| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_SEGMENT_H |
| #define _ASM_X86_SEGMENT_H |
| |
| #include <linux/const.h> |
| #include <asm/alternative.h> |
| |
| /* |
| * Constructor for a conventional segment GDT (or LDT) entry. |
| * This is a macro so it can be used in initializers. |
| */ |
| #define GDT_ENTRY(flags, base, limit) \ |
| ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \ |
| (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \ |
| (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \ |
| (((base) & _AC(0x00ffffff,ULL)) << 16) | \ |
| (((limit) & _AC(0x0000ffff,ULL)))) |
| |
| /* Simple and small GDT entries for booting only: */ |
| |
| #define GDT_ENTRY_BOOT_CS 2 |
| #define GDT_ENTRY_BOOT_DS 3 |
| #define GDT_ENTRY_BOOT_TSS 4 |
| #define __BOOT_CS (GDT_ENTRY_BOOT_CS*8) |
| #define __BOOT_DS (GDT_ENTRY_BOOT_DS*8) |
| #define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8) |
| |
| /* |
| * Bottom two bits of selector give the ring |
| * privilege level |
| */ |
| #define SEGMENT_RPL_MASK 0x3 |
| |
| /* |
| * When running on Xen PV, the actual privilege level of the kernel is 1, |
| * not 0. Testing the Requested Privilege Level in a segment selector to |
| * determine whether the context is user mode or kernel mode with |
| * SEGMENT_RPL_MASK is wrong because the PV kernel's privilege level |
| * matches the 0x3 mask. |
| * |
| * Testing with USER_SEGMENT_RPL_MASK is valid for both native and Xen PV |
| * kernels because privilege level 2 is never used. |
| */ |
| #define USER_SEGMENT_RPL_MASK 0x2 |
| |
| /* User mode is privilege level 3: */ |
| #define USER_RPL 0x3 |
| |
| /* Bit 2 is Table Indicator (TI): selects between LDT or GDT */ |
| #define SEGMENT_TI_MASK 0x4 |
| /* LDT segment has TI set ... */ |
| #define SEGMENT_LDT 0x4 |
| /* ... GDT has it cleared */ |
| #define SEGMENT_GDT 0x0 |
| |
| #define GDT_ENTRY_INVALID_SEG 0 |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * The layout of the per-CPU GDT under Linux: |
| * |
| * 0 - null <=== cacheline #1 |
| * 1 - reserved |
| * 2 - reserved |
| * 3 - reserved |
| * |
| * 4 - unused <=== cacheline #2 |
| * 5 - unused |
| * |
| * ------- start of TLS (Thread-Local Storage) segments: |
| * |
| * 6 - TLS segment #1 [ glibc's TLS segment ] |
| * 7 - TLS segment #2 [ Wine's %fs Win32 segment ] |
| * 8 - TLS segment #3 <=== cacheline #3 |
| * 9 - reserved |
| * 10 - reserved |
| * 11 - reserved |
| * |
| * ------- start of kernel segments: |
| * |
| * 12 - kernel code segment <=== cacheline #4 |
| * 13 - kernel data segment |
| * 14 - default user CS |
| * 15 - default user DS |
| * 16 - TSS <=== cacheline #5 |
| * 17 - LDT |
| * 18 - PNPBIOS support (16->32 gate) |
| * 19 - PNPBIOS support |
| * 20 - PNPBIOS support <=== cacheline #6 |
| * 21 - PNPBIOS support |
| * 22 - PNPBIOS support |
| * 23 - APM BIOS support |
| * 24 - APM BIOS support <=== cacheline #7 |
| * 25 - APM BIOS support |
| * |
| * 26 - ESPFIX small SS |
| * 27 - per-cpu [ offset to per-cpu data area ] |
| * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8 |
| * 29 - unused |
| * 30 - unused |
| * 31 - TSS for double fault handler |
| */ |
| #define GDT_ENTRY_TLS_MIN 6 |
| #define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) |
| |
| #define GDT_ENTRY_KERNEL_CS 12 |
| #define GDT_ENTRY_KERNEL_DS 13 |
| #define GDT_ENTRY_DEFAULT_USER_CS 14 |
| #define GDT_ENTRY_DEFAULT_USER_DS 15 |
| #define GDT_ENTRY_TSS 16 |
| #define GDT_ENTRY_LDT 17 |
| #define GDT_ENTRY_PNPBIOS_CS32 18 |
| #define GDT_ENTRY_PNPBIOS_CS16 19 |
| #define GDT_ENTRY_PNPBIOS_DS 20 |
| #define GDT_ENTRY_PNPBIOS_TS1 21 |
| #define GDT_ENTRY_PNPBIOS_TS2 22 |
| #define GDT_ENTRY_APMBIOS_BASE 23 |
| |
| #define GDT_ENTRY_ESPFIX_SS 26 |
| #define GDT_ENTRY_PERCPU 27 |
| #define GDT_ENTRY_STACK_CANARY 28 |
| |
| #define GDT_ENTRY_DOUBLEFAULT_TSS 31 |
| |
| /* |
| * Number of entries in the GDT table: |
| */ |
| #define GDT_ENTRIES 32 |
| |
| /* |
| * Segment selector values corresponding to the above entries: |
| */ |
| |
| #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
| #define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) |
| |
| /* segment for calling fn: */ |
| #define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8) |
| /* code segment for BIOS: */ |
| #define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8) |
| |
| /* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */ |
| #define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32) |
| |
| /* data segment for BIOS: */ |
| #define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8) |
| /* transfer data segment: */ |
| #define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8) |
| /* another data segment: */ |
| #define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8) |
| |
| #ifdef CONFIG_SMP |
| # define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8) |
| #else |
| # define __KERNEL_PERCPU 0 |
| #endif |
| |
| #ifdef CONFIG_STACKPROTECTOR |
| # define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8) |
| #else |
| # define __KERNEL_STACK_CANARY 0 |
| #endif |
| |
| #else /* 64-bit: */ |
| |
| #include <asm/cache.h> |
| |
| #define GDT_ENTRY_KERNEL32_CS 1 |
| #define GDT_ENTRY_KERNEL_CS 2 |
| #define GDT_ENTRY_KERNEL_DS 3 |
| |
| /* |
| * We cannot use the same code segment descriptor for user and kernel mode, |
| * not even in long flat mode, because of different DPL. |
| * |
| * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes |
| * selectors: |
| * |
| * if returning to 32-bit userspace: cs = STAR.SYSRET_CS, |
| * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16, |
| * |
| * ss = STAR.SYSRET_CS+8 (in either case) |
| * |
| * thus USER_DS should be between 32-bit and 64-bit code selectors: |
| */ |
| #define GDT_ENTRY_DEFAULT_USER32_CS 4 |
| #define GDT_ENTRY_DEFAULT_USER_DS 5 |
| #define GDT_ENTRY_DEFAULT_USER_CS 6 |
| |
| /* Needs two entries */ |
| #define GDT_ENTRY_TSS 8 |
| /* Needs two entries */ |
| #define GDT_ENTRY_LDT 10 |
| |
| #define GDT_ENTRY_TLS_MIN 12 |
| #define GDT_ENTRY_TLS_MAX 14 |
| |
| #define GDT_ENTRY_CPUNODE 15 |
| |
| /* |
| * Number of entries in the GDT table: |
| */ |
| #define GDT_ENTRIES 16 |
| |
| /* |
| * Segment selector values corresponding to the above entries: |
| * |
| * Note, selectors also need to have a correct RPL, |
| * expressed with the +3 value for user-space selectors: |
| */ |
| #define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8) |
| #define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) |
| #define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) |
| #define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3) |
| #define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) |
| #define __USER32_DS __USER_DS |
| #define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) |
| #define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) |
| |
| #endif |
| |
| #ifndef CONFIG_PARAVIRT_XXL |
| # define get_kernel_rpl() 0 |
| #endif |
| |
| #define IDT_ENTRIES 256 |
| #define NUM_EXCEPTION_VECTORS 32 |
| |
| /* Bitmask of exception vectors which push an error code on the stack: */ |
| #define EXCEPTION_ERRCODE_MASK 0x00027d00 |
| |
| #define GDT_SIZE (GDT_ENTRIES*8) |
| #define GDT_ENTRY_TLS_ENTRIES 3 |
| #define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8) |
| |
| #ifdef CONFIG_X86_64 |
| |
| /* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */ |
| #define VDSO_CPUNODE_BITS 12 |
| #define VDSO_CPUNODE_MASK 0xfff |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* Helper functions to store/load CPU and node numbers */ |
| |
| static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node) |
| { |
| return (node << VDSO_CPUNODE_BITS) | cpu; |
| } |
| |
| static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node) |
| { |
| unsigned int p; |
| |
| /* |
| * Load CPU and node number from the GDT. LSL is faster than RDTSCP |
| * and works on all CPUs. This is volatile so that it orders |
| * correctly with respect to barrier() and to keep GCC from cleverly |
| * hoisting it out of the calling function. |
| * |
| * If RDPID is available, use it. |
| */ |
| alternative_io ("lsl %[seg],%[p]", |
| ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */ |
| X86_FEATURE_RDPID, |
| [p] "=a" (p), [seg] "r" (__CPUNODE_SEG)); |
| |
| if (cpu) |
| *cpu = (p & VDSO_CPUNODE_MASK); |
| if (node) |
| *node = (p >> VDSO_CPUNODE_BITS); |
| } |
| |
| #endif /* !__ASSEMBLY__ */ |
| #endif /* CONFIG_X86_64 */ |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * early_idt_handler_array is an array of entry points referenced in the |
| * early IDT. For simplicity, it's a real array with one entry point |
| * every nine bytes. That leaves room for an optional 'push $0' if the |
| * vector has no error code (two bytes), a 'push $vector_number' (two |
| * bytes), and a jump to the common entry code (up to five bytes). |
| */ |
| #define EARLY_IDT_HANDLER_SIZE 9 |
| |
| /* |
| * xen_early_idt_handler_array is for Xen pv guests: for each entry in |
| * early_idt_handler_array it contains a prequel in the form of |
| * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to |
| * max 8 bytes. |
| */ |
| #define XEN_EARLY_IDT_HANDLER_SIZE 8 |
| |
| #ifndef __ASSEMBLY__ |
| |
| extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE]; |
| extern void early_ignore_irq(void); |
| |
| #if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV) |
| extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE]; |
| #endif |
| |
| /* |
| * Load a segment. Fall back on loading the zero segment if something goes |
| * wrong. This variant assumes that loading zero fully clears the segment. |
| * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any |
| * failure to fully clear the cached descriptor is only observable for |
| * FS and GS. |
| */ |
| #define __loadsegment_simple(seg, value) \ |
| do { \ |
| unsigned short __val = (value); \ |
| \ |
| asm volatile(" \n" \ |
| "1: movl %k0,%%" #seg " \n" \ |
| \ |
| ".section .fixup,\"ax\" \n" \ |
| "2: xorl %k0,%k0 \n" \ |
| " jmp 1b \n" \ |
| ".previous \n" \ |
| \ |
| _ASM_EXTABLE(1b, 2b) \ |
| \ |
| : "+r" (__val) : : "memory"); \ |
| } while (0) |
| |
| #define __loadsegment_ss(value) __loadsegment_simple(ss, (value)) |
| #define __loadsegment_ds(value) __loadsegment_simple(ds, (value)) |
| #define __loadsegment_es(value) __loadsegment_simple(es, (value)) |
| |
| #ifdef CONFIG_X86_32 |
| |
| /* |
| * On 32-bit systems, the hidden parts of FS and GS are unobservable if |
| * the selector is NULL, so there's no funny business here. |
| */ |
| #define __loadsegment_fs(value) __loadsegment_simple(fs, (value)) |
| #define __loadsegment_gs(value) __loadsegment_simple(gs, (value)) |
| |
| #else |
| |
| static inline void __loadsegment_fs(unsigned short value) |
| { |
| asm volatile(" \n" |
| "1: movw %0, %%fs \n" |
| "2: \n" |
| |
| _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs) |
| |
| : : "rm" (value) : "memory"); |
| } |
| |
| /* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */ |
| |
| #endif |
| |
| #define loadsegment(seg, value) __loadsegment_ ## seg (value) |
| |
| /* |
| * Save a segment register away: |
| */ |
| #define savesegment(seg, value) \ |
| asm("mov %%" #seg ",%0":"=r" (value) : : "memory") |
| |
| /* |
| * x86-32 user GS accessors: |
| */ |
| #ifdef CONFIG_X86_32 |
| # ifdef CONFIG_X86_32_LAZY_GS |
| # define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; }) |
| # define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v)) |
| # define task_user_gs(tsk) ((tsk)->thread.gs) |
| # define lazy_save_gs(v) savesegment(gs, (v)) |
| # define lazy_load_gs(v) loadsegment(gs, (v)) |
| # else /* X86_32_LAZY_GS */ |
| # define get_user_gs(regs) (u16)((regs)->gs) |
| # define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0) |
| # define task_user_gs(tsk) (task_pt_regs(tsk)->gs) |
| # define lazy_save_gs(v) do { } while (0) |
| # define lazy_load_gs(v) do { } while (0) |
| # endif /* X86_32_LAZY_GS */ |
| #endif /* X86_32 */ |
| |
| #endif /* !__ASSEMBLY__ */ |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_X86_SEGMENT_H */ |