| /* |
| * Copyright 2009 Jerome Glisse. |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| */ |
| /* |
| * Authors: |
| * Jerome Glisse <glisse@freedesktop.org> |
| * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> |
| * Dave Airlie |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/iommu.h> |
| #include <linux/hmm.h> |
| #include <linux/pagemap.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/mm.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/swap.h> |
| #include <linux/swiotlb.h> |
| #include <linux/dma-buf.h> |
| #include <linux/sizes.h> |
| |
| #include <drm/ttm/ttm_bo_api.h> |
| #include <drm/ttm/ttm_bo_driver.h> |
| #include <drm/ttm/ttm_placement.h> |
| #include <drm/ttm/ttm_module.h> |
| #include <drm/ttm/ttm_page_alloc.h> |
| |
| #include <drm/drm_debugfs.h> |
| #include <drm/amdgpu_drm.h> |
| |
| #include "amdgpu.h" |
| #include "amdgpu_object.h" |
| #include "amdgpu_trace.h" |
| #include "amdgpu_amdkfd.h" |
| #include "amdgpu_sdma.h" |
| #include "amdgpu_ras.h" |
| #include "amdgpu_atomfirmware.h" |
| #include "bif/bif_4_1_d.h" |
| |
| #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 |
| |
| |
| /** |
| * amdgpu_init_mem_type - Initialize a memory manager for a specific type of |
| * memory request. |
| * |
| * @bdev: The TTM BO device object (contains a reference to amdgpu_device) |
| * @type: The type of memory requested |
| * @man: The memory type manager for each domain |
| * |
| * This is called by ttm_bo_init_mm() when a buffer object is being |
| * initialized. |
| */ |
| static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, |
| struct ttm_mem_type_manager *man) |
| { |
| struct amdgpu_device *adev; |
| |
| adev = amdgpu_ttm_adev(bdev); |
| |
| switch (type) { |
| case TTM_PL_SYSTEM: |
| /* System memory */ |
| man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; |
| man->available_caching = TTM_PL_MASK_CACHING; |
| man->default_caching = TTM_PL_FLAG_CACHED; |
| break; |
| case TTM_PL_TT: |
| /* GTT memory */ |
| man->func = &amdgpu_gtt_mgr_func; |
| man->available_caching = TTM_PL_MASK_CACHING; |
| man->default_caching = TTM_PL_FLAG_CACHED; |
| man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; |
| break; |
| case TTM_PL_VRAM: |
| /* "On-card" video ram */ |
| man->func = &amdgpu_vram_mgr_func; |
| man->flags = TTM_MEMTYPE_FLAG_FIXED | |
| TTM_MEMTYPE_FLAG_MAPPABLE; |
| man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; |
| man->default_caching = TTM_PL_FLAG_WC; |
| break; |
| case AMDGPU_PL_GDS: |
| case AMDGPU_PL_GWS: |
| case AMDGPU_PL_OA: |
| /* On-chip GDS memory*/ |
| man->func = &ttm_bo_manager_func; |
| man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; |
| man->available_caching = TTM_PL_FLAG_UNCACHED; |
| man->default_caching = TTM_PL_FLAG_UNCACHED; |
| break; |
| default: |
| DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * amdgpu_evict_flags - Compute placement flags |
| * |
| * @bo: The buffer object to evict |
| * @placement: Possible destination(s) for evicted BO |
| * |
| * Fill in placement data when ttm_bo_evict() is called |
| */ |
| static void amdgpu_evict_flags(struct ttm_buffer_object *bo, |
| struct ttm_placement *placement) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_bo *abo; |
| static const struct ttm_place placements = { |
| .fpfn = 0, |
| .lpfn = 0, |
| .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM |
| }; |
| |
| /* Don't handle scatter gather BOs */ |
| if (bo->type == ttm_bo_type_sg) { |
| placement->num_placement = 0; |
| placement->num_busy_placement = 0; |
| return; |
| } |
| |
| /* Object isn't an AMDGPU object so ignore */ |
| if (!amdgpu_bo_is_amdgpu_bo(bo)) { |
| placement->placement = &placements; |
| placement->busy_placement = &placements; |
| placement->num_placement = 1; |
| placement->num_busy_placement = 1; |
| return; |
| } |
| |
| abo = ttm_to_amdgpu_bo(bo); |
| switch (bo->mem.mem_type) { |
| case AMDGPU_PL_GDS: |
| case AMDGPU_PL_GWS: |
| case AMDGPU_PL_OA: |
| placement->num_placement = 0; |
| placement->num_busy_placement = 0; |
| return; |
| |
| case TTM_PL_VRAM: |
| if (!adev->mman.buffer_funcs_enabled) { |
| /* Move to system memory */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); |
| } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && |
| !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && |
| amdgpu_bo_in_cpu_visible_vram(abo)) { |
| |
| /* Try evicting to the CPU inaccessible part of VRAM |
| * first, but only set GTT as busy placement, so this |
| * BO will be evicted to GTT rather than causing other |
| * BOs to be evicted from VRAM |
| */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | |
| AMDGPU_GEM_DOMAIN_GTT); |
| abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; |
| abo->placements[0].lpfn = 0; |
| abo->placement.busy_placement = &abo->placements[1]; |
| abo->placement.num_busy_placement = 1; |
| } else { |
| /* Move to GTT memory */ |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); |
| } |
| break; |
| case TTM_PL_TT: |
| default: |
| amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); |
| break; |
| } |
| *placement = abo->placement; |
| } |
| |
| /** |
| * amdgpu_verify_access - Verify access for a mmap call |
| * |
| * @bo: The buffer object to map |
| * @filp: The file pointer from the process performing the mmap |
| * |
| * This is called by ttm_bo_mmap() to verify whether a process |
| * has the right to mmap a BO to their process space. |
| */ |
| static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| |
| /* |
| * Don't verify access for KFD BOs. They don't have a GEM |
| * object associated with them. |
| */ |
| if (abo->kfd_bo) |
| return 0; |
| |
| if (amdgpu_ttm_tt_get_usermm(bo->ttm)) |
| return -EPERM; |
| return drm_vma_node_verify_access(&abo->tbo.base.vma_node, |
| filp->private_data); |
| } |
| |
| /** |
| * amdgpu_move_null - Register memory for a buffer object |
| * |
| * @bo: The bo to assign the memory to |
| * @new_mem: The memory to be assigned. |
| * |
| * Assign the memory from new_mem to the memory of the buffer object bo. |
| */ |
| static void amdgpu_move_null(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| |
| BUG_ON(old_mem->mm_node != NULL); |
| *old_mem = *new_mem; |
| new_mem->mm_node = NULL; |
| } |
| |
| /** |
| * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. |
| * |
| * @bo: The bo to assign the memory to. |
| * @mm_node: Memory manager node for drm allocator. |
| * @mem: The region where the bo resides. |
| * |
| */ |
| static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, |
| struct drm_mm_node *mm_node, |
| struct ttm_mem_reg *mem) |
| { |
| uint64_t addr = 0; |
| |
| if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { |
| addr = mm_node->start << PAGE_SHIFT; |
| addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), |
| mem->mem_type); |
| } |
| return addr; |
| } |
| |
| /** |
| * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to |
| * @offset. It also modifies the offset to be within the drm_mm_node returned |
| * |
| * @mem: The region where the bo resides. |
| * @offset: The offset that drm_mm_node is used for finding. |
| * |
| */ |
| static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, |
| uint64_t *offset) |
| { |
| struct drm_mm_node *mm_node = mem->mm_node; |
| |
| while (*offset >= (mm_node->size << PAGE_SHIFT)) { |
| *offset -= (mm_node->size << PAGE_SHIFT); |
| ++mm_node; |
| } |
| return mm_node; |
| } |
| |
| /** |
| * amdgpu_ttm_map_buffer - Map memory into the GART windows |
| * @bo: buffer object to map |
| * @mem: memory object to map |
| * @mm_node: drm_mm node object to map |
| * @num_pages: number of pages to map |
| * @offset: offset into @mm_node where to start |
| * @window: which GART window to use |
| * @ring: DMA ring to use for the copy |
| * @tmz: if we should setup a TMZ enabled mapping |
| * @addr: resulting address inside the MC address space |
| * |
| * Setup one of the GART windows to access a specific piece of memory or return |
| * the physical address for local memory. |
| */ |
| static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, |
| struct ttm_mem_reg *mem, |
| struct drm_mm_node *mm_node, |
| unsigned num_pages, uint64_t offset, |
| unsigned window, struct amdgpu_ring *ring, |
| bool tmz, uint64_t *addr) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_job *job; |
| unsigned num_dw, num_bytes; |
| struct dma_fence *fence; |
| uint64_t src_addr, dst_addr; |
| void *cpu_addr; |
| uint64_t flags; |
| unsigned int i; |
| int r; |
| |
| BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < |
| AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); |
| |
| /* Map only what can't be accessed directly */ |
| if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { |
| *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; |
| return 0; |
| } |
| |
| *addr = adev->gmc.gart_start; |
| *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * |
| AMDGPU_GPU_PAGE_SIZE; |
| *addr += offset & ~PAGE_MASK; |
| |
| num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); |
| num_bytes = num_pages * 8; |
| |
| r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, |
| AMDGPU_IB_POOL_DELAYED, &job); |
| if (r) |
| return r; |
| |
| src_addr = num_dw * 4; |
| src_addr += job->ibs[0].gpu_addr; |
| |
| dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); |
| dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; |
| amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, |
| dst_addr, num_bytes, false); |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| |
| flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); |
| if (tmz) |
| flags |= AMDGPU_PTE_TMZ; |
| |
| cpu_addr = &job->ibs[0].ptr[num_dw]; |
| |
| if (mem->mem_type == TTM_PL_TT) { |
| struct ttm_dma_tt *dma; |
| dma_addr_t *dma_address; |
| |
| dma = container_of(bo->ttm, struct ttm_dma_tt, ttm); |
| dma_address = &dma->dma_address[offset >> PAGE_SHIFT]; |
| r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, |
| cpu_addr); |
| if (r) |
| goto error_free; |
| } else { |
| dma_addr_t dma_address; |
| |
| dma_address = (mm_node->start << PAGE_SHIFT) + offset; |
| dma_address += adev->vm_manager.vram_base_offset; |
| |
| for (i = 0; i < num_pages; ++i) { |
| r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, |
| &dma_address, flags, cpu_addr); |
| if (r) |
| goto error_free; |
| |
| dma_address += PAGE_SIZE; |
| } |
| } |
| |
| r = amdgpu_job_submit(job, &adev->mman.entity, |
| AMDGPU_FENCE_OWNER_UNDEFINED, &fence); |
| if (r) |
| goto error_free; |
| |
| dma_fence_put(fence); |
| |
| return r; |
| |
| error_free: |
| amdgpu_job_free(job); |
| return r; |
| } |
| |
| /** |
| * amdgpu_copy_ttm_mem_to_mem - Helper function for copy |
| * @adev: amdgpu device |
| * @src: buffer/address where to read from |
| * @dst: buffer/address where to write to |
| * @size: number of bytes to copy |
| * @tmz: if a secure copy should be used |
| * @resv: resv object to sync to |
| * @f: Returns the last fence if multiple jobs are submitted. |
| * |
| * The function copies @size bytes from {src->mem + src->offset} to |
| * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a |
| * move and different for a BO to BO copy. |
| * |
| */ |
| int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, |
| const struct amdgpu_copy_mem *src, |
| const struct amdgpu_copy_mem *dst, |
| uint64_t size, bool tmz, |
| struct dma_resv *resv, |
| struct dma_fence **f) |
| { |
| const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * |
| AMDGPU_GPU_PAGE_SIZE); |
| |
| uint64_t src_node_size, dst_node_size, src_offset, dst_offset; |
| struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; |
| struct drm_mm_node *src_mm, *dst_mm; |
| struct dma_fence *fence = NULL; |
| int r = 0; |
| |
| if (!adev->mman.buffer_funcs_enabled) { |
| DRM_ERROR("Trying to move memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| src_offset = src->offset; |
| src_mm = amdgpu_find_mm_node(src->mem, &src_offset); |
| src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; |
| |
| dst_offset = dst->offset; |
| dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); |
| dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; |
| |
| mutex_lock(&adev->mman.gtt_window_lock); |
| |
| while (size) { |
| uint32_t src_page_offset = src_offset & ~PAGE_MASK; |
| uint32_t dst_page_offset = dst_offset & ~PAGE_MASK; |
| struct dma_fence *next; |
| uint32_t cur_size; |
| uint64_t from, to; |
| |
| /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst |
| * begins at an offset, then adjust the size accordingly |
| */ |
| cur_size = max(src_page_offset, dst_page_offset); |
| cur_size = min(min3(src_node_size, dst_node_size, size), |
| (uint64_t)(GTT_MAX_BYTES - cur_size)); |
| |
| /* Map src to window 0 and dst to window 1. */ |
| r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, |
| PFN_UP(cur_size + src_page_offset), |
| src_offset, 0, ring, tmz, &from); |
| if (r) |
| goto error; |
| |
| r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, |
| PFN_UP(cur_size + dst_page_offset), |
| dst_offset, 1, ring, tmz, &to); |
| if (r) |
| goto error; |
| |
| r = amdgpu_copy_buffer(ring, from, to, cur_size, |
| resv, &next, false, true, tmz); |
| if (r) |
| goto error; |
| |
| dma_fence_put(fence); |
| fence = next; |
| |
| size -= cur_size; |
| if (!size) |
| break; |
| |
| src_node_size -= cur_size; |
| if (!src_node_size) { |
| ++src_mm; |
| src_node_size = src_mm->size << PAGE_SHIFT; |
| src_offset = 0; |
| } else { |
| src_offset += cur_size; |
| } |
| |
| dst_node_size -= cur_size; |
| if (!dst_node_size) { |
| ++dst_mm; |
| dst_node_size = dst_mm->size << PAGE_SHIFT; |
| dst_offset = 0; |
| } else { |
| dst_offset += cur_size; |
| } |
| } |
| error: |
| mutex_unlock(&adev->mman.gtt_window_lock); |
| if (f) |
| *f = dma_fence_get(fence); |
| dma_fence_put(fence); |
| return r; |
| } |
| |
| /** |
| * amdgpu_move_blit - Copy an entire buffer to another buffer |
| * |
| * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to |
| * help move buffers to and from VRAM. |
| */ |
| static int amdgpu_move_blit(struct ttm_buffer_object *bo, |
| bool evict, bool no_wait_gpu, |
| struct ttm_mem_reg *new_mem, |
| struct ttm_mem_reg *old_mem) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_copy_mem src, dst; |
| struct dma_fence *fence = NULL; |
| int r; |
| |
| src.bo = bo; |
| dst.bo = bo; |
| src.mem = old_mem; |
| dst.mem = new_mem; |
| src.offset = 0; |
| dst.offset = 0; |
| |
| r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, |
| new_mem->num_pages << PAGE_SHIFT, |
| amdgpu_bo_encrypted(abo), |
| bo->base.resv, &fence); |
| if (r) |
| goto error; |
| |
| /* clear the space being freed */ |
| if (old_mem->mem_type == TTM_PL_VRAM && |
| (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { |
| struct dma_fence *wipe_fence = NULL; |
| |
| r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, |
| NULL, &wipe_fence); |
| if (r) { |
| goto error; |
| } else if (wipe_fence) { |
| dma_fence_put(fence); |
| fence = wipe_fence; |
| } |
| } |
| |
| /* Always block for VM page tables before committing the new location */ |
| if (bo->type == ttm_bo_type_kernel) |
| r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); |
| else |
| r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); |
| dma_fence_put(fence); |
| return r; |
| |
| error: |
| if (fence) |
| dma_fence_wait(fence, false); |
| dma_fence_put(fence); |
| return r; |
| } |
| |
| /** |
| * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer |
| * |
| * Called by amdgpu_bo_move(). |
| */ |
| static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| struct ttm_mem_reg tmp_mem; |
| struct ttm_place placements; |
| struct ttm_placement placement; |
| int r; |
| |
| /* create space/pages for new_mem in GTT space */ |
| tmp_mem = *new_mem; |
| tmp_mem.mm_node = NULL; |
| placement.num_placement = 1; |
| placement.placement = &placements; |
| placement.num_busy_placement = 1; |
| placement.busy_placement = &placements; |
| placements.fpfn = 0; |
| placements.lpfn = 0; |
| placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; |
| r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); |
| if (unlikely(r)) { |
| pr_err("Failed to find GTT space for blit from VRAM\n"); |
| return r; |
| } |
| |
| /* set caching flags */ |
| r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); |
| if (unlikely(r)) { |
| goto out_cleanup; |
| } |
| |
| /* Bind the memory to the GTT space */ |
| r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); |
| if (unlikely(r)) { |
| goto out_cleanup; |
| } |
| |
| /* blit VRAM to GTT */ |
| r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); |
| if (unlikely(r)) { |
| goto out_cleanup; |
| } |
| |
| /* move BO (in tmp_mem) to new_mem */ |
| r = ttm_bo_move_ttm(bo, ctx, new_mem); |
| out_cleanup: |
| ttm_bo_mem_put(bo, &tmp_mem); |
| return r; |
| } |
| |
| /** |
| * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM |
| * |
| * Called by amdgpu_bo_move(). |
| */ |
| static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| struct ttm_mem_reg tmp_mem; |
| struct ttm_placement placement; |
| struct ttm_place placements; |
| int r; |
| |
| /* make space in GTT for old_mem buffer */ |
| tmp_mem = *new_mem; |
| tmp_mem.mm_node = NULL; |
| placement.num_placement = 1; |
| placement.placement = &placements; |
| placement.num_busy_placement = 1; |
| placement.busy_placement = &placements; |
| placements.fpfn = 0; |
| placements.lpfn = 0; |
| placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; |
| r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); |
| if (unlikely(r)) { |
| pr_err("Failed to find GTT space for blit to VRAM\n"); |
| return r; |
| } |
| |
| /* move/bind old memory to GTT space */ |
| r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); |
| if (unlikely(r)) { |
| goto out_cleanup; |
| } |
| |
| /* copy to VRAM */ |
| r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); |
| if (unlikely(r)) { |
| goto out_cleanup; |
| } |
| out_cleanup: |
| ttm_bo_mem_put(bo, &tmp_mem); |
| return r; |
| } |
| |
| /** |
| * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy |
| * |
| * Called by amdgpu_bo_move() |
| */ |
| static bool amdgpu_mem_visible(struct amdgpu_device *adev, |
| struct ttm_mem_reg *mem) |
| { |
| struct drm_mm_node *nodes = mem->mm_node; |
| |
| if (mem->mem_type == TTM_PL_SYSTEM || |
| mem->mem_type == TTM_PL_TT) |
| return true; |
| if (mem->mem_type != TTM_PL_VRAM) |
| return false; |
| |
| /* ttm_mem_reg_ioremap only supports contiguous memory */ |
| if (nodes->size != mem->num_pages) |
| return false; |
| |
| return ((nodes->start + nodes->size) << PAGE_SHIFT) |
| <= adev->gmc.visible_vram_size; |
| } |
| |
| /** |
| * amdgpu_bo_move - Move a buffer object to a new memory location |
| * |
| * Called by ttm_bo_handle_move_mem() |
| */ |
| static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, |
| struct ttm_operation_ctx *ctx, |
| struct ttm_mem_reg *new_mem) |
| { |
| struct amdgpu_device *adev; |
| struct amdgpu_bo *abo; |
| struct ttm_mem_reg *old_mem = &bo->mem; |
| int r; |
| |
| /* Can't move a pinned BO */ |
| abo = ttm_to_amdgpu_bo(bo); |
| if (WARN_ON_ONCE(abo->pin_count > 0)) |
| return -EINVAL; |
| |
| adev = amdgpu_ttm_adev(bo->bdev); |
| |
| if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { |
| amdgpu_move_null(bo, new_mem); |
| return 0; |
| } |
| if ((old_mem->mem_type == TTM_PL_TT && |
| new_mem->mem_type == TTM_PL_SYSTEM) || |
| (old_mem->mem_type == TTM_PL_SYSTEM && |
| new_mem->mem_type == TTM_PL_TT)) { |
| /* bind is enough */ |
| amdgpu_move_null(bo, new_mem); |
| return 0; |
| } |
| if (old_mem->mem_type == AMDGPU_PL_GDS || |
| old_mem->mem_type == AMDGPU_PL_GWS || |
| old_mem->mem_type == AMDGPU_PL_OA || |
| new_mem->mem_type == AMDGPU_PL_GDS || |
| new_mem->mem_type == AMDGPU_PL_GWS || |
| new_mem->mem_type == AMDGPU_PL_OA) { |
| /* Nothing to save here */ |
| amdgpu_move_null(bo, new_mem); |
| return 0; |
| } |
| |
| if (!adev->mman.buffer_funcs_enabled) { |
| r = -ENODEV; |
| goto memcpy; |
| } |
| |
| if (old_mem->mem_type == TTM_PL_VRAM && |
| new_mem->mem_type == TTM_PL_SYSTEM) { |
| r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); |
| } else if (old_mem->mem_type == TTM_PL_SYSTEM && |
| new_mem->mem_type == TTM_PL_VRAM) { |
| r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); |
| } else { |
| r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, |
| new_mem, old_mem); |
| } |
| |
| if (r) { |
| memcpy: |
| /* Check that all memory is CPU accessible */ |
| if (!amdgpu_mem_visible(adev, old_mem) || |
| !amdgpu_mem_visible(adev, new_mem)) { |
| pr_err("Move buffer fallback to memcpy unavailable\n"); |
| return r; |
| } |
| |
| r = ttm_bo_move_memcpy(bo, ctx, new_mem); |
| if (r) |
| return r; |
| } |
| |
| if (bo->type == ttm_bo_type_device && |
| new_mem->mem_type == TTM_PL_VRAM && |
| old_mem->mem_type != TTM_PL_VRAM) { |
| /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU |
| * accesses the BO after it's moved. |
| */ |
| abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; |
| } |
| |
| /* update statistics */ |
| atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault |
| * |
| * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() |
| */ |
| static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); |
| struct drm_mm_node *mm_node = mem->mm_node; |
| |
| mem->bus.addr = NULL; |
| mem->bus.offset = 0; |
| mem->bus.size = mem->num_pages << PAGE_SHIFT; |
| mem->bus.base = 0; |
| mem->bus.is_iomem = false; |
| if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) |
| return -EINVAL; |
| switch (mem->mem_type) { |
| case TTM_PL_SYSTEM: |
| /* system memory */ |
| return 0; |
| case TTM_PL_TT: |
| break; |
| case TTM_PL_VRAM: |
| mem->bus.offset = mem->start << PAGE_SHIFT; |
| /* check if it's visible */ |
| if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) |
| return -EINVAL; |
| /* Only physically contiguous buffers apply. In a contiguous |
| * buffer, size of the first mm_node would match the number of |
| * pages in ttm_mem_reg. |
| */ |
| if (adev->mman.aper_base_kaddr && |
| (mm_node->size == mem->num_pages)) |
| mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + |
| mem->bus.offset; |
| |
| mem->bus.base = adev->gmc.aper_base; |
| mem->bus.is_iomem = true; |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) |
| { |
| } |
| |
| static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, |
| unsigned long page_offset) |
| { |
| uint64_t offset = (page_offset << PAGE_SHIFT); |
| struct drm_mm_node *mm; |
| |
| mm = amdgpu_find_mm_node(&bo->mem, &offset); |
| return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + |
| (offset >> PAGE_SHIFT); |
| } |
| |
| /** |
| * amdgpu_ttm_domain_start - Returns GPU start address |
| * @adev: amdgpu device object |
| * @type: type of the memory |
| * |
| * Returns: |
| * GPU start address of a memory domain |
| */ |
| |
| uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) |
| { |
| switch (type) { |
| case TTM_PL_TT: |
| return adev->gmc.gart_start; |
| case TTM_PL_VRAM: |
| return adev->gmc.vram_start; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * TTM backend functions. |
| */ |
| struct amdgpu_ttm_tt { |
| struct ttm_dma_tt ttm; |
| struct drm_gem_object *gobj; |
| u64 offset; |
| uint64_t userptr; |
| struct task_struct *usertask; |
| uint32_t userflags; |
| #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) |
| struct hmm_range *range; |
| #endif |
| }; |
| |
| #ifdef CONFIG_DRM_AMDGPU_USERPTR |
| /** |
| * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user |
| * memory and start HMM tracking CPU page table update |
| * |
| * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only |
| * once afterwards to stop HMM tracking |
| */ |
| int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) |
| { |
| struct ttm_tt *ttm = bo->tbo.ttm; |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| unsigned long start = gtt->userptr; |
| struct vm_area_struct *vma; |
| struct hmm_range *range; |
| unsigned long timeout; |
| struct mm_struct *mm; |
| unsigned long i; |
| int r = 0; |
| |
| mm = bo->notifier.mm; |
| if (unlikely(!mm)) { |
| DRM_DEBUG_DRIVER("BO is not registered?\n"); |
| return -EFAULT; |
| } |
| |
| /* Another get_user_pages is running at the same time?? */ |
| if (WARN_ON(gtt->range)) |
| return -EFAULT; |
| |
| if (!mmget_not_zero(mm)) /* Happens during process shutdown */ |
| return -ESRCH; |
| |
| range = kzalloc(sizeof(*range), GFP_KERNEL); |
| if (unlikely(!range)) { |
| r = -ENOMEM; |
| goto out; |
| } |
| range->notifier = &bo->notifier; |
| range->start = bo->notifier.interval_tree.start; |
| range->end = bo->notifier.interval_tree.last + 1; |
| range->default_flags = HMM_PFN_REQ_FAULT; |
| if (!amdgpu_ttm_tt_is_readonly(ttm)) |
| range->default_flags |= HMM_PFN_REQ_WRITE; |
| |
| range->hmm_pfns = kvmalloc_array(ttm->num_pages, |
| sizeof(*range->hmm_pfns), GFP_KERNEL); |
| if (unlikely(!range->hmm_pfns)) { |
| r = -ENOMEM; |
| goto out_free_ranges; |
| } |
| |
| mmap_read_lock(mm); |
| vma = find_vma(mm, start); |
| if (unlikely(!vma || start < vma->vm_start)) { |
| r = -EFAULT; |
| goto out_unlock; |
| } |
| if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && |
| vma->vm_file)) { |
| r = -EPERM; |
| goto out_unlock; |
| } |
| mmap_read_unlock(mm); |
| timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); |
| |
| retry: |
| range->notifier_seq = mmu_interval_read_begin(&bo->notifier); |
| |
| mmap_read_lock(mm); |
| r = hmm_range_fault(range); |
| mmap_read_unlock(mm); |
| if (unlikely(r)) { |
| /* |
| * FIXME: This timeout should encompass the retry from |
| * mmu_interval_read_retry() as well. |
| */ |
| if (r == -EBUSY && !time_after(jiffies, timeout)) |
| goto retry; |
| goto out_free_pfns; |
| } |
| |
| /* |
| * Due to default_flags, all pages are HMM_PFN_VALID or |
| * hmm_range_fault() fails. FIXME: The pages cannot be touched outside |
| * the notifier_lock, and mmu_interval_read_retry() must be done first. |
| */ |
| for (i = 0; i < ttm->num_pages; i++) |
| pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); |
| |
| gtt->range = range; |
| mmput(mm); |
| |
| return 0; |
| |
| out_unlock: |
| mmap_read_unlock(mm); |
| out_free_pfns: |
| kvfree(range->hmm_pfns); |
| out_free_ranges: |
| kfree(range); |
| out: |
| mmput(mm); |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change |
| * Check if the pages backing this ttm range have been invalidated |
| * |
| * Returns: true if pages are still valid |
| */ |
| bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| bool r = false; |
| |
| if (!gtt || !gtt->userptr) |
| return false; |
| |
| DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", |
| gtt->userptr, ttm->num_pages); |
| |
| WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, |
| "No user pages to check\n"); |
| |
| if (gtt->range) { |
| /* |
| * FIXME: Must always hold notifier_lock for this, and must |
| * not ignore the return code. |
| */ |
| r = mmu_interval_read_retry(gtt->range->notifier, |
| gtt->range->notifier_seq); |
| kvfree(gtt->range->hmm_pfns); |
| kfree(gtt->range); |
| gtt->range = NULL; |
| } |
| |
| return !r; |
| } |
| #endif |
| |
| /** |
| * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. |
| * |
| * Called by amdgpu_cs_list_validate(). This creates the page list |
| * that backs user memory and will ultimately be mapped into the device |
| * address space. |
| */ |
| void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < ttm->num_pages; ++i) |
| ttm->pages[i] = pages ? pages[i] : NULL; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages |
| * |
| * Called by amdgpu_ttm_backend_bind() |
| **/ |
| static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| unsigned nents; |
| int r; |
| |
| int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| enum dma_data_direction direction = write ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE; |
| |
| /* Allocate an SG array and squash pages into it */ |
| r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, |
| ttm->num_pages << PAGE_SHIFT, |
| GFP_KERNEL); |
| if (r) |
| goto release_sg; |
| |
| /* Map SG to device */ |
| r = -ENOMEM; |
| nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); |
| if (nents == 0) |
| goto release_sg; |
| |
| /* convert SG to linear array of pages and dma addresses */ |
| drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, |
| gtt->ttm.dma_address, ttm->num_pages); |
| |
| return 0; |
| |
| release_sg: |
| kfree(ttm->sg); |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages |
| */ |
| static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| enum dma_data_direction direction = write ? |
| DMA_BIDIRECTIONAL : DMA_TO_DEVICE; |
| |
| /* double check that we don't free the table twice */ |
| if (!ttm->sg->sgl) |
| return; |
| |
| /* unmap the pages mapped to the device */ |
| dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); |
| |
| sg_free_table(ttm->sg); |
| |
| #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) |
| if (gtt->range) { |
| unsigned long i; |
| |
| for (i = 0; i < ttm->num_pages; i++) { |
| if (ttm->pages[i] != |
| hmm_pfn_to_page(gtt->range->hmm_pfns[i])) |
| break; |
| } |
| |
| WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); |
| } |
| #endif |
| } |
| |
| static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, |
| struct ttm_buffer_object *tbo, |
| uint64_t flags) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); |
| struct ttm_tt *ttm = tbo->ttm; |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| int r; |
| |
| if (amdgpu_bo_encrypted(abo)) |
| flags |= AMDGPU_PTE_TMZ; |
| |
| if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { |
| uint64_t page_idx = 1; |
| |
| r = amdgpu_gart_bind(adev, gtt->offset, page_idx, |
| ttm->pages, gtt->ttm.dma_address, flags); |
| if (r) |
| goto gart_bind_fail; |
| |
| /* The memory type of the first page defaults to UC. Now |
| * modify the memory type to NC from the second page of |
| * the BO onward. |
| */ |
| flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; |
| flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); |
| |
| r = amdgpu_gart_bind(adev, |
| gtt->offset + (page_idx << PAGE_SHIFT), |
| ttm->num_pages - page_idx, |
| &ttm->pages[page_idx], |
| &(gtt->ttm.dma_address[page_idx]), flags); |
| } else { |
| r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, |
| ttm->pages, gtt->ttm.dma_address, flags); |
| } |
| |
| gart_bind_fail: |
| if (r) |
| DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", |
| ttm->num_pages, gtt->offset); |
| |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_backend_bind - Bind GTT memory |
| * |
| * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). |
| * This handles binding GTT memory to the device address space. |
| */ |
| static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, |
| struct ttm_mem_reg *bo_mem) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); |
| struct amdgpu_ttm_tt *gtt = (void*)ttm; |
| uint64_t flags; |
| int r = 0; |
| |
| if (gtt->userptr) { |
| r = amdgpu_ttm_tt_pin_userptr(ttm); |
| if (r) { |
| DRM_ERROR("failed to pin userptr\n"); |
| return r; |
| } |
| } |
| if (!ttm->num_pages) { |
| WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", |
| ttm->num_pages, bo_mem, ttm); |
| } |
| |
| if (bo_mem->mem_type == AMDGPU_PL_GDS || |
| bo_mem->mem_type == AMDGPU_PL_GWS || |
| bo_mem->mem_type == AMDGPU_PL_OA) |
| return -EINVAL; |
| |
| if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { |
| gtt->offset = AMDGPU_BO_INVALID_OFFSET; |
| return 0; |
| } |
| |
| /* compute PTE flags relevant to this BO memory */ |
| flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); |
| |
| /* bind pages into GART page tables */ |
| gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; |
| r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, |
| ttm->pages, gtt->ttm.dma_address, flags); |
| |
| if (r) |
| DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", |
| ttm->num_pages, gtt->offset); |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object |
| */ |
| int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); |
| struct ttm_operation_ctx ctx = { false, false }; |
| struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; |
| struct ttm_mem_reg tmp; |
| struct ttm_placement placement; |
| struct ttm_place placements; |
| uint64_t addr, flags; |
| int r; |
| |
| if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) |
| return 0; |
| |
| addr = amdgpu_gmc_agp_addr(bo); |
| if (addr != AMDGPU_BO_INVALID_OFFSET) { |
| bo->mem.start = addr >> PAGE_SHIFT; |
| } else { |
| |
| /* allocate GART space */ |
| tmp = bo->mem; |
| tmp.mm_node = NULL; |
| placement.num_placement = 1; |
| placement.placement = &placements; |
| placement.num_busy_placement = 1; |
| placement.busy_placement = &placements; |
| placements.fpfn = 0; |
| placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; |
| placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | |
| TTM_PL_FLAG_TT; |
| |
| r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); |
| if (unlikely(r)) |
| return r; |
| |
| /* compute PTE flags for this buffer object */ |
| flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); |
| |
| /* Bind pages */ |
| gtt->offset = (u64)tmp.start << PAGE_SHIFT; |
| r = amdgpu_ttm_gart_bind(adev, bo, flags); |
| if (unlikely(r)) { |
| ttm_bo_mem_put(bo, &tmp); |
| return r; |
| } |
| |
| ttm_bo_mem_put(bo, &bo->mem); |
| bo->mem = tmp; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_recover_gart - Rebind GTT pages |
| * |
| * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to |
| * rebind GTT pages during a GPU reset. |
| */ |
| int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); |
| uint64_t flags; |
| int r; |
| |
| if (!tbo->ttm) |
| return 0; |
| |
| flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); |
| r = amdgpu_ttm_gart_bind(adev, tbo, flags); |
| |
| return r; |
| } |
| |
| /** |
| * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages |
| * |
| * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and |
| * ttm_tt_destroy(). |
| */ |
| static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| int r; |
| |
| /* if the pages have userptr pinning then clear that first */ |
| if (gtt->userptr) |
| amdgpu_ttm_tt_unpin_userptr(ttm); |
| |
| if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) |
| return 0; |
| |
| /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ |
| r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); |
| if (r) |
| DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", |
| gtt->ttm.ttm.num_pages, gtt->offset); |
| return r; |
| } |
| |
| static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt->usertask) |
| put_task_struct(gtt->usertask); |
| |
| ttm_dma_tt_fini(>t->ttm); |
| kfree(gtt); |
| } |
| |
| static struct ttm_backend_func amdgpu_backend_func = { |
| .bind = &amdgpu_ttm_backend_bind, |
| .unbind = &amdgpu_ttm_backend_unbind, |
| .destroy = &amdgpu_ttm_backend_destroy, |
| }; |
| |
| /** |
| * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO |
| * |
| * @bo: The buffer object to create a GTT ttm_tt object around |
| * |
| * Called by ttm_tt_create(). |
| */ |
| static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, |
| uint32_t page_flags) |
| { |
| struct amdgpu_ttm_tt *gtt; |
| |
| gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); |
| if (gtt == NULL) { |
| return NULL; |
| } |
| gtt->ttm.ttm.func = &amdgpu_backend_func; |
| gtt->gobj = &bo->base; |
| |
| /* allocate space for the uninitialized page entries */ |
| if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { |
| kfree(gtt); |
| return NULL; |
| } |
| return >t->ttm.ttm; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_populate - Map GTT pages visible to the device |
| * |
| * Map the pages of a ttm_tt object to an address space visible |
| * to the underlying device. |
| */ |
| static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, |
| struct ttm_operation_ctx *ctx) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ |
| if (gtt && gtt->userptr) { |
| ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); |
| if (!ttm->sg) |
| return -ENOMEM; |
| |
| ttm->page_flags |= TTM_PAGE_FLAG_SG; |
| ttm->state = tt_unbound; |
| return 0; |
| } |
| |
| if (ttm->page_flags & TTM_PAGE_FLAG_SG) { |
| if (!ttm->sg) { |
| struct dma_buf_attachment *attach; |
| struct sg_table *sgt; |
| |
| attach = gtt->gobj->import_attach; |
| sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); |
| if (IS_ERR(sgt)) |
| return PTR_ERR(sgt); |
| |
| ttm->sg = sgt; |
| } |
| |
| drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, |
| gtt->ttm.dma_address, |
| ttm->num_pages); |
| ttm->state = tt_unbound; |
| return 0; |
| } |
| |
| #ifdef CONFIG_SWIOTLB |
| if (adev->need_swiotlb && swiotlb_nr_tbl()) { |
| return ttm_dma_populate(>t->ttm, adev->dev, ctx); |
| } |
| #endif |
| |
| /* fall back to generic helper to populate the page array |
| * and map them to the device */ |
| return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays |
| * |
| * Unmaps pages of a ttm_tt object from the device address space and |
| * unpopulates the page array backing it. |
| */ |
| static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| struct amdgpu_device *adev; |
| |
| if (gtt && gtt->userptr) { |
| amdgpu_ttm_tt_set_user_pages(ttm, NULL); |
| kfree(ttm->sg); |
| ttm->page_flags &= ~TTM_PAGE_FLAG_SG; |
| return; |
| } |
| |
| if (ttm->sg && gtt->gobj->import_attach) { |
| struct dma_buf_attachment *attach; |
| |
| attach = gtt->gobj->import_attach; |
| dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); |
| ttm->sg = NULL; |
| return; |
| } |
| |
| if (ttm->page_flags & TTM_PAGE_FLAG_SG) |
| return; |
| |
| adev = amdgpu_ttm_adev(ttm->bdev); |
| |
| #ifdef CONFIG_SWIOTLB |
| if (adev->need_swiotlb && swiotlb_nr_tbl()) { |
| ttm_dma_unpopulate(>t->ttm, adev->dev); |
| return; |
| } |
| #endif |
| |
| /* fall back to generic helper to unmap and unpopulate array */ |
| ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current |
| * task |
| * |
| * @ttm: The ttm_tt object to bind this userptr object to |
| * @addr: The address in the current tasks VM space to use |
| * @flags: Requirements of userptr object. |
| * |
| * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages |
| * to current task |
| */ |
| int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, |
| uint32_t flags) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt == NULL) |
| return -EINVAL; |
| |
| gtt->userptr = addr; |
| gtt->userflags = flags; |
| |
| if (gtt->usertask) |
| put_task_struct(gtt->usertask); |
| gtt->usertask = current->group_leader; |
| get_task_struct(gtt->usertask); |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object |
| */ |
| struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt == NULL) |
| return NULL; |
| |
| if (gtt->usertask == NULL) |
| return NULL; |
| |
| return gtt->usertask->mm; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an |
| * address range for the current task. |
| * |
| */ |
| bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, |
| unsigned long end) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| unsigned long size; |
| |
| if (gtt == NULL || !gtt->userptr) |
| return false; |
| |
| /* Return false if no part of the ttm_tt object lies within |
| * the range |
| */ |
| size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; |
| if (gtt->userptr > end || gtt->userptr + size <= start) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? |
| */ |
| bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt == NULL || !gtt->userptr) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? |
| */ |
| bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) |
| { |
| struct amdgpu_ttm_tt *gtt = (void *)ttm; |
| |
| if (gtt == NULL) |
| return false; |
| |
| return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); |
| } |
| |
| /** |
| * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object |
| * |
| * @ttm: The ttm_tt object to compute the flags for |
| * @mem: The memory registry backing this ttm_tt object |
| * |
| * Figure out the flags to use for a VM PDE (Page Directory Entry). |
| */ |
| uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) |
| { |
| uint64_t flags = 0; |
| |
| if (mem && mem->mem_type != TTM_PL_SYSTEM) |
| flags |= AMDGPU_PTE_VALID; |
| |
| if (mem && mem->mem_type == TTM_PL_TT) { |
| flags |= AMDGPU_PTE_SYSTEM; |
| |
| if (ttm->caching_state == tt_cached) |
| flags |= AMDGPU_PTE_SNOOPED; |
| } |
| |
| return flags; |
| } |
| |
| /** |
| * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object |
| * |
| * @ttm: The ttm_tt object to compute the flags for |
| * @mem: The memory registry backing this ttm_tt object |
| |
| * Figure out the flags to use for a VM PTE (Page Table Entry). |
| */ |
| uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, |
| struct ttm_mem_reg *mem) |
| { |
| uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); |
| |
| flags |= adev->gart.gart_pte_flags; |
| flags |= AMDGPU_PTE_READABLE; |
| |
| if (!amdgpu_ttm_tt_is_readonly(ttm)) |
| flags |= AMDGPU_PTE_WRITEABLE; |
| |
| return flags; |
| } |
| |
| /** |
| * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer |
| * object. |
| * |
| * Return true if eviction is sensible. Called by ttm_mem_evict_first() on |
| * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until |
| * it can find space for a new object and by ttm_bo_force_list_clean() which is |
| * used to clean out a memory space. |
| */ |
| static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, |
| const struct ttm_place *place) |
| { |
| unsigned long num_pages = bo->mem.num_pages; |
| struct drm_mm_node *node = bo->mem.mm_node; |
| struct dma_resv_list *flist; |
| struct dma_fence *f; |
| int i; |
| |
| if (bo->type == ttm_bo_type_kernel && |
| !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) |
| return false; |
| |
| /* If bo is a KFD BO, check if the bo belongs to the current process. |
| * If true, then return false as any KFD process needs all its BOs to |
| * be resident to run successfully |
| */ |
| flist = dma_resv_get_list(bo->base.resv); |
| if (flist) { |
| for (i = 0; i < flist->shared_count; ++i) { |
| f = rcu_dereference_protected(flist->shared[i], |
| dma_resv_held(bo->base.resv)); |
| if (amdkfd_fence_check_mm(f, current->mm)) |
| return false; |
| } |
| } |
| |
| switch (bo->mem.mem_type) { |
| case TTM_PL_TT: |
| if (amdgpu_bo_is_amdgpu_bo(bo) && |
| amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) |
| return false; |
| return true; |
| |
| case TTM_PL_VRAM: |
| /* Check each drm MM node individually */ |
| while (num_pages) { |
| if (place->fpfn < (node->start + node->size) && |
| !(place->lpfn && place->lpfn <= node->start)) |
| return true; |
| |
| num_pages -= node->size; |
| ++node; |
| } |
| return false; |
| |
| default: |
| break; |
| } |
| |
| return ttm_bo_eviction_valuable(bo, place); |
| } |
| |
| /** |
| * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. |
| * |
| * @bo: The buffer object to read/write |
| * @offset: Offset into buffer object |
| * @buf: Secondary buffer to write/read from |
| * @len: Length in bytes of access |
| * @write: true if writing |
| * |
| * This is used to access VRAM that backs a buffer object via MMIO |
| * access for debugging purposes. |
| */ |
| static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, |
| unsigned long offset, |
| void *buf, int len, int write) |
| { |
| struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); |
| struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); |
| struct drm_mm_node *nodes; |
| uint32_t value = 0; |
| int ret = 0; |
| uint64_t pos; |
| unsigned long flags; |
| |
| if (bo->mem.mem_type != TTM_PL_VRAM) |
| return -EIO; |
| |
| pos = offset; |
| nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); |
| pos += (nodes->start << PAGE_SHIFT); |
| |
| while (len && pos < adev->gmc.mc_vram_size) { |
| uint64_t aligned_pos = pos & ~(uint64_t)3; |
| uint64_t bytes = 4 - (pos & 3); |
| uint32_t shift = (pos & 3) * 8; |
| uint32_t mask = 0xffffffff << shift; |
| |
| if (len < bytes) { |
| mask &= 0xffffffff >> (bytes - len) * 8; |
| bytes = len; |
| } |
| |
| if (mask != 0xffffffff) { |
| spin_lock_irqsave(&adev->mmio_idx_lock, flags); |
| WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); |
| WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); |
| if (!write || mask != 0xffffffff) |
| value = RREG32_NO_KIQ(mmMM_DATA); |
| if (write) { |
| value &= ~mask; |
| value |= (*(uint32_t *)buf << shift) & mask; |
| WREG32_NO_KIQ(mmMM_DATA, value); |
| } |
| spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); |
| if (!write) { |
| value = (value & mask) >> shift; |
| memcpy(buf, &value, bytes); |
| } |
| } else { |
| bytes = (nodes->start + nodes->size) << PAGE_SHIFT; |
| bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); |
| |
| amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, |
| bytes, write); |
| } |
| |
| ret += bytes; |
| buf = (uint8_t *)buf + bytes; |
| pos += bytes; |
| len -= bytes; |
| if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { |
| ++nodes; |
| pos = (nodes->start << PAGE_SHIFT); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static struct ttm_bo_driver amdgpu_bo_driver = { |
| .ttm_tt_create = &amdgpu_ttm_tt_create, |
| .ttm_tt_populate = &amdgpu_ttm_tt_populate, |
| .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, |
| .init_mem_type = &amdgpu_init_mem_type, |
| .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, |
| .evict_flags = &amdgpu_evict_flags, |
| .move = &amdgpu_bo_move, |
| .verify_access = &amdgpu_verify_access, |
| .move_notify = &amdgpu_bo_move_notify, |
| .release_notify = &amdgpu_bo_release_notify, |
| .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, |
| .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, |
| .io_mem_free = &amdgpu_ttm_io_mem_free, |
| .io_mem_pfn = amdgpu_ttm_io_mem_pfn, |
| .access_memory = &amdgpu_ttm_access_memory, |
| .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify |
| }; |
| |
| /* |
| * Firmware Reservation functions |
| */ |
| /** |
| * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * free fw reserved vram if it has been reserved. |
| */ |
| static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) |
| { |
| amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, |
| NULL, &adev->fw_vram_usage.va); |
| } |
| |
| /** |
| * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * create bo vram reservation from fw. |
| */ |
| static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) |
| { |
| uint64_t vram_size = adev->gmc.visible_vram_size; |
| |
| adev->fw_vram_usage.va = NULL; |
| adev->fw_vram_usage.reserved_bo = NULL; |
| |
| if (adev->fw_vram_usage.size == 0 || |
| adev->fw_vram_usage.size > vram_size) |
| return 0; |
| |
| return amdgpu_bo_create_kernel_at(adev, |
| adev->fw_vram_usage.start_offset, |
| adev->fw_vram_usage.size, |
| AMDGPU_GEM_DOMAIN_VRAM, |
| &adev->fw_vram_usage.reserved_bo, |
| &adev->fw_vram_usage.va); |
| } |
| |
| /* |
| * Memoy training reservation functions |
| */ |
| |
| /** |
| * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * free memory training reserved vram if it has been reserved. |
| */ |
| static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) |
| { |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| |
| ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; |
| amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); |
| ctx->c2p_bo = NULL; |
| |
| return 0; |
| } |
| |
| static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) |
| { |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| |
| memset(ctx, 0, sizeof(*ctx)); |
| |
| ctx->c2p_train_data_offset = |
| ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M); |
| ctx->p2c_train_data_offset = |
| (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); |
| ctx->train_data_size = |
| GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; |
| |
| DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", |
| ctx->train_data_size, |
| ctx->p2c_train_data_offset, |
| ctx->c2p_train_data_offset); |
| } |
| |
| /* |
| * reserve TMR memory at the top of VRAM which holds |
| * IP Discovery data and is protected by PSP. |
| */ |
| static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) |
| { |
| int ret; |
| struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; |
| bool mem_train_support = false; |
| |
| if (!amdgpu_sriov_vf(adev)) { |
| ret = amdgpu_mem_train_support(adev); |
| if (ret == 1) |
| mem_train_support = true; |
| else if (ret == -1) |
| return -EINVAL; |
| else |
| DRM_DEBUG("memory training does not support!\n"); |
| } |
| |
| /* |
| * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all |
| * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) |
| * |
| * Otherwise, fallback to legacy approach to check and reserve tmr block for ip |
| * discovery data and G6 memory training data respectively |
| */ |
| adev->discovery_tmr_size = |
| amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); |
| if (!adev->discovery_tmr_size) |
| adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET; |
| |
| if (mem_train_support) { |
| /* reserve vram for mem train according to TMR location */ |
| amdgpu_ttm_training_data_block_init(adev); |
| ret = amdgpu_bo_create_kernel_at(adev, |
| ctx->c2p_train_data_offset, |
| ctx->train_data_size, |
| AMDGPU_GEM_DOMAIN_VRAM, |
| &ctx->c2p_bo, |
| NULL); |
| if (ret) { |
| DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); |
| amdgpu_ttm_training_reserve_vram_fini(adev); |
| return ret; |
| } |
| ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; |
| } |
| |
| ret = amdgpu_bo_create_kernel_at(adev, |
| adev->gmc.real_vram_size - adev->discovery_tmr_size, |
| adev->discovery_tmr_size, |
| AMDGPU_GEM_DOMAIN_VRAM, |
| &adev->discovery_memory, |
| NULL); |
| if (ret) { |
| DRM_ERROR("alloc tmr failed(%d)!\n", ret); |
| amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_init - Init the memory management (ttm) as well as various |
| * gtt/vram related fields. |
| * |
| * This initializes all of the memory space pools that the TTM layer |
| * will need such as the GTT space (system memory mapped to the device), |
| * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which |
| * can be mapped per VMID. |
| */ |
| int amdgpu_ttm_init(struct amdgpu_device *adev) |
| { |
| uint64_t gtt_size; |
| int r; |
| u64 vis_vram_limit; |
| void *stolen_vga_buf; |
| |
| mutex_init(&adev->mman.gtt_window_lock); |
| |
| /* No others user of address space so set it to 0 */ |
| r = ttm_bo_device_init(&adev->mman.bdev, |
| &amdgpu_bo_driver, |
| adev->ddev->anon_inode->i_mapping, |
| adev->ddev->vma_offset_manager, |
| dma_addressing_limited(adev->dev)); |
| if (r) { |
| DRM_ERROR("failed initializing buffer object driver(%d).\n", r); |
| return r; |
| } |
| adev->mman.initialized = true; |
| |
| /* We opt to avoid OOM on system pages allocations */ |
| adev->mman.bdev.no_retry = true; |
| |
| /* Initialize VRAM pool with all of VRAM divided into pages */ |
| r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, |
| adev->gmc.real_vram_size >> PAGE_SHIFT); |
| if (r) { |
| DRM_ERROR("Failed initializing VRAM heap.\n"); |
| return r; |
| } |
| |
| /* Reduce size of CPU-visible VRAM if requested */ |
| vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; |
| if (amdgpu_vis_vram_limit > 0 && |
| vis_vram_limit <= adev->gmc.visible_vram_size) |
| adev->gmc.visible_vram_size = vis_vram_limit; |
| |
| /* Change the size here instead of the init above so only lpfn is affected */ |
| amdgpu_ttm_set_buffer_funcs_status(adev, false); |
| #ifdef CONFIG_64BIT |
| adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, |
| adev->gmc.visible_vram_size); |
| #endif |
| |
| /* |
| *The reserved vram for firmware must be pinned to the specified |
| *place on the VRAM, so reserve it early. |
| */ |
| r = amdgpu_ttm_fw_reserve_vram_init(adev); |
| if (r) { |
| return r; |
| } |
| |
| /* |
| * only NAVI10 and onwards ASIC support for IP discovery. |
| * If IP discovery enabled, a block of memory should be |
| * reserved for IP discovey. |
| */ |
| if (adev->discovery_bin) { |
| r = amdgpu_ttm_reserve_tmr(adev); |
| if (r) |
| return r; |
| } |
| |
| /* allocate memory as required for VGA |
| * This is used for VGA emulation and pre-OS scanout buffers to |
| * avoid display artifacts while transitioning between pre-OS |
| * and driver. */ |
| r = amdgpu_bo_create_kernel_at(adev, 0, adev->gmc.stolen_vga_size, |
| AMDGPU_GEM_DOMAIN_VRAM, |
| &adev->gmc.stolen_vga_memory, |
| &stolen_vga_buf); |
| if (r) |
| return r; |
| |
| DRM_INFO("amdgpu: %uM of VRAM memory ready\n", |
| (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); |
| |
| /* Compute GTT size, either bsaed on 3/4th the size of RAM size |
| * or whatever the user passed on module init */ |
| if (amdgpu_gtt_size == -1) { |
| struct sysinfo si; |
| |
| si_meminfo(&si); |
| gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), |
| adev->gmc.mc_vram_size), |
| ((uint64_t)si.totalram * si.mem_unit * 3/4)); |
| } |
| else |
| gtt_size = (uint64_t)amdgpu_gtt_size << 20; |
| |
| /* Initialize GTT memory pool */ |
| r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); |
| if (r) { |
| DRM_ERROR("Failed initializing GTT heap.\n"); |
| return r; |
| } |
| DRM_INFO("amdgpu: %uM of GTT memory ready.\n", |
| (unsigned)(gtt_size / (1024 * 1024))); |
| |
| /* Initialize various on-chip memory pools */ |
| r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, |
| adev->gds.gds_size); |
| if (r) { |
| DRM_ERROR("Failed initializing GDS heap.\n"); |
| return r; |
| } |
| |
| r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, |
| adev->gds.gws_size); |
| if (r) { |
| DRM_ERROR("Failed initializing gws heap.\n"); |
| return r; |
| } |
| |
| r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, |
| adev->gds.oa_size); |
| if (r) { |
| DRM_ERROR("Failed initializing oa heap.\n"); |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm |
| */ |
| void amdgpu_ttm_late_init(struct amdgpu_device *adev) |
| { |
| void *stolen_vga_buf; |
| /* return the VGA stolen memory (if any) back to VRAM */ |
| amdgpu_bo_free_kernel(&adev->gmc.stolen_vga_memory, NULL, &stolen_vga_buf); |
| } |
| |
| /** |
| * amdgpu_ttm_fini - De-initialize the TTM memory pools |
| */ |
| void amdgpu_ttm_fini(struct amdgpu_device *adev) |
| { |
| if (!adev->mman.initialized) |
| return; |
| |
| amdgpu_ttm_training_reserve_vram_fini(adev); |
| /* return the IP Discovery TMR memory back to VRAM */ |
| amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); |
| amdgpu_ttm_fw_reserve_vram_fini(adev); |
| |
| if (adev->mman.aper_base_kaddr) |
| iounmap(adev->mman.aper_base_kaddr); |
| adev->mman.aper_base_kaddr = NULL; |
| |
| ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); |
| ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); |
| ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); |
| ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); |
| ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); |
| ttm_bo_device_release(&adev->mman.bdev); |
| adev->mman.initialized = false; |
| DRM_INFO("amdgpu: ttm finalized\n"); |
| } |
| |
| /** |
| * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: true when we can use buffer functions. |
| * |
| * Enable/disable use of buffer functions during suspend/resume. This should |
| * only be called at bootup or when userspace isn't running. |
| */ |
| void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) |
| { |
| struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; |
| uint64_t size; |
| int r; |
| |
| if (!adev->mman.initialized || amdgpu_in_reset(adev) || |
| adev->mman.buffer_funcs_enabled == enable) |
| return; |
| |
| if (enable) { |
| struct amdgpu_ring *ring; |
| struct drm_gpu_scheduler *sched; |
| |
| ring = adev->mman.buffer_funcs_ring; |
| sched = &ring->sched; |
| r = drm_sched_entity_init(&adev->mman.entity, |
| DRM_SCHED_PRIORITY_KERNEL, &sched, |
| 1, NULL); |
| if (r) { |
| DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", |
| r); |
| return; |
| } |
| } else { |
| drm_sched_entity_destroy(&adev->mman.entity); |
| dma_fence_put(man->move); |
| man->move = NULL; |
| } |
| |
| /* this just adjusts TTM size idea, which sets lpfn to the correct value */ |
| if (enable) |
| size = adev->gmc.real_vram_size; |
| else |
| size = adev->gmc.visible_vram_size; |
| man->size = size >> PAGE_SHIFT; |
| adev->mman.buffer_funcs_enabled = enable; |
| } |
| |
| int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) |
| { |
| struct drm_file *file_priv = filp->private_data; |
| struct amdgpu_device *adev = file_priv->minor->dev->dev_private; |
| |
| if (adev == NULL) |
| return -EINVAL; |
| |
| return ttm_bo_mmap(filp, vma, &adev->mman.bdev); |
| } |
| |
| int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, |
| uint64_t dst_offset, uint32_t byte_count, |
| struct dma_resv *resv, |
| struct dma_fence **fence, bool direct_submit, |
| bool vm_needs_flush, bool tmz) |
| { |
| enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : |
| AMDGPU_IB_POOL_DELAYED; |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_job *job; |
| |
| uint32_t max_bytes; |
| unsigned num_loops, num_dw; |
| unsigned i; |
| int r; |
| |
| if (direct_submit && !ring->sched.ready) { |
| DRM_ERROR("Trying to move memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| max_bytes = adev->mman.buffer_funcs->copy_max_bytes; |
| num_loops = DIV_ROUND_UP(byte_count, max_bytes); |
| num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); |
| |
| r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); |
| if (r) |
| return r; |
| |
| if (vm_needs_flush) { |
| job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); |
| job->vm_needs_flush = true; |
| } |
| if (resv) { |
| r = amdgpu_sync_resv(adev, &job->sync, resv, |
| AMDGPU_SYNC_ALWAYS, |
| AMDGPU_FENCE_OWNER_UNDEFINED); |
| if (r) { |
| DRM_ERROR("sync failed (%d).\n", r); |
| goto error_free; |
| } |
| } |
| |
| for (i = 0; i < num_loops; i++) { |
| uint32_t cur_size_in_bytes = min(byte_count, max_bytes); |
| |
| amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, |
| dst_offset, cur_size_in_bytes, tmz); |
| |
| src_offset += cur_size_in_bytes; |
| dst_offset += cur_size_in_bytes; |
| byte_count -= cur_size_in_bytes; |
| } |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| if (direct_submit) |
| r = amdgpu_job_submit_direct(job, ring, fence); |
| else |
| r = amdgpu_job_submit(job, &adev->mman.entity, |
| AMDGPU_FENCE_OWNER_UNDEFINED, fence); |
| if (r) |
| goto error_free; |
| |
| return r; |
| |
| error_free: |
| amdgpu_job_free(job); |
| DRM_ERROR("Error scheduling IBs (%d)\n", r); |
| return r; |
| } |
| |
| int amdgpu_fill_buffer(struct amdgpu_bo *bo, |
| uint32_t src_data, |
| struct dma_resv *resv, |
| struct dma_fence **fence) |
| { |
| struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); |
| uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; |
| struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; |
| |
| struct drm_mm_node *mm_node; |
| unsigned long num_pages; |
| unsigned int num_loops, num_dw; |
| |
| struct amdgpu_job *job; |
| int r; |
| |
| if (!adev->mman.buffer_funcs_enabled) { |
| DRM_ERROR("Trying to clear memory with ring turned off.\n"); |
| return -EINVAL; |
| } |
| |
| if (bo->tbo.mem.mem_type == TTM_PL_TT) { |
| r = amdgpu_ttm_alloc_gart(&bo->tbo); |
| if (r) |
| return r; |
| } |
| |
| num_pages = bo->tbo.num_pages; |
| mm_node = bo->tbo.mem.mm_node; |
| num_loops = 0; |
| while (num_pages) { |
| uint64_t byte_count = mm_node->size << PAGE_SHIFT; |
| |
| num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); |
| num_pages -= mm_node->size; |
| ++mm_node; |
| } |
| num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; |
| |
| /* for IB padding */ |
| num_dw += 64; |
| |
| r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, |
| &job); |
| if (r) |
| return r; |
| |
| if (resv) { |
| r = amdgpu_sync_resv(adev, &job->sync, resv, |
| AMDGPU_SYNC_ALWAYS, |
| AMDGPU_FENCE_OWNER_UNDEFINED); |
| if (r) { |
| DRM_ERROR("sync failed (%d).\n", r); |
| goto error_free; |
| } |
| } |
| |
| num_pages = bo->tbo.num_pages; |
| mm_node = bo->tbo.mem.mm_node; |
| |
| while (num_pages) { |
| uint64_t byte_count = mm_node->size << PAGE_SHIFT; |
| uint64_t dst_addr; |
| |
| dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); |
| while (byte_count) { |
| uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, |
| max_bytes); |
| |
| amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, |
| dst_addr, cur_size_in_bytes); |
| |
| dst_addr += cur_size_in_bytes; |
| byte_count -= cur_size_in_bytes; |
| } |
| |
| num_pages -= mm_node->size; |
| ++mm_node; |
| } |
| |
| amdgpu_ring_pad_ib(ring, &job->ibs[0]); |
| WARN_ON(job->ibs[0].length_dw > num_dw); |
| r = amdgpu_job_submit(job, &adev->mman.entity, |
| AMDGPU_FENCE_OWNER_UNDEFINED, fence); |
| if (r) |
| goto error_free; |
| |
| return 0; |
| |
| error_free: |
| amdgpu_job_free(job); |
| return r; |
| } |
| |
| #if defined(CONFIG_DEBUG_FS) |
| |
| static int amdgpu_mm_dump_table(struct seq_file *m, void *data) |
| { |
| struct drm_info_node *node = (struct drm_info_node *)m->private; |
| unsigned ttm_pl = (uintptr_t)node->info_ent->data; |
| struct drm_device *dev = node->minor->dev; |
| struct amdgpu_device *adev = dev->dev_private; |
| struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; |
| struct drm_printer p = drm_seq_file_printer(m); |
| |
| man->func->debug(man, &p); |
| return 0; |
| } |
| |
| static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { |
| {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, |
| {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, |
| {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, |
| {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, |
| {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, |
| {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, |
| #ifdef CONFIG_SWIOTLB |
| {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} |
| #endif |
| }; |
| |
| /** |
| * amdgpu_ttm_vram_read - Linear read access to VRAM |
| * |
| * Accesses VRAM via MMIO for debugging purposes. |
| */ |
| static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| ssize_t result = 0; |
| |
| if (size & 0x3 || *pos & 0x3) |
| return -EINVAL; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return -ENXIO; |
| |
| size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); |
| while (size) { |
| size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); |
| uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; |
| |
| amdgpu_device_vram_access(adev, *pos, value, bytes, false); |
| if (copy_to_user(buf, value, bytes)) |
| return -EFAULT; |
| |
| result += bytes; |
| buf += bytes; |
| *pos += bytes; |
| size -= bytes; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * amdgpu_ttm_vram_write - Linear write access to VRAM |
| * |
| * Accesses VRAM via MMIO for debugging purposes. |
| */ |
| static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| ssize_t result = 0; |
| int r; |
| |
| if (size & 0x3 || *pos & 0x3) |
| return -EINVAL; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return -ENXIO; |
| |
| while (size) { |
| unsigned long flags; |
| uint32_t value; |
| |
| if (*pos >= adev->gmc.mc_vram_size) |
| return result; |
| |
| r = get_user(value, (uint32_t *)buf); |
| if (r) |
| return r; |
| |
| spin_lock_irqsave(&adev->mmio_idx_lock, flags); |
| WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); |
| WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); |
| WREG32_NO_KIQ(mmMM_DATA, value); |
| spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); |
| |
| result += 4; |
| buf += 4; |
| *pos += 4; |
| size -= 4; |
| } |
| |
| return result; |
| } |
| |
| static const struct file_operations amdgpu_ttm_vram_fops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_ttm_vram_read, |
| .write = amdgpu_ttm_vram_write, |
| .llseek = default_llseek, |
| }; |
| |
| #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS |
| |
| /** |
| * amdgpu_ttm_gtt_read - Linear read access to GTT memory |
| */ |
| static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| ssize_t result = 0; |
| int r; |
| |
| while (size) { |
| loff_t p = *pos / PAGE_SIZE; |
| unsigned off = *pos & ~PAGE_MASK; |
| size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); |
| struct page *page; |
| void *ptr; |
| |
| if (p >= adev->gart.num_cpu_pages) |
| return result; |
| |
| page = adev->gart.pages[p]; |
| if (page) { |
| ptr = kmap(page); |
| ptr += off; |
| |
| r = copy_to_user(buf, ptr, cur_size); |
| kunmap(adev->gart.pages[p]); |
| } else |
| r = clear_user(buf, cur_size); |
| |
| if (r) |
| return -EFAULT; |
| |
| result += cur_size; |
| buf += cur_size; |
| *pos += cur_size; |
| size -= cur_size; |
| } |
| |
| return result; |
| } |
| |
| static const struct file_operations amdgpu_ttm_gtt_fops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_ttm_gtt_read, |
| .llseek = default_llseek |
| }; |
| |
| #endif |
| |
| /** |
| * amdgpu_iomem_read - Virtual read access to GPU mapped memory |
| * |
| * This function is used to read memory that has been mapped to the |
| * GPU and the known addresses are not physical addresses but instead |
| * bus addresses (e.g., what you'd put in an IB or ring buffer). |
| */ |
| static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| struct iommu_domain *dom; |
| ssize_t result = 0; |
| int r; |
| |
| /* retrieve the IOMMU domain if any for this device */ |
| dom = iommu_get_domain_for_dev(adev->dev); |
| |
| while (size) { |
| phys_addr_t addr = *pos & PAGE_MASK; |
| loff_t off = *pos & ~PAGE_MASK; |
| size_t bytes = PAGE_SIZE - off; |
| unsigned long pfn; |
| struct page *p; |
| void *ptr; |
| |
| bytes = bytes < size ? bytes : size; |
| |
| /* Translate the bus address to a physical address. If |
| * the domain is NULL it means there is no IOMMU active |
| * and the address translation is the identity |
| */ |
| addr = dom ? iommu_iova_to_phys(dom, addr) : addr; |
| |
| pfn = addr >> PAGE_SHIFT; |
| if (!pfn_valid(pfn)) |
| return -EPERM; |
| |
| p = pfn_to_page(pfn); |
| if (p->mapping != adev->mman.bdev.dev_mapping) |
| return -EPERM; |
| |
| ptr = kmap(p); |
| r = copy_to_user(buf, ptr + off, bytes); |
| kunmap(p); |
| if (r) |
| return -EFAULT; |
| |
| size -= bytes; |
| *pos += bytes; |
| result += bytes; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * amdgpu_iomem_write - Virtual write access to GPU mapped memory |
| * |
| * This function is used to write memory that has been mapped to the |
| * GPU and the known addresses are not physical addresses but instead |
| * bus addresses (e.g., what you'd put in an IB or ring buffer). |
| */ |
| static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, |
| size_t size, loff_t *pos) |
| { |
| struct amdgpu_device *adev = file_inode(f)->i_private; |
| struct iommu_domain *dom; |
| ssize_t result = 0; |
| int r; |
| |
| dom = iommu_get_domain_for_dev(adev->dev); |
| |
| while (size) { |
| phys_addr_t addr = *pos & PAGE_MASK; |
| loff_t off = *pos & ~PAGE_MASK; |
| size_t bytes = PAGE_SIZE - off; |
| unsigned long pfn; |
| struct page *p; |
| void *ptr; |
| |
| bytes = bytes < size ? bytes : size; |
| |
| addr = dom ? iommu_iova_to_phys(dom, addr) : addr; |
| |
| pfn = addr >> PAGE_SHIFT; |
| if (!pfn_valid(pfn)) |
| return -EPERM; |
| |
| p = pfn_to_page(pfn); |
| if (p->mapping != adev->mman.bdev.dev_mapping) |
| return -EPERM; |
| |
| ptr = kmap(p); |
| r = copy_from_user(ptr + off, buf, bytes); |
| kunmap(p); |
| if (r) |
| return -EFAULT; |
| |
| size -= bytes; |
| *pos += bytes; |
| result += bytes; |
| } |
| |
| return result; |
| } |
| |
| static const struct file_operations amdgpu_ttm_iomem_fops = { |
| .owner = THIS_MODULE, |
| .read = amdgpu_iomem_read, |
| .write = amdgpu_iomem_write, |
| .llseek = default_llseek |
| }; |
| |
| static const struct { |
| char *name; |
| const struct file_operations *fops; |
| int domain; |
| } ttm_debugfs_entries[] = { |
| { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, |
| #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS |
| { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, |
| #endif |
| { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, |
| }; |
| |
| #endif |
| |
| int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) |
| { |
| #if defined(CONFIG_DEBUG_FS) |
| unsigned count; |
| |
| struct drm_minor *minor = adev->ddev->primary; |
| struct dentry *ent, *root = minor->debugfs_root; |
| |
| for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { |
| ent = debugfs_create_file( |
| ttm_debugfs_entries[count].name, |
| S_IFREG | S_IRUGO, root, |
| adev, |
| ttm_debugfs_entries[count].fops); |
| if (IS_ERR(ent)) |
| return PTR_ERR(ent); |
| if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) |
| i_size_write(ent->d_inode, adev->gmc.mc_vram_size); |
| else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) |
| i_size_write(ent->d_inode, adev->gmc.gart_size); |
| adev->mman.debugfs_entries[count] = ent; |
| } |
| |
| count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); |
| |
| #ifdef CONFIG_SWIOTLB |
| if (!(adev->need_swiotlb && swiotlb_nr_tbl())) |
| --count; |
| #endif |
| |
| return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); |
| #else |
| return 0; |
| #endif |
| } |