| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_sb.h" |
| #include "xfs_mount.h" |
| #include "xfs_inode.h" |
| #include "xfs_dir2.h" |
| #include "xfs_ialloc.h" |
| #include "xfs_alloc.h" |
| #include "xfs_rtalloc.h" |
| #include "xfs_bmap.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_log.h" |
| #include "xfs_error.h" |
| #include "xfs_quota.h" |
| #include "xfs_fsops.h" |
| #include "xfs_icache.h" |
| #include "xfs_sysfs.h" |
| #include "xfs_rmap_btree.h" |
| #include "xfs_refcount_btree.h" |
| #include "xfs_reflink.h" |
| #include "xfs_extent_busy.h" |
| #include "xfs_health.h" |
| |
| |
| static DEFINE_MUTEX(xfs_uuid_table_mutex); |
| static int xfs_uuid_table_size; |
| static uuid_t *xfs_uuid_table; |
| |
| void |
| xfs_uuid_table_free(void) |
| { |
| if (xfs_uuid_table_size == 0) |
| return; |
| kmem_free(xfs_uuid_table); |
| xfs_uuid_table = NULL; |
| xfs_uuid_table_size = 0; |
| } |
| |
| /* |
| * See if the UUID is unique among mounted XFS filesystems. |
| * Mount fails if UUID is nil or a FS with the same UUID is already mounted. |
| */ |
| STATIC int |
| xfs_uuid_mount( |
| struct xfs_mount *mp) |
| { |
| uuid_t *uuid = &mp->m_sb.sb_uuid; |
| int hole, i; |
| |
| /* Publish UUID in struct super_block */ |
| uuid_copy(&mp->m_super->s_uuid, uuid); |
| |
| if (mp->m_flags & XFS_MOUNT_NOUUID) |
| return 0; |
| |
| if (uuid_is_null(uuid)) { |
| xfs_warn(mp, "Filesystem has null UUID - can't mount"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&xfs_uuid_table_mutex); |
| for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { |
| if (uuid_is_null(&xfs_uuid_table[i])) { |
| hole = i; |
| continue; |
| } |
| if (uuid_equal(uuid, &xfs_uuid_table[i])) |
| goto out_duplicate; |
| } |
| |
| if (hole < 0) { |
| xfs_uuid_table = kmem_realloc(xfs_uuid_table, |
| (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), |
| 0); |
| hole = xfs_uuid_table_size++; |
| } |
| xfs_uuid_table[hole] = *uuid; |
| mutex_unlock(&xfs_uuid_table_mutex); |
| |
| return 0; |
| |
| out_duplicate: |
| mutex_unlock(&xfs_uuid_table_mutex); |
| xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); |
| return -EINVAL; |
| } |
| |
| STATIC void |
| xfs_uuid_unmount( |
| struct xfs_mount *mp) |
| { |
| uuid_t *uuid = &mp->m_sb.sb_uuid; |
| int i; |
| |
| if (mp->m_flags & XFS_MOUNT_NOUUID) |
| return; |
| |
| mutex_lock(&xfs_uuid_table_mutex); |
| for (i = 0; i < xfs_uuid_table_size; i++) { |
| if (uuid_is_null(&xfs_uuid_table[i])) |
| continue; |
| if (!uuid_equal(uuid, &xfs_uuid_table[i])) |
| continue; |
| memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); |
| break; |
| } |
| ASSERT(i < xfs_uuid_table_size); |
| mutex_unlock(&xfs_uuid_table_mutex); |
| } |
| |
| |
| STATIC void |
| __xfs_free_perag( |
| struct rcu_head *head) |
| { |
| struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); |
| |
| ASSERT(atomic_read(&pag->pag_ref) == 0); |
| kmem_free(pag); |
| } |
| |
| /* |
| * Free up the per-ag resources associated with the mount structure. |
| */ |
| STATIC void |
| xfs_free_perag( |
| xfs_mount_t *mp) |
| { |
| xfs_agnumber_t agno; |
| struct xfs_perag *pag; |
| |
| for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { |
| spin_lock(&mp->m_perag_lock); |
| pag = radix_tree_delete(&mp->m_perag_tree, agno); |
| spin_unlock(&mp->m_perag_lock); |
| ASSERT(pag); |
| ASSERT(atomic_read(&pag->pag_ref) == 0); |
| xfs_iunlink_destroy(pag); |
| xfs_buf_hash_destroy(pag); |
| mutex_destroy(&pag->pag_ici_reclaim_lock); |
| call_rcu(&pag->rcu_head, __xfs_free_perag); |
| } |
| } |
| |
| /* |
| * Check size of device based on the (data/realtime) block count. |
| * Note: this check is used by the growfs code as well as mount. |
| */ |
| int |
| xfs_sb_validate_fsb_count( |
| xfs_sb_t *sbp, |
| uint64_t nblocks) |
| { |
| ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); |
| ASSERT(sbp->sb_blocklog >= BBSHIFT); |
| |
| /* Limited by ULONG_MAX of page cache index */ |
| if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) |
| return -EFBIG; |
| return 0; |
| } |
| |
| int |
| xfs_initialize_perag( |
| xfs_mount_t *mp, |
| xfs_agnumber_t agcount, |
| xfs_agnumber_t *maxagi) |
| { |
| xfs_agnumber_t index; |
| xfs_agnumber_t first_initialised = NULLAGNUMBER; |
| xfs_perag_t *pag; |
| int error = -ENOMEM; |
| |
| /* |
| * Walk the current per-ag tree so we don't try to initialise AGs |
| * that already exist (growfs case). Allocate and insert all the |
| * AGs we don't find ready for initialisation. |
| */ |
| for (index = 0; index < agcount; index++) { |
| pag = xfs_perag_get(mp, index); |
| if (pag) { |
| xfs_perag_put(pag); |
| continue; |
| } |
| |
| pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); |
| if (!pag) |
| goto out_unwind_new_pags; |
| pag->pag_agno = index; |
| pag->pag_mount = mp; |
| spin_lock_init(&pag->pag_ici_lock); |
| mutex_init(&pag->pag_ici_reclaim_lock); |
| INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); |
| if (xfs_buf_hash_init(pag)) |
| goto out_free_pag; |
| init_waitqueue_head(&pag->pagb_wait); |
| spin_lock_init(&pag->pagb_lock); |
| pag->pagb_count = 0; |
| pag->pagb_tree = RB_ROOT; |
| |
| if (radix_tree_preload(GFP_NOFS)) |
| goto out_hash_destroy; |
| |
| spin_lock(&mp->m_perag_lock); |
| if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { |
| WARN_ON_ONCE(1); |
| spin_unlock(&mp->m_perag_lock); |
| radix_tree_preload_end(); |
| error = -EEXIST; |
| goto out_hash_destroy; |
| } |
| spin_unlock(&mp->m_perag_lock); |
| radix_tree_preload_end(); |
| /* first new pag is fully initialized */ |
| if (first_initialised == NULLAGNUMBER) |
| first_initialised = index; |
| error = xfs_iunlink_init(pag); |
| if (error) |
| goto out_hash_destroy; |
| spin_lock_init(&pag->pag_state_lock); |
| } |
| |
| index = xfs_set_inode_alloc(mp, agcount); |
| |
| if (maxagi) |
| *maxagi = index; |
| |
| mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); |
| return 0; |
| |
| out_hash_destroy: |
| xfs_buf_hash_destroy(pag); |
| out_free_pag: |
| mutex_destroy(&pag->pag_ici_reclaim_lock); |
| kmem_free(pag); |
| out_unwind_new_pags: |
| /* unwind any prior newly initialized pags */ |
| for (index = first_initialised; index < agcount; index++) { |
| pag = radix_tree_delete(&mp->m_perag_tree, index); |
| if (!pag) |
| break; |
| xfs_buf_hash_destroy(pag); |
| xfs_iunlink_destroy(pag); |
| mutex_destroy(&pag->pag_ici_reclaim_lock); |
| kmem_free(pag); |
| } |
| return error; |
| } |
| |
| /* |
| * xfs_readsb |
| * |
| * Does the initial read of the superblock. |
| */ |
| int |
| xfs_readsb( |
| struct xfs_mount *mp, |
| int flags) |
| { |
| unsigned int sector_size; |
| struct xfs_buf *bp; |
| struct xfs_sb *sbp = &mp->m_sb; |
| int error; |
| int loud = !(flags & XFS_MFSI_QUIET); |
| const struct xfs_buf_ops *buf_ops; |
| |
| ASSERT(mp->m_sb_bp == NULL); |
| ASSERT(mp->m_ddev_targp != NULL); |
| |
| /* |
| * For the initial read, we must guess at the sector |
| * size based on the block device. It's enough to |
| * get the sb_sectsize out of the superblock and |
| * then reread with the proper length. |
| * We don't verify it yet, because it may not be complete. |
| */ |
| sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); |
| buf_ops = NULL; |
| |
| /* |
| * Allocate a (locked) buffer to hold the superblock. This will be kept |
| * around at all times to optimize access to the superblock. Therefore, |
| * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count |
| * elevated. |
| */ |
| reread: |
| error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, |
| BTOBB(sector_size), XBF_NO_IOACCT, &bp, |
| buf_ops); |
| if (error) { |
| if (loud) |
| xfs_warn(mp, "SB validate failed with error %d.", error); |
| /* bad CRC means corrupted metadata */ |
| if (error == -EFSBADCRC) |
| error = -EFSCORRUPTED; |
| return error; |
| } |
| |
| /* |
| * Initialize the mount structure from the superblock. |
| */ |
| xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); |
| |
| /* |
| * If we haven't validated the superblock, do so now before we try |
| * to check the sector size and reread the superblock appropriately. |
| */ |
| if (sbp->sb_magicnum != XFS_SB_MAGIC) { |
| if (loud) |
| xfs_warn(mp, "Invalid superblock magic number"); |
| error = -EINVAL; |
| goto release_buf; |
| } |
| |
| /* |
| * We must be able to do sector-sized and sector-aligned IO. |
| */ |
| if (sector_size > sbp->sb_sectsize) { |
| if (loud) |
| xfs_warn(mp, "device supports %u byte sectors (not %u)", |
| sector_size, sbp->sb_sectsize); |
| error = -ENOSYS; |
| goto release_buf; |
| } |
| |
| if (buf_ops == NULL) { |
| /* |
| * Re-read the superblock so the buffer is correctly sized, |
| * and properly verified. |
| */ |
| xfs_buf_relse(bp); |
| sector_size = sbp->sb_sectsize; |
| buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; |
| goto reread; |
| } |
| |
| xfs_reinit_percpu_counters(mp); |
| |
| /* no need to be quiet anymore, so reset the buf ops */ |
| bp->b_ops = &xfs_sb_buf_ops; |
| |
| mp->m_sb_bp = bp; |
| xfs_buf_unlock(bp); |
| return 0; |
| |
| release_buf: |
| xfs_buf_relse(bp); |
| return error; |
| } |
| |
| /* |
| * Update alignment values based on mount options and sb values |
| */ |
| STATIC int |
| xfs_update_alignment(xfs_mount_t *mp) |
| { |
| xfs_sb_t *sbp = &(mp->m_sb); |
| |
| if (mp->m_dalign) { |
| /* |
| * If stripe unit and stripe width are not multiples |
| * of the fs blocksize turn off alignment. |
| */ |
| if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || |
| (BBTOB(mp->m_swidth) & mp->m_blockmask)) { |
| xfs_warn(mp, |
| "alignment check failed: sunit/swidth vs. blocksize(%d)", |
| sbp->sb_blocksize); |
| return -EINVAL; |
| } else { |
| /* |
| * Convert the stripe unit and width to FSBs. |
| */ |
| mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); |
| if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { |
| xfs_warn(mp, |
| "alignment check failed: sunit/swidth vs. agsize(%d)", |
| sbp->sb_agblocks); |
| return -EINVAL; |
| } else if (mp->m_dalign) { |
| mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); |
| } else { |
| xfs_warn(mp, |
| "alignment check failed: sunit(%d) less than bsize(%d)", |
| mp->m_dalign, sbp->sb_blocksize); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Update superblock with new values |
| * and log changes |
| */ |
| if (xfs_sb_version_hasdalign(sbp)) { |
| if (sbp->sb_unit != mp->m_dalign) { |
| sbp->sb_unit = mp->m_dalign; |
| mp->m_update_sb = true; |
| } |
| if (sbp->sb_width != mp->m_swidth) { |
| sbp->sb_width = mp->m_swidth; |
| mp->m_update_sb = true; |
| } |
| } else { |
| xfs_warn(mp, |
| "cannot change alignment: superblock does not support data alignment"); |
| return -EINVAL; |
| } |
| } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && |
| xfs_sb_version_hasdalign(&mp->m_sb)) { |
| mp->m_dalign = sbp->sb_unit; |
| mp->m_swidth = sbp->sb_width; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * precalculate the low space thresholds for dynamic speculative preallocation. |
| */ |
| void |
| xfs_set_low_space_thresholds( |
| struct xfs_mount *mp) |
| { |
| int i; |
| |
| for (i = 0; i < XFS_LOWSP_MAX; i++) { |
| uint64_t space = mp->m_sb.sb_dblocks; |
| |
| do_div(space, 100); |
| mp->m_low_space[i] = space * (i + 1); |
| } |
| } |
| |
| /* |
| * Check that the data (and log if separate) is an ok size. |
| */ |
| STATIC int |
| xfs_check_sizes( |
| struct xfs_mount *mp) |
| { |
| struct xfs_buf *bp; |
| xfs_daddr_t d; |
| int error; |
| |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { |
| xfs_warn(mp, "filesystem size mismatch detected"); |
| return -EFBIG; |
| } |
| error = xfs_buf_read_uncached(mp->m_ddev_targp, |
| d - XFS_FSS_TO_BB(mp, 1), |
| XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); |
| if (error) { |
| xfs_warn(mp, "last sector read failed"); |
| return error; |
| } |
| xfs_buf_relse(bp); |
| |
| if (mp->m_logdev_targp == mp->m_ddev_targp) |
| return 0; |
| |
| d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); |
| if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { |
| xfs_warn(mp, "log size mismatch detected"); |
| return -EFBIG; |
| } |
| error = xfs_buf_read_uncached(mp->m_logdev_targp, |
| d - XFS_FSB_TO_BB(mp, 1), |
| XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); |
| if (error) { |
| xfs_warn(mp, "log device read failed"); |
| return error; |
| } |
| xfs_buf_relse(bp); |
| return 0; |
| } |
| |
| /* |
| * Clear the quotaflags in memory and in the superblock. |
| */ |
| int |
| xfs_mount_reset_sbqflags( |
| struct xfs_mount *mp) |
| { |
| mp->m_qflags = 0; |
| |
| /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ |
| if (mp->m_sb.sb_qflags == 0) |
| return 0; |
| spin_lock(&mp->m_sb_lock); |
| mp->m_sb.sb_qflags = 0; |
| spin_unlock(&mp->m_sb_lock); |
| |
| if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) |
| return 0; |
| |
| return xfs_sync_sb(mp, false); |
| } |
| |
| uint64_t |
| xfs_default_resblks(xfs_mount_t *mp) |
| { |
| uint64_t resblks; |
| |
| /* |
| * We default to 5% or 8192 fsbs of space reserved, whichever is |
| * smaller. This is intended to cover concurrent allocation |
| * transactions when we initially hit enospc. These each require a 4 |
| * block reservation. Hence by default we cover roughly 2000 concurrent |
| * allocation reservations. |
| */ |
| resblks = mp->m_sb.sb_dblocks; |
| do_div(resblks, 20); |
| resblks = min_t(uint64_t, resblks, 8192); |
| return resblks; |
| } |
| |
| /* Ensure the summary counts are correct. */ |
| STATIC int |
| xfs_check_summary_counts( |
| struct xfs_mount *mp) |
| { |
| /* |
| * The AG0 superblock verifier rejects in-progress filesystems, |
| * so we should never see the flag set this far into mounting. |
| */ |
| if (mp->m_sb.sb_inprogress) { |
| xfs_err(mp, "sb_inprogress set after log recovery??"); |
| WARN_ON(1); |
| return -EFSCORRUPTED; |
| } |
| |
| /* |
| * Now the log is mounted, we know if it was an unclean shutdown or |
| * not. If it was, with the first phase of recovery has completed, we |
| * have consistent AG blocks on disk. We have not recovered EFIs yet, |
| * but they are recovered transactionally in the second recovery phase |
| * later. |
| * |
| * If the log was clean when we mounted, we can check the summary |
| * counters. If any of them are obviously incorrect, we can recompute |
| * them from the AGF headers in the next step. |
| */ |
| if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && |
| (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || |
| !xfs_verify_icount(mp, mp->m_sb.sb_icount) || |
| mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) |
| xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
| |
| /* |
| * We can safely re-initialise incore superblock counters from the |
| * per-ag data. These may not be correct if the filesystem was not |
| * cleanly unmounted, so we waited for recovery to finish before doing |
| * this. |
| * |
| * If the filesystem was cleanly unmounted or the previous check did |
| * not flag anything weird, then we can trust the values in the |
| * superblock to be correct and we don't need to do anything here. |
| * Otherwise, recalculate the summary counters. |
| */ |
| if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || |
| XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && |
| !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) |
| return 0; |
| |
| return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); |
| } |
| |
| /* |
| * This function does the following on an initial mount of a file system: |
| * - reads the superblock from disk and init the mount struct |
| * - if we're a 32-bit kernel, do a size check on the superblock |
| * so we don't mount terabyte filesystems |
| * - init mount struct realtime fields |
| * - allocate inode hash table for fs |
| * - init directory manager |
| * - perform recovery and init the log manager |
| */ |
| int |
| xfs_mountfs( |
| struct xfs_mount *mp) |
| { |
| struct xfs_sb *sbp = &(mp->m_sb); |
| struct xfs_inode *rip; |
| struct xfs_ino_geometry *igeo = M_IGEO(mp); |
| uint64_t resblks; |
| uint quotamount = 0; |
| uint quotaflags = 0; |
| int error = 0; |
| |
| xfs_sb_mount_common(mp, sbp); |
| |
| /* |
| * Check for a mismatched features2 values. Older kernels read & wrote |
| * into the wrong sb offset for sb_features2 on some platforms due to |
| * xfs_sb_t not being 64bit size aligned when sb_features2 was added, |
| * which made older superblock reading/writing routines swap it as a |
| * 64-bit value. |
| * |
| * For backwards compatibility, we make both slots equal. |
| * |
| * If we detect a mismatched field, we OR the set bits into the existing |
| * features2 field in case it has already been modified; we don't want |
| * to lose any features. We then update the bad location with the ORed |
| * value so that older kernels will see any features2 flags. The |
| * superblock writeback code ensures the new sb_features2 is copied to |
| * sb_bad_features2 before it is logged or written to disk. |
| */ |
| if (xfs_sb_has_mismatched_features2(sbp)) { |
| xfs_warn(mp, "correcting sb_features alignment problem"); |
| sbp->sb_features2 |= sbp->sb_bad_features2; |
| mp->m_update_sb = true; |
| |
| /* |
| * Re-check for ATTR2 in case it was found in bad_features2 |
| * slot. |
| */ |
| if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| !(mp->m_flags & XFS_MOUNT_NOATTR2)) |
| mp->m_flags |= XFS_MOUNT_ATTR2; |
| } |
| |
| if (xfs_sb_version_hasattr2(&mp->m_sb) && |
| (mp->m_flags & XFS_MOUNT_NOATTR2)) { |
| xfs_sb_version_removeattr2(&mp->m_sb); |
| mp->m_update_sb = true; |
| |
| /* update sb_versionnum for the clearing of the morebits */ |
| if (!sbp->sb_features2) |
| mp->m_update_sb = true; |
| } |
| |
| /* always use v2 inodes by default now */ |
| if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { |
| mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; |
| mp->m_update_sb = true; |
| } |
| |
| /* |
| * Check if sb_agblocks is aligned at stripe boundary |
| * If sb_agblocks is NOT aligned turn off m_dalign since |
| * allocator alignment is within an ag, therefore ag has |
| * to be aligned at stripe boundary. |
| */ |
| error = xfs_update_alignment(mp); |
| if (error) |
| goto out; |
| |
| xfs_alloc_compute_maxlevels(mp); |
| xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); |
| xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); |
| xfs_ialloc_setup_geometry(mp); |
| xfs_rmapbt_compute_maxlevels(mp); |
| xfs_refcountbt_compute_maxlevels(mp); |
| |
| /* enable fail_at_unmount as default */ |
| mp->m_fail_unmount = true; |
| |
| error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); |
| if (error) |
| goto out; |
| |
| error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, |
| &mp->m_kobj, "stats"); |
| if (error) |
| goto out_remove_sysfs; |
| |
| error = xfs_error_sysfs_init(mp); |
| if (error) |
| goto out_del_stats; |
| |
| error = xfs_errortag_init(mp); |
| if (error) |
| goto out_remove_error_sysfs; |
| |
| error = xfs_uuid_mount(mp); |
| if (error) |
| goto out_remove_errortag; |
| |
| /* |
| * Update the preferred write size based on the information from the |
| * on-disk superblock. |
| */ |
| mp->m_allocsize_log = |
| max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); |
| mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); |
| |
| /* set the low space thresholds for dynamic preallocation */ |
| xfs_set_low_space_thresholds(mp); |
| |
| /* |
| * If enabled, sparse inode chunk alignment is expected to match the |
| * cluster size. Full inode chunk alignment must match the chunk size, |
| * but that is checked on sb read verification... |
| */ |
| if (xfs_sb_version_hassparseinodes(&mp->m_sb) && |
| mp->m_sb.sb_spino_align != |
| XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { |
| xfs_warn(mp, |
| "Sparse inode block alignment (%u) must match cluster size (%llu).", |
| mp->m_sb.sb_spino_align, |
| XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); |
| error = -EINVAL; |
| goto out_remove_uuid; |
| } |
| |
| /* |
| * Check that the data (and log if separate) is an ok size. |
| */ |
| error = xfs_check_sizes(mp); |
| if (error) |
| goto out_remove_uuid; |
| |
| /* |
| * Initialize realtime fields in the mount structure |
| */ |
| error = xfs_rtmount_init(mp); |
| if (error) { |
| xfs_warn(mp, "RT mount failed"); |
| goto out_remove_uuid; |
| } |
| |
| /* |
| * Copies the low order bits of the timestamp and the randomly |
| * set "sequence" number out of a UUID. |
| */ |
| mp->m_fixedfsid[0] = |
| (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | |
| get_unaligned_be16(&sbp->sb_uuid.b[4]); |
| mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); |
| |
| error = xfs_da_mount(mp); |
| if (error) { |
| xfs_warn(mp, "Failed dir/attr init: %d", error); |
| goto out_remove_uuid; |
| } |
| |
| /* |
| * Initialize the precomputed transaction reservations values. |
| */ |
| xfs_trans_init(mp); |
| |
| /* |
| * Allocate and initialize the per-ag data. |
| */ |
| error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); |
| if (error) { |
| xfs_warn(mp, "Failed per-ag init: %d", error); |
| goto out_free_dir; |
| } |
| |
| if (!sbp->sb_logblocks) { |
| xfs_warn(mp, "no log defined"); |
| XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); |
| error = -EFSCORRUPTED; |
| goto out_free_perag; |
| } |
| |
| /* |
| * Log's mount-time initialization. The first part of recovery can place |
| * some items on the AIL, to be handled when recovery is finished or |
| * cancelled. |
| */ |
| error = xfs_log_mount(mp, mp->m_logdev_targp, |
| XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), |
| XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); |
| if (error) { |
| xfs_warn(mp, "log mount failed"); |
| goto out_fail_wait; |
| } |
| |
| /* Make sure the summary counts are ok. */ |
| error = xfs_check_summary_counts(mp); |
| if (error) |
| goto out_log_dealloc; |
| |
| /* |
| * Get and sanity-check the root inode. |
| * Save the pointer to it in the mount structure. |
| */ |
| error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, |
| XFS_ILOCK_EXCL, &rip); |
| if (error) { |
| xfs_warn(mp, |
| "Failed to read root inode 0x%llx, error %d", |
| sbp->sb_rootino, -error); |
| goto out_log_dealloc; |
| } |
| |
| ASSERT(rip != NULL); |
| |
| if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { |
| xfs_warn(mp, "corrupted root inode %llu: not a directory", |
| (unsigned long long)rip->i_ino); |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, |
| mp); |
| error = -EFSCORRUPTED; |
| goto out_rele_rip; |
| } |
| mp->m_rootip = rip; /* save it */ |
| |
| xfs_iunlock(rip, XFS_ILOCK_EXCL); |
| |
| /* |
| * Initialize realtime inode pointers in the mount structure |
| */ |
| error = xfs_rtmount_inodes(mp); |
| if (error) { |
| /* |
| * Free up the root inode. |
| */ |
| xfs_warn(mp, "failed to read RT inodes"); |
| goto out_rele_rip; |
| } |
| |
| /* |
| * If this is a read-only mount defer the superblock updates until |
| * the next remount into writeable mode. Otherwise we would never |
| * perform the update e.g. for the root filesystem. |
| */ |
| if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| error = xfs_sync_sb(mp, false); |
| if (error) { |
| xfs_warn(mp, "failed to write sb changes"); |
| goto out_rtunmount; |
| } |
| } |
| |
| /* |
| * Initialise the XFS quota management subsystem for this mount |
| */ |
| if (XFS_IS_QUOTA_RUNNING(mp)) { |
| error = xfs_qm_newmount(mp, "amount, "aflags); |
| if (error) |
| goto out_rtunmount; |
| } else { |
| ASSERT(!XFS_IS_QUOTA_ON(mp)); |
| |
| /* |
| * If a file system had quotas running earlier, but decided to |
| * mount without -o uquota/pquota/gquota options, revoke the |
| * quotachecked license. |
| */ |
| if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { |
| xfs_notice(mp, "resetting quota flags"); |
| error = xfs_mount_reset_sbqflags(mp); |
| if (error) |
| goto out_rtunmount; |
| } |
| } |
| |
| /* |
| * Finish recovering the file system. This part needed to be delayed |
| * until after the root and real-time bitmap inodes were consistently |
| * read in. |
| */ |
| error = xfs_log_mount_finish(mp); |
| if (error) { |
| xfs_warn(mp, "log mount finish failed"); |
| goto out_rtunmount; |
| } |
| |
| /* |
| * Now the log is fully replayed, we can transition to full read-only |
| * mode for read-only mounts. This will sync all the metadata and clean |
| * the log so that the recovery we just performed does not have to be |
| * replayed again on the next mount. |
| * |
| * We use the same quiesce mechanism as the rw->ro remount, as they are |
| * semantically identical operations. |
| */ |
| if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == |
| XFS_MOUNT_RDONLY) { |
| xfs_quiesce_attr(mp); |
| } |
| |
| /* |
| * Complete the quota initialisation, post-log-replay component. |
| */ |
| if (quotamount) { |
| ASSERT(mp->m_qflags == 0); |
| mp->m_qflags = quotaflags; |
| |
| xfs_qm_mount_quotas(mp); |
| } |
| |
| /* |
| * Now we are mounted, reserve a small amount of unused space for |
| * privileged transactions. This is needed so that transaction |
| * space required for critical operations can dip into this pool |
| * when at ENOSPC. This is needed for operations like create with |
| * attr, unwritten extent conversion at ENOSPC, etc. Data allocations |
| * are not allowed to use this reserved space. |
| * |
| * This may drive us straight to ENOSPC on mount, but that implies |
| * we were already there on the last unmount. Warn if this occurs. |
| */ |
| if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { |
| resblks = xfs_default_resblks(mp); |
| error = xfs_reserve_blocks(mp, &resblks, NULL); |
| if (error) |
| xfs_warn(mp, |
| "Unable to allocate reserve blocks. Continuing without reserve pool."); |
| |
| /* Recover any CoW blocks that never got remapped. */ |
| error = xfs_reflink_recover_cow(mp); |
| if (error) { |
| xfs_err(mp, |
| "Error %d recovering leftover CoW allocations.", error); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| goto out_quota; |
| } |
| |
| /* Reserve AG blocks for future btree expansion. */ |
| error = xfs_fs_reserve_ag_blocks(mp); |
| if (error && error != -ENOSPC) |
| goto out_agresv; |
| } |
| |
| return 0; |
| |
| out_agresv: |
| xfs_fs_unreserve_ag_blocks(mp); |
| out_quota: |
| xfs_qm_unmount_quotas(mp); |
| out_rtunmount: |
| xfs_rtunmount_inodes(mp); |
| out_rele_rip: |
| xfs_irele(rip); |
| /* Clean out dquots that might be in memory after quotacheck. */ |
| xfs_qm_unmount(mp); |
| /* |
| * Cancel all delayed reclaim work and reclaim the inodes directly. |
| * We have to do this /after/ rtunmount and qm_unmount because those |
| * two will have scheduled delayed reclaim for the rt/quota inodes. |
| * |
| * This is slightly different from the unmountfs call sequence |
| * because we could be tearing down a partially set up mount. In |
| * particular, if log_mount_finish fails we bail out without calling |
| * qm_unmount_quotas and therefore rely on qm_unmount to release the |
| * quota inodes. |
| */ |
| cancel_delayed_work_sync(&mp->m_reclaim_work); |
| xfs_reclaim_inodes(mp, SYNC_WAIT); |
| xfs_health_unmount(mp); |
| out_log_dealloc: |
| mp->m_flags |= XFS_MOUNT_UNMOUNTING; |
| xfs_log_mount_cancel(mp); |
| out_fail_wait: |
| if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) |
| xfs_wait_buftarg(mp->m_logdev_targp); |
| xfs_wait_buftarg(mp->m_ddev_targp); |
| out_free_perag: |
| xfs_free_perag(mp); |
| out_free_dir: |
| xfs_da_unmount(mp); |
| out_remove_uuid: |
| xfs_uuid_unmount(mp); |
| out_remove_errortag: |
| xfs_errortag_del(mp); |
| out_remove_error_sysfs: |
| xfs_error_sysfs_del(mp); |
| out_del_stats: |
| xfs_sysfs_del(&mp->m_stats.xs_kobj); |
| out_remove_sysfs: |
| xfs_sysfs_del(&mp->m_kobj); |
| out: |
| return error; |
| } |
| |
| /* |
| * This flushes out the inodes,dquots and the superblock, unmounts the |
| * log and makes sure that incore structures are freed. |
| */ |
| void |
| xfs_unmountfs( |
| struct xfs_mount *mp) |
| { |
| uint64_t resblks; |
| int error; |
| |
| xfs_stop_block_reaping(mp); |
| xfs_fs_unreserve_ag_blocks(mp); |
| xfs_qm_unmount_quotas(mp); |
| xfs_rtunmount_inodes(mp); |
| xfs_irele(mp->m_rootip); |
| |
| /* |
| * We can potentially deadlock here if we have an inode cluster |
| * that has been freed has its buffer still pinned in memory because |
| * the transaction is still sitting in a iclog. The stale inodes |
| * on that buffer will have their flush locks held until the |
| * transaction hits the disk and the callbacks run. the inode |
| * flush takes the flush lock unconditionally and with nothing to |
| * push out the iclog we will never get that unlocked. hence we |
| * need to force the log first. |
| */ |
| xfs_log_force(mp, XFS_LOG_SYNC); |
| |
| /* |
| * Wait for all busy extents to be freed, including completion of |
| * any discard operation. |
| */ |
| xfs_extent_busy_wait_all(mp); |
| flush_workqueue(xfs_discard_wq); |
| |
| /* |
| * We now need to tell the world we are unmounting. This will allow |
| * us to detect that the filesystem is going away and we should error |
| * out anything that we have been retrying in the background. This will |
| * prevent neverending retries in AIL pushing from hanging the unmount. |
| */ |
| mp->m_flags |= XFS_MOUNT_UNMOUNTING; |
| |
| /* |
| * Flush all pending changes from the AIL. |
| */ |
| xfs_ail_push_all_sync(mp->m_ail); |
| |
| /* |
| * And reclaim all inodes. At this point there should be no dirty |
| * inodes and none should be pinned or locked, but use synchronous |
| * reclaim just to be sure. We can stop background inode reclaim |
| * here as well if it is still running. |
| */ |
| cancel_delayed_work_sync(&mp->m_reclaim_work); |
| xfs_reclaim_inodes(mp, SYNC_WAIT); |
| xfs_health_unmount(mp); |
| |
| xfs_qm_unmount(mp); |
| |
| /* |
| * Unreserve any blocks we have so that when we unmount we don't account |
| * the reserved free space as used. This is really only necessary for |
| * lazy superblock counting because it trusts the incore superblock |
| * counters to be absolutely correct on clean unmount. |
| * |
| * We don't bother correcting this elsewhere for lazy superblock |
| * counting because on mount of an unclean filesystem we reconstruct the |
| * correct counter value and this is irrelevant. |
| * |
| * For non-lazy counter filesystems, this doesn't matter at all because |
| * we only every apply deltas to the superblock and hence the incore |
| * value does not matter.... |
| */ |
| resblks = 0; |
| error = xfs_reserve_blocks(mp, &resblks, NULL); |
| if (error) |
| xfs_warn(mp, "Unable to free reserved block pool. " |
| "Freespace may not be correct on next mount."); |
| |
| error = xfs_log_sbcount(mp); |
| if (error) |
| xfs_warn(mp, "Unable to update superblock counters. " |
| "Freespace may not be correct on next mount."); |
| |
| |
| xfs_log_unmount(mp); |
| xfs_da_unmount(mp); |
| xfs_uuid_unmount(mp); |
| |
| #if defined(DEBUG) |
| xfs_errortag_clearall(mp); |
| #endif |
| xfs_free_perag(mp); |
| |
| xfs_errortag_del(mp); |
| xfs_error_sysfs_del(mp); |
| xfs_sysfs_del(&mp->m_stats.xs_kobj); |
| xfs_sysfs_del(&mp->m_kobj); |
| } |
| |
| /* |
| * Determine whether modifications can proceed. The caller specifies the minimum |
| * freeze level for which modifications should not be allowed. This allows |
| * certain operations to proceed while the freeze sequence is in progress, if |
| * necessary. |
| */ |
| bool |
| xfs_fs_writable( |
| struct xfs_mount *mp, |
| int level) |
| { |
| ASSERT(level > SB_UNFROZEN); |
| if ((mp->m_super->s_writers.frozen >= level) || |
| XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * xfs_log_sbcount |
| * |
| * Sync the superblock counters to disk. |
| * |
| * Note this code can be called during the process of freezing, so we use the |
| * transaction allocator that does not block when the transaction subsystem is |
| * in its frozen state. |
| */ |
| int |
| xfs_log_sbcount(xfs_mount_t *mp) |
| { |
| /* allow this to proceed during the freeze sequence... */ |
| if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) |
| return 0; |
| |
| /* |
| * we don't need to do this if we are updating the superblock |
| * counters on every modification. |
| */ |
| if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| return 0; |
| |
| return xfs_sync_sb(mp, true); |
| } |
| |
| /* |
| * Deltas for the inode count are +/-64, hence we use a large batch size |
| * of 128 so we don't need to take the counter lock on every update. |
| */ |
| #define XFS_ICOUNT_BATCH 128 |
| int |
| xfs_mod_icount( |
| struct xfs_mount *mp, |
| int64_t delta) |
| { |
| percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); |
| if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { |
| ASSERT(0); |
| percpu_counter_add(&mp->m_icount, -delta); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int |
| xfs_mod_ifree( |
| struct xfs_mount *mp, |
| int64_t delta) |
| { |
| percpu_counter_add(&mp->m_ifree, delta); |
| if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { |
| ASSERT(0); |
| percpu_counter_add(&mp->m_ifree, -delta); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Deltas for the block count can vary from 1 to very large, but lock contention |
| * only occurs on frequent small block count updates such as in the delayed |
| * allocation path for buffered writes (page a time updates). Hence we set |
| * a large batch count (1024) to minimise global counter updates except when |
| * we get near to ENOSPC and we have to be very accurate with our updates. |
| */ |
| #define XFS_FDBLOCKS_BATCH 1024 |
| int |
| xfs_mod_fdblocks( |
| struct xfs_mount *mp, |
| int64_t delta, |
| bool rsvd) |
| { |
| int64_t lcounter; |
| long long res_used; |
| s32 batch; |
| |
| if (delta > 0) { |
| /* |
| * If the reserve pool is depleted, put blocks back into it |
| * first. Most of the time the pool is full. |
| */ |
| if (likely(mp->m_resblks == mp->m_resblks_avail)) { |
| percpu_counter_add(&mp->m_fdblocks, delta); |
| return 0; |
| } |
| |
| spin_lock(&mp->m_sb_lock); |
| res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); |
| |
| if (res_used > delta) { |
| mp->m_resblks_avail += delta; |
| } else { |
| delta -= res_used; |
| mp->m_resblks_avail = mp->m_resblks; |
| percpu_counter_add(&mp->m_fdblocks, delta); |
| } |
| spin_unlock(&mp->m_sb_lock); |
| return 0; |
| } |
| |
| /* |
| * Taking blocks away, need to be more accurate the closer we |
| * are to zero. |
| * |
| * If the counter has a value of less than 2 * max batch size, |
| * then make everything serialise as we are real close to |
| * ENOSPC. |
| */ |
| if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, |
| XFS_FDBLOCKS_BATCH) < 0) |
| batch = 1; |
| else |
| batch = XFS_FDBLOCKS_BATCH; |
| |
| percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); |
| if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, |
| XFS_FDBLOCKS_BATCH) >= 0) { |
| /* we had space! */ |
| return 0; |
| } |
| |
| /* |
| * lock up the sb for dipping into reserves before releasing the space |
| * that took us to ENOSPC. |
| */ |
| spin_lock(&mp->m_sb_lock); |
| percpu_counter_add(&mp->m_fdblocks, -delta); |
| if (!rsvd) |
| goto fdblocks_enospc; |
| |
| lcounter = (long long)mp->m_resblks_avail + delta; |
| if (lcounter >= 0) { |
| mp->m_resblks_avail = lcounter; |
| spin_unlock(&mp->m_sb_lock); |
| return 0; |
| } |
| printk_once(KERN_WARNING |
| "Filesystem \"%s\": reserve blocks depleted! " |
| "Consider increasing reserve pool size.", |
| mp->m_fsname); |
| fdblocks_enospc: |
| spin_unlock(&mp->m_sb_lock); |
| return -ENOSPC; |
| } |
| |
| int |
| xfs_mod_frextents( |
| struct xfs_mount *mp, |
| int64_t delta) |
| { |
| int64_t lcounter; |
| int ret = 0; |
| |
| spin_lock(&mp->m_sb_lock); |
| lcounter = mp->m_sb.sb_frextents + delta; |
| if (lcounter < 0) |
| ret = -ENOSPC; |
| else |
| mp->m_sb.sb_frextents = lcounter; |
| spin_unlock(&mp->m_sb_lock); |
| return ret; |
| } |
| |
| /* |
| * xfs_getsb() is called to obtain the buffer for the superblock. |
| * The buffer is returned locked and read in from disk. |
| * The buffer should be released with a call to xfs_brelse(). |
| */ |
| struct xfs_buf * |
| xfs_getsb( |
| struct xfs_mount *mp) |
| { |
| struct xfs_buf *bp = mp->m_sb_bp; |
| |
| xfs_buf_lock(bp); |
| xfs_buf_hold(bp); |
| ASSERT(bp->b_flags & XBF_DONE); |
| return bp; |
| } |
| |
| /* |
| * Used to free the superblock along various error paths. |
| */ |
| void |
| xfs_freesb( |
| struct xfs_mount *mp) |
| { |
| struct xfs_buf *bp = mp->m_sb_bp; |
| |
| xfs_buf_lock(bp); |
| mp->m_sb_bp = NULL; |
| xfs_buf_relse(bp); |
| } |
| |
| /* |
| * If the underlying (data/log/rt) device is readonly, there are some |
| * operations that cannot proceed. |
| */ |
| int |
| xfs_dev_is_read_only( |
| struct xfs_mount *mp, |
| char *message) |
| { |
| if (xfs_readonly_buftarg(mp->m_ddev_targp) || |
| xfs_readonly_buftarg(mp->m_logdev_targp) || |
| (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { |
| xfs_notice(mp, "%s required on read-only device.", message); |
| xfs_notice(mp, "write access unavailable, cannot proceed."); |
| return -EROFS; |
| } |
| return 0; |
| } |
| |
| /* Force the summary counters to be recalculated at next mount. */ |
| void |
| xfs_force_summary_recalc( |
| struct xfs_mount *mp) |
| { |
| if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) |
| return; |
| |
| xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); |
| } |
| |
| /* |
| * Update the in-core delayed block counter. |
| * |
| * We prefer to update the counter without having to take a spinlock for every |
| * counter update (i.e. batching). Each change to delayed allocation |
| * reservations can change can easily exceed the default percpu counter |
| * batching, so we use a larger batch factor here. |
| * |
| * Note that we don't currently have any callers requiring fast summation |
| * (e.g. percpu_counter_read) so we can use a big batch value here. |
| */ |
| #define XFS_DELALLOC_BATCH (4096) |
| void |
| xfs_mod_delalloc( |
| struct xfs_mount *mp, |
| int64_t delta) |
| { |
| percpu_counter_add_batch(&mp->m_delalloc_blks, delta, |
| XFS_DELALLOC_BATCH); |
| } |