| /* |
| * acpi_osl.c - OS-dependent functions ($Revision: 83 $) |
| * |
| * Copyright (C) 2000 Andrew Henroid |
| * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/pci.h> |
| #include <linux/smp_lock.h> |
| #include <linux/interrupt.h> |
| #include <linux/kmod.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/nmi.h> |
| #include <acpi/acpi.h> |
| #include <asm/io.h> |
| #include <acpi/acpi_bus.h> |
| #include <acpi/processor.h> |
| #include <asm/uaccess.h> |
| |
| #include <linux/efi.h> |
| |
| |
| #define _COMPONENT ACPI_OS_SERVICES |
| ACPI_MODULE_NAME ("osl") |
| |
| #define PREFIX "ACPI: " |
| |
| struct acpi_os_dpc |
| { |
| acpi_osd_exec_callback function; |
| void *context; |
| }; |
| |
| #ifdef CONFIG_ACPI_CUSTOM_DSDT |
| #include CONFIG_ACPI_CUSTOM_DSDT_FILE |
| #endif |
| |
| #ifdef ENABLE_DEBUGGER |
| #include <linux/kdb.h> |
| |
| /* stuff for debugger support */ |
| int acpi_in_debugger; |
| EXPORT_SYMBOL(acpi_in_debugger); |
| |
| extern char line_buf[80]; |
| #endif /*ENABLE_DEBUGGER*/ |
| |
| int acpi_specific_hotkey_enabled; |
| EXPORT_SYMBOL(acpi_specific_hotkey_enabled); |
| |
| static unsigned int acpi_irq_irq; |
| static acpi_osd_handler acpi_irq_handler; |
| static void *acpi_irq_context; |
| static struct workqueue_struct *kacpid_wq; |
| |
| acpi_status |
| acpi_os_initialize(void) |
| { |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_initialize1(void) |
| { |
| /* |
| * Initialize PCI configuration space access, as we'll need to access |
| * it while walking the namespace (bus 0 and root bridges w/ _BBNs). |
| */ |
| #ifdef CONFIG_ACPI_PCI |
| if (!raw_pci_ops) { |
| printk(KERN_ERR PREFIX "Access to PCI configuration space unavailable\n"); |
| return AE_NULL_ENTRY; |
| } |
| #endif |
| kacpid_wq = create_singlethread_workqueue("kacpid"); |
| BUG_ON(!kacpid_wq); |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_terminate(void) |
| { |
| if (acpi_irq_handler) { |
| acpi_os_remove_interrupt_handler(acpi_irq_irq, |
| acpi_irq_handler); |
| } |
| |
| destroy_workqueue(kacpid_wq); |
| |
| return AE_OK; |
| } |
| |
| void |
| acpi_os_printf(const char *fmt,...) |
| { |
| va_list args; |
| va_start(args, fmt); |
| acpi_os_vprintf(fmt, args); |
| va_end(args); |
| } |
| EXPORT_SYMBOL(acpi_os_printf); |
| |
| void |
| acpi_os_vprintf(const char *fmt, va_list args) |
| { |
| static char buffer[512]; |
| |
| vsprintf(buffer, fmt, args); |
| |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| kdb_printf("%s", buffer); |
| } else { |
| printk("%s", buffer); |
| } |
| #else |
| printk("%s", buffer); |
| #endif |
| } |
| |
| extern int acpi_in_resume; |
| void * |
| acpi_os_allocate(acpi_size size) |
| { |
| if (acpi_in_resume) |
| return kmalloc(size, GFP_ATOMIC); |
| else |
| return kmalloc(size, GFP_KERNEL); |
| } |
| |
| void |
| acpi_os_free(void *ptr) |
| { |
| kfree(ptr); |
| } |
| EXPORT_SYMBOL(acpi_os_free); |
| |
| acpi_status |
| acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr) |
| { |
| if (efi_enabled) { |
| addr->pointer_type = ACPI_PHYSICAL_POINTER; |
| if (efi.acpi20) |
| addr->pointer.physical = |
| (acpi_physical_address) virt_to_phys(efi.acpi20); |
| else if (efi.acpi) |
| addr->pointer.physical = |
| (acpi_physical_address) virt_to_phys(efi.acpi); |
| else { |
| printk(KERN_ERR PREFIX "System description tables not found\n"); |
| return AE_NOT_FOUND; |
| } |
| } else { |
| if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) { |
| printk(KERN_ERR PREFIX "System description tables not found\n"); |
| return AE_NOT_FOUND; |
| } |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_map_memory(acpi_physical_address phys, acpi_size size, void __iomem **virt) |
| { |
| if (efi_enabled) { |
| if (EFI_MEMORY_WB & efi_mem_attributes(phys)) { |
| *virt = (void __iomem *) phys_to_virt(phys); |
| } else { |
| *virt = ioremap(phys, size); |
| } |
| } else { |
| if (phys > ULONG_MAX) { |
| printk(KERN_ERR PREFIX "Cannot map memory that high\n"); |
| return AE_BAD_PARAMETER; |
| } |
| /* |
| * ioremap checks to ensure this is in reserved space |
| */ |
| *virt = ioremap((unsigned long) phys, size); |
| } |
| |
| if (!*virt) |
| return AE_NO_MEMORY; |
| |
| return AE_OK; |
| } |
| |
| void |
| acpi_os_unmap_memory(void __iomem *virt, acpi_size size) |
| { |
| iounmap(virt); |
| } |
| |
| #ifdef ACPI_FUTURE_USAGE |
| acpi_status |
| acpi_os_get_physical_address(void *virt, acpi_physical_address *phys) |
| { |
| if(!phys || !virt) |
| return AE_BAD_PARAMETER; |
| |
| *phys = virt_to_phys(virt); |
| |
| return AE_OK; |
| } |
| #endif |
| |
| #define ACPI_MAX_OVERRIDE_LEN 100 |
| |
| static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; |
| |
| acpi_status |
| acpi_os_predefined_override (const struct acpi_predefined_names *init_val, |
| acpi_string *new_val) |
| { |
| if (!init_val || !new_val) |
| return AE_BAD_PARAMETER; |
| |
| *new_val = NULL; |
| if (!memcmp (init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { |
| printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", |
| acpi_os_name); |
| *new_val = acpi_os_name; |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_table_override (struct acpi_table_header *existing_table, |
| struct acpi_table_header **new_table) |
| { |
| if (!existing_table || !new_table) |
| return AE_BAD_PARAMETER; |
| |
| #ifdef CONFIG_ACPI_CUSTOM_DSDT |
| if (strncmp(existing_table->signature, "DSDT", 4) == 0) |
| *new_table = (struct acpi_table_header*)AmlCode; |
| else |
| *new_table = NULL; |
| #else |
| *new_table = NULL; |
| #endif |
| return AE_OK; |
| } |
| |
| static irqreturn_t |
| acpi_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| return (*acpi_irq_handler)(acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| acpi_status |
| acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, void *context) |
| { |
| unsigned int irq; |
| |
| /* |
| * Ignore the GSI from the core, and use the value in our copy of the |
| * FADT. It may not be the same if an interrupt source override exists |
| * for the SCI. |
| */ |
| gsi = acpi_fadt.sci_int; |
| if (acpi_gsi_to_irq(gsi, &irq) < 0) { |
| printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", |
| gsi); |
| return AE_OK; |
| } |
| |
| acpi_irq_handler = handler; |
| acpi_irq_context = context; |
| if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) { |
| printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); |
| return AE_NOT_ACQUIRED; |
| } |
| acpi_irq_irq = irq; |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler) |
| { |
| if (irq) { |
| free_irq(irq, acpi_irq); |
| acpi_irq_handler = NULL; |
| acpi_irq_irq = 0; |
| } |
| |
| return AE_OK; |
| } |
| |
| /* |
| * Running in interpreter thread context, safe to sleep |
| */ |
| |
| void |
| acpi_os_sleep(acpi_integer ms) |
| { |
| current->state = TASK_INTERRUPTIBLE; |
| schedule_timeout(((signed long) ms * HZ) / 1000); |
| } |
| EXPORT_SYMBOL(acpi_os_sleep); |
| |
| void |
| acpi_os_stall(u32 us) |
| { |
| while (us) { |
| u32 delay = 1000; |
| |
| if (delay > us) |
| delay = us; |
| udelay(delay); |
| touch_nmi_watchdog(); |
| us -= delay; |
| } |
| } |
| EXPORT_SYMBOL(acpi_os_stall); |
| |
| /* |
| * Support ACPI 3.0 AML Timer operand |
| * Returns 64-bit free-running, monotonically increasing timer |
| * with 100ns granularity |
| */ |
| u64 |
| acpi_os_get_timer (void) |
| { |
| static u64 t; |
| |
| #ifdef CONFIG_HPET |
| /* TBD: use HPET if available */ |
| #endif |
| |
| #ifdef CONFIG_X86_PM_TIMER |
| /* TBD: default to PM timer if HPET was not available */ |
| #endif |
| if (!t) |
| printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n"); |
| |
| return ++t; |
| } |
| |
| acpi_status |
| acpi_os_read_port( |
| acpi_io_address port, |
| u32 *value, |
| u32 width) |
| { |
| u32 dummy; |
| |
| if (!value) |
| value = &dummy; |
| |
| switch (width) |
| { |
| case 8: |
| *(u8*) value = inb(port); |
| break; |
| case 16: |
| *(u16*) value = inw(port); |
| break; |
| case 32: |
| *(u32*) value = inl(port); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| EXPORT_SYMBOL(acpi_os_read_port); |
| |
| acpi_status |
| acpi_os_write_port( |
| acpi_io_address port, |
| u32 value, |
| u32 width) |
| { |
| switch (width) |
| { |
| case 8: |
| outb(value, port); |
| break; |
| case 16: |
| outw(value, port); |
| break; |
| case 32: |
| outl(value, port); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return AE_OK; |
| } |
| EXPORT_SYMBOL(acpi_os_write_port); |
| |
| acpi_status |
| acpi_os_read_memory( |
| acpi_physical_address phys_addr, |
| u32 *value, |
| u32 width) |
| { |
| u32 dummy; |
| void __iomem *virt_addr; |
| int iomem = 0; |
| |
| if (efi_enabled) { |
| if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) { |
| /* HACK ALERT! We can use readb/w/l on real memory too.. */ |
| virt_addr = (void __iomem *) phys_to_virt(phys_addr); |
| } else { |
| iomem = 1; |
| virt_addr = ioremap(phys_addr, width); |
| } |
| } else |
| virt_addr = (void __iomem *) phys_to_virt(phys_addr); |
| if (!value) |
| value = &dummy; |
| |
| switch (width) { |
| case 8: |
| *(u8*) value = readb(virt_addr); |
| break; |
| case 16: |
| *(u16*) value = readw(virt_addr); |
| break; |
| case 32: |
| *(u32*) value = readl(virt_addr); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (efi_enabled) { |
| if (iomem) |
| iounmap(virt_addr); |
| } |
| |
| return AE_OK; |
| } |
| |
| acpi_status |
| acpi_os_write_memory( |
| acpi_physical_address phys_addr, |
| u32 value, |
| u32 width) |
| { |
| void __iomem *virt_addr; |
| int iomem = 0; |
| |
| if (efi_enabled) { |
| if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) { |
| /* HACK ALERT! We can use writeb/w/l on real memory too */ |
| virt_addr = (void __iomem *) phys_to_virt(phys_addr); |
| } else { |
| iomem = 1; |
| virt_addr = ioremap(phys_addr, width); |
| } |
| } else |
| virt_addr = (void __iomem *) phys_to_virt(phys_addr); |
| |
| switch (width) { |
| case 8: |
| writeb(value, virt_addr); |
| break; |
| case 16: |
| writew(value, virt_addr); |
| break; |
| case 32: |
| writel(value, virt_addr); |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (iomem) |
| iounmap(virt_addr); |
| |
| return AE_OK; |
| } |
| |
| #ifdef CONFIG_ACPI_PCI |
| |
| acpi_status |
| acpi_os_read_pci_configuration (struct acpi_pci_id *pci_id, u32 reg, void *value, u32 width) |
| { |
| int result, size; |
| |
| if (!value) |
| return AE_BAD_PARAMETER; |
| |
| switch (width) { |
| case 8: |
| size = 1; |
| break; |
| case 16: |
| size = 2; |
| break; |
| case 32: |
| size = 4; |
| break; |
| default: |
| return AE_ERROR; |
| } |
| |
| BUG_ON(!raw_pci_ops); |
| |
| result = raw_pci_ops->read(pci_id->segment, pci_id->bus, |
| PCI_DEVFN(pci_id->device, pci_id->function), |
| reg, size, value); |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| EXPORT_SYMBOL(acpi_os_read_pci_configuration); |
| |
| acpi_status |
| acpi_os_write_pci_configuration (struct acpi_pci_id *pci_id, u32 reg, acpi_integer value, u32 width) |
| { |
| int result, size; |
| |
| switch (width) { |
| case 8: |
| size = 1; |
| break; |
| case 16: |
| size = 2; |
| break; |
| case 32: |
| size = 4; |
| break; |
| default: |
| return AE_ERROR; |
| } |
| |
| BUG_ON(!raw_pci_ops); |
| |
| result = raw_pci_ops->write(pci_id->segment, pci_id->bus, |
| PCI_DEVFN(pci_id->device, pci_id->function), |
| reg, size, value); |
| |
| return (result ? AE_ERROR : AE_OK); |
| } |
| |
| /* TODO: Change code to take advantage of driver model more */ |
| static void |
| acpi_os_derive_pci_id_2 ( |
| acpi_handle rhandle, /* upper bound */ |
| acpi_handle chandle, /* current node */ |
| struct acpi_pci_id **id, |
| int *is_bridge, |
| u8 *bus_number) |
| { |
| acpi_handle handle; |
| struct acpi_pci_id *pci_id = *id; |
| acpi_status status; |
| unsigned long temp; |
| acpi_object_type type; |
| u8 tu8; |
| |
| acpi_get_parent(chandle, &handle); |
| if (handle != rhandle) { |
| acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge, bus_number); |
| |
| status = acpi_get_type(handle, &type); |
| if ( (ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE) ) |
| return; |
| |
| status = acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL, &temp); |
| if (ACPI_SUCCESS(status)) { |
| pci_id->device = ACPI_HIWORD (ACPI_LODWORD (temp)); |
| pci_id->function = ACPI_LOWORD (ACPI_LODWORD (temp)); |
| |
| if (*is_bridge) |
| pci_id->bus = *bus_number; |
| |
| /* any nicer way to get bus number of bridge ? */ |
| status = acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8, 8); |
| if (ACPI_SUCCESS(status) && |
| ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) { |
| status = acpi_os_read_pci_configuration(pci_id, 0x18, &tu8, 8); |
| if (!ACPI_SUCCESS(status)) { |
| /* Certainly broken... FIX ME */ |
| return; |
| } |
| *is_bridge = 1; |
| pci_id->bus = tu8; |
| status = acpi_os_read_pci_configuration(pci_id, 0x19, &tu8, 8); |
| if (ACPI_SUCCESS(status)) { |
| *bus_number = tu8; |
| } |
| } else |
| *is_bridge = 0; |
| } |
| } |
| } |
| |
| void |
| acpi_os_derive_pci_id ( |
| acpi_handle rhandle, /* upper bound */ |
| acpi_handle chandle, /* current node */ |
| struct acpi_pci_id **id) |
| { |
| int is_bridge = 1; |
| u8 bus_number = (*id)->bus; |
| |
| acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number); |
| } |
| |
| #else /*!CONFIG_ACPI_PCI*/ |
| |
| acpi_status |
| acpi_os_write_pci_configuration ( |
| struct acpi_pci_id *pci_id, |
| u32 reg, |
| acpi_integer value, |
| u32 width) |
| { |
| return AE_SUPPORT; |
| } |
| |
| acpi_status |
| acpi_os_read_pci_configuration ( |
| struct acpi_pci_id *pci_id, |
| u32 reg, |
| void *value, |
| u32 width) |
| { |
| return AE_SUPPORT; |
| } |
| |
| void |
| acpi_os_derive_pci_id ( |
| acpi_handle rhandle, /* upper bound */ |
| acpi_handle chandle, /* current node */ |
| struct acpi_pci_id **id) |
| { |
| } |
| |
| #endif /*CONFIG_ACPI_PCI*/ |
| |
| static void |
| acpi_os_execute_deferred ( |
| void *context) |
| { |
| struct acpi_os_dpc *dpc = NULL; |
| |
| ACPI_FUNCTION_TRACE ("os_execute_deferred"); |
| |
| dpc = (struct acpi_os_dpc *) context; |
| if (!dpc) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n")); |
| return_VOID; |
| } |
| |
| dpc->function(dpc->context); |
| |
| kfree(dpc); |
| |
| return_VOID; |
| } |
| |
| acpi_status |
| acpi_os_queue_for_execution( |
| u32 priority, |
| acpi_osd_exec_callback function, |
| void *context) |
| { |
| acpi_status status = AE_OK; |
| struct acpi_os_dpc *dpc; |
| struct work_struct *task; |
| |
| ACPI_FUNCTION_TRACE ("os_queue_for_execution"); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); |
| |
| if (!function) |
| return_ACPI_STATUS (AE_BAD_PARAMETER); |
| |
| /* |
| * Allocate/initialize DPC structure. Note that this memory will be |
| * freed by the callee. The kernel handles the tq_struct list in a |
| * way that allows us to also free its memory inside the callee. |
| * Because we may want to schedule several tasks with different |
| * parameters we can't use the approach some kernel code uses of |
| * having a static tq_struct. |
| * We can save time and code by allocating the DPC and tq_structs |
| * from the same memory. |
| */ |
| |
| dpc = kmalloc(sizeof(struct acpi_os_dpc)+sizeof(struct work_struct), GFP_ATOMIC); |
| if (!dpc) |
| return_ACPI_STATUS (AE_NO_MEMORY); |
| |
| dpc->function = function; |
| dpc->context = context; |
| |
| task = (void *)(dpc+1); |
| INIT_WORK(task, acpi_os_execute_deferred, (void*)dpc); |
| |
| if (!queue_work(kacpid_wq, task)) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to queue_work() failed.\n")); |
| kfree(dpc); |
| status = AE_ERROR; |
| } |
| |
| return_ACPI_STATUS (status); |
| } |
| EXPORT_SYMBOL(acpi_os_queue_for_execution); |
| |
| void |
| acpi_os_wait_events_complete( |
| void *context) |
| { |
| flush_workqueue(kacpid_wq); |
| } |
| EXPORT_SYMBOL(acpi_os_wait_events_complete); |
| |
| /* |
| * Allocate the memory for a spinlock and initialize it. |
| */ |
| acpi_status |
| acpi_os_create_lock ( |
| acpi_handle *out_handle) |
| { |
| spinlock_t *lock_ptr; |
| |
| ACPI_FUNCTION_TRACE ("os_create_lock"); |
| |
| lock_ptr = acpi_os_allocate(sizeof(spinlock_t)); |
| |
| spin_lock_init(lock_ptr); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr)); |
| |
| *out_handle = lock_ptr; |
| |
| return_ACPI_STATUS (AE_OK); |
| } |
| |
| |
| /* |
| * Deallocate the memory for a spinlock. |
| */ |
| void |
| acpi_os_delete_lock ( |
| acpi_handle handle) |
| { |
| ACPI_FUNCTION_TRACE ("os_create_lock"); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle)); |
| |
| acpi_os_free(handle); |
| |
| return_VOID; |
| } |
| |
| /* |
| * Acquire a spinlock. |
| * |
| * handle is a pointer to the spinlock_t. |
| * flags is *not* the result of save_flags - it is an ACPI-specific flag variable |
| * that indicates whether we are at interrupt level. |
| */ |
| void |
| acpi_os_acquire_lock ( |
| acpi_handle handle, |
| u32 flags) |
| { |
| ACPI_FUNCTION_TRACE ("os_acquire_lock"); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquiring spinlock[%p] from %s level\n", handle, |
| ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt"))); |
| |
| if (flags & ACPI_NOT_ISR) |
| ACPI_DISABLE_IRQS(); |
| |
| spin_lock((spinlock_t *)handle); |
| |
| return_VOID; |
| } |
| |
| |
| /* |
| * Release a spinlock. See above. |
| */ |
| void |
| acpi_os_release_lock ( |
| acpi_handle handle, |
| u32 flags) |
| { |
| ACPI_FUNCTION_TRACE ("os_release_lock"); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Releasing spinlock[%p] from %s level\n", handle, |
| ((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt"))); |
| |
| spin_unlock((spinlock_t *)handle); |
| |
| if (flags & ACPI_NOT_ISR) |
| ACPI_ENABLE_IRQS(); |
| |
| return_VOID; |
| } |
| |
| |
| acpi_status |
| acpi_os_create_semaphore( |
| u32 max_units, |
| u32 initial_units, |
| acpi_handle *handle) |
| { |
| struct semaphore *sem = NULL; |
| |
| ACPI_FUNCTION_TRACE ("os_create_semaphore"); |
| |
| sem = acpi_os_allocate(sizeof(struct semaphore)); |
| if (!sem) |
| return_ACPI_STATUS (AE_NO_MEMORY); |
| memset(sem, 0, sizeof(struct semaphore)); |
| |
| sema_init(sem, initial_units); |
| |
| *handle = (acpi_handle*)sem; |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units)); |
| |
| return_ACPI_STATUS (AE_OK); |
| } |
| EXPORT_SYMBOL(acpi_os_create_semaphore); |
| |
| |
| /* |
| * TODO: A better way to delete semaphores? Linux doesn't have a |
| * 'delete_semaphore()' function -- may result in an invalid |
| * pointer dereference for non-synchronized consumers. Should |
| * we at least check for blocked threads and signal/cancel them? |
| */ |
| |
| acpi_status |
| acpi_os_delete_semaphore( |
| acpi_handle handle) |
| { |
| struct semaphore *sem = (struct semaphore*) handle; |
| |
| ACPI_FUNCTION_TRACE ("os_delete_semaphore"); |
| |
| if (!sem) |
| return_ACPI_STATUS (AE_BAD_PARAMETER); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); |
| |
| acpi_os_free(sem); sem = NULL; |
| |
| return_ACPI_STATUS (AE_OK); |
| } |
| EXPORT_SYMBOL(acpi_os_delete_semaphore); |
| |
| |
| /* |
| * TODO: The kernel doesn't have a 'down_timeout' function -- had to |
| * improvise. The process is to sleep for one scheduler quantum |
| * until the semaphore becomes available. Downside is that this |
| * may result in starvation for timeout-based waits when there's |
| * lots of semaphore activity. |
| * |
| * TODO: Support for units > 1? |
| */ |
| acpi_status |
| acpi_os_wait_semaphore( |
| acpi_handle handle, |
| u32 units, |
| u16 timeout) |
| { |
| acpi_status status = AE_OK; |
| struct semaphore *sem = (struct semaphore*)handle; |
| int ret = 0; |
| |
| ACPI_FUNCTION_TRACE ("os_wait_semaphore"); |
| |
| if (!sem || (units < 1)) |
| return_ACPI_STATUS (AE_BAD_PARAMETER); |
| |
| if (units > 1) |
| return_ACPI_STATUS (AE_SUPPORT); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); |
| |
| if (in_atomic()) |
| timeout = 0; |
| |
| switch (timeout) |
| { |
| /* |
| * No Wait: |
| * -------- |
| * A zero timeout value indicates that we shouldn't wait - just |
| * acquire the semaphore if available otherwise return AE_TIME |
| * (a.k.a. 'would block'). |
| */ |
| case 0: |
| if(down_trylock(sem)) |
| status = AE_TIME; |
| break; |
| |
| /* |
| * Wait Indefinitely: |
| * ------------------ |
| */ |
| case ACPI_WAIT_FOREVER: |
| down(sem); |
| break; |
| |
| /* |
| * Wait w/ Timeout: |
| * ---------------- |
| */ |
| default: |
| // TODO: A better timeout algorithm? |
| { |
| int i = 0; |
| static const int quantum_ms = 1000/HZ; |
| |
| ret = down_trylock(sem); |
| for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) { |
| current->state = TASK_INTERRUPTIBLE; |
| schedule_timeout(1); |
| ret = down_trylock(sem); |
| } |
| |
| if (ret != 0) |
| status = AE_TIME; |
| } |
| break; |
| } |
| |
| if (ACPI_FAILURE(status)) { |
| ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Failed to acquire semaphore[%p|%d|%d], %s\n", |
| handle, units, timeout, acpi_format_exception(status))); |
| } |
| else { |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout)); |
| } |
| |
| return_ACPI_STATUS (status); |
| } |
| EXPORT_SYMBOL(acpi_os_wait_semaphore); |
| |
| |
| /* |
| * TODO: Support for units > 1? |
| */ |
| acpi_status |
| acpi_os_signal_semaphore( |
| acpi_handle handle, |
| u32 units) |
| { |
| struct semaphore *sem = (struct semaphore *) handle; |
| |
| ACPI_FUNCTION_TRACE ("os_signal_semaphore"); |
| |
| if (!sem || (units < 1)) |
| return_ACPI_STATUS (AE_BAD_PARAMETER); |
| |
| if (units > 1) |
| return_ACPI_STATUS (AE_SUPPORT); |
| |
| ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units)); |
| |
| up(sem); |
| |
| return_ACPI_STATUS (AE_OK); |
| } |
| EXPORT_SYMBOL(acpi_os_signal_semaphore); |
| |
| #ifdef ACPI_FUTURE_USAGE |
| u32 |
| acpi_os_get_line(char *buffer) |
| { |
| |
| #ifdef ENABLE_DEBUGGER |
| if (acpi_in_debugger) { |
| u32 chars; |
| |
| kdb_read(buffer, sizeof(line_buf)); |
| |
| /* remove the CR kdb includes */ |
| chars = strlen(buffer) - 1; |
| buffer[chars] = '\0'; |
| } |
| #endif |
| |
| return 0; |
| } |
| #endif /* ACPI_FUTURE_USAGE */ |
| |
| /* Assumes no unreadable holes inbetween */ |
| u8 |
| acpi_os_readable(void *ptr, acpi_size len) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| char tmp; |
| return !__get_user(tmp, (char __user *)ptr) && !__get_user(tmp, (char __user *)ptr + len - 1); |
| #endif |
| return 1; |
| } |
| |
| #ifdef ACPI_FUTURE_USAGE |
| u8 |
| acpi_os_writable(void *ptr, acpi_size len) |
| { |
| /* could do dummy write (racy) or a kernel page table lookup. |
| The later may be difficult at early boot when kmap doesn't work yet. */ |
| return 1; |
| } |
| #endif |
| |
| u32 |
| acpi_os_get_thread_id (void) |
| { |
| if (!in_atomic()) |
| return current->pid; |
| |
| return 0; |
| } |
| |
| acpi_status |
| acpi_os_signal ( |
| u32 function, |
| void *info) |
| { |
| switch (function) |
| { |
| case ACPI_SIGNAL_FATAL: |
| printk(KERN_ERR PREFIX "Fatal opcode executed\n"); |
| break; |
| case ACPI_SIGNAL_BREAKPOINT: |
| /* |
| * AML Breakpoint |
| * ACPI spec. says to treat it as a NOP unless |
| * you are debugging. So if/when we integrate |
| * AML debugger into the kernel debugger its |
| * hook will go here. But until then it is |
| * not useful to print anything on breakpoints. |
| */ |
| break; |
| default: |
| break; |
| } |
| |
| return AE_OK; |
| } |
| EXPORT_SYMBOL(acpi_os_signal); |
| |
| static int __init |
| acpi_os_name_setup(char *str) |
| { |
| char *p = acpi_os_name; |
| int count = ACPI_MAX_OVERRIDE_LEN-1; |
| |
| if (!str || !*str) |
| return 0; |
| |
| for (; count-- && str && *str; str++) { |
| if (isalnum(*str) || *str == ' ' || *str == ':') |
| *p++ = *str; |
| else if (*str == '\'' || *str == '"') |
| continue; |
| else |
| break; |
| } |
| *p = 0; |
| |
| return 1; |
| |
| } |
| |
| __setup("acpi_os_name=", acpi_os_name_setup); |
| |
| /* |
| * _OSI control |
| * empty string disables _OSI |
| * TBD additional string adds to _OSI |
| */ |
| static int __init |
| acpi_osi_setup(char *str) |
| { |
| if (str == NULL || *str == '\0') { |
| printk(KERN_INFO PREFIX "_OSI method disabled\n"); |
| acpi_gbl_create_osi_method = FALSE; |
| } else |
| { |
| /* TBD */ |
| printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n", str); |
| } |
| |
| return 1; |
| } |
| |
| __setup("acpi_osi=", acpi_osi_setup); |
| |
| /* enable serialization to combat AE_ALREADY_EXISTS errors */ |
| static int __init |
| acpi_serialize_setup(char *str) |
| { |
| printk(KERN_INFO PREFIX "serialize enabled\n"); |
| |
| acpi_gbl_all_methods_serialized = TRUE; |
| |
| return 1; |
| } |
| |
| __setup("acpi_serialize", acpi_serialize_setup); |
| |
| /* |
| * Wake and Run-Time GPES are expected to be separate. |
| * We disable wake-GPEs at run-time to prevent spurious |
| * interrupts. |
| * |
| * However, if a system exists that shares Wake and |
| * Run-time events on the same GPE this flag is available |
| * to tell Linux to keep the wake-time GPEs enabled at run-time. |
| */ |
| static int __init |
| acpi_wake_gpes_always_on_setup(char *str) |
| { |
| printk(KERN_INFO PREFIX "wake GPEs not disabled\n"); |
| |
| acpi_gbl_leave_wake_gpes_disabled = FALSE; |
| |
| return 1; |
| } |
| |
| __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup); |
| |
| int __init |
| acpi_hotkey_setup(char *str) |
| { |
| acpi_specific_hotkey_enabled = TRUE; |
| return 1; |
| } |
| |
| __setup("acpi_specific_hotkey", acpi_hotkey_setup); |
| |
| /* |
| * max_cstate is defined in the base kernel so modules can |
| * change it w/o depending on the state of the processor module. |
| */ |
| unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER; |
| |
| |
| EXPORT_SYMBOL(max_cstate); |