| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * tools/testing/selftests/kvm/lib/x86_64/processor.c |
| * |
| * Copyright (C) 2018, Google LLC. |
| */ |
| |
| #define _GNU_SOURCE /* for program_invocation_name */ |
| |
| #include "test_util.h" |
| #include "kvm_util.h" |
| #include "../kvm_util_internal.h" |
| #include "processor.h" |
| |
| #ifndef NUM_INTERRUPTS |
| #define NUM_INTERRUPTS 256 |
| #endif |
| |
| #define DEFAULT_CODE_SELECTOR 0x8 |
| #define DEFAULT_DATA_SELECTOR 0x10 |
| |
| /* Minimum physical address used for virtual translation tables. */ |
| #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 |
| |
| vm_vaddr_t exception_handlers; |
| |
| /* Virtual translation table structure declarations */ |
| struct pageMapL4Entry { |
| uint64_t present:1; |
| uint64_t writable:1; |
| uint64_t user:1; |
| uint64_t write_through:1; |
| uint64_t cache_disable:1; |
| uint64_t accessed:1; |
| uint64_t ignored_06:1; |
| uint64_t page_size:1; |
| uint64_t ignored_11_08:4; |
| uint64_t address:40; |
| uint64_t ignored_62_52:11; |
| uint64_t execute_disable:1; |
| }; |
| |
| struct pageDirectoryPointerEntry { |
| uint64_t present:1; |
| uint64_t writable:1; |
| uint64_t user:1; |
| uint64_t write_through:1; |
| uint64_t cache_disable:1; |
| uint64_t accessed:1; |
| uint64_t ignored_06:1; |
| uint64_t page_size:1; |
| uint64_t ignored_11_08:4; |
| uint64_t address:40; |
| uint64_t ignored_62_52:11; |
| uint64_t execute_disable:1; |
| }; |
| |
| struct pageDirectoryEntry { |
| uint64_t present:1; |
| uint64_t writable:1; |
| uint64_t user:1; |
| uint64_t write_through:1; |
| uint64_t cache_disable:1; |
| uint64_t accessed:1; |
| uint64_t ignored_06:1; |
| uint64_t page_size:1; |
| uint64_t ignored_11_08:4; |
| uint64_t address:40; |
| uint64_t ignored_62_52:11; |
| uint64_t execute_disable:1; |
| }; |
| |
| struct pageTableEntry { |
| uint64_t present:1; |
| uint64_t writable:1; |
| uint64_t user:1; |
| uint64_t write_through:1; |
| uint64_t cache_disable:1; |
| uint64_t accessed:1; |
| uint64_t dirty:1; |
| uint64_t reserved_07:1; |
| uint64_t global:1; |
| uint64_t ignored_11_09:3; |
| uint64_t address:40; |
| uint64_t ignored_62_52:11; |
| uint64_t execute_disable:1; |
| }; |
| |
| void regs_dump(FILE *stream, struct kvm_regs *regs, |
| uint8_t indent) |
| { |
| fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " |
| "rcx: 0x%.16llx rdx: 0x%.16llx\n", |
| indent, "", |
| regs->rax, regs->rbx, regs->rcx, regs->rdx); |
| fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " |
| "rsp: 0x%.16llx rbp: 0x%.16llx\n", |
| indent, "", |
| regs->rsi, regs->rdi, regs->rsp, regs->rbp); |
| fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " |
| "r10: 0x%.16llx r11: 0x%.16llx\n", |
| indent, "", |
| regs->r8, regs->r9, regs->r10, regs->r11); |
| fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " |
| "r14: 0x%.16llx r15: 0x%.16llx\n", |
| indent, "", |
| regs->r12, regs->r13, regs->r14, regs->r15); |
| fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", |
| indent, "", |
| regs->rip, regs->rflags); |
| } |
| |
| /* |
| * Segment Dump |
| * |
| * Input Args: |
| * stream - Output FILE stream |
| * segment - KVM segment |
| * indent - Left margin indent amount |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Dumps the state of the KVM segment given by @segment, to the FILE stream |
| * given by @stream. |
| */ |
| static void segment_dump(FILE *stream, struct kvm_segment *segment, |
| uint8_t indent) |
| { |
| fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " |
| "selector: 0x%.4x type: 0x%.2x\n", |
| indent, "", segment->base, segment->limit, |
| segment->selector, segment->type); |
| fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " |
| "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", |
| indent, "", segment->present, segment->dpl, |
| segment->db, segment->s, segment->l); |
| fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " |
| "unusable: 0x%.2x padding: 0x%.2x\n", |
| indent, "", segment->g, segment->avl, |
| segment->unusable, segment->padding); |
| } |
| |
| /* |
| * dtable Dump |
| * |
| * Input Args: |
| * stream - Output FILE stream |
| * dtable - KVM dtable |
| * indent - Left margin indent amount |
| * |
| * Output Args: None |
| * |
| * Return: None |
| * |
| * Dumps the state of the KVM dtable given by @dtable, to the FILE stream |
| * given by @stream. |
| */ |
| static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, |
| uint8_t indent) |
| { |
| fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " |
| "padding: 0x%.4x 0x%.4x 0x%.4x\n", |
| indent, "", dtable->base, dtable->limit, |
| dtable->padding[0], dtable->padding[1], dtable->padding[2]); |
| } |
| |
| void sregs_dump(FILE *stream, struct kvm_sregs *sregs, |
| uint8_t indent) |
| { |
| unsigned int i; |
| |
| fprintf(stream, "%*scs:\n", indent, ""); |
| segment_dump(stream, &sregs->cs, indent + 2); |
| fprintf(stream, "%*sds:\n", indent, ""); |
| segment_dump(stream, &sregs->ds, indent + 2); |
| fprintf(stream, "%*ses:\n", indent, ""); |
| segment_dump(stream, &sregs->es, indent + 2); |
| fprintf(stream, "%*sfs:\n", indent, ""); |
| segment_dump(stream, &sregs->fs, indent + 2); |
| fprintf(stream, "%*sgs:\n", indent, ""); |
| segment_dump(stream, &sregs->gs, indent + 2); |
| fprintf(stream, "%*sss:\n", indent, ""); |
| segment_dump(stream, &sregs->ss, indent + 2); |
| fprintf(stream, "%*str:\n", indent, ""); |
| segment_dump(stream, &sregs->tr, indent + 2); |
| fprintf(stream, "%*sldt:\n", indent, ""); |
| segment_dump(stream, &sregs->ldt, indent + 2); |
| |
| fprintf(stream, "%*sgdt:\n", indent, ""); |
| dtable_dump(stream, &sregs->gdt, indent + 2); |
| fprintf(stream, "%*sidt:\n", indent, ""); |
| dtable_dump(stream, &sregs->idt, indent + 2); |
| |
| fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " |
| "cr3: 0x%.16llx cr4: 0x%.16llx\n", |
| indent, "", |
| sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); |
| fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " |
| "apic_base: 0x%.16llx\n", |
| indent, "", |
| sregs->cr8, sregs->efer, sregs->apic_base); |
| |
| fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); |
| for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { |
| fprintf(stream, "%*s%.16llx\n", indent + 2, "", |
| sregs->interrupt_bitmap[i]); |
| } |
| } |
| |
| void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot) |
| { |
| TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " |
| "unknown or unsupported guest mode, mode: 0x%x", vm->mode); |
| |
| /* If needed, create page map l4 table. */ |
| if (!vm->pgd_created) { |
| vm_paddr_t paddr = vm_phy_page_alloc(vm, |
| KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot); |
| vm->pgd = paddr; |
| vm->pgd_created = true; |
| } |
| } |
| |
| void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, |
| uint32_t pgd_memslot) |
| { |
| uint16_t index[4]; |
| struct pageMapL4Entry *pml4e; |
| |
| TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " |
| "unknown or unsupported guest mode, mode: 0x%x", vm->mode); |
| |
| TEST_ASSERT((vaddr % vm->page_size) == 0, |
| "Virtual address not on page boundary,\n" |
| " vaddr: 0x%lx vm->page_size: 0x%x", |
| vaddr, vm->page_size); |
| TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, |
| (vaddr >> vm->page_shift)), |
| "Invalid virtual address, vaddr: 0x%lx", |
| vaddr); |
| TEST_ASSERT((paddr % vm->page_size) == 0, |
| "Physical address not on page boundary,\n" |
| " paddr: 0x%lx vm->page_size: 0x%x", |
| paddr, vm->page_size); |
| TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, |
| "Physical address beyond beyond maximum supported,\n" |
| " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", |
| paddr, vm->max_gfn, vm->page_size); |
| |
| index[0] = (vaddr >> 12) & 0x1ffu; |
| index[1] = (vaddr >> 21) & 0x1ffu; |
| index[2] = (vaddr >> 30) & 0x1ffu; |
| index[3] = (vaddr >> 39) & 0x1ffu; |
| |
| /* Allocate page directory pointer table if not present. */ |
| pml4e = addr_gpa2hva(vm, vm->pgd); |
| if (!pml4e[index[3]].present) { |
| pml4e[index[3]].address = vm_phy_page_alloc(vm, |
| KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) |
| >> vm->page_shift; |
| pml4e[index[3]].writable = true; |
| pml4e[index[3]].present = true; |
| } |
| |
| /* Allocate page directory table if not present. */ |
| struct pageDirectoryPointerEntry *pdpe; |
| pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); |
| if (!pdpe[index[2]].present) { |
| pdpe[index[2]].address = vm_phy_page_alloc(vm, |
| KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) |
| >> vm->page_shift; |
| pdpe[index[2]].writable = true; |
| pdpe[index[2]].present = true; |
| } |
| |
| /* Allocate page table if not present. */ |
| struct pageDirectoryEntry *pde; |
| pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); |
| if (!pde[index[1]].present) { |
| pde[index[1]].address = vm_phy_page_alloc(vm, |
| KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) |
| >> vm->page_shift; |
| pde[index[1]].writable = true; |
| pde[index[1]].present = true; |
| } |
| |
| /* Fill in page table entry. */ |
| struct pageTableEntry *pte; |
| pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); |
| pte[index[0]].address = paddr >> vm->page_shift; |
| pte[index[0]].writable = true; |
| pte[index[0]].present = 1; |
| } |
| |
| void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) |
| { |
| struct pageMapL4Entry *pml4e, *pml4e_start; |
| struct pageDirectoryPointerEntry *pdpe, *pdpe_start; |
| struct pageDirectoryEntry *pde, *pde_start; |
| struct pageTableEntry *pte, *pte_start; |
| |
| if (!vm->pgd_created) |
| return; |
| |
| fprintf(stream, "%*s " |
| " no\n", indent, ""); |
| fprintf(stream, "%*s index hvaddr gpaddr " |
| "addr w exec dirty\n", |
| indent, ""); |
| pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm, |
| vm->pgd); |
| for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { |
| pml4e = &pml4e_start[n1]; |
| if (!pml4e->present) |
| continue; |
| fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " |
| " %u\n", |
| indent, "", |
| pml4e - pml4e_start, pml4e, |
| addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address, |
| pml4e->writable, pml4e->execute_disable); |
| |
| pdpe_start = addr_gpa2hva(vm, pml4e->address |
| * vm->page_size); |
| for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { |
| pdpe = &pdpe_start[n2]; |
| if (!pdpe->present) |
| continue; |
| fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " |
| "%u %u\n", |
| indent, "", |
| pdpe - pdpe_start, pdpe, |
| addr_hva2gpa(vm, pdpe), |
| (uint64_t) pdpe->address, pdpe->writable, |
| pdpe->execute_disable); |
| |
| pde_start = addr_gpa2hva(vm, |
| pdpe->address * vm->page_size); |
| for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { |
| pde = &pde_start[n3]; |
| if (!pde->present) |
| continue; |
| fprintf(stream, "%*spde 0x%-3zx %p " |
| "0x%-12lx 0x%-10lx %u %u\n", |
| indent, "", pde - pde_start, pde, |
| addr_hva2gpa(vm, pde), |
| (uint64_t) pde->address, pde->writable, |
| pde->execute_disable); |
| |
| pte_start = addr_gpa2hva(vm, |
| pde->address * vm->page_size); |
| for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { |
| pte = &pte_start[n4]; |
| if (!pte->present) |
| continue; |
| fprintf(stream, "%*spte 0x%-3zx %p " |
| "0x%-12lx 0x%-10lx %u %u " |
| " %u 0x%-10lx\n", |
| indent, "", |
| pte - pte_start, pte, |
| addr_hva2gpa(vm, pte), |
| (uint64_t) pte->address, |
| pte->writable, |
| pte->execute_disable, |
| pte->dirty, |
| ((uint64_t) n1 << 27) |
| | ((uint64_t) n2 << 18) |
| | ((uint64_t) n3 << 9) |
| | ((uint64_t) n4)); |
| } |
| } |
| } |
| } |
| } |
| |
| /* |
| * Set Unusable Segment |
| * |
| * Input Args: None |
| * |
| * Output Args: |
| * segp - Pointer to segment register |
| * |
| * Return: None |
| * |
| * Sets the segment register pointed to by @segp to an unusable state. |
| */ |
| static void kvm_seg_set_unusable(struct kvm_segment *segp) |
| { |
| memset(segp, 0, sizeof(*segp)); |
| segp->unusable = true; |
| } |
| |
| static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) |
| { |
| void *gdt = addr_gva2hva(vm, vm->gdt); |
| struct desc64 *desc = gdt + (segp->selector >> 3) * 8; |
| |
| desc->limit0 = segp->limit & 0xFFFF; |
| desc->base0 = segp->base & 0xFFFF; |
| desc->base1 = segp->base >> 16; |
| desc->type = segp->type; |
| desc->s = segp->s; |
| desc->dpl = segp->dpl; |
| desc->p = segp->present; |
| desc->limit1 = segp->limit >> 16; |
| desc->avl = segp->avl; |
| desc->l = segp->l; |
| desc->db = segp->db; |
| desc->g = segp->g; |
| desc->base2 = segp->base >> 24; |
| if (!segp->s) |
| desc->base3 = segp->base >> 32; |
| } |
| |
| |
| /* |
| * Set Long Mode Flat Kernel Code Segment |
| * |
| * Input Args: |
| * vm - VM whose GDT is being filled, or NULL to only write segp |
| * selector - selector value |
| * |
| * Output Args: |
| * segp - Pointer to KVM segment |
| * |
| * Return: None |
| * |
| * Sets up the KVM segment pointed to by @segp, to be a code segment |
| * with the selector value given by @selector. |
| */ |
| static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, |
| struct kvm_segment *segp) |
| { |
| memset(segp, 0, sizeof(*segp)); |
| segp->selector = selector; |
| segp->limit = 0xFFFFFFFFu; |
| segp->s = 0x1; /* kTypeCodeData */ |
| segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed |
| * | kFlagCodeReadable |
| */ |
| segp->g = true; |
| segp->l = true; |
| segp->present = 1; |
| if (vm) |
| kvm_seg_fill_gdt_64bit(vm, segp); |
| } |
| |
| /* |
| * Set Long Mode Flat Kernel Data Segment |
| * |
| * Input Args: |
| * vm - VM whose GDT is being filled, or NULL to only write segp |
| * selector - selector value |
| * |
| * Output Args: |
| * segp - Pointer to KVM segment |
| * |
| * Return: None |
| * |
| * Sets up the KVM segment pointed to by @segp, to be a data segment |
| * with the selector value given by @selector. |
| */ |
| static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, |
| struct kvm_segment *segp) |
| { |
| memset(segp, 0, sizeof(*segp)); |
| segp->selector = selector; |
| segp->limit = 0xFFFFFFFFu; |
| segp->s = 0x1; /* kTypeCodeData */ |
| segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed |
| * | kFlagDataWritable |
| */ |
| segp->g = true; |
| segp->present = true; |
| if (vm) |
| kvm_seg_fill_gdt_64bit(vm, segp); |
| } |
| |
| vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) |
| { |
| uint16_t index[4]; |
| struct pageMapL4Entry *pml4e; |
| struct pageDirectoryPointerEntry *pdpe; |
| struct pageDirectoryEntry *pde; |
| struct pageTableEntry *pte; |
| |
| TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " |
| "unknown or unsupported guest mode, mode: 0x%x", vm->mode); |
| |
| index[0] = (gva >> 12) & 0x1ffu; |
| index[1] = (gva >> 21) & 0x1ffu; |
| index[2] = (gva >> 30) & 0x1ffu; |
| index[3] = (gva >> 39) & 0x1ffu; |
| |
| if (!vm->pgd_created) |
| goto unmapped_gva; |
| pml4e = addr_gpa2hva(vm, vm->pgd); |
| if (!pml4e[index[3]].present) |
| goto unmapped_gva; |
| |
| pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); |
| if (!pdpe[index[2]].present) |
| goto unmapped_gva; |
| |
| pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); |
| if (!pde[index[1]].present) |
| goto unmapped_gva; |
| |
| pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); |
| if (!pte[index[0]].present) |
| goto unmapped_gva; |
| |
| return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu); |
| |
| unmapped_gva: |
| TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); |
| exit(EXIT_FAILURE); |
| } |
| |
| static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot, |
| int pgd_memslot) |
| { |
| if (!vm->gdt) |
| vm->gdt = vm_vaddr_alloc(vm, getpagesize(), |
| KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); |
| |
| dt->base = vm->gdt; |
| dt->limit = getpagesize(); |
| } |
| |
| static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, |
| int selector, int gdt_memslot, |
| int pgd_memslot) |
| { |
| if (!vm->tss) |
| vm->tss = vm_vaddr_alloc(vm, getpagesize(), |
| KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); |
| |
| memset(segp, 0, sizeof(*segp)); |
| segp->base = vm->tss; |
| segp->limit = 0x67; |
| segp->selector = selector; |
| segp->type = 0xb; |
| segp->present = 1; |
| kvm_seg_fill_gdt_64bit(vm, segp); |
| } |
| |
| static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot) |
| { |
| struct kvm_sregs sregs; |
| |
| /* Set mode specific system register values. */ |
| vcpu_sregs_get(vm, vcpuid, &sregs); |
| |
| sregs.idt.limit = 0; |
| |
| kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot); |
| |
| switch (vm->mode) { |
| case VM_MODE_PXXV48_4K: |
| sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; |
| sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; |
| sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); |
| |
| kvm_seg_set_unusable(&sregs.ldt); |
| kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); |
| kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); |
| kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); |
| kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot); |
| break; |
| |
| default: |
| TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); |
| } |
| |
| sregs.cr3 = vm->pgd; |
| vcpu_sregs_set(vm, vcpuid, &sregs); |
| } |
| |
| void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) |
| { |
| struct kvm_mp_state mp_state; |
| struct kvm_regs regs; |
| vm_vaddr_t stack_vaddr; |
| stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), |
| DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0); |
| |
| /* Create VCPU */ |
| vm_vcpu_add(vm, vcpuid); |
| vcpu_setup(vm, vcpuid, 0, 0); |
| |
| /* Setup guest general purpose registers */ |
| vcpu_regs_get(vm, vcpuid, ®s); |
| regs.rflags = regs.rflags | 0x2; |
| regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); |
| regs.rip = (unsigned long) guest_code; |
| vcpu_regs_set(vm, vcpuid, ®s); |
| |
| /* Setup the MP state */ |
| mp_state.mp_state = 0; |
| vcpu_set_mp_state(vm, vcpuid, &mp_state); |
| } |
| |
| /* |
| * Allocate an instance of struct kvm_cpuid2 |
| * |
| * Input Args: None |
| * |
| * Output Args: None |
| * |
| * Return: A pointer to the allocated struct. The caller is responsible |
| * for freeing this struct. |
| * |
| * Since kvm_cpuid2 uses a 0-length array to allow a the size of the |
| * array to be decided at allocation time, allocation is slightly |
| * complicated. This function uses a reasonable default length for |
| * the array and performs the appropriate allocation. |
| */ |
| static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int nent = 100; |
| size_t size; |
| |
| size = sizeof(*cpuid); |
| size += nent * sizeof(struct kvm_cpuid_entry2); |
| cpuid = malloc(size); |
| if (!cpuid) { |
| perror("malloc"); |
| abort(); |
| } |
| |
| cpuid->nent = nent; |
| |
| return cpuid; |
| } |
| |
| /* |
| * KVM Supported CPUID Get |
| * |
| * Input Args: None |
| * |
| * Output Args: |
| * |
| * Return: The supported KVM CPUID |
| * |
| * Get the guest CPUID supported by KVM. |
| */ |
| struct kvm_cpuid2 *kvm_get_supported_cpuid(void) |
| { |
| static struct kvm_cpuid2 *cpuid; |
| int ret; |
| int kvm_fd; |
| |
| if (cpuid) |
| return cpuid; |
| |
| cpuid = allocate_kvm_cpuid2(); |
| kvm_fd = open(KVM_DEV_PATH, O_RDONLY); |
| if (kvm_fd < 0) |
| exit(KSFT_SKIP); |
| |
| ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); |
| TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", |
| ret, errno); |
| |
| close(kvm_fd); |
| return cpuid; |
| } |
| |
| /* |
| * Locate a cpuid entry. |
| * |
| * Input Args: |
| * function: The function of the cpuid entry to find. |
| * index: The index of the cpuid entry. |
| * |
| * Output Args: None |
| * |
| * Return: A pointer to the cpuid entry. Never returns NULL. |
| */ |
| struct kvm_cpuid_entry2 * |
| kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) |
| { |
| struct kvm_cpuid2 *cpuid; |
| struct kvm_cpuid_entry2 *entry = NULL; |
| int i; |
| |
| cpuid = kvm_get_supported_cpuid(); |
| for (i = 0; i < cpuid->nent; i++) { |
| if (cpuid->entries[i].function == function && |
| cpuid->entries[i].index == index) { |
| entry = &cpuid->entries[i]; |
| break; |
| } |
| } |
| |
| TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", |
| function, index); |
| return entry; |
| } |
| |
| /* |
| * VM VCPU CPUID Set |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU id |
| * cpuid - The CPUID values to set. |
| * |
| * Output Args: None |
| * |
| * Return: void |
| * |
| * Set the VCPU's CPUID. |
| */ |
| void vcpu_set_cpuid(struct kvm_vm *vm, |
| uint32_t vcpuid, struct kvm_cpuid2 *cpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int rc; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| |
| rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); |
| TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", |
| rc, errno); |
| |
| } |
| |
| struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, |
| void *guest_code) |
| { |
| struct kvm_vm *vm; |
| /* |
| * For x86 the maximum page table size for a memory region |
| * will be when only 4K pages are used. In that case the |
| * total extra size for page tables (for extra N pages) will |
| * be: N/512+N/512^2+N/512^3+... which is definitely smaller |
| * than N/512*2. |
| */ |
| uint64_t extra_pg_pages = extra_mem_pages / 512 * 2; |
| |
| /* Create VM */ |
| vm = vm_create(VM_MODE_DEFAULT, |
| DEFAULT_GUEST_PHY_PAGES + extra_pg_pages, |
| O_RDWR); |
| |
| /* Setup guest code */ |
| kvm_vm_elf_load(vm, program_invocation_name, 0, 0); |
| |
| /* Setup IRQ Chip */ |
| vm_create_irqchip(vm); |
| |
| /* Add the first vCPU. */ |
| vm_vcpu_add_default(vm, vcpuid, guest_code); |
| |
| return vm; |
| } |
| |
| /* |
| * VCPU Get MSR |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * msr_index - Index of MSR |
| * |
| * Output Args: None |
| * |
| * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. |
| * |
| * Get value of MSR for VCPU. |
| */ |
| uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| struct { |
| struct kvm_msrs header; |
| struct kvm_msr_entry entry; |
| } buffer = {}; |
| int r; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| buffer.header.nmsrs = 1; |
| buffer.entry.index = msr_index; |
| r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); |
| TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" |
| " rc: %i errno: %i", r, errno); |
| |
| return buffer.entry.data; |
| } |
| |
| /* |
| * _VCPU Set MSR |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * msr_index - Index of MSR |
| * msr_value - New value of MSR |
| * |
| * Output Args: None |
| * |
| * Return: The result of KVM_SET_MSRS. |
| * |
| * Sets the value of an MSR for the given VCPU. |
| */ |
| int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, |
| uint64_t msr_value) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| struct { |
| struct kvm_msrs header; |
| struct kvm_msr_entry entry; |
| } buffer = {}; |
| int r; |
| |
| TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); |
| memset(&buffer, 0, sizeof(buffer)); |
| buffer.header.nmsrs = 1; |
| buffer.entry.index = msr_index; |
| buffer.entry.data = msr_value; |
| r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); |
| return r; |
| } |
| |
| /* |
| * VCPU Set MSR |
| * |
| * Input Args: |
| * vm - Virtual Machine |
| * vcpuid - VCPU ID |
| * msr_index - Index of MSR |
| * msr_value - New value of MSR |
| * |
| * Output Args: None |
| * |
| * Return: On success, nothing. On failure a TEST_ASSERT is produced. |
| * |
| * Set value of MSR for VCPU. |
| */ |
| void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, |
| uint64_t msr_value) |
| { |
| int r; |
| |
| r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); |
| TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" |
| " rc: %i errno: %i", r, errno); |
| } |
| |
| void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) |
| { |
| va_list ap; |
| struct kvm_regs regs; |
| |
| TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" |
| " num: %u\n", |
| num); |
| |
| va_start(ap, num); |
| vcpu_regs_get(vm, vcpuid, ®s); |
| |
| if (num >= 1) |
| regs.rdi = va_arg(ap, uint64_t); |
| |
| if (num >= 2) |
| regs.rsi = va_arg(ap, uint64_t); |
| |
| if (num >= 3) |
| regs.rdx = va_arg(ap, uint64_t); |
| |
| if (num >= 4) |
| regs.rcx = va_arg(ap, uint64_t); |
| |
| if (num >= 5) |
| regs.r8 = va_arg(ap, uint64_t); |
| |
| if (num >= 6) |
| regs.r9 = va_arg(ap, uint64_t); |
| |
| vcpu_regs_set(vm, vcpuid, ®s); |
| va_end(ap); |
| } |
| |
| void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) |
| { |
| struct kvm_regs regs; |
| struct kvm_sregs sregs; |
| |
| fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); |
| |
| fprintf(stream, "%*sregs:\n", indent + 2, ""); |
| vcpu_regs_get(vm, vcpuid, ®s); |
| regs_dump(stream, ®s, indent + 4); |
| |
| fprintf(stream, "%*ssregs:\n", indent + 2, ""); |
| vcpu_sregs_get(vm, vcpuid, &sregs); |
| sregs_dump(stream, &sregs, indent + 4); |
| } |
| |
| struct kvm_x86_state { |
| struct kvm_vcpu_events events; |
| struct kvm_mp_state mp_state; |
| struct kvm_regs regs; |
| struct kvm_xsave xsave; |
| struct kvm_xcrs xcrs; |
| struct kvm_sregs sregs; |
| struct kvm_debugregs debugregs; |
| union { |
| struct kvm_nested_state nested; |
| char nested_[16384]; |
| }; |
| struct kvm_msrs msrs; |
| }; |
| |
| static int kvm_get_num_msrs_fd(int kvm_fd) |
| { |
| struct kvm_msr_list nmsrs; |
| int r; |
| |
| nmsrs.nmsrs = 0; |
| r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); |
| TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", |
| r); |
| |
| return nmsrs.nmsrs; |
| } |
| |
| static int kvm_get_num_msrs(struct kvm_vm *vm) |
| { |
| return kvm_get_num_msrs_fd(vm->kvm_fd); |
| } |
| |
| struct kvm_msr_list *kvm_get_msr_index_list(void) |
| { |
| struct kvm_msr_list *list; |
| int nmsrs, r, kvm_fd; |
| |
| kvm_fd = open(KVM_DEV_PATH, O_RDONLY); |
| if (kvm_fd < 0) |
| exit(KSFT_SKIP); |
| |
| nmsrs = kvm_get_num_msrs_fd(kvm_fd); |
| list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); |
| list->nmsrs = nmsrs; |
| r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); |
| close(kvm_fd); |
| |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", |
| r); |
| |
| return list; |
| } |
| |
| struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| struct kvm_msr_list *list; |
| struct kvm_x86_state *state; |
| int nmsrs, r, i; |
| static int nested_size = -1; |
| |
| if (nested_size == -1) { |
| nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); |
| TEST_ASSERT(nested_size <= sizeof(state->nested_), |
| "Nested state size too big, %i > %zi", |
| nested_size, sizeof(state->nested_)); |
| } |
| |
| /* |
| * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees |
| * guest state is consistent only after userspace re-enters the |
| * kernel with KVM_RUN. Complete IO prior to migrating state |
| * to a new VM. |
| */ |
| vcpu_run_complete_io(vm, vcpuid); |
| |
| nmsrs = kvm_get_num_msrs(vm); |
| list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); |
| list->nmsrs = nmsrs; |
| r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", |
| r); |
| |
| state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); |
| r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", |
| r); |
| |
| if (kvm_check_cap(KVM_CAP_XCRS)) { |
| r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", |
| r); |
| } |
| |
| r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", |
| r); |
| |
| if (nested_size) { |
| state->nested.size = sizeof(state->nested_); |
| r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", |
| r); |
| TEST_ASSERT(state->nested.size <= nested_size, |
| "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", |
| state->nested.size, nested_size); |
| } else |
| state->nested.size = 0; |
| |
| state->msrs.nmsrs = nmsrs; |
| for (i = 0; i < nmsrs; i++) |
| state->msrs.entries[i].index = list->indices[i]; |
| r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); |
| TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", |
| r, r == nmsrs ? -1 : list->indices[r]); |
| |
| r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", |
| r); |
| |
| free(list); |
| return state; |
| } |
| |
| void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) |
| { |
| struct vcpu *vcpu = vcpu_find(vm, vcpuid); |
| int r; |
| |
| r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", |
| r); |
| |
| if (kvm_check_cap(KVM_CAP_XCRS)) { |
| r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", |
| r); |
| } |
| |
| r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); |
| TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", |
| r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); |
| |
| r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", |
| r); |
| |
| r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", |
| r); |
| |
| if (state->nested.size) { |
| r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); |
| TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", |
| r); |
| } |
| } |
| |
| bool is_intel_cpu(void) |
| { |
| int eax, ebx, ecx, edx; |
| const uint32_t *chunk; |
| const int leaf = 0; |
| |
| __asm__ __volatile__( |
| "cpuid" |
| : /* output */ "=a"(eax), "=b"(ebx), |
| "=c"(ecx), "=d"(edx) |
| : /* input */ "0"(leaf), "2"(0)); |
| |
| chunk = (const uint32_t *)("GenuineIntel"); |
| return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); |
| } |
| |
| uint32_t kvm_get_cpuid_max_basic(void) |
| { |
| return kvm_get_supported_cpuid_entry(0)->eax; |
| } |
| |
| uint32_t kvm_get_cpuid_max_extended(void) |
| { |
| return kvm_get_supported_cpuid_entry(0x80000000)->eax; |
| } |
| |
| void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) |
| { |
| struct kvm_cpuid_entry2 *entry; |
| bool pae; |
| |
| /* SDM 4.1.4 */ |
| if (kvm_get_cpuid_max_extended() < 0x80000008) { |
| pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); |
| *pa_bits = pae ? 36 : 32; |
| *va_bits = 32; |
| } else { |
| entry = kvm_get_supported_cpuid_entry(0x80000008); |
| *pa_bits = entry->eax & 0xff; |
| *va_bits = (entry->eax >> 8) & 0xff; |
| } |
| } |
| |
| struct idt_entry { |
| uint16_t offset0; |
| uint16_t selector; |
| uint16_t ist : 3; |
| uint16_t : 5; |
| uint16_t type : 4; |
| uint16_t : 1; |
| uint16_t dpl : 2; |
| uint16_t p : 1; |
| uint16_t offset1; |
| uint32_t offset2; uint32_t reserved; |
| }; |
| |
| static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, |
| int dpl, unsigned short selector) |
| { |
| struct idt_entry *base = |
| (struct idt_entry *)addr_gva2hva(vm, vm->idt); |
| struct idt_entry *e = &base[vector]; |
| |
| memset(e, 0, sizeof(*e)); |
| e->offset0 = addr; |
| e->selector = selector; |
| e->ist = 0; |
| e->type = 14; |
| e->dpl = dpl; |
| e->p = 1; |
| e->offset1 = addr >> 16; |
| e->offset2 = addr >> 32; |
| } |
| |
| void kvm_exit_unexpected_vector(uint32_t value) |
| { |
| outl(UNEXPECTED_VECTOR_PORT, value); |
| } |
| |
| void route_exception(struct ex_regs *regs) |
| { |
| typedef void(*handler)(struct ex_regs *); |
| handler *handlers = (handler *)exception_handlers; |
| |
| if (handlers && handlers[regs->vector]) { |
| handlers[regs->vector](regs); |
| return; |
| } |
| |
| kvm_exit_unexpected_vector(regs->vector); |
| } |
| |
| void vm_init_descriptor_tables(struct kvm_vm *vm) |
| { |
| extern void *idt_handlers; |
| int i; |
| |
| vm->idt = vm_vaddr_alloc(vm, getpagesize(), 0x2000, 0, 0); |
| vm->handlers = vm_vaddr_alloc(vm, 256 * sizeof(void *), 0x2000, 0, 0); |
| /* Handlers have the same address in both address spaces.*/ |
| for (i = 0; i < NUM_INTERRUPTS; i++) |
| set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, |
| DEFAULT_CODE_SELECTOR); |
| } |
| |
| void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| struct kvm_sregs sregs; |
| |
| vcpu_sregs_get(vm, vcpuid, &sregs); |
| sregs.idt.base = vm->idt; |
| sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; |
| sregs.gdt.base = vm->gdt; |
| sregs.gdt.limit = getpagesize() - 1; |
| kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); |
| vcpu_sregs_set(vm, vcpuid, &sregs); |
| *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; |
| } |
| |
| void vm_handle_exception(struct kvm_vm *vm, int vector, |
| void (*handler)(struct ex_regs *)) |
| { |
| vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); |
| |
| handlers[vector] = (vm_vaddr_t)handler; |
| } |
| |
| void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) |
| { |
| if (vcpu_state(vm, vcpuid)->exit_reason == KVM_EXIT_IO |
| && vcpu_state(vm, vcpuid)->io.port == UNEXPECTED_VECTOR_PORT |
| && vcpu_state(vm, vcpuid)->io.size == 4) { |
| /* Grab pointer to io data */ |
| uint32_t *data = (void *)vcpu_state(vm, vcpuid) |
| + vcpu_state(vm, vcpuid)->io.data_offset; |
| |
| TEST_ASSERT(false, |
| "Unexpected vectored event in guest (vector:0x%x)", |
| *data); |
| } |
| } |
| |
| bool set_cpuid(struct kvm_cpuid2 *cpuid, |
| struct kvm_cpuid_entry2 *ent) |
| { |
| int i; |
| |
| for (i = 0; i < cpuid->nent; i++) { |
| struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; |
| |
| if (cur->function != ent->function || cur->index != ent->index) |
| continue; |
| |
| memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, |
| uint64_t a3) |
| { |
| uint64_t r; |
| |
| asm volatile("vmcall" |
| : "=a"(r) |
| : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); |
| return r; |
| } |