |
| int perf_num_counters(void) |
| { |
| if (!sh_pmu) |
| return 0; |
| |
| return sh_pmu->num_events; |
| } |
| EXPORT_SYMBOL_GPL(perf_num_counters); |
| |
| /* |
| * Release the PMU if this is the last perf_event. |
| */ |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| if (!atomic_add_unless(&num_events, -1, 1)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_dec_return(&num_events) == 0) |
| release_pmc_hardware(); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| } |
| |
| static int hw_perf_cache_event(int config, int *evp) |
| { |
| unsigned long type, op, result; |
| int ev; |
| |
| if (!sh_pmu->cache_events) |
| return -EINVAL; |
| |
| /* unpack config */ |
| type = config & 0xff; |
| op = (config >> 8) & 0xff; |
| result = (config >> 16) & 0xff; |
| |
| if (type >= PERF_COUNT_HW_CACHE_MAX || |
| op >= PERF_COUNT_HW_CACHE_OP_MAX || |
| result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| |
| ev = (*sh_pmu->cache_events)[type][op][result]; |
| if (ev == 0) |
| return -EOPNOTSUPP; |
| if (ev == -1) |
| return -EINVAL; |
| *evp = ev; |
| return 0; |
| } |
| |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| int config = -1; |
| int err; |
| |
| if (!sh_pmu_initialized()) |
| return -ENODEV; |
| |
| /* |
| * See if we need to reserve the counter. |
| * |
| * If no events are currently in use, then we have to take a |
| * mutex to ensure that we don't race with another task doing |
| * reserve_pmc_hardware or release_pmc_hardware. |
| */ |
| err = 0; |
| if (!atomic_inc_not_zero(&num_events)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_read(&num_events) == 0 && |
| reserve_pmc_hardware()) |
| err = -EBUSY; |
| else |
| atomic_inc(&num_events); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| |
| if (err) |
| return err; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| switch (attr->type) { |
| case PERF_TYPE_RAW: |
| config = attr->config & sh_pmu->raw_event_mask; |
| break; |
| case PERF_TYPE_HW_CACHE: |
| err = hw_perf_cache_event(attr->config, &config); |
| if (err) |
| return err; |
| break; |
| case PERF_TYPE_HARDWARE: |
| if (attr->config >= sh_pmu->max_events) |
| return -EINVAL; |
| |
| config = sh_pmu->event_map(attr->config); |
| break; |
| } |
| |
| if (config == -1) |
| return -EINVAL; |
| |
| hwc->config |= config; |
| |
| return 0; |
| } |
| |
| static void sh_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| u64 prev_raw_count, new_raw_count; |
| s64 delta; |
| int shift = 0; |
| |
| /* |
| * Depending on the counter configuration, they may or may not |
| * be chained, in which case the previous counter value can be |
| * updated underneath us if the lower-half overflows. |
| * |
| * Our tactic to handle this is to first atomically read and |
| * exchange a new raw count - then add that new-prev delta |
| * count to the generic counter atomically. |
| * |
| * As there is no interrupt associated with the overflow events, |
| * this is the simplest approach for maintaining consistency. |
| */ |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = sh_pmu->read(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| /* |
| * Now we have the new raw value and have updated the prev |
| * timestamp already. We can now calculate the elapsed delta |
| * (counter-)time and add that to the generic counter. |
| * |
| * Careful, not all hw sign-extends above the physical width |
| * of the count. |
| */ |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| local64_add(delta, &event->count); |
| } |
| |
| static void sh_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (!(event->hw.state & PERF_HES_STOPPED)) { |
| sh_pmu->disable(hwc, idx); |
| cpuc->events[idx] = NULL; |
| event->hw.state |= PERF_HES_STOPPED; |
| } |
| |
| if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { |
| sh_perf_event_update(event, &event->hw, idx); |
| event->hw.state |= PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void sh_pmu_start(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| |
| if (WARN_ON_ONCE(idx == -1)) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) |
| WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| |
| cpuc->events[idx] = event; |
| event->hw.state = 0; |
| sh_pmu->enable(hwc, idx); |
| } |
| |
| static void sh_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| sh_pmu_stop(event, PERF_EF_UPDATE); |
| __clear_bit(event->hw.idx, cpuc->used_mask); |
| |
| perf_event_update_userpage(event); |
| } |
| |
| static int sh_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx; |
| int ret = -EAGAIN; |
| |
| perf_pmu_disable(event->pmu); |
| |
| if (__test_and_set_bit(idx, cpuc->used_mask)) { |
| idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events); |
| if (idx == sh_pmu->num_events) |
| goto out; |
| |
| __set_bit(idx, cpuc->used_mask); |
| hwc->idx = idx; |
| } |
| |
| sh_pmu->disable(hwc, idx); |
| |
| event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| if (flags & PERF_EF_START) |
| sh_pmu_start(event, PERF_EF_RELOAD); |
| |
| perf_event_update_userpage(event); |
| ret = 0; |
| out: |
| perf_pmu_enable(event->pmu); |
| return ret; |
| } |
| |
| static void sh_pmu_read(struct perf_event *event) |
| { |
| sh_perf_event_update(event, &event->hw, event->hw.idx); |
| } |
| |
| static int sh_pmu_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| /* does not support taken branch sampling */ |
| if (has_branch_stack(event)) |
| return -EOPNOTSUPP; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HW_CACHE: |
| case PERF_TYPE_HARDWARE: |
| err = __hw_perf_event_init(event); |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| |
| if (unlikely(err)) { |
| if (event->destroy) |
| event->destroy(event); |
| } |
| |
| return err; |
| } |
| |
| static void sh_pmu_enable(struct pmu *pmu) |
| { |
| if (!sh_pmu_initialized()) |
| return; |
| |
| sh_pmu->enable_all(); |
| } |
| |
| static void sh_pmu_disable(struct pmu *pmu) |
| { |
| if (!sh_pmu_initialized()) |
| return; |
| |
| sh_pmu->disable_all(); |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = sh_pmu_enable, |
| .pmu_disable = sh_pmu_disable, |
| .event_init = sh_pmu_event_init, |
| .add = sh_pmu_add, |
| .del = sh_pmu_del, |
| .start = sh_pmu_start, |
| .stop = sh_pmu_stop, |
| .read = sh_pmu_read, |
| }; |
| |
| static void sh_pmu_setup(int cpu) |
| { |
| struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); |
| |
| memset(cpuhw, 0, sizeof(struct cpu_hw_events)); |
| } |
| |
| static int |
| sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| |
| switch (action & ~CPU_TASKS_FROZEN) { |
| case CPU_UP_PREPARE: |
| sh_pmu_setup(cpu); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| int register_sh_pmu(struct sh_pmu *_pmu) |
| { |
| if (sh_pmu) |
| return -EBUSY; |
| sh_pmu = _pmu; |
| |
| pr_info("Performance Events: %s support registered\n", _pmu->name); |
| |
| /* |
| * All of the on-chip counters are "limited", in that they have |
| * no interrupts, and are therefore unable to do sampling without |
| * further work and timer assistance. |
| */ |
| pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| WARN_ON(_pmu->num_events > MAX_HWEVENTS); |
| |
| perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| perf_cpu_notifier(sh_pmu_notifier); |
| return 0; |
| } |