| /* |
| * NVM Express device driver |
| * Copyright (c) 2011-2014, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/blk-mq.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/hdreg.h> |
| #include <linux/idr.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kdev_t.h> |
| #include <linux/kthread.h> |
| #include <linux/kernel.h> |
| #include <linux/list_sort.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/pci.h> |
| #include <linux/poison.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/t10-pi.h> |
| #include <linux/types.h> |
| #include <linux/pr.h> |
| #include <scsi/sg.h> |
| #include <asm-generic/io-64-nonatomic-lo-hi.h> |
| #include <asm/unaligned.h> |
| |
| #include <uapi/linux/nvme_ioctl.h> |
| #include "nvme.h" |
| |
| #define NVME_MINORS (1U << MINORBITS) |
| #define NVME_Q_DEPTH 1024 |
| #define NVME_AQ_DEPTH 256 |
| #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) |
| #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) |
| #define ADMIN_TIMEOUT (admin_timeout * HZ) |
| #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ) |
| |
| static unsigned char admin_timeout = 60; |
| module_param(admin_timeout, byte, 0644); |
| MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); |
| |
| unsigned char nvme_io_timeout = 30; |
| module_param_named(io_timeout, nvme_io_timeout, byte, 0644); |
| MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); |
| |
| static unsigned char shutdown_timeout = 5; |
| module_param(shutdown_timeout, byte, 0644); |
| MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); |
| |
| static int nvme_major; |
| module_param(nvme_major, int, 0); |
| |
| static int nvme_char_major; |
| module_param(nvme_char_major, int, 0); |
| |
| static int use_threaded_interrupts; |
| module_param(use_threaded_interrupts, int, 0); |
| |
| static bool use_cmb_sqes = true; |
| module_param(use_cmb_sqes, bool, 0644); |
| MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); |
| |
| static DEFINE_SPINLOCK(dev_list_lock); |
| static LIST_HEAD(dev_list); |
| static struct task_struct *nvme_thread; |
| static struct workqueue_struct *nvme_workq; |
| static wait_queue_head_t nvme_kthread_wait; |
| |
| static struct class *nvme_class; |
| |
| static int __nvme_reset(struct nvme_dev *dev); |
| static int nvme_reset(struct nvme_dev *dev); |
| static int nvme_process_cq(struct nvme_queue *nvmeq); |
| static void nvme_dead_ctrl(struct nvme_dev *dev); |
| |
| struct async_cmd_info { |
| struct kthread_work work; |
| struct kthread_worker *worker; |
| struct request *req; |
| u32 result; |
| int status; |
| void *ctx; |
| }; |
| |
| /* |
| * An NVM Express queue. Each device has at least two (one for admin |
| * commands and one for I/O commands). |
| */ |
| struct nvme_queue { |
| struct device *q_dmadev; |
| struct nvme_dev *dev; |
| char irqname[24]; /* nvme4294967295-65535\0 */ |
| spinlock_t q_lock; |
| struct nvme_command *sq_cmds; |
| struct nvme_command __iomem *sq_cmds_io; |
| volatile struct nvme_completion *cqes; |
| struct blk_mq_tags **tags; |
| dma_addr_t sq_dma_addr; |
| dma_addr_t cq_dma_addr; |
| u32 __iomem *q_db; |
| u16 q_depth; |
| s16 cq_vector; |
| u16 sq_head; |
| u16 sq_tail; |
| u16 cq_head; |
| u16 qid; |
| u8 cq_phase; |
| u8 cqe_seen; |
| struct async_cmd_info cmdinfo; |
| }; |
| |
| /* |
| * Check we didin't inadvertently grow the command struct |
| */ |
| static inline void _nvme_check_size(void) |
| { |
| BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
| } |
| |
| typedef void (*nvme_completion_fn)(struct nvme_queue *, void *, |
| struct nvme_completion *); |
| |
| struct nvme_cmd_info { |
| nvme_completion_fn fn; |
| void *ctx; |
| int aborted; |
| struct nvme_queue *nvmeq; |
| struct nvme_iod iod[0]; |
| }; |
| |
| /* |
| * Max size of iod being embedded in the request payload |
| */ |
| #define NVME_INT_PAGES 2 |
| #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size) |
| #define NVME_INT_MASK 0x01 |
| |
| /* |
| * Will slightly overestimate the number of pages needed. This is OK |
| * as it only leads to a small amount of wasted memory for the lifetime of |
| * the I/O. |
| */ |
| static int nvme_npages(unsigned size, struct nvme_dev *dev) |
| { |
| unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size); |
| return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); |
| } |
| |
| static unsigned int nvme_cmd_size(struct nvme_dev *dev) |
| { |
| unsigned int ret = sizeof(struct nvme_cmd_info); |
| |
| ret += sizeof(struct nvme_iod); |
| ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev); |
| ret += sizeof(struct scatterlist) * NVME_INT_PAGES; |
| |
| return ret; |
| } |
| |
| static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| |
| WARN_ON(hctx_idx != 0); |
| WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); |
| WARN_ON(nvmeq->tags); |
| |
| hctx->driver_data = nvmeq; |
| nvmeq->tags = &dev->admin_tagset.tags[0]; |
| return 0; |
| } |
| |
| static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| { |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| |
| nvmeq->tags = NULL; |
| } |
| |
| static int nvme_admin_init_request(void *data, struct request *req, |
| unsigned int hctx_idx, unsigned int rq_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| |
| BUG_ON(!nvmeq); |
| cmd->nvmeq = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; |
| |
| if (!nvmeq->tags) |
| nvmeq->tags = &dev->tagset.tags[hctx_idx]; |
| |
| WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); |
| hctx->driver_data = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_request(void *data, struct request *req, |
| unsigned int hctx_idx, unsigned int rq_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; |
| |
| BUG_ON(!nvmeq); |
| cmd->nvmeq = nvmeq; |
| return 0; |
| } |
| |
| static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx, |
| nvme_completion_fn handler) |
| { |
| cmd->fn = handler; |
| cmd->ctx = ctx; |
| cmd->aborted = 0; |
| blk_mq_start_request(blk_mq_rq_from_pdu(cmd)); |
| } |
| |
| static void *iod_get_private(struct nvme_iod *iod) |
| { |
| return (void *) (iod->private & ~0x1UL); |
| } |
| |
| /* |
| * If bit 0 is set, the iod is embedded in the request payload. |
| */ |
| static bool iod_should_kfree(struct nvme_iod *iod) |
| { |
| return (iod->private & NVME_INT_MASK) == 0; |
| } |
| |
| /* Special values must be less than 0x1000 */ |
| #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA) |
| #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE) |
| #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE) |
| #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE) |
| |
| static void special_completion(struct nvme_queue *nvmeq, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| if (ctx == CMD_CTX_CANCELLED) |
| return; |
| if (ctx == CMD_CTX_COMPLETED) { |
| dev_warn(nvmeq->q_dmadev, |
| "completed id %d twice on queue %d\n", |
| cqe->command_id, le16_to_cpup(&cqe->sq_id)); |
| return; |
| } |
| if (ctx == CMD_CTX_INVALID) { |
| dev_warn(nvmeq->q_dmadev, |
| "invalid id %d completed on queue %d\n", |
| cqe->command_id, le16_to_cpup(&cqe->sq_id)); |
| return; |
| } |
| dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx); |
| } |
| |
| static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn) |
| { |
| void *ctx; |
| |
| if (fn) |
| *fn = cmd->fn; |
| ctx = cmd->ctx; |
| cmd->fn = special_completion; |
| cmd->ctx = CMD_CTX_CANCELLED; |
| return ctx; |
| } |
| |
| static void async_req_completion(struct nvme_queue *nvmeq, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| u32 result = le32_to_cpup(&cqe->result); |
| u16 status = le16_to_cpup(&cqe->status) >> 1; |
| |
| if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) |
| ++nvmeq->dev->event_limit; |
| if (status != NVME_SC_SUCCESS) |
| return; |
| |
| switch (result & 0xff07) { |
| case NVME_AER_NOTICE_NS_CHANGED: |
| dev_info(nvmeq->q_dmadev, "rescanning\n"); |
| schedule_work(&nvmeq->dev->scan_work); |
| default: |
| dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result); |
| } |
| } |
| |
| static void abort_completion(struct nvme_queue *nvmeq, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| struct request *req = ctx; |
| |
| u16 status = le16_to_cpup(&cqe->status) >> 1; |
| u32 result = le32_to_cpup(&cqe->result); |
| |
| blk_mq_free_request(req); |
| |
| dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result); |
| ++nvmeq->dev->abort_limit; |
| } |
| |
| static void async_completion(struct nvme_queue *nvmeq, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| struct async_cmd_info *cmdinfo = ctx; |
| cmdinfo->result = le32_to_cpup(&cqe->result); |
| cmdinfo->status = le16_to_cpup(&cqe->status) >> 1; |
| queue_kthread_work(cmdinfo->worker, &cmdinfo->work); |
| blk_mq_free_request(cmdinfo->req); |
| } |
| |
| static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq, |
| unsigned int tag) |
| { |
| struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag); |
| |
| return blk_mq_rq_to_pdu(req); |
| } |
| |
| /* |
| * Called with local interrupts disabled and the q_lock held. May not sleep. |
| */ |
| static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag, |
| nvme_completion_fn *fn) |
| { |
| struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag); |
| void *ctx; |
| if (tag >= nvmeq->q_depth) { |
| *fn = special_completion; |
| return CMD_CTX_INVALID; |
| } |
| if (fn) |
| *fn = cmd->fn; |
| ctx = cmd->ctx; |
| cmd->fn = special_completion; |
| cmd->ctx = CMD_CTX_COMPLETED; |
| return ctx; |
| } |
| |
| /** |
| * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
| * @nvmeq: The queue to use |
| * @cmd: The command to send |
| * |
| * Safe to use from interrupt context |
| */ |
| static void __nvme_submit_cmd(struct nvme_queue *nvmeq, |
| struct nvme_command *cmd) |
| { |
| u16 tail = nvmeq->sq_tail; |
| |
| if (nvmeq->sq_cmds_io) |
| memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); |
| else |
| memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); |
| |
| if (++tail == nvmeq->q_depth) |
| tail = 0; |
| writel(tail, nvmeq->q_db); |
| nvmeq->sq_tail = tail; |
| } |
| |
| static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&nvmeq->q_lock, flags); |
| __nvme_submit_cmd(nvmeq, cmd); |
| spin_unlock_irqrestore(&nvmeq->q_lock, flags); |
| } |
| |
| static __le64 **iod_list(struct nvme_iod *iod) |
| { |
| return ((void *)iod) + iod->offset; |
| } |
| |
| static inline void iod_init(struct nvme_iod *iod, unsigned nbytes, |
| unsigned nseg, unsigned long private) |
| { |
| iod->private = private; |
| iod->offset = offsetof(struct nvme_iod, sg[nseg]); |
| iod->npages = -1; |
| iod->length = nbytes; |
| iod->nents = 0; |
| } |
| |
| static struct nvme_iod * |
| __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev, |
| unsigned long priv, gfp_t gfp) |
| { |
| struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) + |
| sizeof(__le64 *) * nvme_npages(bytes, dev) + |
| sizeof(struct scatterlist) * nseg, gfp); |
| |
| if (iod) |
| iod_init(iod, bytes, nseg, priv); |
| |
| return iod; |
| } |
| |
| static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev, |
| gfp_t gfp) |
| { |
| unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) : |
| sizeof(struct nvme_dsm_range); |
| struct nvme_iod *iod; |
| |
| if (rq->nr_phys_segments <= NVME_INT_PAGES && |
| size <= NVME_INT_BYTES(dev)) { |
| struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq); |
| |
| iod = cmd->iod; |
| iod_init(iod, size, rq->nr_phys_segments, |
| (unsigned long) rq | NVME_INT_MASK); |
| return iod; |
| } |
| |
| return __nvme_alloc_iod(rq->nr_phys_segments, size, dev, |
| (unsigned long) rq, gfp); |
| } |
| |
| static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) |
| { |
| const int last_prp = dev->page_size / 8 - 1; |
| int i; |
| __le64 **list = iod_list(iod); |
| dma_addr_t prp_dma = iod->first_dma; |
| |
| if (iod->npages == 0) |
| dma_pool_free(dev->prp_small_pool, list[0], prp_dma); |
| for (i = 0; i < iod->npages; i++) { |
| __le64 *prp_list = list[i]; |
| dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); |
| dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); |
| prp_dma = next_prp_dma; |
| } |
| |
| if (iod_should_kfree(iod)) |
| kfree(iod); |
| } |
| |
| static int nvme_error_status(u16 status) |
| { |
| switch (status & 0x7ff) { |
| case NVME_SC_SUCCESS: |
| return 0; |
| case NVME_SC_CAP_EXCEEDED: |
| return -ENOSPC; |
| default: |
| return -EIO; |
| } |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| if (be32_to_cpu(pi->ref_tag) == v) |
| pi->ref_tag = cpu_to_be32(p); |
| } |
| |
| static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| if (be32_to_cpu(pi->ref_tag) == p) |
| pi->ref_tag = cpu_to_be32(v); |
| } |
| |
| /** |
| * nvme_dif_remap - remaps ref tags to bip seed and physical lba |
| * |
| * The virtual start sector is the one that was originally submitted by the |
| * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical |
| * start sector may be different. Remap protection information to match the |
| * physical LBA on writes, and back to the original seed on reads. |
| * |
| * Type 0 and 3 do not have a ref tag, so no remapping required. |
| */ |
| static void nvme_dif_remap(struct request *req, |
| void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) |
| { |
| struct nvme_ns *ns = req->rq_disk->private_data; |
| struct bio_integrity_payload *bip; |
| struct t10_pi_tuple *pi; |
| void *p, *pmap; |
| u32 i, nlb, ts, phys, virt; |
| |
| if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) |
| return; |
| |
| bip = bio_integrity(req->bio); |
| if (!bip) |
| return; |
| |
| pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; |
| |
| p = pmap; |
| virt = bip_get_seed(bip); |
| phys = nvme_block_nr(ns, blk_rq_pos(req)); |
| nlb = (blk_rq_bytes(req) >> ns->lba_shift); |
| ts = ns->disk->queue->integrity.tuple_size; |
| |
| for (i = 0; i < nlb; i++, virt++, phys++) { |
| pi = (struct t10_pi_tuple *)p; |
| dif_swap(phys, virt, pi); |
| p += ts; |
| } |
| kunmap_atomic(pmap); |
| } |
| |
| static void nvme_init_integrity(struct nvme_ns *ns) |
| { |
| struct blk_integrity integrity; |
| |
| switch (ns->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| integrity.profile = &t10_pi_type3_crc; |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| integrity.profile = &t10_pi_type1_crc; |
| break; |
| default: |
| integrity.profile = NULL; |
| break; |
| } |
| integrity.tuple_size = ns->ms; |
| blk_integrity_register(ns->disk, &integrity); |
| blk_queue_max_integrity_segments(ns->queue, 1); |
| } |
| #else /* CONFIG_BLK_DEV_INTEGRITY */ |
| static void nvme_dif_remap(struct request *req, |
| void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) |
| { |
| } |
| static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| } |
| static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| } |
| static void nvme_init_integrity(struct nvme_ns *ns) |
| { |
| } |
| #endif |
| |
| static void req_completion(struct nvme_queue *nvmeq, void *ctx, |
| struct nvme_completion *cqe) |
| { |
| struct nvme_iod *iod = ctx; |
| struct request *req = iod_get_private(iod); |
| struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); |
| u16 status = le16_to_cpup(&cqe->status) >> 1; |
| bool requeue = false; |
| int error = 0; |
| |
| if (unlikely(status)) { |
| if (!(status & NVME_SC_DNR || blk_noretry_request(req)) |
| && (jiffies - req->start_time) < req->timeout) { |
| unsigned long flags; |
| |
| requeue = true; |
| blk_mq_requeue_request(req); |
| spin_lock_irqsave(req->q->queue_lock, flags); |
| if (!blk_queue_stopped(req->q)) |
| blk_mq_kick_requeue_list(req->q); |
| spin_unlock_irqrestore(req->q->queue_lock, flags); |
| goto release_iod; |
| } |
| |
| if (req->cmd_type == REQ_TYPE_DRV_PRIV) { |
| if (cmd_rq->ctx == CMD_CTX_CANCELLED) |
| error = -EINTR; |
| else |
| error = status; |
| } else { |
| error = nvme_error_status(status); |
| } |
| } |
| |
| if (req->cmd_type == REQ_TYPE_DRV_PRIV) { |
| u32 result = le32_to_cpup(&cqe->result); |
| req->special = (void *)(uintptr_t)result; |
| } |
| |
| if (cmd_rq->aborted) |
| dev_warn(nvmeq->dev->dev, |
| "completing aborted command with status:%04x\n", |
| error); |
| |
| release_iod: |
| if (iod->nents) { |
| dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents, |
| rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| if (blk_integrity_rq(req)) { |
| if (!rq_data_dir(req)) |
| nvme_dif_remap(req, nvme_dif_complete); |
| dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1, |
| rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); |
| } |
| } |
| nvme_free_iod(nvmeq->dev, iod); |
| |
| if (likely(!requeue)) |
| blk_mq_complete_request(req, error); |
| } |
| |
| /* length is in bytes. gfp flags indicates whether we may sleep. */ |
| static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, |
| int total_len, gfp_t gfp) |
| { |
| struct dma_pool *pool; |
| int length = total_len; |
| struct scatterlist *sg = iod->sg; |
| int dma_len = sg_dma_len(sg); |
| u64 dma_addr = sg_dma_address(sg); |
| u32 page_size = dev->page_size; |
| int offset = dma_addr & (page_size - 1); |
| __le64 *prp_list; |
| __le64 **list = iod_list(iod); |
| dma_addr_t prp_dma; |
| int nprps, i; |
| |
| length -= (page_size - offset); |
| if (length <= 0) |
| return total_len; |
| |
| dma_len -= (page_size - offset); |
| if (dma_len) { |
| dma_addr += (page_size - offset); |
| } else { |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| if (length <= page_size) { |
| iod->first_dma = dma_addr; |
| return total_len; |
| } |
| |
| nprps = DIV_ROUND_UP(length, page_size); |
| if (nprps <= (256 / 8)) { |
| pool = dev->prp_small_pool; |
| iod->npages = 0; |
| } else { |
| pool = dev->prp_page_pool; |
| iod->npages = 1; |
| } |
| |
| prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
| if (!prp_list) { |
| iod->first_dma = dma_addr; |
| iod->npages = -1; |
| return (total_len - length) + page_size; |
| } |
| list[0] = prp_list; |
| iod->first_dma = prp_dma; |
| i = 0; |
| for (;;) { |
| if (i == page_size >> 3) { |
| __le64 *old_prp_list = prp_list; |
| prp_list = dma_pool_alloc(pool, gfp, &prp_dma); |
| if (!prp_list) |
| return total_len - length; |
| list[iod->npages++] = prp_list; |
| prp_list[0] = old_prp_list[i - 1]; |
| old_prp_list[i - 1] = cpu_to_le64(prp_dma); |
| i = 1; |
| } |
| prp_list[i++] = cpu_to_le64(dma_addr); |
| dma_len -= page_size; |
| dma_addr += page_size; |
| length -= page_size; |
| if (length <= 0) |
| break; |
| if (dma_len > 0) |
| continue; |
| BUG_ON(dma_len < 0); |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| return total_len; |
| } |
| |
| static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req, |
| struct nvme_iod *iod) |
| { |
| struct nvme_command cmnd; |
| |
| memcpy(&cmnd, req->cmd, sizeof(cmnd)); |
| cmnd.rw.command_id = req->tag; |
| if (req->nr_phys_segments) { |
| cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); |
| cmnd.rw.prp2 = cpu_to_le64(iod->first_dma); |
| } |
| |
| __nvme_submit_cmd(nvmeq, &cmnd); |
| } |
| |
| /* |
| * We reuse the small pool to allocate the 16-byte range here as it is not |
| * worth having a special pool for these or additional cases to handle freeing |
| * the iod. |
| */ |
| static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
| struct request *req, struct nvme_iod *iod) |
| { |
| struct nvme_dsm_range *range = |
| (struct nvme_dsm_range *)iod_list(iod)[0]; |
| struct nvme_command cmnd; |
| |
| range->cattr = cpu_to_le32(0); |
| range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift); |
| range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); |
| |
| memset(&cmnd, 0, sizeof(cmnd)); |
| cmnd.dsm.opcode = nvme_cmd_dsm; |
| cmnd.dsm.command_id = req->tag; |
| cmnd.dsm.nsid = cpu_to_le32(ns->ns_id); |
| cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma); |
| cmnd.dsm.nr = 0; |
| cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
| |
| __nvme_submit_cmd(nvmeq, &cmnd); |
| } |
| |
| static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns, |
| int cmdid) |
| { |
| struct nvme_command cmnd; |
| |
| memset(&cmnd, 0, sizeof(cmnd)); |
| cmnd.common.opcode = nvme_cmd_flush; |
| cmnd.common.command_id = cmdid; |
| cmnd.common.nsid = cpu_to_le32(ns->ns_id); |
| |
| __nvme_submit_cmd(nvmeq, &cmnd); |
| } |
| |
| static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod, |
| struct nvme_ns *ns) |
| { |
| struct request *req = iod_get_private(iod); |
| struct nvme_command cmnd; |
| u16 control = 0; |
| u32 dsmgmt = 0; |
| |
| if (req->cmd_flags & REQ_FUA) |
| control |= NVME_RW_FUA; |
| if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
| control |= NVME_RW_LR; |
| |
| if (req->cmd_flags & REQ_RAHEAD) |
| dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
| |
| memset(&cmnd, 0, sizeof(cmnd)); |
| cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); |
| cmnd.rw.command_id = req->tag; |
| cmnd.rw.nsid = cpu_to_le32(ns->ns_id); |
| cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); |
| cmnd.rw.prp2 = cpu_to_le64(iod->first_dma); |
| cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); |
| cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); |
| |
| if (ns->ms) { |
| switch (ns->pi_type) { |
| case NVME_NS_DPS_PI_TYPE3: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD; |
| break; |
| case NVME_NS_DPS_PI_TYPE1: |
| case NVME_NS_DPS_PI_TYPE2: |
| control |= NVME_RW_PRINFO_PRCHK_GUARD | |
| NVME_RW_PRINFO_PRCHK_REF; |
| cmnd.rw.reftag = cpu_to_le32( |
| nvme_block_nr(ns, blk_rq_pos(req))); |
| break; |
| } |
| if (blk_integrity_rq(req)) |
| cmnd.rw.metadata = |
| cpu_to_le64(sg_dma_address(iod->meta_sg)); |
| else |
| control |= NVME_RW_PRINFO_PRACT; |
| } |
| |
| cmnd.rw.control = cpu_to_le16(control); |
| cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt); |
| |
| __nvme_submit_cmd(nvmeq, &cmnd); |
| |
| return 0; |
| } |
| |
| /* |
| * NOTE: ns is NULL when called on the admin queue. |
| */ |
| static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *req = bd->rq; |
| struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); |
| struct nvme_iod *iod; |
| enum dma_data_direction dma_dir; |
| |
| /* |
| * If formated with metadata, require the block layer provide a buffer |
| * unless this namespace is formated such that the metadata can be |
| * stripped/generated by the controller with PRACT=1. |
| */ |
| if (ns && ns->ms && !blk_integrity_rq(req)) { |
| if (!(ns->pi_type && ns->ms == 8) && |
| req->cmd_type != REQ_TYPE_DRV_PRIV) { |
| blk_mq_complete_request(req, -EFAULT); |
| return BLK_MQ_RQ_QUEUE_OK; |
| } |
| } |
| |
| iod = nvme_alloc_iod(req, dev, GFP_ATOMIC); |
| if (!iod) |
| return BLK_MQ_RQ_QUEUE_BUSY; |
| |
| if (req->cmd_flags & REQ_DISCARD) { |
| void *range; |
| /* |
| * We reuse the small pool to allocate the 16-byte range here |
| * as it is not worth having a special pool for these or |
| * additional cases to handle freeing the iod. |
| */ |
| range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC, |
| &iod->first_dma); |
| if (!range) |
| goto retry_cmd; |
| iod_list(iod)[0] = (__le64 *)range; |
| iod->npages = 0; |
| } else if (req->nr_phys_segments) { |
| dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| |
| sg_init_table(iod->sg, req->nr_phys_segments); |
| iod->nents = blk_rq_map_sg(req->q, req, iod->sg); |
| if (!iod->nents) |
| goto error_cmd; |
| |
| if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir)) |
| goto retry_cmd; |
| |
| if (blk_rq_bytes(req) != |
| nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) { |
| dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); |
| goto retry_cmd; |
| } |
| if (blk_integrity_rq(req)) { |
| if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) |
| goto error_cmd; |
| |
| sg_init_table(iod->meta_sg, 1); |
| if (blk_rq_map_integrity_sg( |
| req->q, req->bio, iod->meta_sg) != 1) |
| goto error_cmd; |
| |
| if (rq_data_dir(req)) |
| nvme_dif_remap(req, nvme_dif_prep); |
| |
| if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) |
| goto error_cmd; |
| } |
| } |
| |
| nvme_set_info(cmd, iod, req_completion); |
| spin_lock_irq(&nvmeq->q_lock); |
| if (req->cmd_type == REQ_TYPE_DRV_PRIV) |
| nvme_submit_priv(nvmeq, req, iod); |
| else if (req->cmd_flags & REQ_DISCARD) |
| nvme_submit_discard(nvmeq, ns, req, iod); |
| else if (req->cmd_flags & REQ_FLUSH) |
| nvme_submit_flush(nvmeq, ns, req->tag); |
| else |
| nvme_submit_iod(nvmeq, iod, ns); |
| |
| nvme_process_cq(nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| return BLK_MQ_RQ_QUEUE_OK; |
| |
| error_cmd: |
| nvme_free_iod(dev, iod); |
| return BLK_MQ_RQ_QUEUE_ERROR; |
| retry_cmd: |
| nvme_free_iod(dev, iod); |
| return BLK_MQ_RQ_QUEUE_BUSY; |
| } |
| |
| static int nvme_process_cq(struct nvme_queue *nvmeq) |
| { |
| u16 head, phase; |
| |
| head = nvmeq->cq_head; |
| phase = nvmeq->cq_phase; |
| |
| for (;;) { |
| void *ctx; |
| nvme_completion_fn fn; |
| struct nvme_completion cqe = nvmeq->cqes[head]; |
| if ((le16_to_cpu(cqe.status) & 1) != phase) |
| break; |
| nvmeq->sq_head = le16_to_cpu(cqe.sq_head); |
| if (++head == nvmeq->q_depth) { |
| head = 0; |
| phase = !phase; |
| } |
| ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn); |
| fn(nvmeq, ctx, &cqe); |
| } |
| |
| /* If the controller ignores the cq head doorbell and continuously |
| * writes to the queue, it is theoretically possible to wrap around |
| * the queue twice and mistakenly return IRQ_NONE. Linux only |
| * requires that 0.1% of your interrupts are handled, so this isn't |
| * a big problem. |
| */ |
| if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
| return 0; |
| |
| writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| nvmeq->cq_head = head; |
| nvmeq->cq_phase = phase; |
| |
| nvmeq->cqe_seen = 1; |
| return 1; |
| } |
| |
| static irqreturn_t nvme_irq(int irq, void *data) |
| { |
| irqreturn_t result; |
| struct nvme_queue *nvmeq = data; |
| spin_lock(&nvmeq->q_lock); |
| nvme_process_cq(nvmeq); |
| result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; |
| nvmeq->cqe_seen = 0; |
| spin_unlock(&nvmeq->q_lock); |
| return result; |
| } |
| |
| static irqreturn_t nvme_irq_check(int irq, void *data) |
| { |
| struct nvme_queue *nvmeq = data; |
| struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head]; |
| if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase) |
| return IRQ_NONE; |
| return IRQ_WAKE_THREAD; |
| } |
| |
| /* |
| * Returns 0 on success. If the result is negative, it's a Linux error code; |
| * if the result is positive, it's an NVM Express status code |
| */ |
| int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void *buffer, void __user *ubuffer, unsigned bufflen, |
| u32 *result, unsigned timeout) |
| { |
| bool write = cmd->common.opcode & 1; |
| struct bio *bio = NULL; |
| struct request *req; |
| int ret; |
| |
| req = blk_mq_alloc_request(q, write, GFP_KERNEL, false); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->cmd_type = REQ_TYPE_DRV_PRIV; |
| req->cmd_flags |= REQ_FAILFAST_DRIVER; |
| req->__data_len = 0; |
| req->__sector = (sector_t) -1; |
| req->bio = req->biotail = NULL; |
| |
| req->timeout = timeout ? timeout : ADMIN_TIMEOUT; |
| |
| req->cmd = (unsigned char *)cmd; |
| req->cmd_len = sizeof(struct nvme_command); |
| req->special = (void *)0; |
| |
| if (buffer && bufflen) { |
| ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT); |
| if (ret) |
| goto out; |
| } else if (ubuffer && bufflen) { |
| ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT); |
| if (ret) |
| goto out; |
| bio = req->bio; |
| } |
| |
| blk_execute_rq(req->q, NULL, req, 0); |
| if (bio) |
| blk_rq_unmap_user(bio); |
| if (result) |
| *result = (u32)(uintptr_t)req->special; |
| ret = req->errors; |
| out: |
| blk_mq_free_request(req); |
| return ret; |
| } |
| |
| int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| void *buffer, unsigned bufflen) |
| { |
| return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0); |
| } |
| |
| static int nvme_submit_async_admin_req(struct nvme_dev *dev) |
| { |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| struct nvme_command c; |
| struct nvme_cmd_info *cmd_info; |
| struct request *req; |
| |
| req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->cmd_flags |= REQ_NO_TIMEOUT; |
| cmd_info = blk_mq_rq_to_pdu(req); |
| nvme_set_info(cmd_info, NULL, async_req_completion); |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = nvme_admin_async_event; |
| c.common.command_id = req->tag; |
| |
| blk_mq_free_request(req); |
| __nvme_submit_cmd(nvmeq, &c); |
| return 0; |
| } |
| |
| static int nvme_submit_admin_async_cmd(struct nvme_dev *dev, |
| struct nvme_command *cmd, |
| struct async_cmd_info *cmdinfo, unsigned timeout) |
| { |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| struct request *req; |
| struct nvme_cmd_info *cmd_rq; |
| |
| req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->timeout = timeout; |
| cmd_rq = blk_mq_rq_to_pdu(req); |
| cmdinfo->req = req; |
| nvme_set_info(cmd_rq, cmdinfo, async_completion); |
| cmdinfo->status = -EINTR; |
| |
| cmd->common.command_id = req->tag; |
| |
| nvme_submit_cmd(nvmeq, cmd); |
| return 0; |
| } |
| |
| static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(id); |
| |
| return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; |
| |
| /* |
| * Note: we (ab)use the fact the the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_cq.opcode = nvme_admin_create_cq; |
| c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); |
| c.create_cq.cqid = cpu_to_le16(qid); |
| c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_cq.cq_flags = cpu_to_le16(flags); |
| c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); |
| |
| return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; |
| |
| /* |
| * Note: we (ab)use the fact the the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_sq.opcode = nvme_admin_create_sq; |
| c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); |
| c.create_sq.sqid = cpu_to_le16(qid); |
| c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_sq.sq_flags = cpu_to_le16(flags); |
| c.create_sq.cqid = cpu_to_le16(qid); |
| |
| return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| } |
| |
| static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| } |
| |
| int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.cns = cpu_to_le32(1); |
| |
| *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| sizeof(struct nvme_id_ctrl)); |
| if (error) |
| kfree(*id); |
| return error; |
| } |
| |
| int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid, |
| struct nvme_id_ns **id) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| c.identify.opcode = nvme_admin_identify, |
| c.identify.nsid = cpu_to_le32(nsid), |
| |
| *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); |
| if (!*id) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| sizeof(struct nvme_id_ns)); |
| if (error) |
| kfree(*id); |
| return error; |
| } |
| |
| int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, |
| dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_get_features; |
| c.features.nsid = cpu_to_le32(nsid); |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| |
| return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0, |
| result, 0); |
| } |
| |
| int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, |
| dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_set_features; |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| c.features.dword11 = cpu_to_le32(dword11); |
| |
| return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0, |
| result, 0); |
| } |
| |
| int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log) |
| { |
| struct nvme_command c = { }; |
| int error; |
| |
| c.common.opcode = nvme_admin_get_log_page, |
| c.common.nsid = cpu_to_le32(0xFFFFFFFF), |
| c.common.cdw10[0] = cpu_to_le32( |
| (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | |
| NVME_LOG_SMART), |
| |
| *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); |
| if (!*log) |
| return -ENOMEM; |
| |
| error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, |
| sizeof(struct nvme_smart_log)); |
| if (error) |
| kfree(*log); |
| return error; |
| } |
| |
| /** |
| * nvme_abort_req - Attempt aborting a request |
| * |
| * Schedule controller reset if the command was already aborted once before and |
| * still hasn't been returned to the driver, or if this is the admin queue. |
| */ |
| static void nvme_abort_req(struct request *req) |
| { |
| struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = cmd_rq->nvmeq; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *abort_req; |
| struct nvme_cmd_info *abort_cmd; |
| struct nvme_command cmd; |
| |
| if (!nvmeq->qid || cmd_rq->aborted) { |
| spin_lock(&dev_list_lock); |
| if (!__nvme_reset(dev)) { |
| dev_warn(dev->dev, |
| "I/O %d QID %d timeout, reset controller\n", |
| req->tag, nvmeq->qid); |
| } |
| spin_unlock(&dev_list_lock); |
| return; |
| } |
| |
| if (!dev->abort_limit) |
| return; |
| |
| abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, |
| false); |
| if (IS_ERR(abort_req)) |
| return; |
| |
| abort_cmd = blk_mq_rq_to_pdu(abort_req); |
| nvme_set_info(abort_cmd, abort_req, abort_completion); |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.abort.opcode = nvme_admin_abort_cmd; |
| cmd.abort.cid = req->tag; |
| cmd.abort.sqid = cpu_to_le16(nvmeq->qid); |
| cmd.abort.command_id = abort_req->tag; |
| |
| --dev->abort_limit; |
| cmd_rq->aborted = 1; |
| |
| dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag, |
| nvmeq->qid); |
| nvme_submit_cmd(dev->queues[0], &cmd); |
| } |
| |
| static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved) |
| { |
| struct nvme_queue *nvmeq = data; |
| void *ctx; |
| nvme_completion_fn fn; |
| struct nvme_cmd_info *cmd; |
| struct nvme_completion cqe; |
| |
| if (!blk_mq_request_started(req)) |
| return; |
| |
| cmd = blk_mq_rq_to_pdu(req); |
| |
| if (cmd->ctx == CMD_CTX_CANCELLED) |
| return; |
| |
| if (blk_queue_dying(req->q)) |
| cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1); |
| else |
| cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1); |
| |
| |
| dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", |
| req->tag, nvmeq->qid); |
| ctx = cancel_cmd_info(cmd, &fn); |
| fn(nvmeq, ctx, &cqe); |
| } |
| |
| static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) |
| { |
| struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = cmd->nvmeq; |
| |
| dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag, |
| nvmeq->qid); |
| spin_lock_irq(&nvmeq->q_lock); |
| nvme_abort_req(req); |
| spin_unlock_irq(&nvmeq->q_lock); |
| |
| /* |
| * The aborted req will be completed on receiving the abort req. |
| * We enable the timer again. If hit twice, it'll cause a device reset, |
| * as the device then is in a faulty state. |
| */ |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static void nvme_free_queue(struct nvme_queue *nvmeq) |
| { |
| dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), |
| (void *)nvmeq->cqes, nvmeq->cq_dma_addr); |
| if (nvmeq->sq_cmds) |
| dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), |
| nvmeq->sq_cmds, nvmeq->sq_dma_addr); |
| kfree(nvmeq); |
| } |
| |
| static void nvme_free_queues(struct nvme_dev *dev, int lowest) |
| { |
| int i; |
| |
| for (i = dev->queue_count - 1; i >= lowest; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| dev->queue_count--; |
| dev->queues[i] = NULL; |
| nvme_free_queue(nvmeq); |
| } |
| } |
| |
| /** |
| * nvme_suspend_queue - put queue into suspended state |
| * @nvmeq - queue to suspend |
| */ |
| static int nvme_suspend_queue(struct nvme_queue *nvmeq) |
| { |
| int vector; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| if (nvmeq->cq_vector == -1) { |
| spin_unlock_irq(&nvmeq->q_lock); |
| return 1; |
| } |
| vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; |
| nvmeq->dev->online_queues--; |
| nvmeq->cq_vector = -1; |
| spin_unlock_irq(&nvmeq->q_lock); |
| |
| if (!nvmeq->qid && nvmeq->dev->admin_q) |
| blk_mq_freeze_queue_start(nvmeq->dev->admin_q); |
| |
| irq_set_affinity_hint(vector, NULL); |
| free_irq(vector, nvmeq); |
| |
| return 0; |
| } |
| |
| static void nvme_clear_queue(struct nvme_queue *nvmeq) |
| { |
| spin_lock_irq(&nvmeq->q_lock); |
| if (nvmeq->tags && *nvmeq->tags) |
| blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static void nvme_disable_queue(struct nvme_dev *dev, int qid) |
| { |
| struct nvme_queue *nvmeq = dev->queues[qid]; |
| |
| if (!nvmeq) |
| return; |
| if (nvme_suspend_queue(nvmeq)) |
| return; |
| |
| /* Don't tell the adapter to delete the admin queue. |
| * Don't tell a removed adapter to delete IO queues. */ |
| if (qid && readl(&dev->bar->csts) != -1) { |
| adapter_delete_sq(dev, qid); |
| adapter_delete_cq(dev, qid); |
| } |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| nvme_process_cq(nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, |
| int entry_size) |
| { |
| int q_depth = dev->q_depth; |
| unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size); |
| |
| if (q_size_aligned * nr_io_queues > dev->cmb_size) { |
| u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); |
| mem_per_q = round_down(mem_per_q, dev->page_size); |
| q_depth = div_u64(mem_per_q, entry_size); |
| |
| /* |
| * Ensure the reduced q_depth is above some threshold where it |
| * would be better to map queues in system memory with the |
| * original depth |
| */ |
| if (q_depth < 64) |
| return -ENOMEM; |
| } |
| |
| return q_depth; |
| } |
| |
| static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| int qid, int depth) |
| { |
| if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { |
| unsigned offset = (qid - 1) * |
| roundup(SQ_SIZE(depth), dev->page_size); |
| nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; |
| nvmeq->sq_cmds_io = dev->cmb + offset; |
| } else { |
| nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), |
| &nvmeq->sq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->sq_cmds) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, |
| int depth) |
| { |
| struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); |
| if (!nvmeq) |
| return NULL; |
| |
| nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), |
| &nvmeq->cq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->cqes) |
| goto free_nvmeq; |
| |
| if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) |
| goto free_cqdma; |
| |
| nvmeq->q_dmadev = dev->dev; |
| nvmeq->dev = dev; |
| snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", |
| dev->instance, qid); |
| spin_lock_init(&nvmeq->q_lock); |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| nvmeq->q_depth = depth; |
| nvmeq->qid = qid; |
| nvmeq->cq_vector = -1; |
| dev->queues[qid] = nvmeq; |
| |
| /* make sure queue descriptor is set before queue count, for kthread */ |
| mb(); |
| dev->queue_count++; |
| |
| return nvmeq; |
| |
| free_cqdma: |
| dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, |
| nvmeq->cq_dma_addr); |
| free_nvmeq: |
| kfree(nvmeq); |
| return NULL; |
| } |
| |
| static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| const char *name) |
| { |
| if (use_threaded_interrupts) |
| return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, |
| nvme_irq_check, nvme_irq, IRQF_SHARED, |
| name, nvmeq); |
| return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
| IRQF_SHARED, name, nvmeq); |
| } |
| |
| static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| nvmeq->sq_tail = 0; |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); |
| dev->online_queues++; |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| int result; |
| |
| nvmeq->cq_vector = qid - 1; |
| result = adapter_alloc_cq(dev, qid, nvmeq); |
| if (result < 0) |
| return result; |
| |
| result = adapter_alloc_sq(dev, qid, nvmeq); |
| if (result < 0) |
| goto release_cq; |
| |
| result = queue_request_irq(dev, nvmeq, nvmeq->irqname); |
| if (result < 0) |
| goto release_sq; |
| |
| nvme_init_queue(nvmeq, qid); |
| return result; |
| |
| release_sq: |
| adapter_delete_sq(dev, qid); |
| release_cq: |
| adapter_delete_cq(dev, qid); |
| return result; |
| } |
| |
| static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled) |
| { |
| unsigned long timeout; |
| u32 bit = enabled ? NVME_CSTS_RDY : 0; |
| |
| timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; |
| |
| while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) { |
| msleep(100); |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| if (time_after(jiffies, timeout)) { |
| dev_err(dev->dev, |
| "Device not ready; aborting %s\n", enabled ? |
| "initialisation" : "reset"); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * If the device has been passed off to us in an enabled state, just clear |
| * the enabled bit. The spec says we should set the 'shutdown notification |
| * bits', but doing so may cause the device to complete commands to the |
| * admin queue ... and we don't know what memory that might be pointing at! |
| */ |
| static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap) |
| { |
| dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| dev->ctrl_config &= ~NVME_CC_ENABLE; |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| return nvme_wait_ready(dev, cap, false); |
| } |
| |
| static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap) |
| { |
| dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| dev->ctrl_config |= NVME_CC_ENABLE; |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| return nvme_wait_ready(dev, cap, true); |
| } |
| |
| static int nvme_shutdown_ctrl(struct nvme_dev *dev) |
| { |
| unsigned long timeout; |
| |
| dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| dev->ctrl_config |= NVME_CC_SHN_NORMAL; |
| |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| timeout = SHUTDOWN_TIMEOUT + jiffies; |
| while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) != |
| NVME_CSTS_SHST_CMPLT) { |
| msleep(100); |
| if (fatal_signal_pending(current)) |
| return -EINTR; |
| if (time_after(jiffies, timeout)) { |
| dev_err(dev->dev, |
| "Device shutdown incomplete; abort shutdown\n"); |
| return -ENODEV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct blk_mq_ops nvme_mq_admin_ops = { |
| .queue_rq = nvme_queue_rq, |
| .map_queue = blk_mq_map_queue, |
| .init_hctx = nvme_admin_init_hctx, |
| .exit_hctx = nvme_admin_exit_hctx, |
| .init_request = nvme_admin_init_request, |
| .timeout = nvme_timeout, |
| }; |
| |
| static struct blk_mq_ops nvme_mq_ops = { |
| .queue_rq = nvme_queue_rq, |
| .map_queue = blk_mq_map_queue, |
| .init_hctx = nvme_init_hctx, |
| .init_request = nvme_init_request, |
| .timeout = nvme_timeout, |
| }; |
| |
| static void nvme_dev_remove_admin(struct nvme_dev *dev) |
| { |
| if (dev->admin_q && !blk_queue_dying(dev->admin_q)) { |
| blk_cleanup_queue(dev->admin_q); |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| } |
| } |
| |
| static int nvme_alloc_admin_tags(struct nvme_dev *dev) |
| { |
| if (!dev->admin_q) { |
| dev->admin_tagset.ops = &nvme_mq_admin_ops; |
| dev->admin_tagset.nr_hw_queues = 1; |
| dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1; |
| dev->admin_tagset.reserved_tags = 1; |
| dev->admin_tagset.timeout = ADMIN_TIMEOUT; |
| dev->admin_tagset.numa_node = dev_to_node(dev->dev); |
| dev->admin_tagset.cmd_size = nvme_cmd_size(dev); |
| dev->admin_tagset.driver_data = dev; |
| |
| if (blk_mq_alloc_tag_set(&dev->admin_tagset)) |
| return -ENOMEM; |
| |
| dev->admin_q = blk_mq_init_queue(&dev->admin_tagset); |
| if (IS_ERR(dev->admin_q)) { |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| return -ENOMEM; |
| } |
| if (!blk_get_queue(dev->admin_q)) { |
| nvme_dev_remove_admin(dev); |
| dev->admin_q = NULL; |
| return -ENODEV; |
| } |
| } else |
| blk_mq_unfreeze_queue(dev->admin_q); |
| |
| return 0; |
| } |
| |
| static int nvme_configure_admin_queue(struct nvme_dev *dev) |
| { |
| int result; |
| u32 aqa; |
| u64 cap = readq(&dev->bar->cap); |
| struct nvme_queue *nvmeq; |
| unsigned page_shift = PAGE_SHIFT; |
| unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; |
| unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12; |
| |
| if (page_shift < dev_page_min) { |
| dev_err(dev->dev, |
| "Minimum device page size (%u) too large for " |
| "host (%u)\n", 1 << dev_page_min, |
| 1 << page_shift); |
| return -ENODEV; |
| } |
| if (page_shift > dev_page_max) { |
| dev_info(dev->dev, |
| "Device maximum page size (%u) smaller than " |
| "host (%u); enabling work-around\n", |
| 1 << dev_page_max, 1 << page_shift); |
| page_shift = dev_page_max; |
| } |
| |
| dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ? |
| NVME_CAP_NSSRC(cap) : 0; |
| |
| if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO)) |
| writel(NVME_CSTS_NSSRO, &dev->bar->csts); |
| |
| result = nvme_disable_ctrl(dev, cap); |
| if (result < 0) |
| return result; |
| |
| nvmeq = dev->queues[0]; |
| if (!nvmeq) { |
| nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); |
| if (!nvmeq) |
| return -ENOMEM; |
| } |
| |
| aqa = nvmeq->q_depth - 1; |
| aqa |= aqa << 16; |
| |
| dev->page_size = 1 << page_shift; |
| |
| dev->ctrl_config = NVME_CC_CSS_NVM; |
| dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; |
| dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; |
| dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| |
| writel(aqa, &dev->bar->aqa); |
| writeq(nvmeq->sq_dma_addr, &dev->bar->asq); |
| writeq(nvmeq->cq_dma_addr, &dev->bar->acq); |
| |
| result = nvme_enable_ctrl(dev, cap); |
| if (result) |
| goto free_nvmeq; |
| |
| nvmeq->cq_vector = 0; |
| result = queue_request_irq(dev, nvmeq, nvmeq->irqname); |
| if (result) { |
| nvmeq->cq_vector = -1; |
| goto free_nvmeq; |
| } |
| |
| return result; |
| |
| free_nvmeq: |
| nvme_free_queues(dev, 0); |
| return result; |
| } |
| |
| static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) |
| { |
| struct nvme_dev *dev = ns->dev; |
| struct nvme_user_io io; |
| struct nvme_command c; |
| unsigned length, meta_len; |
| int status, write; |
| dma_addr_t meta_dma = 0; |
| void *meta = NULL; |
| void __user *metadata; |
| |
| if (copy_from_user(&io, uio, sizeof(io))) |
| return -EFAULT; |
| |
| switch (io.opcode) { |
| case nvme_cmd_write: |
| case nvme_cmd_read: |
| case nvme_cmd_compare: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| length = (io.nblocks + 1) << ns->lba_shift; |
| meta_len = (io.nblocks + 1) * ns->ms; |
| metadata = (void __user *)(uintptr_t)io.metadata; |
| write = io.opcode & 1; |
| |
| if (ns->ext) { |
| length += meta_len; |
| meta_len = 0; |
| } |
| if (meta_len) { |
| if (((io.metadata & 3) || !io.metadata) && !ns->ext) |
| return -EINVAL; |
| |
| meta = dma_alloc_coherent(dev->dev, meta_len, |
| &meta_dma, GFP_KERNEL); |
| |
| if (!meta) { |
| status = -ENOMEM; |
| goto unmap; |
| } |
| if (write) { |
| if (copy_from_user(meta, metadata, meta_len)) { |
| status = -EFAULT; |
| goto unmap; |
| } |
| } |
| } |
| |
| memset(&c, 0, sizeof(c)); |
| c.rw.opcode = io.opcode; |
| c.rw.flags = io.flags; |
| c.rw.nsid = cpu_to_le32(ns->ns_id); |
| c.rw.slba = cpu_to_le64(io.slba); |
| c.rw.length = cpu_to_le16(io.nblocks); |
| c.rw.control = cpu_to_le16(io.control); |
| c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); |
| c.rw.reftag = cpu_to_le32(io.reftag); |
| c.rw.apptag = cpu_to_le16(io.apptag); |
| c.rw.appmask = cpu_to_le16(io.appmask); |
| c.rw.metadata = cpu_to_le64(meta_dma); |
| |
| status = __nvme_submit_sync_cmd(ns->queue, &c, NULL, |
| (void __user *)(uintptr_t)io.addr, length, NULL, 0); |
| unmap: |
| if (meta) { |
| if (status == NVME_SC_SUCCESS && !write) { |
| if (copy_to_user(metadata, meta, meta_len)) |
| status = -EFAULT; |
| } |
| dma_free_coherent(dev->dev, meta_len, meta, meta_dma); |
| } |
| return status; |
| } |
| |
| static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns, |
| struct nvme_passthru_cmd __user *ucmd) |
| { |
| struct nvme_passthru_cmd cmd; |
| struct nvme_command c; |
| unsigned timeout = 0; |
| int status; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| if (copy_from_user(&cmd, ucmd, sizeof(cmd))) |
| return -EFAULT; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = cmd.opcode; |
| c.common.flags = cmd.flags; |
| c.common.nsid = cpu_to_le32(cmd.nsid); |
| c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); |
| c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); |
| c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); |
| c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); |
| c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); |
| c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); |
| c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); |
| c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); |
| |
| if (cmd.timeout_ms) |
| timeout = msecs_to_jiffies(cmd.timeout_ms); |
| |
| status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c, |
| NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len, |
| &cmd.result, timeout); |
| if (status >= 0) { |
| if (put_user(cmd.result, &ucmd->result)) |
| return -EFAULT; |
| } |
| |
| return status; |
| } |
| |
| static int nvme_subsys_reset(struct nvme_dev *dev) |
| { |
| if (!dev->subsystem) |
| return -ENOTTY; |
| |
| writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */ |
| return 0; |
| } |
| |
| static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct nvme_ns *ns = bdev->bd_disk->private_data; |
| |
| switch (cmd) { |
| case NVME_IOCTL_ID: |
| force_successful_syscall_return(); |
| return ns->ns_id; |
| case NVME_IOCTL_ADMIN_CMD: |
| return nvme_user_cmd(ns->dev, NULL, (void __user *)arg); |
| case NVME_IOCTL_IO_CMD: |
| return nvme_user_cmd(ns->dev, ns, (void __user *)arg); |
| case NVME_IOCTL_SUBMIT_IO: |
| return nvme_submit_io(ns, (void __user *)arg); |
| case SG_GET_VERSION_NUM: |
| return nvme_sg_get_version_num((void __user *)arg); |
| case SG_IO: |
| return nvme_sg_io(ns, (void __user *)arg); |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case SG_IO: |
| return -ENOIOCTLCMD; |
| } |
| return nvme_ioctl(bdev, mode, cmd, arg); |
| } |
| #else |
| #define nvme_compat_ioctl NULL |
| #endif |
| |
| static void nvme_free_dev(struct kref *kref); |
| static void nvme_free_ns(struct kref *kref) |
| { |
| struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
| |
| if (ns->type == NVME_NS_LIGHTNVM) |
| nvme_nvm_unregister(ns->queue, ns->disk->disk_name); |
| |
| spin_lock(&dev_list_lock); |
| ns->disk->private_data = NULL; |
| spin_unlock(&dev_list_lock); |
| |
| kref_put(&ns->dev->kref, nvme_free_dev); |
| put_disk(ns->disk); |
| kfree(ns); |
| } |
| |
| static int nvme_open(struct block_device *bdev, fmode_t mode) |
| { |
| int ret = 0; |
| struct nvme_ns *ns; |
| |
| spin_lock(&dev_list_lock); |
| ns = bdev->bd_disk->private_data; |
| if (!ns) |
| ret = -ENXIO; |
| else if (!kref_get_unless_zero(&ns->kref)) |
| ret = -ENXIO; |
| spin_unlock(&dev_list_lock); |
| |
| return ret; |
| } |
| |
| static void nvme_release(struct gendisk *disk, fmode_t mode) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| kref_put(&ns->kref, nvme_free_ns); |
| } |
| |
| static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo) |
| { |
| /* some standard values */ |
| geo->heads = 1 << 6; |
| geo->sectors = 1 << 5; |
| geo->cylinders = get_capacity(bd->bd_disk) >> 11; |
| return 0; |
| } |
| |
| static void nvme_config_discard(struct nvme_ns *ns) |
| { |
| u32 logical_block_size = queue_logical_block_size(ns->queue); |
| ns->queue->limits.discard_zeroes_data = 0; |
| ns->queue->limits.discard_alignment = logical_block_size; |
| ns->queue->limits.discard_granularity = logical_block_size; |
| blk_queue_max_discard_sectors(ns->queue, 0xffffffff); |
| queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); |
| } |
| |
| static int nvme_revalidate_disk(struct gendisk *disk) |
| { |
| struct nvme_ns *ns = disk->private_data; |
| struct nvme_dev *dev = ns->dev; |
| struct nvme_id_ns *id; |
| u8 lbaf, pi_type; |
| u16 old_ms; |
| unsigned short bs; |
| |
| if (nvme_identify_ns(dev, ns->ns_id, &id)) { |
| dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__, |
| dev->instance, ns->ns_id); |
| return -ENODEV; |
| } |
| if (id->ncap == 0) { |
| kfree(id); |
| return -ENODEV; |
| } |
| |
| if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) { |
| if (nvme_nvm_register(ns->queue, disk->disk_name)) { |
| dev_warn(dev->dev, |
| "%s: LightNVM init failure\n", __func__); |
| kfree(id); |
| return -ENODEV; |
| } |
| ns->type = NVME_NS_LIGHTNVM; |
| } |
| |
| old_ms = ns->ms; |
| lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; |
| ns->lba_shift = id->lbaf[lbaf].ds; |
| ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); |
| ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); |
| |
| /* |
| * If identify namespace failed, use default 512 byte block size so |
| * block layer can use before failing read/write for 0 capacity. |
| */ |
| if (ns->lba_shift == 0) |
| ns->lba_shift = 9; |
| bs = 1 << ns->lba_shift; |
| |
| /* XXX: PI implementation requires metadata equal t10 pi tuple size */ |
| pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? |
| id->dps & NVME_NS_DPS_PI_MASK : 0; |
| |
| blk_mq_freeze_queue(disk->queue); |
| if (blk_get_integrity(disk) && (ns->pi_type != pi_type || |
| ns->ms != old_ms || |
| bs != queue_logical_block_size(disk->queue) || |
| (ns->ms && ns->ext))) |
| blk_integrity_unregister(disk); |
| |
| ns->pi_type = pi_type; |
| blk_queue_logical_block_size(ns->queue, bs); |
| |
| if (ns->ms && !ns->ext) |
| nvme_init_integrity(ns); |
| |
| if ((ns->ms && !(ns->ms == 8 && ns->pi_type) && |
| !blk_get_integrity(disk)) || |
| ns->type == NVME_NS_LIGHTNVM) |
| set_capacity(disk, 0); |
| else |
| set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); |
| |
| if (dev->oncs & NVME_CTRL_ONCS_DSM) |
| nvme_config_discard(ns); |
| blk_mq_unfreeze_queue(disk->queue); |
| |
| kfree(id); |
| return 0; |
| } |
| |
| static char nvme_pr_type(enum pr_type type) |
| { |
| switch (type) { |
| case PR_WRITE_EXCLUSIVE: |
| return 1; |
| case PR_EXCLUSIVE_ACCESS: |
| return 2; |
| case PR_WRITE_EXCLUSIVE_REG_ONLY: |
| return 3; |
| case PR_EXCLUSIVE_ACCESS_REG_ONLY: |
| return 4; |
| case PR_WRITE_EXCLUSIVE_ALL_REGS: |
| return 5; |
| case PR_EXCLUSIVE_ACCESS_ALL_REGS: |
| return 6; |
| default: |
| return 0; |
| } |
| }; |
| |
| static int nvme_pr_command(struct block_device *bdev, u32 cdw10, |
| u64 key, u64 sa_key, u8 op) |
| { |
| struct nvme_ns *ns = bdev->bd_disk->private_data; |
| struct nvme_command c; |
| u8 data[16] = { 0, }; |
| |
| put_unaligned_le64(key, &data[0]); |
| put_unaligned_le64(sa_key, &data[8]); |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = op; |
| c.common.nsid = cpu_to_le32(ns->ns_id); |
| c.common.cdw10[0] = cpu_to_le32(cdw10); |
| |
| return nvme_submit_sync_cmd(ns->queue, &c, data, 16); |
| } |
| |
| static int nvme_pr_register(struct block_device *bdev, u64 old, |
| u64 new, unsigned flags) |
| { |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| cdw10 = old ? 2 : 0; |
| cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; |
| cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ |
| return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); |
| } |
| |
| static int nvme_pr_reserve(struct block_device *bdev, u64 key, |
| enum pr_type type, unsigned flags) |
| { |
| u32 cdw10; |
| |
| if (flags & ~PR_FL_IGNORE_KEY) |
| return -EOPNOTSUPP; |
| |
| cdw10 = nvme_pr_type(type) << 8; |
| cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); |
| } |
| |
| static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, |
| enum pr_type type, bool abort) |
| { |
| u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; |
| return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); |
| } |
| |
| static int nvme_pr_clear(struct block_device *bdev, u64 key) |
| { |
| u32 cdw10 = 1 | (key ? 1 << 3 : 0); |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); |
| } |
| |
| static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) |
| { |
| u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; |
| return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); |
| } |
| |
| static const struct pr_ops nvme_pr_ops = { |
| .pr_register = nvme_pr_register, |
| .pr_reserve = nvme_pr_reserve, |
| .pr_release = nvme_pr_release, |
| .pr_preempt = nvme_pr_preempt, |
| .pr_clear = nvme_pr_clear, |
| }; |
| |
| static const struct block_device_operations nvme_fops = { |
| .owner = THIS_MODULE, |
| .ioctl = nvme_ioctl, |
| .compat_ioctl = nvme_compat_ioctl, |
| .open = nvme_open, |
| .release = nvme_release, |
| .getgeo = nvme_getgeo, |
| .revalidate_disk= nvme_revalidate_disk, |
| .pr_ops = &nvme_pr_ops, |
| }; |
| |
| static int nvme_kthread(void *data) |
| { |
| struct nvme_dev *dev, *next; |
| |
| while (!kthread_should_stop()) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| spin_lock(&dev_list_lock); |
| list_for_each_entry_safe(dev, next, &dev_list, node) { |
| int i; |
| u32 csts = readl(&dev->bar->csts); |
| |
| if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) || |
| csts & NVME_CSTS_CFS) { |
| if (!__nvme_reset(dev)) { |
| dev_warn(dev->dev, |
| "Failed status: %x, reset controller\n", |
| readl(&dev->bar->csts)); |
| } |
| continue; |
| } |
| for (i = 0; i < dev->queue_count; i++) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| if (!nvmeq) |
| continue; |
| spin_lock_irq(&nvmeq->q_lock); |
| nvme_process_cq(nvmeq); |
| |
| while ((i == 0) && (dev->event_limit > 0)) { |
| if (nvme_submit_async_admin_req(dev)) |
| break; |
| dev->event_limit--; |
| } |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| } |
| spin_unlock(&dev_list_lock); |
| schedule_timeout(round_jiffies_relative(HZ)); |
| } |
| return 0; |
| } |
| |
| static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid) |
| { |
| struct nvme_ns *ns; |
| struct gendisk *disk; |
| int node = dev_to_node(dev->dev); |
| |
| ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); |
| if (!ns) |
| return; |
| |
| ns->queue = blk_mq_init_queue(&dev->tagset); |
| if (IS_ERR(ns->queue)) |
| goto out_free_ns; |
| queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue); |
| queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); |
| ns->dev = dev; |
| ns->queue->queuedata = ns; |
| |
| disk = alloc_disk_node(0, node); |
| if (!disk) |
| goto out_free_queue; |
| |
| kref_init(&ns->kref); |
| ns->ns_id = nsid; |
| ns->disk = disk; |
| ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ |
| list_add_tail(&ns->list, &dev->namespaces); |
| |
| blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); |
| if (dev->max_hw_sectors) { |
| blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors); |
| blk_queue_max_segments(ns->queue, |
| ((dev->max_hw_sectors << 9) / dev->page_size) + 1); |
| } |
| if (dev->stripe_size) |
| blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9); |
| if (dev->vwc & NVME_CTRL_VWC_PRESENT) |
| blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA); |
| blk_queue_virt_boundary(ns->queue, dev->page_size - 1); |
| |
| disk->major = nvme_major; |
| disk->first_minor = 0; |
| disk->fops = &nvme_fops; |
| disk->private_data = ns; |
| disk->queue = ns->queue; |
| disk->driverfs_dev = dev->device; |
| disk->flags = GENHD_FL_EXT_DEVT; |
| sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid); |
| |
| /* |
| * Initialize capacity to 0 until we establish the namespace format and |
| * setup integrity extentions if necessary. The revalidate_disk after |
| * add_disk allows the driver to register with integrity if the format |
| * requires it. |
| */ |
| set_capacity(disk, 0); |
| if (nvme_revalidate_disk(ns->disk)) |
| goto out_free_disk; |
| |
| kref_get(&dev->kref); |
| if (ns->type != NVME_NS_LIGHTNVM) { |
| add_disk(ns->disk); |
| if (ns->ms) { |
| struct block_device *bd = bdget_disk(ns->disk, 0); |
| if (!bd) |
| return; |
| if (blkdev_get(bd, FMODE_READ, NULL)) { |
| bdput(bd); |
| return; |
| } |
| blkdev_reread_part(bd); |
| blkdev_put(bd, FMODE_READ); |
| } |
| } |
| return; |
| out_free_disk: |
| kfree(disk); |
| list_del(&ns->list); |
| out_free_queue: |
| blk_cleanup_queue(ns->queue); |
| out_free_ns: |
| kfree(ns); |
| } |
| |
| /* |
| * Create I/O queues. Failing to create an I/O queue is not an issue, |
| * we can continue with less than the desired amount of queues, and |
| * even a controller without I/O queues an still be used to issue |
| * admin commands. This might be useful to upgrade a buggy firmware |
| * for example. |
| */ |
| static void nvme_create_io_queues(struct nvme_dev *dev) |
| { |
| unsigned i; |
| |
| for (i = dev->queue_count; i <= dev->max_qid; i++) |
| if (!nvme_alloc_queue(dev, i, dev->q_depth)) |
| break; |
| |
| for (i = dev->online_queues; i <= dev->queue_count - 1; i++) |
| if (nvme_create_queue(dev->queues[i], i)) { |
| nvme_free_queues(dev, i); |
| break; |
| } |
| } |
| |
| static int set_queue_count(struct nvme_dev *dev, int count) |
| { |
| int status; |
| u32 result; |
| u32 q_count = (count - 1) | ((count - 1) << 16); |
| |
| status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, |
| &result); |
| if (status < 0) |
| return status; |
| if (status > 0) { |
| dev_err(dev->dev, "Could not set queue count (%d)\n", status); |
| return 0; |
| } |
| return min(result & 0xffff, result >> 16) + 1; |
| } |
| |
| static void __iomem *nvme_map_cmb(struct nvme_dev *dev) |
| { |
| u64 szu, size, offset; |
| u32 cmbloc; |
| resource_size_t bar_size; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| void __iomem *cmb; |
| dma_addr_t dma_addr; |
| |
| if (!use_cmb_sqes) |
| return NULL; |
| |
| dev->cmbsz = readl(&dev->bar->cmbsz); |
| if (!(NVME_CMB_SZ(dev->cmbsz))) |
| return NULL; |
| |
| cmbloc = readl(&dev->bar->cmbloc); |
| |
| szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); |
| size = szu * NVME_CMB_SZ(dev->cmbsz); |
| offset = szu * NVME_CMB_OFST(cmbloc); |
| bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); |
| |
| if (offset > bar_size) |
| return NULL; |
| |
| /* |
| * Controllers may support a CMB size larger than their BAR, |
| * for example, due to being behind a bridge. Reduce the CMB to |
| * the reported size of the BAR |
| */ |
| if (size > bar_size - offset) |
| size = bar_size - offset; |
| |
| dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; |
| cmb = ioremap_wc(dma_addr, size); |
| if (!cmb) |
| return NULL; |
| |
| dev->cmb_dma_addr = dma_addr; |
| dev->cmb_size = size; |
| return cmb; |
| } |
| |
| static inline void nvme_release_cmb(struct nvme_dev *dev) |
| { |
| if (dev->cmb) { |
| iounmap(dev->cmb); |
| dev->cmb = NULL; |
| } |
| } |
| |
| static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) |
| { |
| return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); |
| } |
| |
| static int nvme_setup_io_queues(struct nvme_dev *dev) |
| { |
| struct nvme_queue *adminq = dev->queues[0]; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| int result, i, vecs, nr_io_queues, size; |
| |
| nr_io_queues = num_possible_cpus(); |
| result = set_queue_count(dev, nr_io_queues); |
| if (result <= 0) |
| return result; |
| if (result < nr_io_queues) |
| nr_io_queues = result; |
| |
| if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { |
| result = nvme_cmb_qdepth(dev, nr_io_queues, |
| sizeof(struct nvme_command)); |
| if (result > 0) |
| dev->q_depth = result; |
| else |
| nvme_release_cmb(dev); |
| } |
| |
| size = db_bar_size(dev, nr_io_queues); |
| if (size > 8192) { |
| iounmap(dev->bar); |
| do { |
| dev->bar = ioremap(pci_resource_start(pdev, 0), size); |
| if (dev->bar) |
| break; |
| if (!--nr_io_queues) |
| return -ENOMEM; |
| size = db_bar_size(dev, nr_io_queues); |
| } while (1); |
| dev->dbs = ((void __iomem *)dev->bar) + 4096; |
| adminq->q_db = dev->dbs; |
| } |
| |
| /* Deregister the admin queue's interrupt */ |
| free_irq(dev->entry[0].vector, adminq); |
| |
| /* |
| * If we enable msix early due to not intx, disable it again before |
| * setting up the full range we need. |
| */ |
| if (!pdev->irq) |
| pci_disable_msix(pdev); |
| |
| for (i = 0; i < nr_io_queues; i++) |
| dev->entry[i].entry = i; |
| vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); |
| if (vecs < 0) { |
| vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); |
| if (vecs < 0) { |
| vecs = 1; |
| } else { |
| for (i = 0; i < vecs; i++) |
| dev->entry[i].vector = i + pdev->irq; |
| } |
| } |
| |
| /* |
| * Should investigate if there's a performance win from allocating |
| * more queues than interrupt vectors; it might allow the submission |
| * path to scale better, even if the receive path is limited by the |
| * number of interrupts. |
| */ |
| nr_io_queues = vecs; |
| dev->max_qid = nr_io_queues; |
| |
| result = queue_request_irq(dev, adminq, adminq->irqname); |
| if (result) { |
| adminq->cq_vector = -1; |
| goto free_queues; |
| } |
| |
| /* Free previously allocated queues that are no longer usable */ |
| nvme_free_queues(dev, nr_io_queues + 1); |
| nvme_create_io_queues(dev); |
| |
| return 0; |
| |
| free_queues: |
| nvme_free_queues(dev, 1); |
| return result; |
| } |
| |
| static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); |
| struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); |
| |
| return nsa->ns_id - nsb->ns_id; |
| } |
| |
| static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid) |
| { |
| struct nvme_ns *ns; |
| |
| list_for_each_entry(ns, &dev->namespaces, list) { |
| if (ns->ns_id == nsid) |
| return ns; |
| if (ns->ns_id > nsid) |
| break; |
| } |
| return NULL; |
| } |
| |
| static inline bool nvme_io_incapable(struct nvme_dev *dev) |
| { |
| return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS || |
| dev->online_queues < 2); |
| } |
| |
| static void nvme_ns_remove(struct nvme_ns *ns) |
| { |
| bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue); |
| |
| if (kill) |
| blk_set_queue_dying(ns->queue); |
| if (ns->disk->flags & GENHD_FL_UP) |
| del_gendisk(ns->disk); |
| if (kill || !blk_queue_dying(ns->queue)) { |
| blk_mq_abort_requeue_list(ns->queue); |
| blk_cleanup_queue(ns->queue); |
| } |
| list_del_init(&ns->list); |
| kref_put(&ns->kref, nvme_free_ns); |
| } |
| |
| static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn) |
| { |
| struct nvme_ns *ns, *next; |
| unsigned i; |
| |
| for (i = 1; i <= nn; i++) { |
| ns = nvme_find_ns(dev, i); |
| if (ns) { |
| if (revalidate_disk(ns->disk)) |
| nvme_ns_remove(ns); |
| } else |
| nvme_alloc_ns(dev, i); |
| } |
| list_for_each_entry_safe(ns, next, &dev->namespaces, list) { |
| if (ns->ns_id > nn) |
| nvme_ns_remove(ns); |
| } |
| list_sort(NULL, &dev->namespaces, ns_cmp); |
| } |
| |
| static void nvme_set_irq_hints(struct nvme_dev *dev) |
| { |
| struct nvme_queue *nvmeq; |
| int i; |
| |
| for (i = 0; i < dev->online_queues; i++) { |
| nvmeq = dev->queues[i]; |
| |
| if (!nvmeq->tags || !(*nvmeq->tags)) |
| continue; |
| |
| irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, |
| blk_mq_tags_cpumask(*nvmeq->tags)); |
| } |
| } |
| |
| static void nvme_dev_scan(struct work_struct *work) |
| { |
| struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work); |
| struct nvme_id_ctrl *ctrl; |
| |
| if (!dev->tagset.tags) |
| return; |
| if (nvme_identify_ctrl(dev, &ctrl)) |
| return; |
| nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn)); |
| kfree(ctrl); |
| nvme_set_irq_hints(dev); |
| } |
| |
| /* |
| * Return: error value if an error occurred setting up the queues or calling |
| * Identify Device. 0 if these succeeded, even if adding some of the |
| * namespaces failed. At the moment, these failures are silent. TBD which |
| * failures should be reported. |
| */ |
| static int nvme_dev_add(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| int res; |
| struct nvme_id_ctrl *ctrl; |
| int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12; |
| |
| res = nvme_identify_ctrl(dev, &ctrl); |
| if (res) { |
| dev_err(dev->dev, "Identify Controller failed (%d)\n", res); |
| return -EIO; |
| } |
| |
| dev->oncs = le16_to_cpup(&ctrl->oncs); |
| dev->abort_limit = ctrl->acl + 1; |
| dev->vwc = ctrl->vwc; |
| memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); |
| memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); |
| memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); |
| if (ctrl->mdts) |
| dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9); |
| if ((pdev->vendor == PCI_VENDOR_ID_INTEL) && |
| (pdev->device == 0x0953) && ctrl->vs[3]) { |
| unsigned int max_hw_sectors; |
| |
| dev->stripe_size = 1 << (ctrl->vs[3] + shift); |
| max_hw_sectors = dev->stripe_size >> (shift - 9); |
| if (dev->max_hw_sectors) { |
| dev->max_hw_sectors = min(max_hw_sectors, |
| dev->max_hw_sectors); |
| } else |
| dev->max_hw_sectors = max_hw_sectors; |
| } |
| kfree(ctrl); |
| |
| if (!dev->tagset.tags) { |
| dev->tagset.ops = &nvme_mq_ops; |
| dev->tagset.nr_hw_queues = dev->online_queues - 1; |
| dev->tagset.timeout = NVME_IO_TIMEOUT; |
| dev->tagset.numa_node = dev_to_node(dev->dev); |
| dev->tagset.queue_depth = |
| min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; |
| dev->tagset.cmd_size = nvme_cmd_size(dev); |
| dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; |
| dev->tagset.driver_data = dev; |
| |
| if (blk_mq_alloc_tag_set(&dev->tagset)) |
| return 0; |
| } |
| schedule_work(&dev->scan_work); |
| return 0; |
| } |
| |
| static int nvme_dev_map(struct nvme_dev *dev) |
| { |
| u64 cap; |
| int bars, result = -ENOMEM; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_enable_device_mem(pdev)) |
| return result; |
| |
| dev->entry[0].vector = pdev->irq; |
| pci_set_master(pdev); |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| if (!bars) |
| goto disable_pci; |
| |
| if (pci_request_selected_regions(pdev, bars, "nvme")) |
| goto disable_pci; |
| |
| if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) |
| goto disable; |
| |
| dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); |
| if (!dev->bar) |
| goto disable; |
| |
| if (readl(&dev->bar->csts) == -1) { |
| result = -ENODEV; |
| goto unmap; |
| } |
| |
| /* |
| * Some devices don't advertse INTx interrupts, pre-enable a single |
| * MSIX vec for setup. We'll adjust this later. |
| */ |
| if (!pdev->irq) { |
| result = pci_enable_msix(pdev, dev->entry, 1); |
| if (result < 0) |
| goto unmap; |
| } |
| |
| cap = readq(&dev->bar->cap); |
| dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); |
| dev->db_stride = 1 << NVME_CAP_STRIDE(cap); |
| dev->dbs = ((void __iomem *)dev->bar) + 4096; |
| if (readl(&dev->bar->vs) >= NVME_VS(1, 2)) |
| dev->cmb = nvme_map_cmb(dev); |
| |
| return 0; |
| |
| unmap: |
| iounmap(dev->bar); |
| dev->bar = NULL; |
| disable: |
| pci_release_regions(pdev); |
| disable_pci: |
| pci_disable_device(pdev); |
| return result; |
| } |
| |
| static void nvme_dev_unmap(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pdev->msi_enabled) |
| pci_disable_msi(pdev); |
| else if (pdev->msix_enabled) |
| pci_disable_msix(pdev); |
| |
| if (dev->bar) { |
| iounmap(dev->bar); |
| dev->bar = NULL; |
| pci_release_regions(pdev); |
| } |
| |
| if (pci_is_enabled(pdev)) |
| pci_disable_device(pdev); |
| } |
| |
| struct nvme_delq_ctx { |
| struct task_struct *waiter; |
| struct kthread_worker *worker; |
| atomic_t refcount; |
| }; |
| |
| static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev) |
| { |
| dq->waiter = current; |
| mb(); |
| |
| for (;;) { |
| set_current_state(TASK_KILLABLE); |
| if (!atomic_read(&dq->refcount)) |
| break; |
| if (!schedule_timeout(ADMIN_TIMEOUT) || |
| fatal_signal_pending(current)) { |
| /* |
| * Disable the controller first since we can't trust it |
| * at this point, but leave the admin queue enabled |
| * until all queue deletion requests are flushed. |
| * FIXME: This may take a while if there are more h/w |
| * queues than admin tags. |
| */ |
| set_current_state(TASK_RUNNING); |
| nvme_disable_ctrl(dev, readq(&dev->bar->cap)); |
| nvme_clear_queue(dev->queues[0]); |
| flush_kthread_worker(dq->worker); |
| nvme_disable_queue(dev, 0); |
| return; |
| } |
| } |
| set_current_state(TASK_RUNNING); |
| } |
| |
| static void nvme_put_dq(struct nvme_delq_ctx *dq) |
| { |
| atomic_dec(&dq->refcount); |
| if (dq->waiter) |
| wake_up_process(dq->waiter); |
| } |
| |
| static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq) |
| { |
| atomic_inc(&dq->refcount); |
| return dq; |
| } |
| |
| static void nvme_del_queue_end(struct nvme_queue *nvmeq) |
| { |
| struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx; |
| nvme_put_dq(dq); |
| } |
| |
| static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode, |
| kthread_work_func_t fn) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(nvmeq->qid); |
| |
| init_kthread_work(&nvmeq->cmdinfo.work, fn); |
| return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo, |
| ADMIN_TIMEOUT); |
| } |
| |
| static void nvme_del_cq_work_handler(struct kthread_work *work) |
| { |
| struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, |
| cmdinfo.work); |
| nvme_del_queue_end(nvmeq); |
| } |
| |
| static int nvme_delete_cq(struct nvme_queue *nvmeq) |
| { |
| return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq, |
| nvme_del_cq_work_handler); |
| } |
| |
| static void nvme_del_sq_work_handler(struct kthread_work *work) |
| { |
| struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, |
| cmdinfo.work); |
| int status = nvmeq->cmdinfo.status; |
| |
| if (!status) |
| status = nvme_delete_cq(nvmeq); |
| if (status) |
| nvme_del_queue_end(nvmeq); |
| } |
| |
| static int nvme_delete_sq(struct nvme_queue *nvmeq) |
| { |
| return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq, |
| nvme_del_sq_work_handler); |
| } |
| |
| static void nvme_del_queue_start(struct kthread_work *work) |
| { |
| struct nvme_queue *nvmeq = container_of(work, struct nvme_queue, |
| cmdinfo.work); |
| if (nvme_delete_sq(nvmeq)) |
| nvme_del_queue_end(nvmeq); |
| } |
| |
| static void nvme_disable_io_queues(struct nvme_dev *dev) |
| { |
| int i; |
| DEFINE_KTHREAD_WORKER_ONSTACK(worker); |
| struct nvme_delq_ctx dq; |
| struct task_struct *kworker_task = kthread_run(kthread_worker_fn, |
| &worker, "nvme%d", dev->instance); |
| |
| if (IS_ERR(kworker_task)) { |
| dev_err(dev->dev, |
| "Failed to create queue del task\n"); |
| for (i = dev->queue_count - 1; i > 0; i--) |
| nvme_disable_queue(dev, i); |
| return; |
| } |
| |
| dq.waiter = NULL; |
| atomic_set(&dq.refcount, 0); |
| dq.worker = &worker; |
| for (i = dev->queue_count - 1; i > 0; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| |
| if (nvme_suspend_queue(nvmeq)) |
| continue; |
| nvmeq->cmdinfo.ctx = nvme_get_dq(&dq); |
| nvmeq->cmdinfo.worker = dq.worker; |
| init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start); |
| queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work); |
| } |
| nvme_wait_dq(&dq, dev); |
| kthread_stop(kworker_task); |
| } |
| |
| /* |
| * Remove the node from the device list and check |
| * for whether or not we need to stop the nvme_thread. |
| */ |
| static void nvme_dev_list_remove(struct nvme_dev *dev) |
| { |
| struct task_struct *tmp = NULL; |
| |
| spin_lock(&dev_list_lock); |
| list_del_init(&dev->node); |
| if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) { |
| tmp = nvme_thread; |
| nvme_thread = NULL; |
| } |
| spin_unlock(&dev_list_lock); |
| |
| if (tmp) |
| kthread_stop(tmp); |
| } |
| |
| static void nvme_freeze_queues(struct nvme_dev *dev) |
| { |
| struct nvme_ns *ns; |
| |
| list_for_each_entry(ns, &dev->namespaces, list) { |
| blk_mq_freeze_queue_start(ns->queue); |
| |
| spin_lock_irq(ns->queue->queue_lock); |
| queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue); |
| spin_unlock_irq(ns->queue->queue_lock); |
| |
| blk_mq_cancel_requeue_work(ns->queue); |
| blk_mq_stop_hw_queues(ns->queue); |
| } |
| } |
| |
| static void nvme_unfreeze_queues(struct nvme_dev *dev) |
| { |
| struct nvme_ns *ns; |
| |
| list_for_each_entry(ns, &dev->namespaces, list) { |
| queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue); |
| blk_mq_unfreeze_queue(ns->queue); |
| blk_mq_start_stopped_hw_queues(ns->queue, true); |
| blk_mq_kick_requeue_list(ns->queue); |
| } |
| } |
| |
| static void nvme_dev_shutdown(struct nvme_dev *dev) |
| { |
| int i; |
| u32 csts = -1; |
| |
| nvme_dev_list_remove(dev); |
| |
| if (dev->bar) { |
| nvme_freeze_queues(dev); |
| csts = readl(&dev->bar->csts); |
| } |
| if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { |
| for (i = dev->queue_count - 1; i >= 0; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| nvme_suspend_queue(nvmeq); |
| } |
| } else { |
| nvme_disable_io_queues(dev); |
| nvme_shutdown_ctrl(dev); |
| nvme_disable_queue(dev, 0); |
| } |
| nvme_dev_unmap(dev); |
| |
| for (i = dev->queue_count - 1; i >= 0; i--) |
| nvme_clear_queue(dev->queues[i]); |
| } |
| |
| static void nvme_dev_remove(struct nvme_dev *dev) |
| { |
| struct nvme_ns *ns, *next; |
| |
| list_for_each_entry_safe(ns, next, &dev->namespaces, list) |
| nvme_ns_remove(ns); |
| } |
| |
| static int nvme_setup_prp_pools(struct nvme_dev *dev) |
| { |
| dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, |
| PAGE_SIZE, PAGE_SIZE, 0); |
| if (!dev->prp_page_pool) |
| return -ENOMEM; |
| |
| /* Optimisation for I/Os between 4k and 128k */ |
| dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, |
| 256, 256, 0); |
| if (!dev->prp_small_pool) { |
| dma_pool_destroy(dev->prp_page_pool); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void nvme_release_prp_pools(struct nvme_dev *dev) |
| { |
| dma_pool_destroy(dev->prp_page_pool); |
| dma_pool_destroy(dev->prp_small_pool); |
| } |
| |
| static DEFINE_IDA(nvme_instance_ida); |
| |
| static int nvme_set_instance(struct nvme_dev *dev) |
| { |
| int instance, error; |
| |
| do { |
| if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) |
| return -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| error = ida_get_new(&nvme_instance_ida, &instance); |
| spin_unlock(&dev_list_lock); |
| } while (error == -EAGAIN); |
| |
| if (error) |
| return -ENODEV; |
| |
| dev->instance = instance; |
| return 0; |
| } |
| |
| static void nvme_release_instance(struct nvme_dev *dev) |
| { |
| spin_lock(&dev_list_lock); |
| ida_remove(&nvme_instance_ida, dev->instance); |
| spin_unlock(&dev_list_lock); |
| } |
| |
| static void nvme_free_dev(struct kref *kref) |
| { |
| struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref); |
| |
| put_device(dev->dev); |
| put_device(dev->device); |
| nvme_release_instance(dev); |
| if (dev->tagset.tags) |
| blk_mq_free_tag_set(&dev->tagset); |
| if (dev->admin_q) |
| blk_put_queue(dev->admin_q); |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| } |
| |
| static int nvme_dev_open(struct inode *inode, struct file *f) |
| { |
| struct nvme_dev *dev; |
| int instance = iminor(inode); |
| int ret = -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| list_for_each_entry(dev, &dev_list, node) { |
| if (dev->instance == instance) { |
| if (!dev->admin_q) { |
| ret = -EWOULDBLOCK; |
| break; |
| } |
| if (!kref_get_unless_zero(&dev->kref)) |
| break; |
| f->private_data = dev; |
| ret = 0; |
| break; |
| } |
| } |
| spin_unlock(&dev_list_lock); |
| |
| return ret; |
| } |
| |
| static int nvme_dev_release(struct inode *inode, struct file *f) |
| { |
| struct nvme_dev *dev = f->private_data; |
| kref_put(&dev->kref, nvme_free_dev); |
| return 0; |
| } |
| |
| static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| { |
| struct nvme_dev *dev = f->private_data; |
| struct nvme_ns *ns; |
| |
| switch (cmd) { |
| case NVME_IOCTL_ADMIN_CMD: |
| return nvme_user_cmd(dev, NULL, (void __user *)arg); |
| case NVME_IOCTL_IO_CMD: |
| if (list_empty(&dev->namespaces)) |
| return -ENOTTY; |
| ns = list_first_entry(&dev->namespaces, struct nvme_ns, list); |
| return nvme_user_cmd(dev, ns, (void __user *)arg); |
| case NVME_IOCTL_RESET: |
| dev_warn(dev->dev, "resetting controller\n"); |
| return nvme_reset(dev); |
| case NVME_IOCTL_SUBSYS_RESET: |
| return nvme_subsys_reset(dev); |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static const struct file_operations nvme_dev_fops = { |
| .owner = THIS_MODULE, |
| .open = nvme_dev_open, |
| .release = nvme_dev_release, |
| .unlocked_ioctl = nvme_dev_ioctl, |
| .compat_ioctl = nvme_dev_ioctl, |
| }; |
| |
| static void nvme_probe_work(struct work_struct *work) |
| { |
| struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work); |
| bool start_thread = false; |
| int result; |
| |
| result = nvme_dev_map(dev); |
| if (result) |
| goto out; |
| |
| result = nvme_configure_admin_queue(dev); |
| if (result) |
| goto unmap; |
| |
| spin_lock(&dev_list_lock); |
| if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) { |
| start_thread = true; |
| nvme_thread = NULL; |
| } |
| list_add(&dev->node, &dev_list); |
| spin_unlock(&dev_list_lock); |
| |
| if (start_thread) { |
| nvme_thread = kthread_run(nvme_kthread, NULL, "nvme"); |
| wake_up_all(&nvme_kthread_wait); |
| } else |
| wait_event_killable(nvme_kthread_wait, nvme_thread); |
| |
| if (IS_ERR_OR_NULL(nvme_thread)) { |
| result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR; |
| goto disable; |
| } |
| |
| nvme_init_queue(dev->queues[0], 0); |
| result = nvme_alloc_admin_tags(dev); |
| if (result) |
| goto disable; |
| |
| result = nvme_setup_io_queues(dev); |
| if (result) |
| goto free_tags; |
| |
| dev->event_limit = 1; |
| |
| /* |
| * Keep the controller around but remove all namespaces if we don't have |
| * any working I/O queue. |
| */ |
| if (dev->online_queues < 2) { |
| dev_warn(dev->dev, "IO queues not created\n"); |
| nvme_dev_remove(dev); |
| } else { |
| nvme_unfreeze_queues(dev); |
| nvme_dev_add(dev); |
| } |
| |
| return; |
| |
| free_tags: |
| nvme_dev_remove_admin(dev); |
| blk_put_queue(dev->admin_q); |
| dev->admin_q = NULL; |
| dev->queues[0]->tags = NULL; |
| disable: |
| nvme_disable_queue(dev, 0); |
| nvme_dev_list_remove(dev); |
| unmap: |
| nvme_dev_unmap(dev); |
| out: |
| if (!work_busy(&dev->reset_work)) |
| nvme_dead_ctrl(dev); |
| } |
| |
| static int nvme_remove_dead_ctrl(void *arg) |
| { |
| struct nvme_dev *dev = (struct nvme_dev *)arg; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_get_drvdata(pdev)) |
| pci_stop_and_remove_bus_device_locked(pdev); |
| kref_put(&dev->kref, nvme_free_dev); |
| return 0; |
| } |
| |
| static void nvme_dead_ctrl(struct nvme_dev *dev) |
| { |
| dev_warn(dev->dev, "Device failed to resume\n"); |
| kref_get(&dev->kref); |
| if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d", |
| dev->instance))) { |
| dev_err(dev->dev, |
| "Failed to start controller remove task\n"); |
| kref_put(&dev->kref, nvme_free_dev); |
| } |
| } |
| |
| static void nvme_reset_work(struct work_struct *ws) |
| { |
| struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work); |
| bool in_probe = work_busy(&dev->probe_work); |
| |
| nvme_dev_shutdown(dev); |
| |
| /* Synchronize with device probe so that work will see failure status |
| * and exit gracefully without trying to schedule another reset */ |
| flush_work(&dev->probe_work); |
| |
| /* Fail this device if reset occured during probe to avoid |
| * infinite initialization loops. */ |
| if (in_probe) { |
| nvme_dead_ctrl(dev); |
| return; |
| } |
| /* Schedule device resume asynchronously so the reset work is available |
| * to cleanup errors that may occur during reinitialization */ |
| schedule_work(&dev->probe_work); |
| } |
| |
| static int __nvme_reset(struct nvme_dev *dev) |
| { |
| if (work_pending(&dev->reset_work)) |
| return -EBUSY; |
| list_del_init(&dev->node); |
| queue_work(nvme_workq, &dev->reset_work); |
| return 0; |
| } |
| |
| static int nvme_reset(struct nvme_dev *dev) |
| { |
| int ret; |
| |
| if (!dev->admin_q || blk_queue_dying(dev->admin_q)) |
| return -ENODEV; |
| |
| spin_lock(&dev_list_lock); |
| ret = __nvme_reset(dev); |
| spin_unlock(&dev_list_lock); |
| |
| if (!ret) { |
| flush_work(&dev->reset_work); |
| flush_work(&dev->probe_work); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| static ssize_t nvme_sysfs_reset(struct device *dev, |
| struct device_attribute *attr, const char *buf, |
| size_t count) |
| { |
| struct nvme_dev *ndev = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = nvme_reset(ndev); |
| if (ret < 0) |
| return ret; |
| |
| return count; |
| } |
| static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); |
| |
| static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int node, result = -ENOMEM; |
| struct nvme_dev *dev; |
| |
| node = dev_to_node(&pdev->dev); |
| if (node == NUMA_NO_NODE) |
| set_dev_node(&pdev->dev, 0); |
| |
| dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); |
| if (!dev) |
| return -ENOMEM; |
| dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), |
| GFP_KERNEL, node); |
| if (!dev->entry) |
| goto free; |
| dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), |
| GFP_KERNEL, node); |
| if (!dev->queues) |
| goto free; |
| |
| INIT_LIST_HEAD(&dev->namespaces); |
| INIT_WORK(&dev->reset_work, nvme_reset_work); |
| dev->dev = get_device(&pdev->dev); |
| pci_set_drvdata(pdev, dev); |
| result = nvme_set_instance(dev); |
| if (result) |
| goto put_pci; |
| |
| result = nvme_setup_prp_pools(dev); |
| if (result) |
| goto release; |
| |
| kref_init(&dev->kref); |
| dev->device = device_create(nvme_class, &pdev->dev, |
| MKDEV(nvme_char_major, dev->instance), |
| dev, "nvme%d", dev->instance); |
| if (IS_ERR(dev->device)) { |
| result = PTR_ERR(dev->device); |
| goto release_pools; |
| } |
| get_device(dev->device); |
| dev_set_drvdata(dev->device, dev); |
| |
| result = device_create_file(dev->device, &dev_attr_reset_controller); |
| if (result) |
| goto put_dev; |
| |
| INIT_LIST_HEAD(&dev->node); |
| INIT_WORK(&dev->scan_work, nvme_dev_scan); |
| INIT_WORK(&dev->probe_work, nvme_probe_work); |
| schedule_work(&dev->probe_work); |
| return 0; |
| |
| put_dev: |
| device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance)); |
| put_device(dev->device); |
| release_pools: |
| nvme_release_prp_pools(dev); |
| release: |
| nvme_release_instance(dev); |
| put_pci: |
| put_device(dev->dev); |
| free: |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| return result; |
| } |
| |
| static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| if (prepare) |
| nvme_dev_shutdown(dev); |
| else |
| schedule_work(&dev->probe_work); |
| } |
| |
| static void nvme_shutdown(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| nvme_dev_shutdown(dev); |
| } |
| |
| static void nvme_remove(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| spin_lock(&dev_list_lock); |
| list_del_init(&dev->node); |
| spin_unlock(&dev_list_lock); |
| |
| pci_set_drvdata(pdev, NULL); |
| flush_work(&dev->probe_work); |
| flush_work(&dev->reset_work); |
| flush_work(&dev->scan_work); |
| device_remove_file(dev->device, &dev_attr_reset_controller); |
| nvme_dev_remove(dev); |
| nvme_dev_shutdown(dev); |
| nvme_dev_remove_admin(dev); |
| device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance)); |
| nvme_free_queues(dev, 0); |
| nvme_release_cmb(dev); |
| nvme_release_prp_pools(dev); |
| kref_put(&dev->kref, nvme_free_dev); |
| } |
| |
| /* These functions are yet to be implemented */ |
| #define nvme_error_detected NULL |
| #define nvme_dump_registers NULL |
| #define nvme_link_reset NULL |
| #define nvme_slot_reset NULL |
| #define nvme_error_resume NULL |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int nvme_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| |
| nvme_dev_shutdown(ndev); |
| return 0; |
| } |
| |
| static int nvme_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| |
| schedule_work(&ndev->probe_work); |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); |
| |
| static const struct pci_error_handlers nvme_err_handler = { |
| .error_detected = nvme_error_detected, |
| .mmio_enabled = nvme_dump_registers, |
| .link_reset = nvme_link_reset, |
| .slot_reset = nvme_slot_reset, |
| .resume = nvme_error_resume, |
| .reset_notify = nvme_reset_notify, |
| }; |
| |
| /* Move to pci_ids.h later */ |
| #define PCI_CLASS_STORAGE_EXPRESS 0x010802 |
| |
| static const struct pci_device_id nvme_id_table[] = { |
| { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, nvme_id_table); |
| |
| static struct pci_driver nvme_driver = { |
| .name = "nvme", |
| .id_table = nvme_id_table, |
| .probe = nvme_probe, |
| .remove = nvme_remove, |
| .shutdown = nvme_shutdown, |
| .driver = { |
| .pm = &nvme_dev_pm_ops, |
| }, |
| .err_handler = &nvme_err_handler, |
| }; |
| |
| static int __init nvme_init(void) |
| { |
| int result; |
| |
| init_waitqueue_head(&nvme_kthread_wait); |
| |
| nvme_workq = create_singlethread_workqueue("nvme"); |
| if (!nvme_workq) |
| return -ENOMEM; |
| |
| result = register_blkdev(nvme_major, "nvme"); |
| if (result < 0) |
| goto kill_workq; |
| else if (result > 0) |
| nvme_major = result; |
| |
| result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", |
| &nvme_dev_fops); |
| if (result < 0) |
| goto unregister_blkdev; |
| else if (result > 0) |
| nvme_char_major = result; |
| |
| nvme_class = class_create(THIS_MODULE, "nvme"); |
| if (IS_ERR(nvme_class)) { |
| result = PTR_ERR(nvme_class); |
| goto unregister_chrdev; |
| } |
| |
| result = pci_register_driver(&nvme_driver); |
| if (result) |
| goto destroy_class; |
| return 0; |
| |
| destroy_class: |
| class_destroy(nvme_class); |
| unregister_chrdev: |
| __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); |
| unregister_blkdev: |
| unregister_blkdev(nvme_major, "nvme"); |
| kill_workq: |
| destroy_workqueue(nvme_workq); |
| return result; |
| } |
| |
| static void __exit nvme_exit(void) |
| { |
| pci_unregister_driver(&nvme_driver); |
| unregister_blkdev(nvme_major, "nvme"); |
| destroy_workqueue(nvme_workq); |
| class_destroy(nvme_class); |
| __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); |
| BUG_ON(nvme_thread && !IS_ERR(nvme_thread)); |
| _nvme_check_size(); |
| } |
| |
| MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.0"); |
| module_init(nvme_init); |
| module_exit(nvme_exit); |