| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice_common.h" |
| #include "ice_sched.h" |
| #include "ice_adminq_cmd.h" |
| |
| #define ICE_PF_RESET_WAIT_COUNT 200 |
| |
| #define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \ |
| wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \ |
| ((ICE_RX_OPC_MDID << \ |
| GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \ |
| GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \ |
| (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \ |
| GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M)) |
| |
| #define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \ |
| wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \ |
| (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \ |
| GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \ |
| (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \ |
| GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \ |
| (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \ |
| GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \ |
| (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \ |
| GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M)) |
| |
| /** |
| * ice_set_mac_type - Sets MAC type |
| * @hw: pointer to the HW structure |
| * |
| * This function sets the MAC type of the adapter based on the |
| * vendor ID and device ID stored in the hw structure. |
| */ |
| static enum ice_status ice_set_mac_type(struct ice_hw *hw) |
| { |
| if (hw->vendor_id != PCI_VENDOR_ID_INTEL) |
| return ICE_ERR_DEVICE_NOT_SUPPORTED; |
| |
| hw->mac_type = ICE_MAC_GENERIC; |
| return 0; |
| } |
| |
| /** |
| * ice_dev_onetime_setup - Temporary HW/FW workarounds |
| * @hw: pointer to the HW structure |
| * |
| * This function provides temporary workarounds for certain issues |
| * that are expected to be fixed in the HW/FW. |
| */ |
| void ice_dev_onetime_setup(struct ice_hw *hw) |
| { |
| /* configure Rx - set non pxe mode */ |
| wr32(hw, GLLAN_RCTL_0, 0x1); |
| |
| #define MBX_PF_VT_PFALLOC 0x00231E80 |
| /* set VFs per PF */ |
| wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF)); |
| } |
| |
| /** |
| * ice_clear_pf_cfg - Clear PF configuration |
| * @hw: pointer to the hardware structure |
| * |
| * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port |
| * configuration, flow director filters, etc.). |
| */ |
| enum ice_status ice_clear_pf_cfg(struct ice_hw *hw) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_aq_manage_mac_read - manage MAC address read command |
| * @hw: pointer to the hw struct |
| * @buf: a virtual buffer to hold the manage MAC read response |
| * @buf_size: Size of the virtual buffer |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function is used to return per PF station MAC address (0x0107). |
| * NOTE: Upon successful completion of this command, MAC address information |
| * is returned in user specified buffer. Please interpret user specified |
| * buffer as "manage_mac_read" response. |
| * Response such as various MAC addresses are stored in HW struct (port.mac) |
| * ice_aq_discover_caps is expected to be called before this function is called. |
| */ |
| static enum ice_status |
| ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_manage_mac_read_resp *resp; |
| struct ice_aqc_manage_mac_read *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 flags; |
| u8 i; |
| |
| cmd = &desc.params.mac_read; |
| |
| if (buf_size < sizeof(*resp)) |
| return ICE_ERR_BUF_TOO_SHORT; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read); |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (status) |
| return status; |
| |
| resp = (struct ice_aqc_manage_mac_read_resp *)buf; |
| flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M; |
| |
| if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) { |
| ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| /* A single port can report up to two (LAN and WoL) addresses */ |
| for (i = 0; i < cmd->num_addr; i++) |
| if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) { |
| ether_addr_copy(hw->port_info->mac.lan_addr, |
| resp[i].mac_addr); |
| ether_addr_copy(hw->port_info->mac.perm_addr, |
| resp[i].mac_addr); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_aq_get_phy_caps - returns PHY capabilities |
| * @pi: port information structure |
| * @qual_mods: report qualified modules |
| * @report_mode: report mode capabilities |
| * @pcaps: structure for PHY capabilities to be filled |
| * @cd: pointer to command details structure or NULL |
| * |
| * Returns the various PHY capabilities supported on the Port (0x0600) |
| */ |
| enum ice_status |
| ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode, |
| struct ice_aqc_get_phy_caps_data *pcaps, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_phy_caps *cmd; |
| u16 pcaps_size = sizeof(*pcaps); |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.get_phy; |
| |
| if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps); |
| |
| if (qual_mods) |
| cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM); |
| |
| cmd->param0 |= cpu_to_le16(report_mode); |
| status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd); |
| |
| if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) |
| pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); |
| |
| return status; |
| } |
| |
| /** |
| * ice_get_media_type - Gets media type |
| * @pi: port information structure |
| */ |
| static enum ice_media_type ice_get_media_type(struct ice_port_info *pi) |
| { |
| struct ice_link_status *hw_link_info; |
| |
| if (!pi) |
| return ICE_MEDIA_UNKNOWN; |
| |
| hw_link_info = &pi->phy.link_info; |
| |
| if (hw_link_info->phy_type_low) { |
| switch (hw_link_info->phy_type_low) { |
| case ICE_PHY_TYPE_LOW_1000BASE_SX: |
| case ICE_PHY_TYPE_LOW_1000BASE_LX: |
| case ICE_PHY_TYPE_LOW_10GBASE_SR: |
| case ICE_PHY_TYPE_LOW_10GBASE_LR: |
| case ICE_PHY_TYPE_LOW_10G_SFI_C2C: |
| case ICE_PHY_TYPE_LOW_25GBASE_SR: |
| case ICE_PHY_TYPE_LOW_25GBASE_LR: |
| case ICE_PHY_TYPE_LOW_25G_AUI_C2C: |
| case ICE_PHY_TYPE_LOW_40GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_LR4: |
| return ICE_MEDIA_FIBER; |
| case ICE_PHY_TYPE_LOW_100BASE_TX: |
| case ICE_PHY_TYPE_LOW_1000BASE_T: |
| case ICE_PHY_TYPE_LOW_2500BASE_T: |
| case ICE_PHY_TYPE_LOW_5GBASE_T: |
| case ICE_PHY_TYPE_LOW_10GBASE_T: |
| case ICE_PHY_TYPE_LOW_25GBASE_T: |
| return ICE_MEDIA_BASET; |
| case ICE_PHY_TYPE_LOW_10G_SFI_DA: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR1: |
| case ICE_PHY_TYPE_LOW_40GBASE_CR4: |
| return ICE_MEDIA_DA; |
| case ICE_PHY_TYPE_LOW_1000BASE_KX: |
| case ICE_PHY_TYPE_LOW_2500BASE_KX: |
| case ICE_PHY_TYPE_LOW_2500BASE_X: |
| case ICE_PHY_TYPE_LOW_5GBASE_KR: |
| case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR_S: |
| case ICE_PHY_TYPE_LOW_40GBASE_KR4: |
| return ICE_MEDIA_BACKPLANE; |
| } |
| } |
| |
| return ICE_MEDIA_UNKNOWN; |
| } |
| |
| /** |
| * ice_aq_get_link_info |
| * @pi: port information structure |
| * @ena_lse: enable/disable LinkStatusEvent reporting |
| * @link: pointer to link status structure - optional |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get Link Status (0x607). Returns the link status of the adapter. |
| */ |
| static enum ice_status |
| ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse, |
| struct ice_link_status *link, struct ice_sq_cd *cd) |
| { |
| struct ice_link_status *hw_link_info_old, *hw_link_info; |
| struct ice_aqc_get_link_status_data link_data = { 0 }; |
| struct ice_aqc_get_link_status *resp; |
| enum ice_media_type *hw_media_type; |
| struct ice_fc_info *hw_fc_info; |
| bool tx_pause, rx_pause; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 cmd_flags; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| hw_link_info_old = &pi->phy.link_info_old; |
| hw_media_type = &pi->phy.media_type; |
| hw_link_info = &pi->phy.link_info; |
| hw_fc_info = &pi->fc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status); |
| cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS; |
| resp = &desc.params.get_link_status; |
| resp->cmd_flags = cpu_to_le16(cmd_flags); |
| resp->lport_num = pi->lport; |
| |
| status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data), |
| cd); |
| |
| if (status) |
| return status; |
| |
| /* save off old link status information */ |
| *hw_link_info_old = *hw_link_info; |
| |
| /* update current link status information */ |
| hw_link_info->link_speed = le16_to_cpu(link_data.link_speed); |
| hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low); |
| *hw_media_type = ice_get_media_type(pi); |
| hw_link_info->link_info = link_data.link_info; |
| hw_link_info->an_info = link_data.an_info; |
| hw_link_info->ext_info = link_data.ext_info; |
| hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size); |
| hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M; |
| |
| /* update fc info */ |
| tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX); |
| rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX); |
| if (tx_pause && rx_pause) |
| hw_fc_info->current_mode = ICE_FC_FULL; |
| else if (tx_pause) |
| hw_fc_info->current_mode = ICE_FC_TX_PAUSE; |
| else if (rx_pause) |
| hw_fc_info->current_mode = ICE_FC_RX_PAUSE; |
| else |
| hw_fc_info->current_mode = ICE_FC_NONE; |
| |
| hw_link_info->lse_ena = |
| !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED)); |
| |
| /* save link status information */ |
| if (link) |
| *link = *hw_link_info; |
| |
| /* flag cleared so calling functions don't call AQ again */ |
| pi->phy.get_link_info = false; |
| |
| return status; |
| } |
| |
| /** |
| * ice_init_flex_flags |
| * @hw: pointer to the hardware structure |
| * @prof_id: Rx Descriptor Builder profile ID |
| * |
| * Function to initialize Rx flex flags |
| */ |
| static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id) |
| { |
| u8 idx = 0; |
| |
| /* Flex-flag fields (0-2) are programmed with FLG64 bits with layout: |
| * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE |
| * flexiflags1[3:0] - Not used for flag programming |
| * flexiflags2[7:0] - Tunnel and VLAN types |
| * 2 invalid fields in last index |
| */ |
| switch (prof_id) { |
| /* Rx flex flags are currently programmed for the NIC profiles only. |
| * Different flag bit programming configurations can be added per |
| * profile as needed. |
| */ |
| case ICE_RXDID_FLEX_NIC: |
| case ICE_RXDID_FLEX_NIC_2: |
| ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_FRG, |
| ICE_RXFLG_UDP_GRE, ICE_RXFLG_PKT_DSI, |
| ICE_RXFLG_FIN, idx++); |
| /* flex flag 1 is not used for flexi-flag programming, skipping |
| * these four FLG64 bits. |
| */ |
| ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_SYN, ICE_RXFLG_RST, |
| ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++); |
| ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_PKT_DSI, |
| ICE_RXFLG_PKT_DSI, ICE_RXFLG_EVLAN_x8100, |
| ICE_RXFLG_EVLAN_x9100, idx++); |
| ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_VLAN_x8100, |
| ICE_RXFLG_TNL_VLAN, ICE_RXFLG_TNL_MAC, |
| ICE_RXFLG_TNL0, idx++); |
| ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2, |
| ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx); |
| break; |
| |
| default: |
| ice_debug(hw, ICE_DBG_INIT, |
| "Flag programming for profile ID %d not supported\n", |
| prof_id); |
| } |
| } |
| |
| /** |
| * ice_init_flex_flds |
| * @hw: pointer to the hardware structure |
| * @prof_id: Rx Descriptor Builder profile ID |
| * |
| * Function to initialize flex descriptors |
| */ |
| static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id) |
| { |
| enum ice_flex_rx_mdid mdid; |
| |
| switch (prof_id) { |
| case ICE_RXDID_FLEX_NIC: |
| case ICE_RXDID_FLEX_NIC_2: |
| ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0); |
| ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1); |
| ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2); |
| |
| mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ? |
| ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH; |
| |
| ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3); |
| |
| ice_init_flex_flags(hw, prof_id); |
| break; |
| |
| default: |
| ice_debug(hw, ICE_DBG_INIT, |
| "Field init for profile ID %d not supported\n", |
| prof_id); |
| } |
| } |
| |
| /** |
| * ice_init_fltr_mgmt_struct - initializes filter management list and locks |
| * @hw: pointer to the hw struct |
| */ |
| static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw; |
| |
| hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*hw->switch_info), GFP_KERNEL); |
| sw = hw->switch_info; |
| |
| if (!sw) |
| return ICE_ERR_NO_MEMORY; |
| |
| INIT_LIST_HEAD(&sw->vsi_list_map_head); |
| |
| return ice_init_def_sw_recp(hw); |
| } |
| |
| /** |
| * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks |
| * @hw: pointer to the hw struct |
| */ |
| static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| struct ice_vsi_list_map_info *v_pos_map; |
| struct ice_vsi_list_map_info *v_tmp_map; |
| struct ice_sw_recipe *recps; |
| u8 i; |
| |
| list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head, |
| list_entry) { |
| list_del(&v_pos_map->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), v_pos_map); |
| } |
| recps = hw->switch_info->recp_list; |
| for (i = 0; i < ICE_SW_LKUP_LAST; i++) { |
| struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry; |
| |
| recps[i].root_rid = i; |
| mutex_destroy(&recps[i].filt_rule_lock); |
| list_for_each_entry_safe(lst_itr, tmp_entry, |
| &recps[i].filt_rules, list_entry) { |
| list_del(&lst_itr->list_entry); |
| devm_kfree(ice_hw_to_dev(hw), lst_itr); |
| } |
| } |
| ice_rm_all_sw_replay_rule_info(hw); |
| devm_kfree(ice_hw_to_dev(hw), sw->recp_list); |
| devm_kfree(ice_hw_to_dev(hw), sw); |
| } |
| |
| #define ICE_FW_LOG_DESC_SIZE(n) (sizeof(struct ice_aqc_fw_logging_data) + \ |
| (((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry))) |
| #define ICE_FW_LOG_DESC_SIZE_MAX \ |
| ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX) |
| |
| /** |
| * ice_cfg_fw_log - configure FW logging |
| * @hw: pointer to the hw struct |
| * @enable: enable certain FW logging events if true, disable all if false |
| * |
| * This function enables/disables the FW logging via Rx CQ events and a UART |
| * port based on predetermined configurations. FW logging via the Rx CQ can be |
| * enabled/disabled for individual PF's. However, FW logging via the UART can |
| * only be enabled/disabled for all PFs on the same device. |
| * |
| * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in |
| * hw->fw_log need to be set accordingly, e.g. based on user-provided input, |
| * before initializing the device. |
| * |
| * When re/configuring FW logging, callers need to update the "cfg" elements of |
| * the hw->fw_log.evnts array with the desired logging event configurations for |
| * modules of interest. When disabling FW logging completely, the callers can |
| * just pass false in the "enable" parameter. On completion, the function will |
| * update the "cur" element of the hw->fw_log.evnts array with the resulting |
| * logging event configurations of the modules that are being re/configured. FW |
| * logging modules that are not part of a reconfiguration operation retain their |
| * previous states. |
| * |
| * Before resetting the device, it is recommended that the driver disables FW |
| * logging before shutting down the control queue. When disabling FW logging |
| * ("enable" = false), the latest configurations of FW logging events stored in |
| * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after |
| * a device reset. |
| * |
| * When enabling FW logging to emit log messages via the Rx CQ during the |
| * device's initialization phase, a mechanism alternative to interrupt handlers |
| * needs to be used to extract FW log messages from the Rx CQ periodically and |
| * to prevent the Rx CQ from being full and stalling other types of control |
| * messages from FW to SW. Interrupts are typically disabled during the device's |
| * initialization phase. |
| */ |
| static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable) |
| { |
| struct ice_aqc_fw_logging_data *data = NULL; |
| struct ice_aqc_fw_logging *cmd; |
| enum ice_status status = 0; |
| u16 i, chgs = 0, len = 0; |
| struct ice_aq_desc desc; |
| u8 actv_evnts = 0; |
| void *buf = NULL; |
| |
| if (!hw->fw_log.cq_en && !hw->fw_log.uart_en) |
| return 0; |
| |
| /* Disable FW logging only when the control queue is still responsive */ |
| if (!enable && |
| (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq))) |
| return 0; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging); |
| cmd = &desc.params.fw_logging; |
| |
| /* Indicate which controls are valid */ |
| if (hw->fw_log.cq_en) |
| cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID; |
| |
| if (hw->fw_log.uart_en) |
| cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID; |
| |
| if (enable) { |
| /* Fill in an array of entries with FW logging modules and |
| * logging events being reconfigured. |
| */ |
| for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) { |
| u16 val; |
| |
| /* Keep track of enabled event types */ |
| actv_evnts |= hw->fw_log.evnts[i].cfg; |
| |
| if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur) |
| continue; |
| |
| if (!data) { |
| data = devm_kzalloc(ice_hw_to_dev(hw), |
| ICE_FW_LOG_DESC_SIZE_MAX, |
| GFP_KERNEL); |
| if (!data) |
| return ICE_ERR_NO_MEMORY; |
| } |
| |
| val = i << ICE_AQC_FW_LOG_ID_S; |
| val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S; |
| data->entry[chgs++] = cpu_to_le16(val); |
| } |
| |
| /* Only enable FW logging if at least one module is specified. |
| * If FW logging is currently enabled but all modules are not |
| * enabled to emit log messages, disable FW logging altogether. |
| */ |
| if (actv_evnts) { |
| /* Leave if there is effectively no change */ |
| if (!chgs) |
| goto out; |
| |
| if (hw->fw_log.cq_en) |
| cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN; |
| |
| if (hw->fw_log.uart_en) |
| cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN; |
| |
| buf = data; |
| len = ICE_FW_LOG_DESC_SIZE(chgs); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } |
| } |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, len, NULL); |
| if (!status) { |
| /* Update the current configuration to reflect events enabled. |
| * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW |
| * logging mode is enabled for the device. They do not reflect |
| * actual modules being enabled to emit log messages. So, their |
| * values remain unchanged even when all modules are disabled. |
| */ |
| u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX; |
| |
| hw->fw_log.actv_evnts = actv_evnts; |
| for (i = 0; i < cnt; i++) { |
| u16 v, m; |
| |
| if (!enable) { |
| /* When disabling all FW logging events as part |
| * of device's de-initialization, the original |
| * configurations are retained, and can be used |
| * to reconfigure FW logging later if the device |
| * is re-initialized. |
| */ |
| hw->fw_log.evnts[i].cur = 0; |
| continue; |
| } |
| |
| v = le16_to_cpu(data->entry[i]); |
| m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S; |
| hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg; |
| } |
| } |
| |
| out: |
| if (data) |
| devm_kfree(ice_hw_to_dev(hw), data); |
| |
| return status; |
| } |
| |
| /** |
| * ice_output_fw_log |
| * @hw: pointer to the hw struct |
| * @desc: pointer to the AQ message descriptor |
| * @buf: pointer to the buffer accompanying the AQ message |
| * |
| * Formats a FW Log message and outputs it via the standard driver logs. |
| */ |
| void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf) |
| { |
| ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg Start ]\n"); |
| ice_debug_array(hw, ICE_DBG_AQ_MSG, 16, 1, (u8 *)buf, |
| le16_to_cpu(desc->datalen)); |
| ice_debug(hw, ICE_DBG_AQ_MSG, "[ FW Log Msg End ]\n"); |
| } |
| |
| /** |
| * ice_get_itr_intrl_gran - determine int/intrl granularity |
| * @hw: pointer to the hw struct |
| * |
| * Determines the itr/intrl granularities based on the maximum aggregate |
| * bandwidth according to the device's configuration during power-on. |
| */ |
| static enum ice_status ice_get_itr_intrl_gran(struct ice_hw *hw) |
| { |
| u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) & |
| GL_PWR_MODE_CTL_CAR_MAX_BW_M) >> |
| GL_PWR_MODE_CTL_CAR_MAX_BW_S; |
| |
| switch (max_agg_bw) { |
| case ICE_MAX_AGG_BW_200G: |
| case ICE_MAX_AGG_BW_100G: |
| case ICE_MAX_AGG_BW_50G: |
| hw->itr_gran = ICE_ITR_GRAN_ABOVE_25; |
| hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25; |
| break; |
| case ICE_MAX_AGG_BW_25G: |
| hw->itr_gran = ICE_ITR_GRAN_MAX_25; |
| hw->intrl_gran = ICE_INTRL_GRAN_MAX_25; |
| break; |
| default: |
| ice_debug(hw, ICE_DBG_INIT, |
| "Failed to determine itr/intrl granularity\n"); |
| return ICE_ERR_CFG; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_init_hw - main hardware initialization routine |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_init_hw(struct ice_hw *hw) |
| { |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| enum ice_status status; |
| u16 mac_buf_len; |
| void *mac_buf; |
| |
| /* Set MAC type based on DeviceID */ |
| status = ice_set_mac_type(hw); |
| if (status) |
| return status; |
| |
| hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) & |
| PF_FUNC_RID_FUNC_NUM_M) >> |
| PF_FUNC_RID_FUNC_NUM_S; |
| |
| status = ice_reset(hw, ICE_RESET_PFR); |
| if (status) |
| return status; |
| |
| status = ice_get_itr_intrl_gran(hw); |
| if (status) |
| return status; |
| |
| status = ice_init_all_ctrlq(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| /* Enable FW logging. Not fatal if this fails. */ |
| status = ice_cfg_fw_log(hw, true); |
| if (status) |
| ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n"); |
| |
| status = ice_clear_pf_cfg(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| ice_clear_pxe_mode(hw); |
| |
| status = ice_init_nvm(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| status = ice_get_caps(hw); |
| if (status) |
| goto err_unroll_cqinit; |
| |
| hw->port_info = devm_kzalloc(ice_hw_to_dev(hw), |
| sizeof(*hw->port_info), GFP_KERNEL); |
| if (!hw->port_info) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_cqinit; |
| } |
| |
| /* set the back pointer to hw */ |
| hw->port_info->hw = hw; |
| |
| /* Initialize port_info struct with switch configuration data */ |
| status = ice_get_initial_sw_cfg(hw); |
| if (status) |
| goto err_unroll_alloc; |
| |
| hw->evb_veb = true; |
| |
| /* Query the allocated resources for Tx scheduler */ |
| status = ice_sched_query_res_alloc(hw); |
| if (status) { |
| ice_debug(hw, ICE_DBG_SCHED, |
| "Failed to get scheduler allocated resources\n"); |
| goto err_unroll_alloc; |
| } |
| |
| /* Initialize port_info struct with scheduler data */ |
| status = ice_sched_init_port(hw->port_info); |
| if (status) |
| goto err_unroll_sched; |
| |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_sched; |
| } |
| |
| /* Initialize port_info struct with PHY capabilities */ |
| status = ice_aq_get_phy_caps(hw->port_info, false, |
| ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL); |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| if (status) |
| goto err_unroll_sched; |
| |
| /* Initialize port_info struct with link information */ |
| status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL); |
| if (status) |
| goto err_unroll_sched; |
| |
| /* need a valid SW entry point to build a Tx tree */ |
| if (!hw->sw_entry_point_layer) { |
| ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n"); |
| status = ICE_ERR_CFG; |
| goto err_unroll_sched; |
| } |
| |
| status = ice_init_fltr_mgmt_struct(hw); |
| if (status) |
| goto err_unroll_sched; |
| |
| ice_dev_onetime_setup(hw); |
| |
| /* Get MAC information */ |
| /* A single port can report up to two (LAN and WoL) addresses */ |
| mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2, |
| sizeof(struct ice_aqc_manage_mac_read_resp), |
| GFP_KERNEL); |
| mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp); |
| |
| if (!mac_buf) { |
| status = ICE_ERR_NO_MEMORY; |
| goto err_unroll_fltr_mgmt_struct; |
| } |
| |
| status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL); |
| devm_kfree(ice_hw_to_dev(hw), mac_buf); |
| |
| if (status) |
| goto err_unroll_fltr_mgmt_struct; |
| |
| ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC); |
| ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2); |
| |
| return 0; |
| |
| err_unroll_fltr_mgmt_struct: |
| ice_cleanup_fltr_mgmt_struct(hw); |
| err_unroll_sched: |
| ice_sched_cleanup_all(hw); |
| err_unroll_alloc: |
| devm_kfree(ice_hw_to_dev(hw), hw->port_info); |
| err_unroll_cqinit: |
| ice_shutdown_all_ctrlq(hw); |
| return status; |
| } |
| |
| /** |
| * ice_deinit_hw - unroll initialization operations done by ice_init_hw |
| * @hw: pointer to the hardware structure |
| */ |
| void ice_deinit_hw(struct ice_hw *hw) |
| { |
| ice_cleanup_fltr_mgmt_struct(hw); |
| |
| ice_sched_cleanup_all(hw); |
| |
| if (hw->port_info) { |
| devm_kfree(ice_hw_to_dev(hw), hw->port_info); |
| hw->port_info = NULL; |
| } |
| |
| /* Attempt to disable FW logging before shutting down control queues */ |
| ice_cfg_fw_log(hw, false); |
| ice_shutdown_all_ctrlq(hw); |
| |
| /* Clear VSI contexts if not already cleared */ |
| ice_clear_all_vsi_ctx(hw); |
| } |
| |
| /** |
| * ice_check_reset - Check to see if a global reset is complete |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_check_reset(struct ice_hw *hw) |
| { |
| u32 cnt, reg = 0, grst_delay; |
| |
| /* Poll for Device Active state in case a recent CORER, GLOBR, |
| * or EMPR has occurred. The grst delay value is in 100ms units. |
| * Add 1sec for outstanding AQ commands that can take a long time. |
| */ |
| grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >> |
| GLGEN_RSTCTL_GRSTDEL_S) + 10; |
| |
| for (cnt = 0; cnt < grst_delay; cnt++) { |
| mdelay(100); |
| reg = rd32(hw, GLGEN_RSTAT); |
| if (!(reg & GLGEN_RSTAT_DEVSTATE_M)) |
| break; |
| } |
| |
| if (cnt == grst_delay) { |
| ice_debug(hw, ICE_DBG_INIT, |
| "Global reset polling failed to complete.\n"); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| #define ICE_RESET_DONE_MASK (GLNVM_ULD_CORER_DONE_M | \ |
| GLNVM_ULD_GLOBR_DONE_M) |
| |
| /* Device is Active; check Global Reset processes are done */ |
| for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { |
| reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK; |
| if (reg == ICE_RESET_DONE_MASK) { |
| ice_debug(hw, ICE_DBG_INIT, |
| "Global reset processes done. %d\n", cnt); |
| break; |
| } |
| mdelay(10); |
| } |
| |
| if (cnt == ICE_PF_RESET_WAIT_COUNT) { |
| ice_debug(hw, ICE_DBG_INIT, |
| "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n", |
| reg); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_pf_reset - Reset the PF |
| * @hw: pointer to the hardware structure |
| * |
| * If a global reset has been triggered, this function checks |
| * for its completion and then issues the PF reset |
| */ |
| static enum ice_status ice_pf_reset(struct ice_hw *hw) |
| { |
| u32 cnt, reg; |
| |
| /* If at function entry a global reset was already in progress, i.e. |
| * state is not 'device active' or any of the reset done bits are not |
| * set in GLNVM_ULD, there is no need for a PF Reset; poll until the |
| * global reset is done. |
| */ |
| if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) || |
| (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) { |
| /* poll on global reset currently in progress until done */ |
| if (ice_check_reset(hw)) |
| return ICE_ERR_RESET_FAILED; |
| |
| return 0; |
| } |
| |
| /* Reset the PF */ |
| reg = rd32(hw, PFGEN_CTRL); |
| |
| wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M)); |
| |
| for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) { |
| reg = rd32(hw, PFGEN_CTRL); |
| if (!(reg & PFGEN_CTRL_PFSWR_M)) |
| break; |
| |
| mdelay(1); |
| } |
| |
| if (cnt == ICE_PF_RESET_WAIT_COUNT) { |
| ice_debug(hw, ICE_DBG_INIT, |
| "PF reset polling failed to complete.\n"); |
| return ICE_ERR_RESET_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_reset - Perform different types of reset |
| * @hw: pointer to the hardware structure |
| * @req: reset request |
| * |
| * This function triggers a reset as specified by the req parameter. |
| * |
| * Note: |
| * If anything other than a PF reset is triggered, PXE mode is restored. |
| * This has to be cleared using ice_clear_pxe_mode again, once the AQ |
| * interface has been restored in the rebuild flow. |
| */ |
| enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req) |
| { |
| u32 val = 0; |
| |
| switch (req) { |
| case ICE_RESET_PFR: |
| return ice_pf_reset(hw); |
| case ICE_RESET_CORER: |
| ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n"); |
| val = GLGEN_RTRIG_CORER_M; |
| break; |
| case ICE_RESET_GLOBR: |
| ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n"); |
| val = GLGEN_RTRIG_GLOBR_M; |
| break; |
| default: |
| return ICE_ERR_PARAM; |
| } |
| |
| val |= rd32(hw, GLGEN_RTRIG); |
| wr32(hw, GLGEN_RTRIG, val); |
| ice_flush(hw); |
| |
| /* wait for the FW to be ready */ |
| return ice_check_reset(hw); |
| } |
| |
| /** |
| * ice_copy_rxq_ctx_to_hw |
| * @hw: pointer to the hardware structure |
| * @ice_rxq_ctx: pointer to the rxq context |
| * @rxq_index: the index of the Rx queue |
| * |
| * Copies rxq context from dense structure to hw register space |
| */ |
| static enum ice_status |
| ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index) |
| { |
| u8 i; |
| |
| if (!ice_rxq_ctx) |
| return ICE_ERR_BAD_PTR; |
| |
| if (rxq_index > QRX_CTRL_MAX_INDEX) |
| return ICE_ERR_PARAM; |
| |
| /* Copy each dword separately to hw */ |
| for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) { |
| wr32(hw, QRX_CONTEXT(i, rxq_index), |
| *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); |
| |
| ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i, |
| *((u32 *)(ice_rxq_ctx + (i * sizeof(u32))))); |
| } |
| |
| return 0; |
| } |
| |
| /* LAN Rx Queue Context */ |
| static const struct ice_ctx_ele ice_rlan_ctx_info[] = { |
| /* Field Width LSB */ |
| ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0), |
| ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13), |
| ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32), |
| ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89), |
| ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102), |
| ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109), |
| ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114), |
| ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116), |
| ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117), |
| ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119), |
| ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120), |
| ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124), |
| ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127), |
| ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174), |
| ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193), |
| ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194), |
| ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195), |
| ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196), |
| ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198), |
| { 0 } |
| }; |
| |
| /** |
| * ice_write_rxq_ctx |
| * @hw: pointer to the hardware structure |
| * @rlan_ctx: pointer to the rxq context |
| * @rxq_index: the index of the Rx queue |
| * |
| * Converts rxq context from sparse to dense structure and then writes |
| * it to hw register space |
| */ |
| enum ice_status |
| ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx, |
| u32 rxq_index) |
| { |
| u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 }; |
| |
| ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info); |
| return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index); |
| } |
| |
| /* LAN Tx Queue Context */ |
| const struct ice_ctx_ele ice_tlan_ctx_info[] = { |
| /* Field Width LSB */ |
| ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0), |
| ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57), |
| ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60), |
| ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65), |
| ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68), |
| ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78), |
| ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80), |
| ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90), |
| ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92), |
| ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93), |
| ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101), |
| ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102), |
| ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103), |
| ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104), |
| ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105), |
| ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114), |
| ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128), |
| ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129), |
| ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135), |
| ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148), |
| ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152), |
| ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153), |
| ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164), |
| ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165), |
| ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166), |
| ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168), |
| ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 110, 171), |
| { 0 } |
| }; |
| |
| /** |
| * ice_debug_cq |
| * @hw: pointer to the hardware structure |
| * @mask: debug mask |
| * @desc: pointer to control queue descriptor |
| * @buf: pointer to command buffer |
| * @buf_len: max length of buf |
| * |
| * Dumps debug log about control command with descriptor contents. |
| */ |
| void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, |
| void *buf, u16 buf_len) |
| { |
| struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc; |
| u16 len; |
| |
| #ifndef CONFIG_DYNAMIC_DEBUG |
| if (!(mask & hw->debug_mask)) |
| return; |
| #endif |
| |
| if (!desc) |
| return; |
| |
| len = le16_to_cpu(cq_desc->datalen); |
| |
| ice_debug(hw, mask, |
| "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", |
| le16_to_cpu(cq_desc->opcode), |
| le16_to_cpu(cq_desc->flags), |
| le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval)); |
| ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n", |
| le32_to_cpu(cq_desc->cookie_high), |
| le32_to_cpu(cq_desc->cookie_low)); |
| ice_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n", |
| le32_to_cpu(cq_desc->params.generic.param0), |
| le32_to_cpu(cq_desc->params.generic.param1)); |
| ice_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n", |
| le32_to_cpu(cq_desc->params.generic.addr_high), |
| le32_to_cpu(cq_desc->params.generic.addr_low)); |
| if (buf && cq_desc->datalen != 0) { |
| ice_debug(hw, mask, "Buffer:\n"); |
| if (buf_len < len) |
| len = buf_len; |
| |
| ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len); |
| } |
| } |
| |
| /* FW Admin Queue command wrappers */ |
| |
| /** |
| * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue |
| * @hw: pointer to the hw struct |
| * @desc: descriptor describing the command |
| * @buf: buffer to use for indirect commands (NULL for direct commands) |
| * @buf_size: size of buffer for indirect commands (0 for direct commands) |
| * @cd: pointer to command details structure |
| * |
| * Helper function to send FW Admin Queue commands to the FW Admin Queue. |
| */ |
| enum ice_status |
| ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf, |
| u16 buf_size, struct ice_sq_cd *cd) |
| { |
| return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd); |
| } |
| |
| /** |
| * ice_aq_get_fw_ver |
| * @hw: pointer to the hw struct |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get the firmware version (0x0001) from the admin queue commands |
| */ |
| enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_get_ver *resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| resp = &desc.params.get_ver; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver); |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| |
| if (!status) { |
| hw->fw_branch = resp->fw_branch; |
| hw->fw_maj_ver = resp->fw_major; |
| hw->fw_min_ver = resp->fw_minor; |
| hw->fw_patch = resp->fw_patch; |
| hw->fw_build = le32_to_cpu(resp->fw_build); |
| hw->api_branch = resp->api_branch; |
| hw->api_maj_ver = resp->api_major; |
| hw->api_min_ver = resp->api_minor; |
| hw->api_patch = resp->api_patch; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_q_shutdown |
| * @hw: pointer to the hw struct |
| * @unloading: is the driver unloading itself |
| * |
| * Tell the Firmware that we're shutting down the AdminQ and whether |
| * or not the driver is unloading as well (0x0003). |
| */ |
| enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading) |
| { |
| struct ice_aqc_q_shutdown *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.q_shutdown; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown); |
| |
| if (unloading) |
| cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_aq_req_res |
| * @hw: pointer to the hw struct |
| * @res: resource id |
| * @access: access type |
| * @sdp_number: resource number |
| * @timeout: the maximum time in ms that the driver may hold the resource |
| * @cd: pointer to command details structure or NULL |
| * |
| * Requests common resource using the admin queue commands (0x0008). |
| * When attempting to acquire the Global Config Lock, the driver can |
| * learn of three states: |
| * 1) ICE_SUCCESS - acquired lock, and can perform download package |
| * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load |
| * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has |
| * successfully downloaded the package; the driver does |
| * not have to download the package and can continue |
| * loading |
| * |
| * Note that if the caller is in an acquire lock, perform action, release lock |
| * phase of operation, it is possible that the FW may detect a timeout and issue |
| * a CORER. In this case, the driver will receive a CORER interrupt and will |
| * have to determine its cause. The calling thread that is handling this flow |
| * will likely get an error propagated back to it indicating the Download |
| * Package, Update Package or the Release Resource AQ commands timed out. |
| */ |
| static enum ice_status |
| ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res, |
| enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_req_res *cmd_resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd_resp = &desc.params.res_owner; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res); |
| |
| cmd_resp->res_id = cpu_to_le16(res); |
| cmd_resp->access_type = cpu_to_le16(access); |
| cmd_resp->res_number = cpu_to_le32(sdp_number); |
| cmd_resp->timeout = cpu_to_le32(*timeout); |
| *timeout = 0; |
| |
| status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| |
| /* The completion specifies the maximum time in ms that the driver |
| * may hold the resource in the Timeout field. |
| */ |
| |
| /* Global config lock response utilizes an additional status field. |
| * |
| * If the Global config lock resource is held by some other driver, the |
| * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field |
| * and the timeout field indicates the maximum time the current owner |
| * of the resource has to free it. |
| */ |
| if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) { |
| if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) { |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| return 0; |
| } else if (le16_to_cpu(cmd_resp->status) == |
| ICE_AQ_RES_GLBL_IN_PROG) { |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| return ICE_ERR_AQ_ERROR; |
| } else if (le16_to_cpu(cmd_resp->status) == |
| ICE_AQ_RES_GLBL_DONE) { |
| return ICE_ERR_AQ_NO_WORK; |
| } |
| |
| /* invalid FW response, force a timeout immediately */ |
| *timeout = 0; |
| return ICE_ERR_AQ_ERROR; |
| } |
| |
| /* If the resource is held by some other driver, the command completes |
| * with a busy return value and the timeout field indicates the maximum |
| * time the current owner of the resource has to free it. |
| */ |
| if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY) |
| *timeout = le32_to_cpu(cmd_resp->timeout); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_release_res |
| * @hw: pointer to the hw struct |
| * @res: resource id |
| * @sdp_number: resource number |
| * @cd: pointer to command details structure or NULL |
| * |
| * release common resource using the admin queue commands (0x0009) |
| */ |
| static enum ice_status |
| ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_req_res *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.res_owner; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res); |
| |
| cmd->res_id = cpu_to_le16(res); |
| cmd->res_number = cpu_to_le32(sdp_number); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_acquire_res |
| * @hw: pointer to the HW structure |
| * @res: resource id |
| * @access: access type (read or write) |
| * @timeout: timeout in milliseconds |
| * |
| * This function will attempt to acquire the ownership of a resource. |
| */ |
| enum ice_status |
| ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res, |
| enum ice_aq_res_access_type access, u32 timeout) |
| { |
| #define ICE_RES_POLLING_DELAY_MS 10 |
| u32 delay = ICE_RES_POLLING_DELAY_MS; |
| u32 time_left = timeout; |
| enum ice_status status; |
| |
| status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); |
| |
| /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has |
| * previously acquired the resource and performed any necessary updates; |
| * in this case the caller does not obtain the resource and has no |
| * further work to do. |
| */ |
| if (status == ICE_ERR_AQ_NO_WORK) |
| goto ice_acquire_res_exit; |
| |
| if (status) |
| ice_debug(hw, ICE_DBG_RES, |
| "resource %d acquire type %d failed.\n", res, access); |
| |
| /* If necessary, poll until the current lock owner timeouts */ |
| timeout = time_left; |
| while (status && timeout && time_left) { |
| mdelay(delay); |
| timeout = (timeout > delay) ? timeout - delay : 0; |
| status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL); |
| |
| if (status == ICE_ERR_AQ_NO_WORK) |
| /* lock free, but no work to do */ |
| break; |
| |
| if (!status) |
| /* lock acquired */ |
| break; |
| } |
| if (status && status != ICE_ERR_AQ_NO_WORK) |
| ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n"); |
| |
| ice_acquire_res_exit: |
| if (status == ICE_ERR_AQ_NO_WORK) { |
| if (access == ICE_RES_WRITE) |
| ice_debug(hw, ICE_DBG_RES, |
| "resource indicates no work to do.\n"); |
| else |
| ice_debug(hw, ICE_DBG_RES, |
| "Warning: ICE_ERR_AQ_NO_WORK not expected\n"); |
| } |
| return status; |
| } |
| |
| /** |
| * ice_release_res |
| * @hw: pointer to the HW structure |
| * @res: resource id |
| * |
| * This function will release a resource using the proper Admin Command. |
| */ |
| void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res) |
| { |
| enum ice_status status; |
| u32 total_delay = 0; |
| |
| status = ice_aq_release_res(hw, res, 0, NULL); |
| |
| /* there are some rare cases when trying to release the resource |
| * results in an admin Q timeout, so handle them correctly |
| */ |
| while ((status == ICE_ERR_AQ_TIMEOUT) && |
| (total_delay < hw->adminq.sq_cmd_timeout)) { |
| mdelay(1); |
| status = ice_aq_release_res(hw, res, 0, NULL); |
| total_delay++; |
| } |
| } |
| |
| /** |
| * ice_get_guar_num_vsi - determine number of guar VSI for a PF |
| * @hw: pointer to the hw structure |
| * |
| * Determine the number of valid functions by going through the bitmap returned |
| * from parsing capabilities and use this to calculate the number of VSI per PF. |
| */ |
| static u32 ice_get_guar_num_vsi(struct ice_hw *hw) |
| { |
| u8 funcs; |
| |
| #define ICE_CAPS_VALID_FUNCS_M 0xFF |
| funcs = hweight8(hw->dev_caps.common_cap.valid_functions & |
| ICE_CAPS_VALID_FUNCS_M); |
| |
| if (!funcs) |
| return 0; |
| |
| return ICE_MAX_VSI / funcs; |
| } |
| |
| /** |
| * ice_parse_caps - parse function/device capabilities |
| * @hw: pointer to the hw struct |
| * @buf: pointer to a buffer containing function/device capability records |
| * @cap_count: number of capability records in the list |
| * @opc: type of capabilities list to parse |
| * |
| * Helper function to parse function(0x000a)/device(0x000b) capabilities list. |
| */ |
| static void |
| ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count, |
| enum ice_adminq_opc opc) |
| { |
| struct ice_aqc_list_caps_elem *cap_resp; |
| struct ice_hw_func_caps *func_p = NULL; |
| struct ice_hw_dev_caps *dev_p = NULL; |
| struct ice_hw_common_caps *caps; |
| u32 i; |
| |
| if (!buf) |
| return; |
| |
| cap_resp = (struct ice_aqc_list_caps_elem *)buf; |
| |
| if (opc == ice_aqc_opc_list_dev_caps) { |
| dev_p = &hw->dev_caps; |
| caps = &dev_p->common_cap; |
| } else if (opc == ice_aqc_opc_list_func_caps) { |
| func_p = &hw->func_caps; |
| caps = &func_p->common_cap; |
| } else { |
| ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n"); |
| return; |
| } |
| |
| for (i = 0; caps && i < cap_count; i++, cap_resp++) { |
| u32 logical_id = le32_to_cpu(cap_resp->logical_id); |
| u32 phys_id = le32_to_cpu(cap_resp->phys_id); |
| u32 number = le32_to_cpu(cap_resp->number); |
| u16 cap = le16_to_cpu(cap_resp->cap); |
| |
| switch (cap) { |
| case ICE_AQC_CAPS_VALID_FUNCTIONS: |
| caps->valid_functions = number; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Valid Functions = %d\n", |
| caps->valid_functions); |
| break; |
| case ICE_AQC_CAPS_SRIOV: |
| caps->sr_iov_1_1 = (number == 1); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: SR-IOV = %d\n", caps->sr_iov_1_1); |
| break; |
| case ICE_AQC_CAPS_VF: |
| if (dev_p) { |
| dev_p->num_vfs_exposed = number; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: VFs exposed = %d\n", |
| dev_p->num_vfs_exposed); |
| } else if (func_p) { |
| func_p->num_allocd_vfs = number; |
| func_p->vf_base_id = logical_id; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: VFs allocated = %d\n", |
| func_p->num_allocd_vfs); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: VF base_id = %d\n", |
| func_p->vf_base_id); |
| } |
| break; |
| case ICE_AQC_CAPS_VSI: |
| if (dev_p) { |
| dev_p->num_vsi_allocd_to_host = number; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Dev.VSI cnt = %d\n", |
| dev_p->num_vsi_allocd_to_host); |
| } else if (func_p) { |
| func_p->guar_num_vsi = ice_get_guar_num_vsi(hw); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Func.VSI cnt = %d\n", |
| number); |
| } |
| break; |
| case ICE_AQC_CAPS_RSS: |
| caps->rss_table_size = number; |
| caps->rss_table_entry_width = logical_id; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: RSS table size = %d\n", |
| caps->rss_table_size); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: RSS table width = %d\n", |
| caps->rss_table_entry_width); |
| break; |
| case ICE_AQC_CAPS_RXQS: |
| caps->num_rxq = number; |
| caps->rxq_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Num Rx Qs = %d\n", caps->num_rxq); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Rx first queue ID = %d\n", |
| caps->rxq_first_id); |
| break; |
| case ICE_AQC_CAPS_TXQS: |
| caps->num_txq = number; |
| caps->txq_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Num Tx Qs = %d\n", caps->num_txq); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Tx first queue ID = %d\n", |
| caps->txq_first_id); |
| break; |
| case ICE_AQC_CAPS_MSIX: |
| caps->num_msix_vectors = number; |
| caps->msix_vector_first_id = phys_id; |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: MSIX vector count = %d\n", |
| caps->num_msix_vectors); |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: MSIX first vector index = %d\n", |
| caps->msix_vector_first_id); |
| break; |
| case ICE_AQC_CAPS_MAX_MTU: |
| caps->max_mtu = number; |
| if (dev_p) |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Dev.MaxMTU = %d\n", |
| caps->max_mtu); |
| else if (func_p) |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: func.MaxMTU = %d\n", |
| caps->max_mtu); |
| break; |
| default: |
| ice_debug(hw, ICE_DBG_INIT, |
| "HW caps: Unknown capability[%d]: 0x%x\n", i, |
| cap); |
| break; |
| } |
| } |
| } |
| |
| /** |
| * ice_aq_discover_caps - query function/device capabilities |
| * @hw: pointer to the hw struct |
| * @buf: a virtual buffer to hold the capabilities |
| * @buf_size: Size of the virtual buffer |
| * @cap_count: cap count needed if AQ err==ENOMEM |
| * @opc: capabilities type to discover - pass in the command opcode |
| * @cd: pointer to command details structure or NULL |
| * |
| * Get the function(0x000a)/device(0x000b) capabilities description from |
| * the firmware. |
| */ |
| static enum ice_status |
| ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count, |
| enum ice_adminq_opc opc, struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_list_caps *cmd; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| |
| cmd = &desc.params.get_cap; |
| |
| if (opc != ice_aqc_opc_list_func_caps && |
| opc != ice_aqc_opc_list_dev_caps) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, opc); |
| |
| status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); |
| if (!status) |
| ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc); |
| else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM) |
| *cap_count = le32_to_cpu(cmd->count); |
| return status; |
| } |
| |
| /** |
| * ice_discover_caps - get info about the HW |
| * @hw: pointer to the hardware structure |
| * @opc: capabilities type to discover - pass in the command opcode |
| */ |
| static enum ice_status ice_discover_caps(struct ice_hw *hw, |
| enum ice_adminq_opc opc) |
| { |
| enum ice_status status; |
| u32 cap_count; |
| u16 cbuf_len; |
| u8 retries; |
| |
| /* The driver doesn't know how many capabilities the device will return |
| * so the buffer size required isn't known ahead of time. The driver |
| * starts with cbuf_len and if this turns out to be insufficient, the |
| * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs. |
| * The driver then allocates the buffer based on the count and retries |
| * the operation. So it follows that the retry count is 2. |
| */ |
| #define ICE_GET_CAP_BUF_COUNT 40 |
| #define ICE_GET_CAP_RETRY_COUNT 2 |
| |
| cap_count = ICE_GET_CAP_BUF_COUNT; |
| retries = ICE_GET_CAP_RETRY_COUNT; |
| |
| do { |
| void *cbuf; |
| |
| cbuf_len = (u16)(cap_count * |
| sizeof(struct ice_aqc_list_caps_elem)); |
| cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL); |
| if (!cbuf) |
| return ICE_ERR_NO_MEMORY; |
| |
| status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count, |
| opc, NULL); |
| devm_kfree(ice_hw_to_dev(hw), cbuf); |
| |
| if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM) |
| break; |
| |
| /* If ENOMEM is returned, try again with bigger buffer */ |
| } while (--retries); |
| |
| return status; |
| } |
| |
| /** |
| * ice_get_caps - get info about the HW |
| * @hw: pointer to the hardware structure |
| */ |
| enum ice_status ice_get_caps(struct ice_hw *hw) |
| { |
| enum ice_status status; |
| |
| status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps); |
| if (!status) |
| status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps); |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_manage_mac_write - manage MAC address write command |
| * @hw: pointer to the hw struct |
| * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address |
| * @flags: flags to control write behavior |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function is used to write MAC address to the NVM (0x0108). |
| */ |
| enum ice_status |
| ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_manage_mac_write *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.mac_write; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write); |
| |
| cmd->flags = flags; |
| |
| /* Prep values for flags, sah, sal */ |
| cmd->sah = htons(*((u16 *)mac_addr)); |
| cmd->sal = htonl(*((u32 *)(mac_addr + 2))); |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * ice_aq_clear_pxe_mode |
| * @hw: pointer to the hw struct |
| * |
| * Tell the firmware that the driver is taking over from PXE (0x0110). |
| */ |
| static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw) |
| { |
| struct ice_aq_desc desc; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode); |
| desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT; |
| |
| return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); |
| } |
| |
| /** |
| * ice_clear_pxe_mode - clear pxe operations mode |
| * @hw: pointer to the hw struct |
| * |
| * Make sure all PXE mode settings are cleared, including things |
| * like descriptor fetch/write-back mode. |
| */ |
| void ice_clear_pxe_mode(struct ice_hw *hw) |
| { |
| if (ice_check_sq_alive(hw, &hw->adminq)) |
| ice_aq_clear_pxe_mode(hw); |
| } |
| |
| /** |
| * ice_get_link_speed_based_on_phy_type - returns link speed |
| * @phy_type_low: lower part of phy_type |
| * |
| * This helper function will convert a phy_type_low to its corresponding link |
| * speed. |
| * Note: In the structure of phy_type_low, there should be one bit set, as |
| * this function will convert one phy type to its speed. |
| * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned |
| * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned |
| */ |
| static u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low) |
| { |
| u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; |
| |
| switch (phy_type_low) { |
| case ICE_PHY_TYPE_LOW_100BASE_TX: |
| case ICE_PHY_TYPE_LOW_100M_SGMII: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB; |
| break; |
| case ICE_PHY_TYPE_LOW_1000BASE_T: |
| case ICE_PHY_TYPE_LOW_1000BASE_SX: |
| case ICE_PHY_TYPE_LOW_1000BASE_LX: |
| case ICE_PHY_TYPE_LOW_1000BASE_KX: |
| case ICE_PHY_TYPE_LOW_1G_SGMII: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB; |
| break; |
| case ICE_PHY_TYPE_LOW_2500BASE_T: |
| case ICE_PHY_TYPE_LOW_2500BASE_X: |
| case ICE_PHY_TYPE_LOW_2500BASE_KX: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB; |
| break; |
| case ICE_PHY_TYPE_LOW_5GBASE_T: |
| case ICE_PHY_TYPE_LOW_5GBASE_KR: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB; |
| break; |
| case ICE_PHY_TYPE_LOW_10GBASE_T: |
| case ICE_PHY_TYPE_LOW_10G_SFI_DA: |
| case ICE_PHY_TYPE_LOW_10GBASE_SR: |
| case ICE_PHY_TYPE_LOW_10GBASE_LR: |
| case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1: |
| case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_10G_SFI_C2C: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB; |
| break; |
| case ICE_PHY_TYPE_LOW_25GBASE_T: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_CR1: |
| case ICE_PHY_TYPE_LOW_25GBASE_SR: |
| case ICE_PHY_TYPE_LOW_25GBASE_LR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR_S: |
| case ICE_PHY_TYPE_LOW_25GBASE_KR1: |
| case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_25G_AUI_C2C: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB; |
| break; |
| case ICE_PHY_TYPE_LOW_40GBASE_CR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_SR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_LR4: |
| case ICE_PHY_TYPE_LOW_40GBASE_KR4: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC: |
| case ICE_PHY_TYPE_LOW_40G_XLAUI: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB; |
| break; |
| default: |
| speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN; |
| break; |
| } |
| |
| return speed_phy_type_low; |
| } |
| |
| /** |
| * ice_update_phy_type |
| * @phy_type_low: pointer to the lower part of phy_type |
| * @link_speeds_bitmap: targeted link speeds bitmap |
| * |
| * Note: For the link_speeds_bitmap structure, you can check it at |
| * [ice_aqc_get_link_status->link_speed]. Caller can pass in |
| * link_speeds_bitmap include multiple speeds. |
| * |
| * The value of phy_type_low will present a certain link speed. This helper |
| * function will turn on bits in the phy_type_low based on the value of |
| * link_speeds_bitmap input parameter. |
| */ |
| void ice_update_phy_type(u64 *phy_type_low, u16 link_speeds_bitmap) |
| { |
| u16 speed = ICE_AQ_LINK_SPEED_UNKNOWN; |
| u64 pt_low; |
| int index; |
| |
| /* We first check with low part of phy_type */ |
| for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) { |
| pt_low = BIT_ULL(index); |
| speed = ice_get_link_speed_based_on_phy_type(pt_low); |
| |
| if (link_speeds_bitmap & speed) |
| *phy_type_low |= BIT_ULL(index); |
| } |
| } |
| |
| /** |
| * ice_aq_set_phy_cfg |
| * @hw: pointer to the hw struct |
| * @lport: logical port number |
| * @cfg: structure with PHY configuration data to be set |
| * @cd: pointer to command details structure or NULL |
| * |
| * Set the various PHY configuration parameters supported on the Port. |
| * One or more of the Set PHY config parameters may be ignored in an MFP |
| * mode as the PF may not have the privilege to set some of the PHY Config |
| * parameters. This status will be indicated by the command response (0x0601). |
| */ |
| enum ice_status |
| ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport, |
| struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd) |
| { |
| struct ice_aq_desc desc; |
| |
| if (!cfg) |
| return ICE_ERR_PARAM; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg); |
| desc.params.set_phy.lport_num = lport; |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd); |
| } |
| |
| /** |
| * ice_update_link_info - update status of the HW network link |
| * @pi: port info structure of the interested logical port |
| */ |
| enum ice_status ice_update_link_info(struct ice_port_info *pi) |
| { |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| struct ice_phy_info *phy_info; |
| enum ice_status status; |
| struct ice_hw *hw; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| |
| hw = pi->hw; |
| |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) |
| return ICE_ERR_NO_MEMORY; |
| |
| phy_info = &pi->phy; |
| status = ice_aq_get_link_info(pi, true, NULL, NULL); |
| if (status) |
| goto out; |
| |
| if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { |
| status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, |
| pcaps, NULL); |
| if (status) |
| goto out; |
| |
| memcpy(phy_info->link_info.module_type, &pcaps->module_type, |
| sizeof(phy_info->link_info.module_type)); |
| } |
| out: |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| return status; |
| } |
| |
| /** |
| * ice_set_fc |
| * @pi: port information structure |
| * @aq_failures: pointer to status code, specific to ice_set_fc routine |
| * @ena_auto_link_update: enable automatic link update |
| * |
| * Set the requested flow control mode. |
| */ |
| enum ice_status |
| ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update) |
| { |
| struct ice_aqc_set_phy_cfg_data cfg = { 0 }; |
| struct ice_aqc_get_phy_caps_data *pcaps; |
| enum ice_status status; |
| u8 pause_mask = 0x0; |
| struct ice_hw *hw; |
| |
| if (!pi) |
| return ICE_ERR_PARAM; |
| hw = pi->hw; |
| *aq_failures = ICE_SET_FC_AQ_FAIL_NONE; |
| |
| switch (pi->fc.req_mode) { |
| case ICE_FC_FULL: |
| pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; |
| pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; |
| break; |
| case ICE_FC_RX_PAUSE: |
| pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE; |
| break; |
| case ICE_FC_TX_PAUSE: |
| pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE; |
| break; |
| default: |
| break; |
| } |
| |
| pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL); |
| if (!pcaps) |
| return ICE_ERR_NO_MEMORY; |
| |
| /* Get the current phy config */ |
| status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, |
| NULL); |
| if (status) { |
| *aq_failures = ICE_SET_FC_AQ_FAIL_GET; |
| goto out; |
| } |
| |
| /* clear the old pause settings */ |
| cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE | |
| ICE_AQC_PHY_EN_RX_LINK_PAUSE); |
| /* set the new capabilities */ |
| cfg.caps |= pause_mask; |
| /* If the capabilities have changed, then set the new config */ |
| if (cfg.caps != pcaps->caps) { |
| int retry_count, retry_max = 10; |
| |
| /* Auto restart link so settings take effect */ |
| if (ena_auto_link_update) |
| cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; |
| /* Copy over all the old settings */ |
| cfg.phy_type_low = pcaps->phy_type_low; |
| cfg.low_power_ctrl = pcaps->low_power_ctrl; |
| cfg.eee_cap = pcaps->eee_cap; |
| cfg.eeer_value = pcaps->eeer_value; |
| cfg.link_fec_opt = pcaps->link_fec_options; |
| |
| status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL); |
| if (status) { |
| *aq_failures = ICE_SET_FC_AQ_FAIL_SET; |
| goto out; |
| } |
| |
| /* Update the link info |
| * It sometimes takes a really long time for link to |
| * come back from the atomic reset. Thus, we wait a |
| * little bit. |
| */ |
| for (retry_count = 0; retry_count < retry_max; retry_count++) { |
| status = ice_update_link_info(pi); |
| |
| if (!status) |
| break; |
| |
| mdelay(100); |
| } |
| |
| if (status) |
| *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE; |
| } |
| |
| out: |
| devm_kfree(ice_hw_to_dev(hw), pcaps); |
| return status; |
| } |
| |
| /** |
| * ice_get_link_status - get status of the HW network link |
| * @pi: port information structure |
| * @link_up: pointer to bool (true/false = linkup/linkdown) |
| * |
| * Variable link_up is true if link is up, false if link is down. |
| * The variable link_up is invalid if status is non zero. As a |
| * result of this call, link status reporting becomes enabled |
| */ |
| enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up) |
| { |
| struct ice_phy_info *phy_info; |
| enum ice_status status = 0; |
| |
| if (!pi || !link_up) |
| return ICE_ERR_PARAM; |
| |
| phy_info = &pi->phy; |
| |
| if (phy_info->get_link_info) { |
| status = ice_update_link_info(pi); |
| |
| if (status) |
| ice_debug(pi->hw, ICE_DBG_LINK, |
| "get link status error, status = %d\n", |
| status); |
| } |
| |
| *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP; |
| |
| return status; |
| } |
| |
| /** |
| * ice_aq_set_link_restart_an |
| * @pi: pointer to the port information structure |
| * @ena_link: if true: enable link, if false: disable link |
| * @cd: pointer to command details structure or NULL |
| * |
| * Sets up the link and restarts the Auto-Negotiation over the link. |
| */ |
| enum ice_status |
| ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_restart_an *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.restart_an; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an); |
| |
| cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART; |
| cmd->lport_num = pi->lport; |
| if (ena_link) |
| cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE; |
| else |
| cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE; |
| |
| return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd); |
| } |
| |
| /** |
| * __ice_aq_get_set_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_id: VSI FW index |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * @glob_lut_idx: global LUT index |
| * @set: set true to set the table, false to get the table |
| * |
| * Internal function to get (0x0B05) or set (0x0B03) RSS look up table |
| */ |
| static enum ice_status |
| __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut, |
| u16 lut_size, u8 glob_lut_idx, bool set) |
| { |
| struct ice_aqc_get_set_rss_lut *cmd_resp; |
| struct ice_aq_desc desc; |
| enum ice_status status; |
| u16 flags = 0; |
| |
| cmd_resp = &desc.params.get_set_rss_lut; |
| |
| if (set) { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } else { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut); |
| } |
| |
| cmd_resp->vsi_id = cpu_to_le16(((vsi_id << |
| ICE_AQC_GSET_RSS_LUT_VSI_ID_S) & |
| ICE_AQC_GSET_RSS_LUT_VSI_ID_M) | |
| ICE_AQC_GSET_RSS_LUT_VSI_VALID); |
| |
| switch (lut_type) { |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI: |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF: |
| case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL: |
| flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M); |
| break; |
| default: |
| status = ICE_ERR_PARAM; |
| goto ice_aq_get_set_rss_lut_exit; |
| } |
| |
| if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) { |
| flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) & |
| ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M); |
| |
| if (!set) |
| goto ice_aq_get_set_rss_lut_send; |
| } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { |
| if (!set) |
| goto ice_aq_get_set_rss_lut_send; |
| } else { |
| goto ice_aq_get_set_rss_lut_send; |
| } |
| |
| /* LUT size is only valid for Global and PF table types */ |
| switch (lut_size) { |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128: |
| break; |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512: |
| flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG << |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; |
| break; |
| case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K: |
| if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) { |
| flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG << |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) & |
| ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M; |
| break; |
| } |
| /* fall-through */ |
| default: |
| status = ICE_ERR_PARAM; |
| goto ice_aq_get_set_rss_lut_exit; |
| } |
| |
| ice_aq_get_set_rss_lut_send: |
| cmd_resp->flags = cpu_to_le16(flags); |
| status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL); |
| |
| ice_aq_get_set_rss_lut_exit: |
| return status; |
| } |
| |
| /** |
| * ice_aq_get_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: software VSI handle |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * |
| * get the RSS lookup table, PF or VSI type |
| */ |
| enum ice_status |
| ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, |
| u8 *lut, u16 lut_size) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| lut_type, lut, lut_size, 0, false); |
| } |
| |
| /** |
| * ice_aq_set_rss_lut |
| * @hw: pointer to the hardware structure |
| * @vsi_handle: software VSI handle |
| * @lut_type: LUT table type |
| * @lut: pointer to the LUT buffer provided by the caller |
| * @lut_size: size of the LUT buffer |
| * |
| * set the RSS lookup table, PF or VSI type |
| */ |
| enum ice_status |
| ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type, |
| u8 *lut, u16 lut_size) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !lut) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| lut_type, lut, lut_size, 0, true); |
| } |
| |
| /** |
| * __ice_aq_get_set_rss_key |
| * @hw: pointer to the hw struct |
| * @vsi_id: VSI FW index |
| * @key: pointer to key info struct |
| * @set: set true to set the key, false to get the key |
| * |
| * get (0x0B04) or set (0x0B02) the RSS key per VSI |
| */ |
| static enum |
| ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id, |
| struct ice_aqc_get_set_rss_keys *key, |
| bool set) |
| { |
| struct ice_aqc_get_set_rss_key *cmd_resp; |
| u16 key_size = sizeof(*key); |
| struct ice_aq_desc desc; |
| |
| cmd_resp = &desc.params.get_set_rss_key; |
| |
| if (set) { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key); |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| } else { |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key); |
| } |
| |
| cmd_resp->vsi_id = cpu_to_le16(((vsi_id << |
| ICE_AQC_GSET_RSS_KEY_VSI_ID_S) & |
| ICE_AQC_GSET_RSS_KEY_VSI_ID_M) | |
| ICE_AQC_GSET_RSS_KEY_VSI_VALID); |
| |
| return ice_aq_send_cmd(hw, &desc, key, key_size, NULL); |
| } |
| |
| /** |
| * ice_aq_get_rss_key |
| * @hw: pointer to the hw struct |
| * @vsi_handle: software VSI handle |
| * @key: pointer to key info struct |
| * |
| * get the RSS key per VSI |
| */ |
| enum ice_status |
| ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_aqc_get_set_rss_keys *key) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !key) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| key, false); |
| } |
| |
| /** |
| * ice_aq_set_rss_key |
| * @hw: pointer to the hw struct |
| * @vsi_handle: software VSI handle |
| * @keys: pointer to key info struct |
| * |
| * set the RSS key per VSI |
| */ |
| enum ice_status |
| ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle, |
| struct ice_aqc_get_set_rss_keys *keys) |
| { |
| if (!ice_is_vsi_valid(hw, vsi_handle) || !keys) |
| return ICE_ERR_PARAM; |
| |
| return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle), |
| keys, true); |
| } |
| |
| /** |
| * ice_aq_add_lan_txq |
| * @hw: pointer to the hardware structure |
| * @num_qgrps: Number of added queue groups |
| * @qg_list: list of queue groups to be added |
| * @buf_size: size of buffer for indirect command |
| * @cd: pointer to command details structure or NULL |
| * |
| * Add Tx LAN queue (0x0C30) |
| * |
| * NOTE: |
| * Prior to calling add Tx LAN queue: |
| * Initialize the following as part of the Tx queue context: |
| * Completion queue ID if the queue uses Completion queue, Quanta profile, |
| * Cache profile and Packet shaper profile. |
| * |
| * After add Tx LAN queue AQ command is completed: |
| * Interrupts should be associated with specific queues, |
| * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue |
| * flow. |
| */ |
| static enum ice_status |
| ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, |
| struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| u16 i, sum_header_size, sum_q_size = 0; |
| struct ice_aqc_add_tx_qgrp *list; |
| struct ice_aqc_add_txqs *cmd; |
| struct ice_aq_desc desc; |
| |
| cmd = &desc.params.add_txqs; |
| |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs); |
| |
| if (!qg_list) |
| return ICE_ERR_PARAM; |
| |
| if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) |
| return ICE_ERR_PARAM; |
| |
| sum_header_size = num_qgrps * |
| (sizeof(*qg_list) - sizeof(*qg_list->txqs)); |
| |
| list = qg_list; |
| for (i = 0; i < num_qgrps; i++) { |
| struct ice_aqc_add_txqs_perq *q = list->txqs; |
| |
| sum_q_size += list->num_txqs * sizeof(*q); |
| list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs); |
| } |
| |
| if (buf_size != (sum_header_size + sum_q_size)) |
| return ICE_ERR_PARAM; |
| |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| cmd->num_qgrps = num_qgrps; |
| |
| return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); |
| } |
| |
| /** |
| * ice_aq_dis_lan_txq |
| * @hw: pointer to the hardware structure |
| * @num_qgrps: number of groups in the list |
| * @qg_list: the list of groups to disable |
| * @buf_size: the total size of the qg_list buffer in bytes |
| * @rst_src: if called due to reset, specifies the RST source |
| * @vmvf_num: the relative VM or VF number that is undergoing the reset |
| * @cd: pointer to command details structure or NULL |
| * |
| * Disable LAN Tx queue (0x0C31) |
| */ |
| static enum ice_status |
| ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, |
| struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, |
| enum ice_disq_rst_src rst_src, u16 vmvf_num, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_dis_txqs *cmd; |
| struct ice_aq_desc desc; |
| u16 i, sz = 0; |
| |
| cmd = &desc.params.dis_txqs; |
| ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); |
| |
| /* qg_list can be NULL only in VM/VF reset flow */ |
| if (!qg_list && !rst_src) |
| return ICE_ERR_PARAM; |
| |
| if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) |
| return ICE_ERR_PARAM; |
| |
| cmd->num_entries = num_qgrps; |
| |
| cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) & |
| ICE_AQC_Q_DIS_TIMEOUT_M); |
| |
| switch (rst_src) { |
| case ICE_VM_RESET: |
| cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET; |
| cmd->vmvf_and_timeout |= |
| cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M); |
| break; |
| case ICE_VF_RESET: |
| cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET; |
| /* In this case, FW expects vmvf_num to be absolute VF id */ |
| cmd->vmvf_and_timeout |= |
| cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) & |
| ICE_AQC_Q_DIS_VMVF_NUM_M); |
| break; |
| case ICE_NO_RESET: |
| default: |
| break; |
| } |
| |
| /* If no queue group info, we are in a reset flow. Issue the AQ */ |
| if (!qg_list) |
| goto do_aq; |
| |
| /* set RD bit to indicate that command buffer is provided by the driver |
| * and it needs to be read by the firmware |
| */ |
| desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); |
| |
| for (i = 0; i < num_qgrps; ++i) { |
| /* Calculate the size taken up by the queue IDs in this group */ |
| sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id); |
| |
| /* Add the size of the group header */ |
| sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id); |
| |
| /* If the num of queues is even, add 2 bytes of padding */ |
| if ((qg_list[i].num_qs % 2) == 0) |
| sz += 2; |
| } |
| |
| if (buf_size != sz) |
| return ICE_ERR_PARAM; |
| |
| do_aq: |
| return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); |
| } |
| |
| /* End of FW Admin Queue command wrappers */ |
| |
| /** |
| * ice_write_byte - write a byte to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx, |
| const struct ice_ctx_ele *ce_info) |
| { |
| u8 src_byte, dest_byte, mask; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| mask = (u8)(BIT(ce_info->width) - 1); |
| |
| src_byte = *from; |
| src_byte &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_byte <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_byte, dest, sizeof(dest_byte)); |
| |
| dest_byte &= ~mask; /* get the bits not changing */ |
| dest_byte |= src_byte; /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_byte, sizeof(dest_byte)); |
| } |
| |
| /** |
| * ice_write_word - write a word to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void ice_write_word(u8 *src_ctx, u8 *dest_ctx, |
| const struct ice_ctx_ele *ce_info) |
| { |
| u16 src_word, mask; |
| __le16 dest_word; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| mask = BIT(ce_info->width) - 1; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_word = *(u16 *)from; |
| src_word &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_word <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_word, dest, sizeof(dest_word)); |
| |
| dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */ |
| dest_word |= cpu_to_le16(src_word); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_word, sizeof(dest_word)); |
| } |
| |
| /** |
| * ice_write_dword - write a dword to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx, |
| const struct ice_ctx_ele *ce_info) |
| { |
| u32 src_dword, mask; |
| __le32 dest_dword; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| |
| /* if the field width is exactly 32 on an x86 machine, then the shift |
| * operation will not work because the SHL instructions count is masked |
| * to 5 bits so the shift will do nothing |
| */ |
| if (ce_info->width < 32) |
| mask = BIT(ce_info->width) - 1; |
| else |
| mask = (u32)~0; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_dword = *(u32 *)from; |
| src_dword &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_dword <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_dword, dest, sizeof(dest_dword)); |
| |
| dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */ |
| dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_dword, sizeof(dest_dword)); |
| } |
| |
| /** |
| * ice_write_qword - write a qword to a packed context structure |
| * @src_ctx: the context structure to read from |
| * @dest_ctx: the context to be written to |
| * @ce_info: a description of the struct to be filled |
| */ |
| static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx, |
| const struct ice_ctx_ele *ce_info) |
| { |
| u64 src_qword, mask; |
| __le64 dest_qword; |
| u8 *from, *dest; |
| u16 shift_width; |
| |
| /* copy from the next struct field */ |
| from = src_ctx + ce_info->offset; |
| |
| /* prepare the bits and mask */ |
| shift_width = ce_info->lsb % 8; |
| |
| /* if the field width is exactly 64 on an x86 machine, then the shift |
| * operation will not work because the SHL instructions count is masked |
| * to 6 bits so the shift will do nothing |
| */ |
| if (ce_info->width < 64) |
| mask = BIT_ULL(ce_info->width) - 1; |
| else |
| mask = (u64)~0; |
| |
| /* don't swizzle the bits until after the mask because the mask bits |
| * will be in a different bit position on big endian machines |
| */ |
| src_qword = *(u64 *)from; |
| src_qword &= mask; |
| |
| /* shift to correct alignment */ |
| mask <<= shift_width; |
| src_qword <<= shift_width; |
| |
| /* get the current bits from the target bit string */ |
| dest = dest_ctx + (ce_info->lsb / 8); |
| |
| memcpy(&dest_qword, dest, sizeof(dest_qword)); |
| |
| dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */ |
| dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */ |
| |
| /* put it all back */ |
| memcpy(dest, &dest_qword, sizeof(dest_qword)); |
| } |
| |
| /** |
| * ice_set_ctx - set context bits in packed structure |
| * @src_ctx: pointer to a generic non-packed context structure |
| * @dest_ctx: pointer to memory for the packed structure |
| * @ce_info: a description of the structure to be transformed |
| */ |
| enum ice_status |
| ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info) |
| { |
| int f; |
| |
| for (f = 0; ce_info[f].width; f++) { |
| /* We have to deal with each element of the FW response |
| * using the correct size so that we are correct regardless |
| * of the endianness of the machine. |
| */ |
| switch (ce_info[f].size_of) { |
| case sizeof(u8): |
| ice_write_byte(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u16): |
| ice_write_word(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u32): |
| ice_write_dword(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| case sizeof(u64): |
| ice_write_qword(src_ctx, dest_ctx, &ce_info[f]); |
| break; |
| default: |
| return ICE_ERR_INVAL_SIZE; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_ena_vsi_txq |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc: tc number |
| * @num_qgrps: Number of added queue groups |
| * @buf: list of queue groups to be added |
| * @buf_size: size of buffer for indirect command |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function adds one lan q |
| */ |
| enum ice_status |
| ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps, |
| struct ice_aqc_add_tx_qgrp *buf, u16 buf_size, |
| struct ice_sq_cd *cd) |
| { |
| struct ice_aqc_txsched_elem_data node = { 0 }; |
| struct ice_sched_node *parent; |
| enum ice_status status; |
| struct ice_hw *hw; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| if (num_qgrps > 1 || buf->num_txqs > 1) |
| return ICE_ERR_MAX_LIMIT; |
| |
| hw = pi->hw; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| mutex_lock(&pi->sched_lock); |
| |
| /* find a parent node */ |
| parent = ice_sched_get_free_qparent(pi, vsi_handle, tc, |
| ICE_SCHED_NODE_OWNER_LAN); |
| if (!parent) { |
| status = ICE_ERR_PARAM; |
| goto ena_txq_exit; |
| } |
| |
| buf->parent_teid = parent->info.node_teid; |
| node.parent_teid = parent->info.node_teid; |
| /* Mark that the values in the "generic" section as valid. The default |
| * value in the "generic" section is zero. This means that : |
| * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0. |
| * - 0 priority among siblings, indicated by Bit 1-3. |
| * - WFQ, indicated by Bit 4. |
| * - 0 Adjustment value is used in PSM credit update flow, indicated by |
| * Bit 5-6. |
| * - Bit 7 is reserved. |
| * Without setting the generic section as valid in valid_sections, the |
| * Admin Q command will fail with error code ICE_AQ_RC_EINVAL. |
| */ |
| buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC; |
| |
| /* add the lan q */ |
| status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd); |
| if (status) |
| goto ena_txq_exit; |
| |
| node.node_teid = buf->txqs[0].q_teid; |
| node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF; |
| |
| /* add a leaf node into schduler tree q layer */ |
| status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node); |
| |
| ena_txq_exit: |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_dis_vsi_txq |
| * @pi: port information structure |
| * @num_queues: number of queues |
| * @q_ids: pointer to the q_id array |
| * @q_teids: pointer to queue node teids |
| * @rst_src: if called due to reset, specifies the RST source |
| * @vmvf_num: the relative VM or VF number that is undergoing the reset |
| * @cd: pointer to command details structure or NULL |
| * |
| * This function removes queues and their corresponding nodes in SW DB |
| */ |
| enum ice_status |
| ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, |
| u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num, |
| struct ice_sq_cd *cd) |
| { |
| enum ice_status status = ICE_ERR_DOES_NOT_EXIST; |
| struct ice_aqc_dis_txq_item qg_list; |
| u16 i; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| /* if queue is disabled already yet the disable queue command has to be |
| * sent to complete the VF reset, then call ice_aq_dis_lan_txq without |
| * any queue information |
| */ |
| |
| if (!num_queues && rst_src) |
| return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num, |
| NULL); |
| |
| mutex_lock(&pi->sched_lock); |
| |
| for (i = 0; i < num_queues; i++) { |
| struct ice_sched_node *node; |
| |
| node = ice_sched_find_node_by_teid(pi->root, q_teids[i]); |
| if (!node) |
| continue; |
| qg_list.parent_teid = node->info.parent_teid; |
| qg_list.num_qs = 1; |
| qg_list.q_id[0] = cpu_to_le16(q_ids[i]); |
| status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list, |
| sizeof(qg_list), rst_src, vmvf_num, |
| cd); |
| |
| if (status) |
| break; |
| ice_free_sched_node(pi, node); |
| } |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_qs - configure the new/exisiting VSI queues |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap |
| * @maxqs: max queues array per TC |
| * @owner: lan or rdma |
| * |
| * This function adds/updates the VSI queues per TC. |
| */ |
| static enum ice_status |
| ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, |
| u16 *maxqs, u8 owner) |
| { |
| enum ice_status status = 0; |
| u8 i; |
| |
| if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) |
| return ICE_ERR_CFG; |
| |
| if (!ice_is_vsi_valid(pi->hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| mutex_lock(&pi->sched_lock); |
| |
| for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) { |
| /* configuration is possible only if TC node is present */ |
| if (!ice_sched_get_tc_node(pi, i)) |
| continue; |
| |
| status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner, |
| ice_is_tc_ena(tc_bitmap, i)); |
| if (status) |
| break; |
| } |
| |
| mutex_unlock(&pi->sched_lock); |
| return status; |
| } |
| |
| /** |
| * ice_cfg_vsi_lan - configure VSI lan queues |
| * @pi: port information structure |
| * @vsi_handle: software VSI handle |
| * @tc_bitmap: TC bitmap |
| * @max_lanqs: max lan queues array per TC |
| * |
| * This function adds/updates the VSI lan queues per TC. |
| */ |
| enum ice_status |
| ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, |
| u16 *max_lanqs) |
| { |
| return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs, |
| ICE_SCHED_NODE_OWNER_LAN); |
| } |
| |
| /** |
| * ice_replay_pre_init - replay pre initialization |
| * @hw: pointer to the hw struct |
| * |
| * Initializes required config data for VSI, FD, ACL, and RSS before replay. |
| */ |
| static enum ice_status ice_replay_pre_init(struct ice_hw *hw) |
| { |
| struct ice_switch_info *sw = hw->switch_info; |
| u8 i; |
| |
| /* Delete old entries from replay filter list head if there is any */ |
| ice_rm_all_sw_replay_rule_info(hw); |
| /* In start of replay, move entries into replay_rules list, it |
| * will allow adding rules entries back to filt_rules list, |
| * which is operational list. |
| */ |
| for (i = 0; i < ICE_SW_LKUP_LAST; i++) |
| list_replace_init(&sw->recp_list[i].filt_rules, |
| &sw->recp_list[i].filt_replay_rules); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_replay_vsi - replay VSI configuration |
| * @hw: pointer to the hw struct |
| * @vsi_handle: driver VSI handle |
| * |
| * Restore all VSI configuration after reset. It is required to call this |
| * function with main VSI first. |
| */ |
| enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle) |
| { |
| enum ice_status status; |
| |
| if (!ice_is_vsi_valid(hw, vsi_handle)) |
| return ICE_ERR_PARAM; |
| |
| /* Replay pre-initialization if there is any */ |
| if (vsi_handle == ICE_MAIN_VSI_HANDLE) { |
| status = ice_replay_pre_init(hw); |
| if (status) |
| return status; |
| } |
| |
| /* Replay per VSI all filters */ |
| status = ice_replay_vsi_all_fltr(hw, vsi_handle); |
| return status; |
| } |
| |
| /** |
| * ice_replay_post - post replay configuration cleanup |
| * @hw: pointer to the hw struct |
| * |
| * Post replay cleanup. |
| */ |
| void ice_replay_post(struct ice_hw *hw) |
| { |
| /* Delete old entries from replay filter list head */ |
| ice_rm_all_sw_replay_rule_info(hw); |
| } |
| |
| /** |
| * ice_stat_update40 - read 40 bit stat from the chip and update stat values |
| * @hw: ptr to the hardware info |
| * @hireg: high 32 bit HW register to read from |
| * @loreg: low 32 bit HW register to read from |
| * @prev_stat_loaded: bool to specify if previous stats are loaded |
| * @prev_stat: ptr to previous loaded stat value |
| * @cur_stat: ptr to current stat value |
| */ |
| void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg, |
| bool prev_stat_loaded, u64 *prev_stat, u64 *cur_stat) |
| { |
| u64 new_data; |
| |
| new_data = rd32(hw, loreg); |
| new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; |
| |
| /* device stats are not reset at PFR, they likely will not be zeroed |
| * when the driver starts. So save the first values read and use them as |
| * offsets to be subtracted from the raw values in order to report stats |
| * that count from zero. |
| */ |
| if (!prev_stat_loaded) |
| *prev_stat = new_data; |
| if (new_data >= *prev_stat) |
| *cur_stat = new_data - *prev_stat; |
| else |
| /* to manage the potential roll-over */ |
| *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat; |
| *cur_stat &= 0xFFFFFFFFFFULL; |
| } |
| |
| /** |
| * ice_stat_update32 - read 32 bit stat from the chip and update stat values |
| * @hw: ptr to the hardware info |
| * @reg: HW register to read from |
| * @prev_stat_loaded: bool to specify if previous stats are loaded |
| * @prev_stat: ptr to previous loaded stat value |
| * @cur_stat: ptr to current stat value |
| */ |
| void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded, |
| u64 *prev_stat, u64 *cur_stat) |
| { |
| u32 new_data; |
| |
| new_data = rd32(hw, reg); |
| |
| /* device stats are not reset at PFR, they likely will not be zeroed |
| * when the driver starts. So save the first values read and use them as |
| * offsets to be subtracted from the raw values in order to report stats |
| * that count from zero. |
| */ |
| if (!prev_stat_loaded) |
| *prev_stat = new_data; |
| if (new_data >= *prev_stat) |
| *cur_stat = new_data - *prev_stat; |
| else |
| /* to manage the potential roll-over */ |
| *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat; |
| } |