| /* |
| * Per core/cpu state |
| * |
| * Used to coordinate shared registers between HT threads or |
| * among events on a single PMU. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/stddef.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/hardirq.h> |
| #include <asm/apic.h> |
| |
| #include "perf_event.h" |
| |
| /* |
| * Intel PerfMon, used on Core and later. |
| */ |
| static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, |
| [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, |
| [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ |
| }; |
| |
| static struct event_constraint intel_core_event_constraints[] __read_mostly = |
| { |
| INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ |
| INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ |
| INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_core2_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ |
| INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ |
| INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ |
| INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ |
| INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ |
| INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ |
| INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ |
| INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ |
| INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ |
| INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ |
| INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ |
| INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ |
| INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ |
| INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct event_constraint intel_westmere_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ |
| INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ |
| INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ |
| INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_snb_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ |
| INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_ivb_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ |
| INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ |
| INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| /* |
| * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT |
| * siblings; disable these events because they can corrupt unrelated |
| * counters. |
| */ |
| INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_westmere_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct event_constraint intel_v1_event_constraints[] __read_mostly = |
| { |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_gen_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_slm_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_snb_extra_regs[] __read_mostly = { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), |
| EVENT_EXTRA_END |
| }; |
| |
| EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); |
| EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); |
| EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); |
| |
| struct attribute *nhm_events_attrs[] = { |
| EVENT_PTR(mem_ld_nhm), |
| NULL, |
| }; |
| |
| struct attribute *snb_events_attrs[] = { |
| EVENT_PTR(mem_ld_snb), |
| EVENT_PTR(mem_st_snb), |
| NULL, |
| }; |
| |
| static struct event_constraint intel_hsw_event_constraints[] = { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_EVENT_CONSTRAINT(0x08a3, 0x4), |
| /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4), |
| /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ |
| INTEL_EVENT_CONSTRAINT(0x04a3, 0xf), |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static u64 intel_pmu_event_map(int hw_event) |
| { |
| return intel_perfmon_event_map[hw_event]; |
| } |
| |
| #define SNB_DMND_DATA_RD (1ULL << 0) |
| #define SNB_DMND_RFO (1ULL << 1) |
| #define SNB_DMND_IFETCH (1ULL << 2) |
| #define SNB_DMND_WB (1ULL << 3) |
| #define SNB_PF_DATA_RD (1ULL << 4) |
| #define SNB_PF_RFO (1ULL << 5) |
| #define SNB_PF_IFETCH (1ULL << 6) |
| #define SNB_LLC_DATA_RD (1ULL << 7) |
| #define SNB_LLC_RFO (1ULL << 8) |
| #define SNB_LLC_IFETCH (1ULL << 9) |
| #define SNB_BUS_LOCKS (1ULL << 10) |
| #define SNB_STRM_ST (1ULL << 11) |
| #define SNB_OTHER (1ULL << 15) |
| #define SNB_RESP_ANY (1ULL << 16) |
| #define SNB_NO_SUPP (1ULL << 17) |
| #define SNB_LLC_HITM (1ULL << 18) |
| #define SNB_LLC_HITE (1ULL << 19) |
| #define SNB_LLC_HITS (1ULL << 20) |
| #define SNB_LLC_HITF (1ULL << 21) |
| #define SNB_LOCAL (1ULL << 22) |
| #define SNB_REMOTE (0xffULL << 23) |
| #define SNB_SNP_NONE (1ULL << 31) |
| #define SNB_SNP_NOT_NEEDED (1ULL << 32) |
| #define SNB_SNP_MISS (1ULL << 33) |
| #define SNB_NO_FWD (1ULL << 34) |
| #define SNB_SNP_FWD (1ULL << 35) |
| #define SNB_HITM (1ULL << 36) |
| #define SNB_NON_DRAM (1ULL << 37) |
| |
| #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) |
| #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) |
| #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) |
| |
| #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ |
| SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ |
| SNB_HITM) |
| |
| #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) |
| #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) |
| |
| #define SNB_L3_ACCESS SNB_RESP_ANY |
| #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) |
| |
| static __initconst const u64 snb_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 snb_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ |
| [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| |
| }; |
| |
| static __initconst const u64 westmere_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| /* |
| * Use RFO, not WRITEBACK, because a write miss would typically occur |
| * on RFO. |
| */ |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| }; |
| |
| /* |
| * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; |
| * See IA32 SDM Vol 3B 30.6.1.3 |
| */ |
| |
| #define NHM_DMND_DATA_RD (1 << 0) |
| #define NHM_DMND_RFO (1 << 1) |
| #define NHM_DMND_IFETCH (1 << 2) |
| #define NHM_DMND_WB (1 << 3) |
| #define NHM_PF_DATA_RD (1 << 4) |
| #define NHM_PF_DATA_RFO (1 << 5) |
| #define NHM_PF_IFETCH (1 << 6) |
| #define NHM_OFFCORE_OTHER (1 << 7) |
| #define NHM_UNCORE_HIT (1 << 8) |
| #define NHM_OTHER_CORE_HIT_SNP (1 << 9) |
| #define NHM_OTHER_CORE_HITM (1 << 10) |
| /* reserved */ |
| #define NHM_REMOTE_CACHE_FWD (1 << 12) |
| #define NHM_REMOTE_DRAM (1 << 13) |
| #define NHM_LOCAL_DRAM (1 << 14) |
| #define NHM_NON_DRAM (1 << 15) |
| |
| #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) |
| #define NHM_REMOTE (NHM_REMOTE_DRAM) |
| |
| #define NHM_DMND_READ (NHM_DMND_DATA_RD) |
| #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) |
| #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) |
| |
| #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) |
| #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) |
| #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) |
| |
| static __initconst const u64 nehalem_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 nehalem_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| /* |
| * Use RFO, not WRITEBACK, because a write miss would typically occur |
| * on RFO. |
| */ |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 core2_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 atom_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static struct extra_reg intel_slm_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1), |
| EVENT_EXTRA_END |
| }; |
| |
| #define SLM_DMND_READ SNB_DMND_DATA_RD |
| #define SLM_DMND_WRITE SNB_DMND_RFO |
| #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) |
| |
| #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) |
| #define SLM_LLC_ACCESS SNB_RESP_ANY |
| #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) |
| |
| static __initconst const u64 slm_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 slm_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ |
| [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event) |
| { |
| /* user explicitly requested branch sampling */ |
| if (has_branch_stack(event)) |
| return true; |
| |
| /* implicit branch sampling to correct PEBS skid */ |
| if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 && |
| x86_pmu.intel_cap.pebs_format < 2) |
| return true; |
| |
| return false; |
| } |
| |
| static void intel_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| |
| if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) |
| intel_pmu_disable_bts(); |
| |
| intel_pmu_pebs_disable_all(); |
| intel_pmu_lbr_disable_all(); |
| } |
| |
| static void intel_pmu_enable_all(int added) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| intel_pmu_pebs_enable_all(); |
| intel_pmu_lbr_enable_all(); |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, |
| x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); |
| |
| if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { |
| struct perf_event *event = |
| cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; |
| |
| if (WARN_ON_ONCE(!event)) |
| return; |
| |
| intel_pmu_enable_bts(event->hw.config); |
| } |
| } |
| |
| /* |
| * Workaround for: |
| * Intel Errata AAK100 (model 26) |
| * Intel Errata AAP53 (model 30) |
| * Intel Errata BD53 (model 44) |
| * |
| * The official story: |
| * These chips need to be 'reset' when adding counters by programming the |
| * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either |
| * in sequence on the same PMC or on different PMCs. |
| * |
| * In practise it appears some of these events do in fact count, and |
| * we need to programm all 4 events. |
| */ |
| static void intel_pmu_nhm_workaround(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| static const unsigned long nhm_magic[4] = { |
| 0x4300B5, |
| 0x4300D2, |
| 0x4300B1, |
| 0x4300B1 |
| }; |
| struct perf_event *event; |
| int i; |
| |
| /* |
| * The Errata requires below steps: |
| * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; |
| * 2) Configure 4 PERFEVTSELx with the magic events and clear |
| * the corresponding PMCx; |
| * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; |
| * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; |
| * 5) Clear 4 pairs of ERFEVTSELx and PMCx; |
| */ |
| |
| /* |
| * The real steps we choose are a little different from above. |
| * A) To reduce MSR operations, we don't run step 1) as they |
| * are already cleared before this function is called; |
| * B) Call x86_perf_event_update to save PMCx before configuring |
| * PERFEVTSELx with magic number; |
| * C) With step 5), we do clear only when the PERFEVTSELx is |
| * not used currently. |
| * D) Call x86_perf_event_set_period to restore PMCx; |
| */ |
| |
| /* We always operate 4 pairs of PERF Counters */ |
| for (i = 0; i < 4; i++) { |
| event = cpuc->events[i]; |
| if (event) |
| x86_perf_event_update(event); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); |
| wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); |
| } |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); |
| |
| for (i = 0; i < 4; i++) { |
| event = cpuc->events[i]; |
| |
| if (event) { |
| x86_perf_event_set_period(event); |
| __x86_pmu_enable_event(&event->hw, |
| ARCH_PERFMON_EVENTSEL_ENABLE); |
| } else |
| wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); |
| } |
| } |
| |
| static void intel_pmu_nhm_enable_all(int added) |
| { |
| if (added) |
| intel_pmu_nhm_workaround(); |
| intel_pmu_enable_all(added); |
| } |
| |
| static inline u64 intel_pmu_get_status(void) |
| { |
| u64 status; |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| |
| return status; |
| } |
| |
| static inline void intel_pmu_ack_status(u64 ack) |
| { |
| wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); |
| } |
| |
| static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) |
| { |
| int idx = hwc->idx - INTEL_PMC_IDX_FIXED; |
| u64 ctrl_val, mask; |
| |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static inline bool event_is_checkpointed(struct perf_event *event) |
| { |
| return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; |
| } |
| |
| static void intel_pmu_disable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { |
| intel_pmu_disable_bts(); |
| intel_pmu_drain_bts_buffer(); |
| return; |
| } |
| |
| cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); |
| cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); |
| cpuc->intel_cp_status &= ~(1ull << hwc->idx); |
| |
| /* |
| * must disable before any actual event |
| * because any event may be combined with LBR |
| */ |
| if (intel_pmu_needs_lbr_smpl(event)) |
| intel_pmu_lbr_disable(event); |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_disable_fixed(hwc); |
| return; |
| } |
| |
| x86_pmu_disable_event(event); |
| |
| if (unlikely(event->attr.precise_ip)) |
| intel_pmu_pebs_disable(event); |
| } |
| |
| static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) |
| { |
| int idx = hwc->idx - INTEL_PMC_IDX_FIXED; |
| u64 ctrl_val, bits, mask; |
| |
| /* |
| * Enable IRQ generation (0x8), |
| * and enable ring-3 counting (0x2) and ring-0 counting (0x1) |
| * if requested: |
| */ |
| bits = 0x8ULL; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) |
| bits |= 0x2; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) |
| bits |= 0x1; |
| |
| /* |
| * ANY bit is supported in v3 and up |
| */ |
| if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) |
| bits |= 0x4; |
| |
| bits <<= (idx * 4); |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| ctrl_val |= bits; |
| wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static void intel_pmu_enable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { |
| if (!__this_cpu_read(cpu_hw_events.enabled)) |
| return; |
| |
| intel_pmu_enable_bts(hwc->config); |
| return; |
| } |
| /* |
| * must enabled before any actual event |
| * because any event may be combined with LBR |
| */ |
| if (intel_pmu_needs_lbr_smpl(event)) |
| intel_pmu_lbr_enable(event); |
| |
| if (event->attr.exclude_host) |
| cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); |
| if (event->attr.exclude_guest) |
| cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); |
| |
| if (unlikely(event_is_checkpointed(event))) |
| cpuc->intel_cp_status |= (1ull << hwc->idx); |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_enable_fixed(hwc); |
| return; |
| } |
| |
| if (unlikely(event->attr.precise_ip)) |
| intel_pmu_pebs_enable(event); |
| |
| __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| |
| /* |
| * Save and restart an expired event. Called by NMI contexts, |
| * so it has to be careful about preempting normal event ops: |
| */ |
| int intel_pmu_save_and_restart(struct perf_event *event) |
| { |
| x86_perf_event_update(event); |
| /* |
| * For a checkpointed counter always reset back to 0. This |
| * avoids a situation where the counter overflows, aborts the |
| * transaction and is then set back to shortly before the |
| * overflow, and overflows and aborts again. |
| */ |
| if (unlikely(event_is_checkpointed(event))) { |
| /* No race with NMIs because the counter should not be armed */ |
| wrmsrl(event->hw.event_base, 0); |
| local64_set(&event->hw.prev_count, 0); |
| } |
| return x86_perf_event_set_period(event); |
| } |
| |
| static void intel_pmu_reset(void) |
| { |
| struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); |
| unsigned long flags; |
| int idx; |
| |
| if (!x86_pmu.num_counters) |
| return; |
| |
| local_irq_save(flags); |
| |
| pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); |
| wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); |
| } |
| for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) |
| wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); |
| |
| if (ds) |
| ds->bts_index = ds->bts_buffer_base; |
| |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * This handler is triggered by the local APIC, so the APIC IRQ handling |
| * rules apply: |
| */ |
| static int intel_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| int bit, loops; |
| u64 status; |
| int handled; |
| |
| cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| /* |
| * No known reason to not always do late ACK, |
| * but just in case do it opt-in. |
| */ |
| if (!x86_pmu.late_ack) |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| intel_pmu_disable_all(); |
| handled = intel_pmu_drain_bts_buffer(); |
| status = intel_pmu_get_status(); |
| if (!status) |
| goto done; |
| |
| loops = 0; |
| again: |
| intel_pmu_ack_status(status); |
| if (++loops > 100) { |
| static bool warned = false; |
| if (!warned) { |
| WARN(1, "perfevents: irq loop stuck!\n"); |
| perf_event_print_debug(); |
| warned = true; |
| } |
| intel_pmu_reset(); |
| goto done; |
| } |
| |
| inc_irq_stat(apic_perf_irqs); |
| |
| intel_pmu_lbr_read(); |
| |
| /* |
| * CondChgd bit 63 doesn't mean any overflow status. Ignore |
| * and clear the bit. |
| */ |
| if (__test_and_clear_bit(63, (unsigned long *)&status)) { |
| if (!status) |
| goto done; |
| } |
| |
| /* |
| * PEBS overflow sets bit 62 in the global status register |
| */ |
| if (__test_and_clear_bit(62, (unsigned long *)&status)) { |
| handled++; |
| x86_pmu.drain_pebs(regs); |
| } |
| |
| /* |
| * Checkpointed counters can lead to 'spurious' PMIs because the |
| * rollback caused by the PMI will have cleared the overflow status |
| * bit. Therefore always force probe these counters. |
| */ |
| status |= cpuc->intel_cp_status; |
| |
| for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { |
| struct perf_event *event = cpuc->events[bit]; |
| |
| handled++; |
| |
| if (!test_bit(bit, cpuc->active_mask)) |
| continue; |
| |
| if (!intel_pmu_save_and_restart(event)) |
| continue; |
| |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| if (has_branch_stack(event)) |
| data.br_stack = &cpuc->lbr_stack; |
| |
| if (perf_event_overflow(event, &data, regs)) |
| x86_pmu_stop(event, 0); |
| } |
| |
| /* |
| * Repeat if there is more work to be done: |
| */ |
| status = intel_pmu_get_status(); |
| if (status) |
| goto again; |
| |
| done: |
| intel_pmu_enable_all(0); |
| /* |
| * Only unmask the NMI after the overflow counters |
| * have been reset. This avoids spurious NMIs on |
| * Haswell CPUs. |
| */ |
| if (x86_pmu.late_ack) |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| return handled; |
| } |
| |
| static struct event_constraint * |
| intel_bts_constraints(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| unsigned int hw_event, bts_event; |
| |
| if (event->attr.freq) |
| return NULL; |
| |
| hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; |
| bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); |
| |
| if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) |
| return &bts_constraint; |
| |
| return NULL; |
| } |
| |
| static int intel_alt_er(int idx) |
| { |
| if (!(x86_pmu.er_flags & ERF_HAS_RSP_1)) |
| return idx; |
| |
| if (idx == EXTRA_REG_RSP_0) |
| return EXTRA_REG_RSP_1; |
| |
| if (idx == EXTRA_REG_RSP_1) |
| return EXTRA_REG_RSP_0; |
| |
| return idx; |
| } |
| |
| static void intel_fixup_er(struct perf_event *event, int idx) |
| { |
| event->hw.extra_reg.idx = idx; |
| |
| if (idx == EXTRA_REG_RSP_0) { |
| event->hw.config &= ~INTEL_ARCH_EVENT_MASK; |
| event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; |
| event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; |
| } else if (idx == EXTRA_REG_RSP_1) { |
| event->hw.config &= ~INTEL_ARCH_EVENT_MASK; |
| event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; |
| event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; |
| } |
| } |
| |
| /* |
| * manage allocation of shared extra msr for certain events |
| * |
| * sharing can be: |
| * per-cpu: to be shared between the various events on a single PMU |
| * per-core: per-cpu + shared by HT threads |
| */ |
| static struct event_constraint * |
| __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event, |
| struct hw_perf_event_extra *reg) |
| { |
| struct event_constraint *c = &emptyconstraint; |
| struct er_account *era; |
| unsigned long flags; |
| int idx = reg->idx; |
| |
| /* |
| * reg->alloc can be set due to existing state, so for fake cpuc we |
| * need to ignore this, otherwise we might fail to allocate proper fake |
| * state for this extra reg constraint. Also see the comment below. |
| */ |
| if (reg->alloc && !cpuc->is_fake) |
| return NULL; /* call x86_get_event_constraint() */ |
| |
| again: |
| era = &cpuc->shared_regs->regs[idx]; |
| /* |
| * we use spin_lock_irqsave() to avoid lockdep issues when |
| * passing a fake cpuc |
| */ |
| raw_spin_lock_irqsave(&era->lock, flags); |
| |
| if (!atomic_read(&era->ref) || era->config == reg->config) { |
| |
| /* |
| * If its a fake cpuc -- as per validate_{group,event}() we |
| * shouldn't touch event state and we can avoid doing so |
| * since both will only call get_event_constraints() once |
| * on each event, this avoids the need for reg->alloc. |
| * |
| * Not doing the ER fixup will only result in era->reg being |
| * wrong, but since we won't actually try and program hardware |
| * this isn't a problem either. |
| */ |
| if (!cpuc->is_fake) { |
| if (idx != reg->idx) |
| intel_fixup_er(event, idx); |
| |
| /* |
| * x86_schedule_events() can call get_event_constraints() |
| * multiple times on events in the case of incremental |
| * scheduling(). reg->alloc ensures we only do the ER |
| * allocation once. |
| */ |
| reg->alloc = 1; |
| } |
| |
| /* lock in msr value */ |
| era->config = reg->config; |
| era->reg = reg->reg; |
| |
| /* one more user */ |
| atomic_inc(&era->ref); |
| |
| /* |
| * need to call x86_get_event_constraint() |
| * to check if associated event has constraints |
| */ |
| c = NULL; |
| } else { |
| idx = intel_alt_er(idx); |
| if (idx != reg->idx) { |
| raw_spin_unlock_irqrestore(&era->lock, flags); |
| goto again; |
| } |
| } |
| raw_spin_unlock_irqrestore(&era->lock, flags); |
| |
| return c; |
| } |
| |
| static void |
| __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, |
| struct hw_perf_event_extra *reg) |
| { |
| struct er_account *era; |
| |
| /* |
| * Only put constraint if extra reg was actually allocated. Also takes |
| * care of event which do not use an extra shared reg. |
| * |
| * Also, if this is a fake cpuc we shouldn't touch any event state |
| * (reg->alloc) and we don't care about leaving inconsistent cpuc state |
| * either since it'll be thrown out. |
| */ |
| if (!reg->alloc || cpuc->is_fake) |
| return; |
| |
| era = &cpuc->shared_regs->regs[reg->idx]; |
| |
| /* one fewer user */ |
| atomic_dec(&era->ref); |
| |
| /* allocate again next time */ |
| reg->alloc = 0; |
| } |
| |
| static struct event_constraint * |
| intel_shared_regs_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct event_constraint *c = NULL, *d; |
| struct hw_perf_event_extra *xreg, *breg; |
| |
| xreg = &event->hw.extra_reg; |
| if (xreg->idx != EXTRA_REG_NONE) { |
| c = __intel_shared_reg_get_constraints(cpuc, event, xreg); |
| if (c == &emptyconstraint) |
| return c; |
| } |
| breg = &event->hw.branch_reg; |
| if (breg->idx != EXTRA_REG_NONE) { |
| d = __intel_shared_reg_get_constraints(cpuc, event, breg); |
| if (d == &emptyconstraint) { |
| __intel_shared_reg_put_constraints(cpuc, xreg); |
| c = d; |
| } |
| } |
| return c; |
| } |
| |
| struct event_constraint * |
| x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| if (x86_pmu.event_constraints) { |
| for_each_event_constraint(c, x86_pmu.event_constraints) { |
| if ((event->hw.config & c->cmask) == c->code) { |
| event->hw.flags |= c->flags; |
| return c; |
| } |
| } |
| } |
| |
| return &unconstrained; |
| } |
| |
| static struct event_constraint * |
| intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| c = intel_bts_constraints(event); |
| if (c) |
| return c; |
| |
| c = intel_pebs_constraints(event); |
| if (c) |
| return c; |
| |
| c = intel_shared_regs_constraints(cpuc, event); |
| if (c) |
| return c; |
| |
| return x86_get_event_constraints(cpuc, event); |
| } |
| |
| static void |
| intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct hw_perf_event_extra *reg; |
| |
| reg = &event->hw.extra_reg; |
| if (reg->idx != EXTRA_REG_NONE) |
| __intel_shared_reg_put_constraints(cpuc, reg); |
| |
| reg = &event->hw.branch_reg; |
| if (reg->idx != EXTRA_REG_NONE) |
| __intel_shared_reg_put_constraints(cpuc, reg); |
| } |
| |
| static void intel_put_event_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| intel_put_shared_regs_event_constraints(cpuc, event); |
| } |
| |
| static void intel_pebs_aliases_core2(struct perf_event *event) |
| { |
| if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { |
| /* |
| * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P |
| * (0x003c) so that we can use it with PEBS. |
| * |
| * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't |
| * PEBS capable. However we can use INST_RETIRED.ANY_P |
| * (0x00c0), which is a PEBS capable event, to get the same |
| * count. |
| * |
| * INST_RETIRED.ANY_P counts the number of cycles that retires |
| * CNTMASK instructions. By setting CNTMASK to a value (16) |
| * larger than the maximum number of instructions that can be |
| * retired per cycle (4) and then inverting the condition, we |
| * count all cycles that retire 16 or less instructions, which |
| * is every cycle. |
| * |
| * Thereby we gain a PEBS capable cycle counter. |
| */ |
| u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); |
| |
| alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); |
| event->hw.config = alt_config; |
| } |
| } |
| |
| static void intel_pebs_aliases_snb(struct perf_event *event) |
| { |
| if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { |
| /* |
| * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P |
| * (0x003c) so that we can use it with PEBS. |
| * |
| * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't |
| * PEBS capable. However we can use UOPS_RETIRED.ALL |
| * (0x01c2), which is a PEBS capable event, to get the same |
| * count. |
| * |
| * UOPS_RETIRED.ALL counts the number of cycles that retires |
| * CNTMASK micro-ops. By setting CNTMASK to a value (16) |
| * larger than the maximum number of micro-ops that can be |
| * retired per cycle (4) and then inverting the condition, we |
| * count all cycles that retire 16 or less micro-ops, which |
| * is every cycle. |
| * |
| * Thereby we gain a PEBS capable cycle counter. |
| */ |
| u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); |
| |
| alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); |
| event->hw.config = alt_config; |
| } |
| } |
| |
| static int intel_pmu_hw_config(struct perf_event *event) |
| { |
| int ret = x86_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| |
| if (event->attr.precise_ip && x86_pmu.pebs_aliases) |
| x86_pmu.pebs_aliases(event); |
| |
| if (intel_pmu_needs_lbr_smpl(event)) { |
| ret = intel_pmu_setup_lbr_filter(event); |
| if (ret) |
| return ret; |
| } |
| |
| if (event->attr.type != PERF_TYPE_RAW) |
| return 0; |
| |
| if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) |
| return 0; |
| |
| if (x86_pmu.version < 3) |
| return -EINVAL; |
| |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; |
| |
| return 0; |
| } |
| |
| struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) |
| { |
| if (x86_pmu.guest_get_msrs) |
| return x86_pmu.guest_get_msrs(nr); |
| *nr = 0; |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(perf_guest_get_msrs); |
| |
| static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; |
| |
| arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; |
| arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; |
| arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; |
| /* |
| * If PMU counter has PEBS enabled it is not enough to disable counter |
| * on a guest entry since PEBS memory write can overshoot guest entry |
| * and corrupt guest memory. Disabling PEBS solves the problem. |
| */ |
| arr[1].msr = MSR_IA32_PEBS_ENABLE; |
| arr[1].host = cpuc->pebs_enabled; |
| arr[1].guest = 0; |
| |
| *nr = 2; |
| return arr; |
| } |
| |
| static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct perf_event *event = cpuc->events[idx]; |
| |
| arr[idx].msr = x86_pmu_config_addr(idx); |
| arr[idx].host = arr[idx].guest = 0; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| arr[idx].host = arr[idx].guest = |
| event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; |
| |
| if (event->attr.exclude_host) |
| arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; |
| else if (event->attr.exclude_guest) |
| arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; |
| } |
| |
| *nr = x86_pmu.num_counters; |
| return arr; |
| } |
| |
| static void core_pmu_enable_event(struct perf_event *event) |
| { |
| if (!event->attr.exclude_host) |
| x86_pmu_enable_event(event); |
| } |
| |
| static void core_pmu_enable_all(int added) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct hw_perf_event *hwc = &cpuc->events[idx]->hw; |
| |
| if (!test_bit(idx, cpuc->active_mask) || |
| cpuc->events[idx]->attr.exclude_host) |
| continue; |
| |
| __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| } |
| |
| static int hsw_hw_config(struct perf_event *event) |
| { |
| int ret = intel_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) |
| return 0; |
| event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); |
| |
| /* |
| * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with |
| * PEBS or in ANY thread mode. Since the results are non-sensical forbid |
| * this combination. |
| */ |
| if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && |
| ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || |
| event->attr.precise_ip > 0)) |
| return -EOPNOTSUPP; |
| |
| if (event_is_checkpointed(event)) { |
| /* |
| * Sampling of checkpointed events can cause situations where |
| * the CPU constantly aborts because of a overflow, which is |
| * then checkpointed back and ignored. Forbid checkpointing |
| * for sampling. |
| * |
| * But still allow a long sampling period, so that perf stat |
| * from KVM works. |
| */ |
| if (event->attr.sample_period > 0 && |
| event->attr.sample_period < 0x7fffffff) |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| static struct event_constraint counter2_constraint = |
| EVENT_CONSTRAINT(0, 0x4, 0); |
| |
| static struct event_constraint * |
| hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) |
| { |
| struct event_constraint *c = intel_get_event_constraints(cpuc, event); |
| |
| /* Handle special quirk on in_tx_checkpointed only in counter 2 */ |
| if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { |
| if (c->idxmsk64 & (1U << 2)) |
| return &counter2_constraint; |
| return &emptyconstraint; |
| } |
| |
| return c; |
| } |
| |
| PMU_FORMAT_ATTR(event, "config:0-7" ); |
| PMU_FORMAT_ATTR(umask, "config:8-15" ); |
| PMU_FORMAT_ATTR(edge, "config:18" ); |
| PMU_FORMAT_ATTR(pc, "config:19" ); |
| PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ |
| PMU_FORMAT_ATTR(inv, "config:23" ); |
| PMU_FORMAT_ATTR(cmask, "config:24-31" ); |
| PMU_FORMAT_ATTR(in_tx, "config:32"); |
| PMU_FORMAT_ATTR(in_tx_cp, "config:33"); |
| |
| static struct attribute *intel_arch_formats_attr[] = { |
| &format_attr_event.attr, |
| &format_attr_umask.attr, |
| &format_attr_edge.attr, |
| &format_attr_pc.attr, |
| &format_attr_inv.attr, |
| &format_attr_cmask.attr, |
| NULL, |
| }; |
| |
| ssize_t intel_event_sysfs_show(char *page, u64 config) |
| { |
| u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); |
| |
| return x86_event_sysfs_show(page, config, event); |
| } |
| |
| static __initconst const struct x86_pmu core_pmu = { |
| .name = "core", |
| .handle_irq = x86_pmu_handle_irq, |
| .disable_all = x86_pmu_disable_all, |
| .enable_all = core_pmu_enable_all, |
| .enable = core_pmu_enable_event, |
| .disable = x86_pmu_disable_event, |
| .hw_config = x86_pmu_hw_config, |
| .schedule_events = x86_schedule_events, |
| .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, |
| .perfctr = MSR_ARCH_PERFMON_PERFCTR0, |
| .event_map = intel_pmu_event_map, |
| .max_events = ARRAY_SIZE(intel_perfmon_event_map), |
| .apic = 1, |
| /* |
| * Intel PMCs cannot be accessed sanely above 32 bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic event period: |
| */ |
| .max_period = (1ULL << 31) - 1, |
| .get_event_constraints = intel_get_event_constraints, |
| .put_event_constraints = intel_put_event_constraints, |
| .event_constraints = intel_core_event_constraints, |
| .guest_get_msrs = core_guest_get_msrs, |
| .format_attrs = intel_arch_formats_attr, |
| .events_sysfs_show = intel_event_sysfs_show, |
| }; |
| |
| struct intel_shared_regs *allocate_shared_regs(int cpu) |
| { |
| struct intel_shared_regs *regs; |
| int i; |
| |
| regs = kzalloc_node(sizeof(struct intel_shared_regs), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| if (regs) { |
| /* |
| * initialize the locks to keep lockdep happy |
| */ |
| for (i = 0; i < EXTRA_REG_MAX; i++) |
| raw_spin_lock_init(®s->regs[i].lock); |
| |
| regs->core_id = -1; |
| } |
| return regs; |
| } |
| |
| static int intel_pmu_cpu_prepare(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| |
| if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map)) |
| return NOTIFY_OK; |
| |
| cpuc->shared_regs = allocate_shared_regs(cpu); |
| if (!cpuc->shared_regs) |
| return NOTIFY_BAD; |
| |
| return NOTIFY_OK; |
| } |
| |
| static void intel_pmu_cpu_starting(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| int core_id = topology_core_id(cpu); |
| int i; |
| |
| init_debug_store_on_cpu(cpu); |
| /* |
| * Deal with CPUs that don't clear their LBRs on power-up. |
| */ |
| intel_pmu_lbr_reset(); |
| |
| cpuc->lbr_sel = NULL; |
| |
| if (!cpuc->shared_regs) |
| return; |
| |
| if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) { |
| for_each_cpu(i, topology_thread_cpumask(cpu)) { |
| struct intel_shared_regs *pc; |
| |
| pc = per_cpu(cpu_hw_events, i).shared_regs; |
| if (pc && pc->core_id == core_id) { |
| cpuc->kfree_on_online = cpuc->shared_regs; |
| cpuc->shared_regs = pc; |
| break; |
| } |
| } |
| cpuc->shared_regs->core_id = core_id; |
| cpuc->shared_regs->refcnt++; |
| } |
| |
| if (x86_pmu.lbr_sel_map) |
| cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; |
| } |
| |
| static void intel_pmu_cpu_dying(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| struct intel_shared_regs *pc; |
| |
| pc = cpuc->shared_regs; |
| if (pc) { |
| if (pc->core_id == -1 || --pc->refcnt == 0) |
| kfree(pc); |
| cpuc->shared_regs = NULL; |
| } |
| |
| fini_debug_store_on_cpu(cpu); |
| } |
| |
| static void intel_pmu_flush_branch_stack(void) |
| { |
| /* |
| * Intel LBR does not tag entries with the |
| * PID of the current task, then we need to |
| * flush it on ctxsw |
| * For now, we simply reset it |
| */ |
| if (x86_pmu.lbr_nr) |
| intel_pmu_lbr_reset(); |
| } |
| |
| PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); |
| |
| PMU_FORMAT_ATTR(ldlat, "config1:0-15"); |
| |
| static struct attribute *intel_arch3_formats_attr[] = { |
| &format_attr_event.attr, |
| &format_attr_umask.attr, |
| &format_attr_edge.attr, |
| &format_attr_pc.attr, |
| &format_attr_any.attr, |
| &format_attr_inv.attr, |
| &format_attr_cmask.attr, |
| &format_attr_in_tx.attr, |
| &format_attr_in_tx_cp.attr, |
| |
| &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */ |
| &format_attr_ldlat.attr, /* PEBS load latency */ |
| NULL, |
| }; |
| |
| static __initconst const struct x86_pmu intel_pmu = { |
| .name = "Intel", |
| .handle_irq = intel_pmu_handle_irq, |
| .disable_all = intel_pmu_disable_all, |
| .enable_all = intel_pmu_enable_all, |
| .enable = intel_pmu_enable_event, |
| .disable = intel_pmu_disable_event, |
| .hw_config = intel_pmu_hw_config, |
| .schedule_events = x86_schedule_events, |
| .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, |
| .perfctr = MSR_ARCH_PERFMON_PERFCTR0, |
| .event_map = intel_pmu_event_map, |
| .max_events = ARRAY_SIZE(intel_perfmon_event_map), |
| .apic = 1, |
| /* |
| * Intel PMCs cannot be accessed sanely above 32 bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic event period: |
| */ |
| .max_period = (1ULL << 31) - 1, |
| .get_event_constraints = intel_get_event_constraints, |
| .put_event_constraints = intel_put_event_constraints, |
| .pebs_aliases = intel_pebs_aliases_core2, |
| |
| .format_attrs = intel_arch3_formats_attr, |
| .events_sysfs_show = intel_event_sysfs_show, |
| |
| .cpu_prepare = intel_pmu_cpu_prepare, |
| .cpu_starting = intel_pmu_cpu_starting, |
| .cpu_dying = intel_pmu_cpu_dying, |
| .guest_get_msrs = intel_guest_get_msrs, |
| .flush_branch_stack = intel_pmu_flush_branch_stack, |
| }; |
| |
| static __init void intel_clovertown_quirk(void) |
| { |
| /* |
| * PEBS is unreliable due to: |
| * |
| * AJ67 - PEBS may experience CPL leaks |
| * AJ68 - PEBS PMI may be delayed by one event |
| * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] |
| * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS |
| * |
| * AJ67 could be worked around by restricting the OS/USR flags. |
| * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. |
| * |
| * AJ106 could possibly be worked around by not allowing LBR |
| * usage from PEBS, including the fixup. |
| * AJ68 could possibly be worked around by always programming |
| * a pebs_event_reset[0] value and coping with the lost events. |
| * |
| * But taken together it might just make sense to not enable PEBS on |
| * these chips. |
| */ |
| pr_warn("PEBS disabled due to CPU errata\n"); |
| x86_pmu.pebs = 0; |
| x86_pmu.pebs_constraints = NULL; |
| } |
| |
| static int intel_snb_pebs_broken(int cpu) |
| { |
| u32 rev = UINT_MAX; /* default to broken for unknown models */ |
| |
| switch (cpu_data(cpu).x86_model) { |
| case 42: /* SNB */ |
| rev = 0x28; |
| break; |
| |
| case 45: /* SNB-EP */ |
| switch (cpu_data(cpu).x86_mask) { |
| case 6: rev = 0x618; break; |
| case 7: rev = 0x70c; break; |
| } |
| } |
| |
| return (cpu_data(cpu).microcode < rev); |
| } |
| |
| static void intel_snb_check_microcode(void) |
| { |
| int pebs_broken = 0; |
| int cpu; |
| |
| get_online_cpus(); |
| for_each_online_cpu(cpu) { |
| if ((pebs_broken = intel_snb_pebs_broken(cpu))) |
| break; |
| } |
| put_online_cpus(); |
| |
| if (pebs_broken == x86_pmu.pebs_broken) |
| return; |
| |
| /* |
| * Serialized by the microcode lock.. |
| */ |
| if (x86_pmu.pebs_broken) { |
| pr_info("PEBS enabled due to microcode update\n"); |
| x86_pmu.pebs_broken = 0; |
| } else { |
| pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); |
| x86_pmu.pebs_broken = 1; |
| } |
| } |
| |
| /* |
| * Under certain circumstances, access certain MSR may cause #GP. |
| * The function tests if the input MSR can be safely accessed. |
| */ |
| static bool check_msr(unsigned long msr, u64 mask) |
| { |
| u64 val_old, val_new, val_tmp; |
| |
| /* |
| * Read the current value, change it and read it back to see if it |
| * matches, this is needed to detect certain hardware emulators |
| * (qemu/kvm) that don't trap on the MSR access and always return 0s. |
| */ |
| if (rdmsrl_safe(msr, &val_old)) |
| return false; |
| |
| /* |
| * Only change the bits which can be updated by wrmsrl. |
| */ |
| val_tmp = val_old ^ mask; |
| if (wrmsrl_safe(msr, val_tmp) || |
| rdmsrl_safe(msr, &val_new)) |
| return false; |
| |
| if (val_new != val_tmp) |
| return false; |
| |
| /* Here it's sure that the MSR can be safely accessed. |
| * Restore the old value and return. |
| */ |
| wrmsrl(msr, val_old); |
| |
| return true; |
| } |
| |
| static __init void intel_sandybridge_quirk(void) |
| { |
| x86_pmu.check_microcode = intel_snb_check_microcode; |
| intel_snb_check_microcode(); |
| } |
| |
| static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { |
| { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, |
| { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, |
| { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, |
| { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, |
| { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, |
| { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, |
| { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, |
| }; |
| |
| static __init void intel_arch_events_quirk(void) |
| { |
| int bit; |
| |
| /* disable event that reported as not presend by cpuid */ |
| for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { |
| intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; |
| pr_warn("CPUID marked event: \'%s\' unavailable\n", |
| intel_arch_events_map[bit].name); |
| } |
| } |
| |
| static __init void intel_nehalem_quirk(void) |
| { |
| union cpuid10_ebx ebx; |
| |
| ebx.full = x86_pmu.events_maskl; |
| if (ebx.split.no_branch_misses_retired) { |
| /* |
| * Erratum AAJ80 detected, we work it around by using |
| * the BR_MISP_EXEC.ANY event. This will over-count |
| * branch-misses, but it's still much better than the |
| * architectural event which is often completely bogus: |
| */ |
| intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; |
| ebx.split.no_branch_misses_retired = 0; |
| x86_pmu.events_maskl = ebx.full; |
| pr_info("CPU erratum AAJ80 worked around\n"); |
| } |
| } |
| |
| EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); |
| EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") |
| |
| /* Haswell special events */ |
| EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); |
| EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); |
| EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); |
| EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); |
| EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); |
| EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); |
| EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); |
| EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); |
| EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); |
| EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); |
| EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); |
| EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); |
| |
| static struct attribute *hsw_events_attrs[] = { |
| EVENT_PTR(tx_start), |
| EVENT_PTR(tx_commit), |
| EVENT_PTR(tx_abort), |
| EVENT_PTR(tx_capacity), |
| EVENT_PTR(tx_conflict), |
| EVENT_PTR(el_start), |
| EVENT_PTR(el_commit), |
| EVENT_PTR(el_abort), |
| EVENT_PTR(el_capacity), |
| EVENT_PTR(el_conflict), |
| EVENT_PTR(cycles_t), |
| EVENT_PTR(cycles_ct), |
| EVENT_PTR(mem_ld_hsw), |
| EVENT_PTR(mem_st_hsw), |
| NULL |
| }; |
| |
| __init int intel_pmu_init(void) |
| { |
| union cpuid10_edx edx; |
| union cpuid10_eax eax; |
| union cpuid10_ebx ebx; |
| struct event_constraint *c; |
| unsigned int unused; |
| struct extra_reg *er; |
| int version, i; |
| |
| if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { |
| switch (boot_cpu_data.x86) { |
| case 0x6: |
| return p6_pmu_init(); |
| case 0xb: |
| return knc_pmu_init(); |
| case 0xf: |
| return p4_pmu_init(); |
| } |
| return -ENODEV; |
| } |
| |
| /* |
| * Check whether the Architectural PerfMon supports |
| * Branch Misses Retired hw_event or not. |
| */ |
| cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); |
| if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) |
| return -ENODEV; |
| |
| version = eax.split.version_id; |
| if (version < 2) |
| x86_pmu = core_pmu; |
| else |
| x86_pmu = intel_pmu; |
| |
| x86_pmu.version = version; |
| x86_pmu.num_counters = eax.split.num_counters; |
| x86_pmu.cntval_bits = eax.split.bit_width; |
| x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; |
| |
| x86_pmu.events_maskl = ebx.full; |
| x86_pmu.events_mask_len = eax.split.mask_length; |
| |
| x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); |
| |
| /* |
| * Quirk: v2 perfmon does not report fixed-purpose events, so |
| * assume at least 3 events: |
| */ |
| if (version > 1) |
| x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3); |
| |
| if (boot_cpu_has(X86_FEATURE_PDCM)) { |
| u64 capabilities; |
| |
| rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); |
| x86_pmu.intel_cap.capabilities = capabilities; |
| } |
| |
| intel_ds_init(); |
| |
| x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ |
| |
| /* |
| * Install the hw-cache-events table: |
| */ |
| switch (boot_cpu_data.x86_model) { |
| case 14: /* 65nm Core "Yonah" */ |
| pr_cont("Core events, "); |
| break; |
| |
| case 15: /* 65nm Core2 "Merom" */ |
| x86_add_quirk(intel_clovertown_quirk); |
| case 22: /* 65nm Core2 "Merom-L" */ |
| case 23: /* 45nm Core2 "Penryn" */ |
| case 29: /* 45nm Core2 "Dunnington (MP) */ |
| memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| intel_pmu_lbr_init_core(); |
| |
| x86_pmu.event_constraints = intel_core2_event_constraints; |
| x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; |
| pr_cont("Core2 events, "); |
| break; |
| |
| case 30: /* 45nm Nehalem */ |
| case 26: /* 45nm Nehalem-EP */ |
| case 46: /* 45nm Nehalem-EX */ |
| memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_nhm(); |
| |
| x86_pmu.event_constraints = intel_nehalem_event_constraints; |
| x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; |
| x86_pmu.enable_all = intel_pmu_nhm_enable_all; |
| x86_pmu.extra_regs = intel_nehalem_extra_regs; |
| |
| x86_pmu.cpu_events = nhm_events_attrs; |
| |
| /* UOPS_ISSUED.STALLED_CYCLES */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); |
| |
| x86_add_quirk(intel_nehalem_quirk); |
| |
| pr_cont("Nehalem events, "); |
| break; |
| |
| case 28: /* 45nm Atom "Pineview" */ |
| case 38: /* 45nm Atom "Lincroft" */ |
| case 39: /* 32nm Atom "Penwell" */ |
| case 53: /* 32nm Atom "Cloverview" */ |
| case 54: /* 32nm Atom "Cedarview" */ |
| memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| intel_pmu_lbr_init_atom(); |
| |
| x86_pmu.event_constraints = intel_gen_event_constraints; |
| x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; |
| pr_cont("Atom events, "); |
| break; |
| |
| case 55: /* 22nm Atom "Silvermont" */ |
| case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */ |
| memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_atom(); |
| |
| x86_pmu.event_constraints = intel_slm_event_constraints; |
| x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_slm_extra_regs; |
| x86_pmu.er_flags |= ERF_HAS_RSP_1; |
| pr_cont("Silvermont events, "); |
| break; |
| |
| case 37: /* 32nm Westmere */ |
| case 44: /* 32nm Westmere-EP */ |
| case 47: /* 32nm Westmere-EX */ |
| memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_nhm(); |
| |
| x86_pmu.event_constraints = intel_westmere_event_constraints; |
| x86_pmu.enable_all = intel_pmu_nhm_enable_all; |
| x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_westmere_extra_regs; |
| x86_pmu.er_flags |= ERF_HAS_RSP_1; |
| |
| x86_pmu.cpu_events = nhm_events_attrs; |
| |
| /* UOPS_ISSUED.STALLED_CYCLES */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); |
| |
| pr_cont("Westmere events, "); |
| break; |
| |
| case 42: /* 32nm SandyBridge */ |
| case 45: /* 32nm SandyBridge-E/EN/EP */ |
| x86_add_quirk(intel_sandybridge_quirk); |
| memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_snb(); |
| |
| x86_pmu.event_constraints = intel_snb_event_constraints; |
| x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_snb; |
| if (boot_cpu_data.x86_model == 45) |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| else |
| x86_pmu.extra_regs = intel_snb_extra_regs; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.er_flags |= ERF_HAS_RSP_1; |
| x86_pmu.er_flags |= ERF_NO_HT_SHARING; |
| |
| x86_pmu.cpu_events = snb_events_attrs; |
| |
| /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); |
| |
| pr_cont("SandyBridge events, "); |
| break; |
| |
| case 58: /* 22nm IvyBridge */ |
| case 62: /* 22nm IvyBridge-EP/EX */ |
| memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| /* dTLB-load-misses on IVB is different than SNB */ |
| hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ |
| |
| memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_snb(); |
| |
| x86_pmu.event_constraints = intel_ivb_event_constraints; |
| x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_snb; |
| if (boot_cpu_data.x86_model == 62) |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| else |
| x86_pmu.extra_regs = intel_snb_extra_regs; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.er_flags |= ERF_HAS_RSP_1; |
| x86_pmu.er_flags |= ERF_NO_HT_SHARING; |
| |
| x86_pmu.cpu_events = snb_events_attrs; |
| |
| /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| |
| pr_cont("IvyBridge events, "); |
| break; |
| |
| |
| case 60: /* 22nm Haswell Core */ |
| case 63: /* 22nm Haswell Server */ |
| case 69: /* 22nm Haswell ULT */ |
| case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */ |
| x86_pmu.late_ack = true; |
| memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_snb(); |
| |
| x86_pmu.event_constraints = intel_hsw_event_constraints; |
| x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_snb; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.er_flags |= ERF_HAS_RSP_1; |
| x86_pmu.er_flags |= ERF_NO_HT_SHARING; |
| |
| x86_pmu.hw_config = hsw_hw_config; |
| x86_pmu.get_event_constraints = hsw_get_event_constraints; |
| x86_pmu.cpu_events = hsw_events_attrs; |
| x86_pmu.lbr_double_abort = true; |
| pr_cont("Haswell events, "); |
| break; |
| |
| default: |
| switch (x86_pmu.version) { |
| case 1: |
| x86_pmu.event_constraints = intel_v1_event_constraints; |
| pr_cont("generic architected perfmon v1, "); |
| break; |
| default: |
| /* |
| * default constraints for v2 and up |
| */ |
| x86_pmu.event_constraints = intel_gen_event_constraints; |
| pr_cont("generic architected perfmon, "); |
| break; |
| } |
| } |
| |
| if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { |
| WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", |
| x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); |
| x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; |
| } |
| x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; |
| |
| if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { |
| WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", |
| x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); |
| x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; |
| } |
| |
| x86_pmu.intel_ctrl |= |
| ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; |
| |
| if (x86_pmu.event_constraints) { |
| /* |
| * event on fixed counter2 (REF_CYCLES) only works on this |
| * counter, so do not extend mask to generic counters |
| */ |
| for_each_event_constraint(c, x86_pmu.event_constraints) { |
| if (c->cmask != FIXED_EVENT_FLAGS |
| || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) { |
| continue; |
| } |
| |
| c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; |
| c->weight += x86_pmu.num_counters; |
| } |
| } |
| |
| /* |
| * Access LBR MSR may cause #GP under certain circumstances. |
| * E.g. KVM doesn't support LBR MSR |
| * Check all LBT MSR here. |
| * Disable LBR access if any LBR MSRs can not be accessed. |
| */ |
| if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) |
| x86_pmu.lbr_nr = 0; |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && |
| check_msr(x86_pmu.lbr_to + i, 0xffffUL))) |
| x86_pmu.lbr_nr = 0; |
| } |
| |
| /* |
| * Access extra MSR may cause #GP under certain circumstances. |
| * E.g. KVM doesn't support offcore event |
| * Check all extra_regs here. |
| */ |
| if (x86_pmu.extra_regs) { |
| for (er = x86_pmu.extra_regs; er->msr; er++) { |
| er->extra_msr_access = check_msr(er->msr, 0x1ffUL); |
| /* Disable LBR select mapping */ |
| if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) |
| x86_pmu.lbr_sel_map = NULL; |
| } |
| } |
| |
| /* Support full width counters using alternative MSR range */ |
| if (x86_pmu.intel_cap.full_width_write) { |
| x86_pmu.max_period = x86_pmu.cntval_mask; |
| x86_pmu.perfctr = MSR_IA32_PMC0; |
| pr_cont("full-width counters, "); |
| } |
| |
| return 0; |
| } |