| /**************************************************************************** |
| * Driver for Solarflare network controllers and boards |
| * Copyright 2008-2013 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/moduleparam.h> |
| #include <linux/atomic.h> |
| #include "net_driver.h" |
| #include "nic.h" |
| #include "io.h" |
| #include "farch_regs.h" |
| #include "mcdi_pcol.h" |
| #include "phy.h" |
| |
| /************************************************************************** |
| * |
| * Management-Controller-to-Driver Interface |
| * |
| ************************************************************************** |
| */ |
| |
| #define MCDI_RPC_TIMEOUT (10 * HZ) |
| |
| /* A reboot/assertion causes the MCDI status word to be set after the |
| * command word is set or a REBOOT event is sent. If we notice a reboot |
| * via these mechanisms then wait 250ms for the status word to be set. |
| */ |
| #define MCDI_STATUS_DELAY_US 100 |
| #define MCDI_STATUS_DELAY_COUNT 2500 |
| #define MCDI_STATUS_SLEEP_MS \ |
| (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) |
| |
| #define SEQ_MASK \ |
| EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) |
| |
| struct efx_mcdi_async_param { |
| struct list_head list; |
| unsigned int cmd; |
| size_t inlen; |
| size_t outlen; |
| bool quiet; |
| efx_mcdi_async_completer *complete; |
| unsigned long cookie; |
| /* followed by request/response buffer */ |
| }; |
| |
| static void efx_mcdi_timeout_async(unsigned long context); |
| static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, |
| bool *was_attached_out); |
| static bool efx_mcdi_poll_once(struct efx_nic *efx); |
| static void efx_mcdi_abandon(struct efx_nic *efx); |
| |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| static bool mcdi_logging_default; |
| module_param(mcdi_logging_default, bool, 0644); |
| MODULE_PARM_DESC(mcdi_logging_default, |
| "Enable MCDI logging on newly-probed functions"); |
| #endif |
| |
| int efx_mcdi_init(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi; |
| bool already_attached; |
| int rc = -ENOMEM; |
| |
| efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); |
| if (!efx->mcdi) |
| goto fail; |
| |
| mcdi = efx_mcdi(efx); |
| mcdi->efx = efx; |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| /* consuming code assumes buffer is page-sized */ |
| mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); |
| if (!mcdi->logging_buffer) |
| goto fail1; |
| mcdi->logging_enabled = mcdi_logging_default; |
| #endif |
| init_waitqueue_head(&mcdi->wq); |
| init_waitqueue_head(&mcdi->proxy_rx_wq); |
| spin_lock_init(&mcdi->iface_lock); |
| mcdi->state = MCDI_STATE_QUIESCENT; |
| mcdi->mode = MCDI_MODE_POLL; |
| spin_lock_init(&mcdi->async_lock); |
| INIT_LIST_HEAD(&mcdi->async_list); |
| setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, |
| (unsigned long)mcdi); |
| |
| (void) efx_mcdi_poll_reboot(efx); |
| mcdi->new_epoch = true; |
| |
| /* Recover from a failed assertion before probing */ |
| rc = efx_mcdi_handle_assertion(efx); |
| if (rc) |
| goto fail2; |
| |
| /* Let the MC (and BMC, if this is a LOM) know that the driver |
| * is loaded. We should do this before we reset the NIC. |
| */ |
| rc = efx_mcdi_drv_attach(efx, true, &already_attached); |
| if (rc) { |
| netif_err(efx, probe, efx->net_dev, |
| "Unable to register driver with MCPU\n"); |
| goto fail2; |
| } |
| if (already_attached) |
| /* Not a fatal error */ |
| netif_err(efx, probe, efx->net_dev, |
| "Host already registered with MCPU\n"); |
| |
| if (efx->mcdi->fn_flags & |
| (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) |
| efx->primary = efx; |
| |
| return 0; |
| fail2: |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| free_page((unsigned long)mcdi->logging_buffer); |
| fail1: |
| #endif |
| kfree(efx->mcdi); |
| efx->mcdi = NULL; |
| fail: |
| return rc; |
| } |
| |
| void efx_mcdi_fini(struct efx_nic *efx) |
| { |
| if (!efx->mcdi) |
| return; |
| |
| BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); |
| |
| /* Relinquish the device (back to the BMC, if this is a LOM) */ |
| efx_mcdi_drv_attach(efx, false, NULL); |
| |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| free_page((unsigned long)efx->mcdi->iface.logging_buffer); |
| #endif |
| |
| kfree(efx->mcdi); |
| } |
| |
| static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, |
| const efx_dword_t *inbuf, size_t inlen) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| char *buf = mcdi->logging_buffer; /* page-sized */ |
| #endif |
| efx_dword_t hdr[2]; |
| size_t hdr_len; |
| u32 xflags, seqno; |
| |
| BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); |
| |
| /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ |
| spin_lock_bh(&mcdi->iface_lock); |
| ++mcdi->seqno; |
| spin_unlock_bh(&mcdi->iface_lock); |
| |
| seqno = mcdi->seqno & SEQ_MASK; |
| xflags = 0; |
| if (mcdi->mode == MCDI_MODE_EVENTS) |
| xflags |= MCDI_HEADER_XFLAGS_EVREQ; |
| |
| if (efx->type->mcdi_max_ver == 1) { |
| /* MCDI v1 */ |
| EFX_POPULATE_DWORD_7(hdr[0], |
| MCDI_HEADER_RESPONSE, 0, |
| MCDI_HEADER_RESYNC, 1, |
| MCDI_HEADER_CODE, cmd, |
| MCDI_HEADER_DATALEN, inlen, |
| MCDI_HEADER_SEQ, seqno, |
| MCDI_HEADER_XFLAGS, xflags, |
| MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); |
| hdr_len = 4; |
| } else { |
| /* MCDI v2 */ |
| BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); |
| EFX_POPULATE_DWORD_7(hdr[0], |
| MCDI_HEADER_RESPONSE, 0, |
| MCDI_HEADER_RESYNC, 1, |
| MCDI_HEADER_CODE, MC_CMD_V2_EXTN, |
| MCDI_HEADER_DATALEN, 0, |
| MCDI_HEADER_SEQ, seqno, |
| MCDI_HEADER_XFLAGS, xflags, |
| MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); |
| EFX_POPULATE_DWORD_2(hdr[1], |
| MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, |
| MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); |
| hdr_len = 8; |
| } |
| |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { |
| int bytes = 0; |
| int i; |
| /* Lengths should always be a whole number of dwords, so scream |
| * if they're not. |
| */ |
| WARN_ON_ONCE(hdr_len % 4); |
| WARN_ON_ONCE(inlen % 4); |
| |
| /* We own the logging buffer, as only one MCDI can be in |
| * progress on a NIC at any one time. So no need for locking. |
| */ |
| for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) |
| bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, |
| " %08x", le32_to_cpu(hdr[i].u32[0])); |
| |
| for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) |
| bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, |
| " %08x", le32_to_cpu(inbuf[i].u32[0])); |
| |
| netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); |
| } |
| #endif |
| |
| efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); |
| |
| mcdi->new_epoch = false; |
| } |
| |
| static int efx_mcdi_errno(unsigned int mcdi_err) |
| { |
| switch (mcdi_err) { |
| case 0: |
| return 0; |
| #define TRANSLATE_ERROR(name) \ |
| case MC_CMD_ERR_ ## name: \ |
| return -name; |
| TRANSLATE_ERROR(EPERM); |
| TRANSLATE_ERROR(ENOENT); |
| TRANSLATE_ERROR(EINTR); |
| TRANSLATE_ERROR(EAGAIN); |
| TRANSLATE_ERROR(EACCES); |
| TRANSLATE_ERROR(EBUSY); |
| TRANSLATE_ERROR(EINVAL); |
| TRANSLATE_ERROR(EDEADLK); |
| TRANSLATE_ERROR(ENOSYS); |
| TRANSLATE_ERROR(ETIME); |
| TRANSLATE_ERROR(EALREADY); |
| TRANSLATE_ERROR(ENOSPC); |
| #undef TRANSLATE_ERROR |
| case MC_CMD_ERR_ENOTSUP: |
| return -EOPNOTSUPP; |
| case MC_CMD_ERR_ALLOC_FAIL: |
| return -ENOBUFS; |
| case MC_CMD_ERR_MAC_EXIST: |
| return -EADDRINUSE; |
| default: |
| return -EPROTO; |
| } |
| } |
| |
| static void efx_mcdi_read_response_header(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| unsigned int respseq, respcmd, error; |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| char *buf = mcdi->logging_buffer; /* page-sized */ |
| #endif |
| efx_dword_t hdr; |
| |
| efx->type->mcdi_read_response(efx, &hdr, 0, 4); |
| respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); |
| respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); |
| error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); |
| |
| if (respcmd != MC_CMD_V2_EXTN) { |
| mcdi->resp_hdr_len = 4; |
| mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); |
| } else { |
| efx->type->mcdi_read_response(efx, &hdr, 4, 4); |
| mcdi->resp_hdr_len = 8; |
| mcdi->resp_data_len = |
| EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); |
| } |
| |
| #ifdef CONFIG_SFC_MCDI_LOGGING |
| if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { |
| size_t hdr_len, data_len; |
| int bytes = 0; |
| int i; |
| |
| WARN_ON_ONCE(mcdi->resp_hdr_len % 4); |
| hdr_len = mcdi->resp_hdr_len / 4; |
| /* MCDI_DECLARE_BUF ensures that underlying buffer is padded |
| * to dword size, and the MCDI buffer is always dword size |
| */ |
| data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); |
| |
| /* We own the logging buffer, as only one MCDI can be in |
| * progress on a NIC at any one time. So no need for locking. |
| */ |
| for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { |
| efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); |
| bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, |
| " %08x", le32_to_cpu(hdr.u32[0])); |
| } |
| |
| for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { |
| efx->type->mcdi_read_response(efx, &hdr, |
| mcdi->resp_hdr_len + (i * 4), 4); |
| bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, |
| " %08x", le32_to_cpu(hdr.u32[0])); |
| } |
| |
| netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); |
| } |
| #endif |
| |
| mcdi->resprc_raw = 0; |
| if (error && mcdi->resp_data_len == 0) { |
| netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); |
| mcdi->resprc = -EIO; |
| } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { |
| netif_err(efx, hw, efx->net_dev, |
| "MC response mismatch tx seq 0x%x rx seq 0x%x\n", |
| respseq, mcdi->seqno); |
| mcdi->resprc = -EIO; |
| } else if (error) { |
| efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); |
| mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); |
| mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); |
| } else { |
| mcdi->resprc = 0; |
| } |
| } |
| |
| static bool efx_mcdi_poll_once(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| rmb(); |
| if (!efx->type->mcdi_poll_response(efx)) |
| return false; |
| |
| spin_lock_bh(&mcdi->iface_lock); |
| efx_mcdi_read_response_header(efx); |
| spin_unlock_bh(&mcdi->iface_lock); |
| |
| return true; |
| } |
| |
| static int efx_mcdi_poll(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| unsigned long time, finish; |
| unsigned int spins; |
| int rc; |
| |
| /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ |
| rc = efx_mcdi_poll_reboot(efx); |
| if (rc) { |
| spin_lock_bh(&mcdi->iface_lock); |
| mcdi->resprc = rc; |
| mcdi->resp_hdr_len = 0; |
| mcdi->resp_data_len = 0; |
| spin_unlock_bh(&mcdi->iface_lock); |
| return 0; |
| } |
| |
| /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, |
| * because generally mcdi responses are fast. After that, back off |
| * and poll once a jiffy (approximately) |
| */ |
| spins = TICK_USEC; |
| finish = jiffies + MCDI_RPC_TIMEOUT; |
| |
| while (1) { |
| if (spins != 0) { |
| --spins; |
| udelay(1); |
| } else { |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| time = jiffies; |
| |
| if (efx_mcdi_poll_once(efx)) |
| break; |
| |
| if (time_after(time, finish)) |
| return -ETIMEDOUT; |
| } |
| |
| /* Return rc=0 like wait_event_timeout() */ |
| return 0; |
| } |
| |
| /* Test and clear MC-rebooted flag for this port/function; reset |
| * software state as necessary. |
| */ |
| int efx_mcdi_poll_reboot(struct efx_nic *efx) |
| { |
| if (!efx->mcdi) |
| return 0; |
| |
| return efx->type->mcdi_poll_reboot(efx); |
| } |
| |
| static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) |
| { |
| return cmpxchg(&mcdi->state, |
| MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == |
| MCDI_STATE_QUIESCENT; |
| } |
| |
| static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) |
| { |
| /* Wait until the interface becomes QUIESCENT and we win the race |
| * to mark it RUNNING_SYNC. |
| */ |
| wait_event(mcdi->wq, |
| cmpxchg(&mcdi->state, |
| MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == |
| MCDI_STATE_QUIESCENT); |
| } |
| |
| static int efx_mcdi_await_completion(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, |
| MCDI_RPC_TIMEOUT) == 0) |
| return -ETIMEDOUT; |
| |
| /* Check if efx_mcdi_set_mode() switched us back to polled completions. |
| * In which case, poll for completions directly. If efx_mcdi_ev_cpl() |
| * completed the request first, then we'll just end up completing the |
| * request again, which is safe. |
| * |
| * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which |
| * wait_event_timeout() implicitly provides. |
| */ |
| if (mcdi->mode == MCDI_MODE_POLL) |
| return efx_mcdi_poll(efx); |
| |
| return 0; |
| } |
| |
| /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the |
| * requester. Return whether this was done. Does not take any locks. |
| */ |
| static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) |
| { |
| if (cmpxchg(&mcdi->state, |
| MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == |
| MCDI_STATE_RUNNING_SYNC) { |
| wake_up(&mcdi->wq); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) |
| { |
| if (mcdi->mode == MCDI_MODE_EVENTS) { |
| struct efx_mcdi_async_param *async; |
| struct efx_nic *efx = mcdi->efx; |
| |
| /* Process the asynchronous request queue */ |
| spin_lock_bh(&mcdi->async_lock); |
| async = list_first_entry_or_null( |
| &mcdi->async_list, struct efx_mcdi_async_param, list); |
| if (async) { |
| mcdi->state = MCDI_STATE_RUNNING_ASYNC; |
| efx_mcdi_send_request(efx, async->cmd, |
| (const efx_dword_t *)(async + 1), |
| async->inlen); |
| mod_timer(&mcdi->async_timer, |
| jiffies + MCDI_RPC_TIMEOUT); |
| } |
| spin_unlock_bh(&mcdi->async_lock); |
| |
| if (async) |
| return; |
| } |
| |
| mcdi->state = MCDI_STATE_QUIESCENT; |
| wake_up(&mcdi->wq); |
| } |
| |
| /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the |
| * asynchronous completion function, and release the interface. |
| * Return whether this was done. Must be called in bh-disabled |
| * context. Will take iface_lock and async_lock. |
| */ |
| static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) |
| { |
| struct efx_nic *efx = mcdi->efx; |
| struct efx_mcdi_async_param *async; |
| size_t hdr_len, data_len, err_len; |
| efx_dword_t *outbuf; |
| MCDI_DECLARE_BUF_ERR(errbuf); |
| int rc; |
| |
| if (cmpxchg(&mcdi->state, |
| MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != |
| MCDI_STATE_RUNNING_ASYNC) |
| return false; |
| |
| spin_lock(&mcdi->iface_lock); |
| if (timeout) { |
| /* Ensure that if the completion event arrives later, |
| * the seqno check in efx_mcdi_ev_cpl() will fail |
| */ |
| ++mcdi->seqno; |
| ++mcdi->credits; |
| rc = -ETIMEDOUT; |
| hdr_len = 0; |
| data_len = 0; |
| } else { |
| rc = mcdi->resprc; |
| hdr_len = mcdi->resp_hdr_len; |
| data_len = mcdi->resp_data_len; |
| } |
| spin_unlock(&mcdi->iface_lock); |
| |
| /* Stop the timer. In case the timer function is running, we |
| * must wait for it to return so that there is no possibility |
| * of it aborting the next request. |
| */ |
| if (!timeout) |
| del_timer_sync(&mcdi->async_timer); |
| |
| spin_lock(&mcdi->async_lock); |
| async = list_first_entry(&mcdi->async_list, |
| struct efx_mcdi_async_param, list); |
| list_del(&async->list); |
| spin_unlock(&mcdi->async_lock); |
| |
| outbuf = (efx_dword_t *)(async + 1); |
| efx->type->mcdi_read_response(efx, outbuf, hdr_len, |
| min(async->outlen, data_len)); |
| if (!timeout && rc && !async->quiet) { |
| err_len = min(sizeof(errbuf), data_len); |
| efx->type->mcdi_read_response(efx, errbuf, hdr_len, |
| sizeof(errbuf)); |
| efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, |
| err_len, rc); |
| } |
| |
| if (async->complete) |
| async->complete(efx, async->cookie, rc, outbuf, |
| min(async->outlen, data_len)); |
| kfree(async); |
| |
| efx_mcdi_release(mcdi); |
| |
| return true; |
| } |
| |
| static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, |
| unsigned int datalen, unsigned int mcdi_err) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| bool wake = false; |
| |
| spin_lock(&mcdi->iface_lock); |
| |
| if ((seqno ^ mcdi->seqno) & SEQ_MASK) { |
| if (mcdi->credits) |
| /* The request has been cancelled */ |
| --mcdi->credits; |
| else |
| netif_err(efx, hw, efx->net_dev, |
| "MC response mismatch tx seq 0x%x rx " |
| "seq 0x%x\n", seqno, mcdi->seqno); |
| } else { |
| if (efx->type->mcdi_max_ver >= 2) { |
| /* MCDI v2 responses don't fit in an event */ |
| efx_mcdi_read_response_header(efx); |
| } else { |
| mcdi->resprc = efx_mcdi_errno(mcdi_err); |
| mcdi->resp_hdr_len = 4; |
| mcdi->resp_data_len = datalen; |
| } |
| |
| wake = true; |
| } |
| |
| spin_unlock(&mcdi->iface_lock); |
| |
| if (wake) { |
| if (!efx_mcdi_complete_async(mcdi, false)) |
| (void) efx_mcdi_complete_sync(mcdi); |
| |
| /* If the interface isn't RUNNING_ASYNC or |
| * RUNNING_SYNC then we've received a duplicate |
| * completion after we've already transitioned back to |
| * QUIESCENT. [A subsequent invocation would increment |
| * seqno, so would have failed the seqno check]. |
| */ |
| } |
| } |
| |
| static void efx_mcdi_timeout_async(unsigned long context) |
| { |
| struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; |
| |
| efx_mcdi_complete_async(mcdi, true); |
| } |
| |
| static int |
| efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) |
| { |
| if (efx->type->mcdi_max_ver < 0 || |
| (efx->type->mcdi_max_ver < 2 && |
| cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) |
| return -EINVAL; |
| |
| if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || |
| (efx->type->mcdi_max_ver < 2 && |
| inlen > MCDI_CTL_SDU_LEN_MAX_V1)) |
| return -EMSGSIZE; |
| |
| return 0; |
| } |
| |
| static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, |
| size_t hdr_len, size_t data_len, |
| u32 *proxy_handle) |
| { |
| MCDI_DECLARE_BUF_ERR(testbuf); |
| const size_t buflen = sizeof(testbuf); |
| |
| if (!proxy_handle || data_len < buflen) |
| return false; |
| |
| efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); |
| if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { |
| *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, |
| size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual, bool quiet, |
| u32 *proxy_handle, int *raw_rc) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| MCDI_DECLARE_BUF_ERR(errbuf); |
| int rc; |
| |
| if (mcdi->mode == MCDI_MODE_POLL) |
| rc = efx_mcdi_poll(efx); |
| else |
| rc = efx_mcdi_await_completion(efx); |
| |
| if (rc != 0) { |
| netif_err(efx, hw, efx->net_dev, |
| "MC command 0x%x inlen %d mode %d timed out\n", |
| cmd, (int)inlen, mcdi->mode); |
| |
| if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { |
| netif_err(efx, hw, efx->net_dev, |
| "MCDI request was completed without an event\n"); |
| rc = 0; |
| } |
| |
| efx_mcdi_abandon(efx); |
| |
| /* Close the race with efx_mcdi_ev_cpl() executing just too late |
| * and completing a request we've just cancelled, by ensuring |
| * that the seqno check therein fails. |
| */ |
| spin_lock_bh(&mcdi->iface_lock); |
| ++mcdi->seqno; |
| ++mcdi->credits; |
| spin_unlock_bh(&mcdi->iface_lock); |
| } |
| |
| if (proxy_handle) |
| *proxy_handle = 0; |
| |
| if (rc != 0) { |
| if (outlen_actual) |
| *outlen_actual = 0; |
| } else { |
| size_t hdr_len, data_len, err_len; |
| |
| /* At the very least we need a memory barrier here to ensure |
| * we pick up changes from efx_mcdi_ev_cpl(). Protect against |
| * a spurious efx_mcdi_ev_cpl() running concurrently by |
| * acquiring the iface_lock. */ |
| spin_lock_bh(&mcdi->iface_lock); |
| rc = mcdi->resprc; |
| if (raw_rc) |
| *raw_rc = mcdi->resprc_raw; |
| hdr_len = mcdi->resp_hdr_len; |
| data_len = mcdi->resp_data_len; |
| err_len = min(sizeof(errbuf), data_len); |
| spin_unlock_bh(&mcdi->iface_lock); |
| |
| BUG_ON(rc > 0); |
| |
| efx->type->mcdi_read_response(efx, outbuf, hdr_len, |
| min(outlen, data_len)); |
| if (outlen_actual) |
| *outlen_actual = data_len; |
| |
| efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); |
| |
| if (cmd == MC_CMD_REBOOT && rc == -EIO) { |
| /* Don't reset if MC_CMD_REBOOT returns EIO */ |
| } else if (rc == -EIO || rc == -EINTR) { |
| netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", |
| -rc); |
| efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); |
| } else if (proxy_handle && (rc == -EPROTO) && |
| efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, |
| proxy_handle)) { |
| mcdi->proxy_rx_status = 0; |
| mcdi->proxy_rx_handle = 0; |
| mcdi->state = MCDI_STATE_PROXY_WAIT; |
| } else if (rc && !quiet) { |
| efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, |
| rc); |
| } |
| |
| if (rc == -EIO || rc == -EINTR) { |
| msleep(MCDI_STATUS_SLEEP_MS); |
| efx_mcdi_poll_reboot(efx); |
| mcdi->new_epoch = true; |
| } |
| } |
| |
| if (!proxy_handle || !*proxy_handle) |
| efx_mcdi_release(mcdi); |
| return rc; |
| } |
| |
| static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) |
| { |
| if (mcdi->state == MCDI_STATE_PROXY_WAIT) { |
| /* Interrupt the proxy wait. */ |
| mcdi->proxy_rx_status = -EINTR; |
| wake_up(&mcdi->proxy_rx_wq); |
| } |
| } |
| |
| static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, |
| u32 handle, int status) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); |
| |
| mcdi->proxy_rx_status = efx_mcdi_errno(status); |
| /* Ensure the status is written before we update the handle, since the |
| * latter is used to check if we've finished. |
| */ |
| wmb(); |
| mcdi->proxy_rx_handle = handle; |
| wake_up(&mcdi->proxy_rx_wq); |
| } |
| |
| static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| int rc; |
| |
| /* Wait for a proxy event, or timeout. */ |
| rc = wait_event_timeout(mcdi->proxy_rx_wq, |
| mcdi->proxy_rx_handle != 0 || |
| mcdi->proxy_rx_status == -EINTR, |
| MCDI_RPC_TIMEOUT); |
| |
| if (rc <= 0) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "MCDI proxy timeout %d\n", handle); |
| return -ETIMEDOUT; |
| } else if (mcdi->proxy_rx_handle != handle) { |
| netif_warn(efx, hw, efx->net_dev, |
| "MCDI proxy unexpected handle %d (expected %d)\n", |
| mcdi->proxy_rx_handle, handle); |
| return -EINVAL; |
| } |
| |
| return mcdi->proxy_rx_status; |
| } |
| |
| static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual, bool quiet, int *raw_rc) |
| { |
| u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ |
| int rc; |
| |
| if (inbuf && inlen && (inbuf == outbuf)) { |
| /* The input buffer can't be aliased with the output. */ |
| WARN_ON(1); |
| return -EINVAL; |
| } |
| |
| rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); |
| if (rc) |
| return rc; |
| |
| rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, |
| outlen_actual, quiet, &proxy_handle, raw_rc); |
| |
| if (proxy_handle) { |
| /* Handle proxy authorisation. This allows approval of MCDI |
| * operations to be delegated to the admin function, allowing |
| * fine control over (eg) multicast subscriptions. |
| */ |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "MCDI waiting for proxy auth %d\n", |
| proxy_handle); |
| rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); |
| |
| if (rc == 0) { |
| netif_dbg(efx, hw, efx->net_dev, |
| "MCDI proxy retry %d\n", proxy_handle); |
| |
| /* We now retry the original request. */ |
| mcdi->state = MCDI_STATE_RUNNING_SYNC; |
| efx_mcdi_send_request(efx, cmd, inbuf, inlen); |
| |
| rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, |
| outbuf, outlen, outlen_actual, |
| quiet, NULL, raw_rc); |
| } else { |
| netif_printk(efx, hw, |
| rc == -EPERM ? KERN_DEBUG : KERN_ERR, |
| efx->net_dev, |
| "MC command 0x%x failed after proxy auth rc=%d\n", |
| cmd, rc); |
| |
| if (rc == -EINTR || rc == -EIO) |
| efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); |
| efx_mcdi_release(mcdi); |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual, bool quiet) |
| { |
| int raw_rc = 0; |
| int rc; |
| |
| rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, |
| outbuf, outlen, outlen_actual, true, &raw_rc); |
| |
| if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && |
| efx->type->is_vf) { |
| /* If the EVB port isn't available within a VF this may |
| * mean the PF is still bringing the switch up. We should |
| * retry our request shortly. |
| */ |
| unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; |
| unsigned int delay_us = 10000; |
| |
| netif_dbg(efx, hw, efx->net_dev, |
| "%s: NO_EVB_PORT; will retry request\n", |
| __func__); |
| |
| do { |
| usleep_range(delay_us, delay_us + 10000); |
| rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, |
| outbuf, outlen, outlen_actual, |
| true, &raw_rc); |
| if (delay_us < 100000) |
| delay_us <<= 1; |
| } while ((rc == -EPROTO) && |
| (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && |
| time_before(jiffies, abort_time)); |
| } |
| |
| if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) |
| efx_mcdi_display_error(efx, cmd, inlen, |
| outbuf, outlen, rc); |
| |
| return rc; |
| } |
| |
| /** |
| * efx_mcdi_rpc - Issue an MCDI command and wait for completion |
| * @efx: NIC through which to issue the command |
| * @cmd: Command type number |
| * @inbuf: Command parameters |
| * @inlen: Length of command parameters, in bytes. Must be a multiple |
| * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. |
| * @outbuf: Response buffer. May be %NULL if @outlen is 0. |
| * @outlen: Length of response buffer, in bytes. If the actual |
| * response is longer than @outlen & ~3, it will be truncated |
| * to that length. |
| * @outlen_actual: Pointer through which to return the actual response |
| * length. May be %NULL if this is not needed. |
| * |
| * This function may sleep and therefore must be called in an appropriate |
| * context. |
| * |
| * Return: A negative error code, or zero if successful. The error |
| * code may come from the MCDI response or may indicate a failure |
| * to communicate with the MC. In the former case, the response |
| * will still be copied to @outbuf and *@outlen_actual will be |
| * set accordingly. In the latter case, *@outlen_actual will be |
| * set to zero. |
| */ |
| int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual) |
| { |
| return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, |
| outlen_actual, false); |
| } |
| |
| /* Normally, on receiving an error code in the MCDI response, |
| * efx_mcdi_rpc will log an error message containing (among other |
| * things) the raw error code, by means of efx_mcdi_display_error. |
| * This _quiet version suppresses that; if the caller wishes to log |
| * the error conditionally on the return code, it should call this |
| * function and is then responsible for calling efx_mcdi_display_error |
| * as needed. |
| */ |
| int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual) |
| { |
| return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, |
| outlen_actual, true); |
| } |
| |
| int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, |
| const efx_dword_t *inbuf, size_t inlen) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| int rc; |
| |
| rc = efx_mcdi_check_supported(efx, cmd, inlen); |
| if (rc) |
| return rc; |
| |
| if (efx->mc_bist_for_other_fn) |
| return -ENETDOWN; |
| |
| if (mcdi->mode == MCDI_MODE_FAIL) |
| return -ENETDOWN; |
| |
| efx_mcdi_acquire_sync(mcdi); |
| efx_mcdi_send_request(efx, cmd, inbuf, inlen); |
| return 0; |
| } |
| |
| static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| size_t outlen, |
| efx_mcdi_async_completer *complete, |
| unsigned long cookie, bool quiet) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| struct efx_mcdi_async_param *async; |
| int rc; |
| |
| rc = efx_mcdi_check_supported(efx, cmd, inlen); |
| if (rc) |
| return rc; |
| |
| if (efx->mc_bist_for_other_fn) |
| return -ENETDOWN; |
| |
| async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), |
| GFP_ATOMIC); |
| if (!async) |
| return -ENOMEM; |
| |
| async->cmd = cmd; |
| async->inlen = inlen; |
| async->outlen = outlen; |
| async->quiet = quiet; |
| async->complete = complete; |
| async->cookie = cookie; |
| memcpy(async + 1, inbuf, inlen); |
| |
| spin_lock_bh(&mcdi->async_lock); |
| |
| if (mcdi->mode == MCDI_MODE_EVENTS) { |
| list_add_tail(&async->list, &mcdi->async_list); |
| |
| /* If this is at the front of the queue, try to start it |
| * immediately |
| */ |
| if (mcdi->async_list.next == &async->list && |
| efx_mcdi_acquire_async(mcdi)) { |
| efx_mcdi_send_request(efx, cmd, inbuf, inlen); |
| mod_timer(&mcdi->async_timer, |
| jiffies + MCDI_RPC_TIMEOUT); |
| } |
| } else { |
| kfree(async); |
| rc = -ENETDOWN; |
| } |
| |
| spin_unlock_bh(&mcdi->async_lock); |
| |
| return rc; |
| } |
| |
| /** |
| * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously |
| * @efx: NIC through which to issue the command |
| * @cmd: Command type number |
| * @inbuf: Command parameters |
| * @inlen: Length of command parameters, in bytes |
| * @outlen: Length to allocate for response buffer, in bytes |
| * @complete: Function to be called on completion or cancellation. |
| * @cookie: Arbitrary value to be passed to @complete. |
| * |
| * This function does not sleep and therefore may be called in atomic |
| * context. It will fail if event queues are disabled or if MCDI |
| * event completions have been disabled due to an error. |
| * |
| * If it succeeds, the @complete function will be called exactly once |
| * in atomic context, when one of the following occurs: |
| * (a) the completion event is received (in NAPI context) |
| * (b) event queues are disabled (in the process that disables them) |
| * (c) the request times-out (in timer context) |
| */ |
| int |
| efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, |
| const efx_dword_t *inbuf, size_t inlen, size_t outlen, |
| efx_mcdi_async_completer *complete, unsigned long cookie) |
| { |
| return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, |
| cookie, false); |
| } |
| |
| int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, |
| const efx_dword_t *inbuf, size_t inlen, |
| size_t outlen, efx_mcdi_async_completer *complete, |
| unsigned long cookie) |
| { |
| return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, |
| cookie, true); |
| } |
| |
| int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual) |
| { |
| return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, |
| outlen_actual, false, NULL, NULL); |
| } |
| |
| int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, |
| efx_dword_t *outbuf, size_t outlen, |
| size_t *outlen_actual) |
| { |
| return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, |
| outlen_actual, true, NULL, NULL); |
| } |
| |
| void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, |
| size_t inlen, efx_dword_t *outbuf, |
| size_t outlen, int rc) |
| { |
| int code = 0, err_arg = 0; |
| |
| if (outlen >= MC_CMD_ERR_CODE_OFST + 4) |
| code = MCDI_DWORD(outbuf, ERR_CODE); |
| if (outlen >= MC_CMD_ERR_ARG_OFST + 4) |
| err_arg = MCDI_DWORD(outbuf, ERR_ARG); |
| netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR, |
| efx->net_dev, |
| "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", |
| cmd, inlen, rc, code, err_arg); |
| } |
| |
| /* Switch to polled MCDI completions. This can be called in various |
| * error conditions with various locks held, so it must be lockless. |
| * Caller is responsible for flushing asynchronous requests later. |
| */ |
| void efx_mcdi_mode_poll(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi; |
| |
| if (!efx->mcdi) |
| return; |
| |
| mcdi = efx_mcdi(efx); |
| /* If already in polling mode, nothing to do. |
| * If in fail-fast state, don't switch to polled completion. |
| * FLR recovery will do that later. |
| */ |
| if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) |
| return; |
| |
| /* We can switch from event completion to polled completion, because |
| * mcdi requests are always completed in shared memory. We do this by |
| * switching the mode to POLL'd then completing the request. |
| * efx_mcdi_await_completion() will then call efx_mcdi_poll(). |
| * |
| * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), |
| * which efx_mcdi_complete_sync() provides for us. |
| */ |
| mcdi->mode = MCDI_MODE_POLL; |
| |
| efx_mcdi_complete_sync(mcdi); |
| } |
| |
| /* Flush any running or queued asynchronous requests, after event processing |
| * is stopped |
| */ |
| void efx_mcdi_flush_async(struct efx_nic *efx) |
| { |
| struct efx_mcdi_async_param *async, *next; |
| struct efx_mcdi_iface *mcdi; |
| |
| if (!efx->mcdi) |
| return; |
| |
| mcdi = efx_mcdi(efx); |
| |
| /* We must be in poll or fail mode so no more requests can be queued */ |
| BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); |
| |
| del_timer_sync(&mcdi->async_timer); |
| |
| /* If a request is still running, make sure we give the MC |
| * time to complete it so that the response won't overwrite our |
| * next request. |
| */ |
| if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { |
| efx_mcdi_poll(efx); |
| mcdi->state = MCDI_STATE_QUIESCENT; |
| } |
| |
| /* Nothing else will access the async list now, so it is safe |
| * to walk it without holding async_lock. If we hold it while |
| * calling a completer then lockdep may warn that we have |
| * acquired locks in the wrong order. |
| */ |
| list_for_each_entry_safe(async, next, &mcdi->async_list, list) { |
| async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); |
| list_del(&async->list); |
| kfree(async); |
| } |
| } |
| |
| void efx_mcdi_mode_event(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi; |
| |
| if (!efx->mcdi) |
| return; |
| |
| mcdi = efx_mcdi(efx); |
| /* If already in event completion mode, nothing to do. |
| * If in fail-fast state, don't switch to event completion. FLR |
| * recovery will do that later. |
| */ |
| if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) |
| return; |
| |
| /* We can't switch from polled to event completion in the middle of a |
| * request, because the completion method is specified in the request. |
| * So acquire the interface to serialise the requestors. We don't need |
| * to acquire the iface_lock to change the mode here, but we do need a |
| * write memory barrier ensure that efx_mcdi_rpc() sees it, which |
| * efx_mcdi_acquire() provides. |
| */ |
| efx_mcdi_acquire_sync(mcdi); |
| mcdi->mode = MCDI_MODE_EVENTS; |
| efx_mcdi_release(mcdi); |
| } |
| |
| static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| /* If there is an outstanding MCDI request, it has been terminated |
| * either by a BADASSERT or REBOOT event. If the mcdi interface is |
| * in polled mode, then do nothing because the MC reboot handler will |
| * set the header correctly. However, if the mcdi interface is waiting |
| * for a CMDDONE event it won't receive it [and since all MCDI events |
| * are sent to the same queue, we can't be racing with |
| * efx_mcdi_ev_cpl()] |
| * |
| * If there is an outstanding asynchronous request, we can't |
| * complete it now (efx_mcdi_complete() would deadlock). The |
| * reset process will take care of this. |
| * |
| * There's a race here with efx_mcdi_send_request(), because |
| * we might receive a REBOOT event *before* the request has |
| * been copied out. In polled mode (during startup) this is |
| * irrelevant, because efx_mcdi_complete_sync() is ignored. In |
| * event mode, this condition is just an edge-case of |
| * receiving a REBOOT event after posting the MCDI |
| * request. Did the mc reboot before or after the copyout? The |
| * best we can do always is just return failure. |
| * |
| * If there is an outstanding proxy response expected it is not going |
| * to arrive. We should thus abort it. |
| */ |
| spin_lock(&mcdi->iface_lock); |
| efx_mcdi_proxy_abort(mcdi); |
| |
| if (efx_mcdi_complete_sync(mcdi)) { |
| if (mcdi->mode == MCDI_MODE_EVENTS) { |
| mcdi->resprc = rc; |
| mcdi->resp_hdr_len = 0; |
| mcdi->resp_data_len = 0; |
| ++mcdi->credits; |
| } |
| } else { |
| int count; |
| |
| /* Consume the status word since efx_mcdi_rpc_finish() won't */ |
| for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { |
| rc = efx_mcdi_poll_reboot(efx); |
| if (rc) |
| break; |
| udelay(MCDI_STATUS_DELAY_US); |
| } |
| |
| /* On EF10, a CODE_MC_REBOOT event can be received without the |
| * reboot detection in efx_mcdi_poll_reboot() being triggered. |
| * If zero was returned from the final call to |
| * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the |
| * MC has definitely rebooted so prepare for the reset. |
| */ |
| if (!rc && efx->type->mcdi_reboot_detected) |
| efx->type->mcdi_reboot_detected(efx); |
| |
| mcdi->new_epoch = true; |
| |
| /* Nobody was waiting for an MCDI request, so trigger a reset */ |
| efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); |
| } |
| |
| spin_unlock(&mcdi->iface_lock); |
| } |
| |
| /* The MC is going down in to BIST mode. set the BIST flag to block |
| * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset |
| * (which doesn't actually execute a reset, it waits for the controlling |
| * function to reset it). |
| */ |
| static void efx_mcdi_ev_bist(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| spin_lock(&mcdi->iface_lock); |
| efx->mc_bist_for_other_fn = true; |
| efx_mcdi_proxy_abort(mcdi); |
| |
| if (efx_mcdi_complete_sync(mcdi)) { |
| if (mcdi->mode == MCDI_MODE_EVENTS) { |
| mcdi->resprc = -EIO; |
| mcdi->resp_hdr_len = 0; |
| mcdi->resp_data_len = 0; |
| ++mcdi->credits; |
| } |
| } |
| mcdi->new_epoch = true; |
| efx_schedule_reset(efx, RESET_TYPE_MC_BIST); |
| spin_unlock(&mcdi->iface_lock); |
| } |
| |
| /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try |
| * to recover. |
| */ |
| static void efx_mcdi_abandon(struct efx_nic *efx) |
| { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| |
| if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) |
| return; /* it had already been done */ |
| netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); |
| efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); |
| } |
| |
| /* Called from falcon_process_eventq for MCDI events */ |
| void efx_mcdi_process_event(struct efx_channel *channel, |
| efx_qword_t *event) |
| { |
| struct efx_nic *efx = channel->efx; |
| int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); |
| u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); |
| |
| switch (code) { |
| case MCDI_EVENT_CODE_BADSSERT: |
| netif_err(efx, hw, efx->net_dev, |
| "MC watchdog or assertion failure at 0x%x\n", data); |
| efx_mcdi_ev_death(efx, -EINTR); |
| break; |
| |
| case MCDI_EVENT_CODE_PMNOTICE: |
| netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); |
| break; |
| |
| case MCDI_EVENT_CODE_CMDDONE: |
| efx_mcdi_ev_cpl(efx, |
| MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), |
| MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), |
| MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); |
| break; |
| |
| case MCDI_EVENT_CODE_LINKCHANGE: |
| efx_mcdi_process_link_change(efx, event); |
| break; |
| case MCDI_EVENT_CODE_SENSOREVT: |
| efx_mcdi_sensor_event(efx, event); |
| break; |
| case MCDI_EVENT_CODE_SCHEDERR: |
| netif_dbg(efx, hw, efx->net_dev, |
| "MC Scheduler alert (0x%x)\n", data); |
| break; |
| case MCDI_EVENT_CODE_REBOOT: |
| case MCDI_EVENT_CODE_MC_REBOOT: |
| netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); |
| efx_mcdi_ev_death(efx, -EIO); |
| break; |
| case MCDI_EVENT_CODE_MC_BIST: |
| netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); |
| efx_mcdi_ev_bist(efx); |
| break; |
| case MCDI_EVENT_CODE_MAC_STATS_DMA: |
| /* MAC stats are gather lazily. We can ignore this. */ |
| break; |
| case MCDI_EVENT_CODE_FLR: |
| if (efx->type->sriov_flr) |
| efx->type->sriov_flr(efx, |
| MCDI_EVENT_FIELD(*event, FLR_VF)); |
| break; |
| case MCDI_EVENT_CODE_PTP_RX: |
| case MCDI_EVENT_CODE_PTP_FAULT: |
| case MCDI_EVENT_CODE_PTP_PPS: |
| efx_ptp_event(efx, event); |
| break; |
| case MCDI_EVENT_CODE_PTP_TIME: |
| efx_time_sync_event(channel, event); |
| break; |
| case MCDI_EVENT_CODE_TX_FLUSH: |
| case MCDI_EVENT_CODE_RX_FLUSH: |
| /* Two flush events will be sent: one to the same event |
| * queue as completions, and one to event queue 0. |
| * In the latter case the {RX,TX}_FLUSH_TO_DRIVER |
| * flag will be set, and we should ignore the event |
| * because we want to wait for all completions. |
| */ |
| BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != |
| MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); |
| if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) |
| efx_ef10_handle_drain_event(efx); |
| break; |
| case MCDI_EVENT_CODE_TX_ERR: |
| case MCDI_EVENT_CODE_RX_ERR: |
| netif_err(efx, hw, efx->net_dev, |
| "%s DMA error (event: "EFX_QWORD_FMT")\n", |
| code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", |
| EFX_QWORD_VAL(*event)); |
| efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); |
| break; |
| case MCDI_EVENT_CODE_PROXY_RESPONSE: |
| efx_mcdi_ev_proxy_response(efx, |
| MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), |
| MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); |
| break; |
| default: |
| netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", |
| code); |
| } |
| } |
| |
| /************************************************************************** |
| * |
| * Specific request functions |
| * |
| ************************************************************************** |
| */ |
| |
| void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); |
| size_t outlength; |
| const __le16 *ver_words; |
| size_t offset; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, |
| outbuf, sizeof(outbuf), &outlength); |
| if (rc) |
| goto fail; |
| if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); |
| offset = snprintf(buf, len, "%u.%u.%u.%u", |
| le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), |
| le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); |
| |
| /* EF10 may have multiple datapath firmware variants within a |
| * single version. Report which variants are running. |
| */ |
| if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { |
| struct efx_ef10_nic_data *nic_data = efx->nic_data; |
| |
| offset += snprintf(buf + offset, len - offset, " rx%x tx%x", |
| nic_data->rx_dpcpu_fw_id, |
| nic_data->tx_dpcpu_fw_id); |
| |
| /* It's theoretically possible for the string to exceed 31 |
| * characters, though in practice the first three version |
| * components are short enough that this doesn't happen. |
| */ |
| if (WARN_ON(offset >= len)) |
| buf[0] = 0; |
| } |
| |
| return; |
| |
| fail: |
| netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| buf[0] = 0; |
| } |
| |
| static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, |
| bool *was_attached) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, |
| driver_operating ? 1 : 0); |
| MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); |
| MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); |
| |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID |
| * specified will fail with EPERM, and we have to tell the MC we don't |
| * care what firmware we get. |
| */ |
| if (rc == -EPERM) { |
| netif_dbg(efx, probe, efx->net_dev, |
| "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); |
| MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, |
| MC_CMD_FW_DONT_CARE); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, |
| sizeof(inbuf), outbuf, sizeof(outbuf), |
| &outlen); |
| } |
| if (rc) { |
| efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), |
| outbuf, outlen, rc); |
| goto fail; |
| } |
| if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| if (driver_operating) { |
| if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { |
| efx->mcdi->fn_flags = |
| MCDI_DWORD(outbuf, |
| DRV_ATTACH_EXT_OUT_FUNC_FLAGS); |
| } else { |
| /* Synthesise flags for Siena */ |
| efx->mcdi->fn_flags = |
| 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | |
| 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | |
| (efx_port_num(efx) == 0) << |
| MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; |
| } |
| } |
| |
| /* We currently assume we have control of the external link |
| * and are completely trusted by firmware. Abort probing |
| * if that's not true for this function. |
| */ |
| |
| if (was_attached != NULL) |
| *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); |
| return 0; |
| |
| fail: |
| netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, |
| u16 *fw_subtype_list, u32 *capabilities) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); |
| size_t outlen, i; |
| int port_num = efx_port_num(efx); |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); |
| /* we need __aligned(2) for ether_addr_copy */ |
| BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); |
| BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| |
| if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| if (mac_address) |
| ether_addr_copy(mac_address, |
| port_num ? |
| MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : |
| MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); |
| if (fw_subtype_list) { |
| for (i = 0; |
| i < MCDI_VAR_ARRAY_LEN(outlen, |
| GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); |
| i++) |
| fw_subtype_list[i] = MCDI_ARRAY_WORD( |
| outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); |
| for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) |
| fw_subtype_list[i] = 0; |
| } |
| if (capabilities) { |
| if (port_num) |
| *capabilities = MCDI_DWORD(outbuf, |
| GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); |
| else |
| *capabilities = MCDI_DWORD(outbuf, |
| GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); |
| } |
| |
| return 0; |
| |
| fail: |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", |
| __func__, rc, (int)outlen); |
| |
| return rc; |
| } |
| |
| int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); |
| u32 dest = 0; |
| int rc; |
| |
| if (uart) |
| dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; |
| if (evq) |
| dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; |
| |
| MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); |
| MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); |
| |
| BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); |
| return 0; |
| |
| fail: |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, |
| size_t *size_out, size_t *erase_size_out, |
| bool *protected_out) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); |
| *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); |
| *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & |
| (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); |
| return 0; |
| |
| fail: |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), NULL); |
| if (rc) |
| return rc; |
| |
| switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { |
| case MC_CMD_NVRAM_TEST_PASS: |
| case MC_CMD_NVRAM_TEST_NOTSUPP: |
| return 0; |
| default: |
| return -EIO; |
| } |
| } |
| |
| int efx_mcdi_nvram_test_all(struct efx_nic *efx) |
| { |
| u32 nvram_types; |
| unsigned int type; |
| int rc; |
| |
| rc = efx_mcdi_nvram_types(efx, &nvram_types); |
| if (rc) |
| goto fail1; |
| |
| type = 0; |
| while (nvram_types != 0) { |
| if (nvram_types & 1) { |
| rc = efx_mcdi_nvram_test(efx, type); |
| if (rc) |
| goto fail2; |
| } |
| type++; |
| nvram_types >>= 1; |
| } |
| |
| return 0; |
| |
| fail2: |
| netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", |
| __func__, type); |
| fail1: |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| /* Returns 1 if an assertion was read, 0 if no assertion had fired, |
| * negative on error. |
| */ |
| static int efx_mcdi_read_assertion(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); |
| unsigned int flags, index; |
| const char *reason; |
| size_t outlen; |
| int retry; |
| int rc; |
| |
| /* Attempt to read any stored assertion state before we reboot |
| * the mcfw out of the assertion handler. Retry twice, once |
| * because a boot-time assertion might cause this command to fail |
| * with EINTR. And once again because GET_ASSERTS can race with |
| * MC_CMD_REBOOT running on the other port. */ |
| retry = 2; |
| do { |
| MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, |
| inbuf, MC_CMD_GET_ASSERTS_IN_LEN, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc == -EPERM) |
| return 0; |
| } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); |
| |
| if (rc) { |
| efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, |
| MC_CMD_GET_ASSERTS_IN_LEN, outbuf, |
| outlen, rc); |
| return rc; |
| } |
| if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) |
| return -EIO; |
| |
| /* Print out any recorded assertion state */ |
| flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); |
| if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) |
| return 0; |
| |
| reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) |
| ? "system-level assertion" |
| : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) |
| ? "thread-level assertion" |
| : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) |
| ? "watchdog reset" |
| : "unknown assertion"; |
| netif_err(efx, hw, efx->net_dev, |
| "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, |
| MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), |
| MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); |
| |
| /* Print out the registers */ |
| for (index = 0; |
| index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; |
| index++) |
| netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", |
| 1 + index, |
| MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, |
| index)); |
| |
| return 1; |
| } |
| |
| static int efx_mcdi_exit_assertion(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); |
| int rc; |
| |
| /* If the MC is running debug firmware, it might now be |
| * waiting for a debugger to attach, but we just want it to |
| * reboot. We set a flag that makes the command a no-op if it |
| * has already done so. |
| * The MCDI will thus return either 0 or -EIO. |
| */ |
| BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); |
| MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, |
| MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); |
| rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, |
| NULL, 0, NULL); |
| if (rc == -EIO) |
| rc = 0; |
| if (rc) |
| efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, |
| NULL, 0, rc); |
| return rc; |
| } |
| |
| int efx_mcdi_handle_assertion(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = efx_mcdi_read_assertion(efx); |
| if (rc <= 0) |
| return rc; |
| |
| return efx_mcdi_exit_assertion(efx); |
| } |
| |
| void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); |
| int rc; |
| |
| BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); |
| BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); |
| BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); |
| |
| BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); |
| |
| MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| } |
| |
| static int efx_mcdi_reset_func(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); |
| MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, |
| ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); |
| rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| static int efx_mcdi_reset_mc(struct efx_nic *efx) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); |
| MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); |
| rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| /* White is black, and up is down */ |
| if (rc == -EIO) |
| return 0; |
| if (rc == 0) |
| rc = -EIO; |
| return rc; |
| } |
| |
| enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) |
| { |
| return RESET_TYPE_RECOVER_OR_ALL; |
| } |
| |
| int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) |
| { |
| int rc; |
| |
| /* If MCDI is down, we can't handle_assertion */ |
| if (method == RESET_TYPE_MCDI_TIMEOUT) { |
| rc = pci_reset_function(efx->pci_dev); |
| if (rc) |
| return rc; |
| /* Re-enable polled MCDI completion */ |
| if (efx->mcdi) { |
| struct efx_mcdi_iface *mcdi = efx_mcdi(efx); |
| mcdi->mode = MCDI_MODE_POLL; |
| } |
| return 0; |
| } |
| |
| /* Recover from a failed assertion pre-reset */ |
| rc = efx_mcdi_handle_assertion(efx); |
| if (rc) |
| return rc; |
| |
| if (method == RESET_TYPE_DATAPATH) |
| return 0; |
| else if (method == RESET_TYPE_WORLD) |
| return efx_mcdi_reset_mc(efx); |
| else |
| return efx_mcdi_reset_func(efx); |
| } |
| |
| static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, |
| const u8 *mac, int *id_out) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); |
| MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, |
| MC_CMD_FILTER_MODE_SIMPLE); |
| ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| |
| if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); |
| |
| return 0; |
| |
| fail: |
| *id_out = -1; |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| |
| } |
| |
| |
| int |
| efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) |
| { |
| return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); |
| } |
| |
| |
| int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| |
| if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); |
| |
| return 0; |
| |
| fail: |
| *id_out = -1; |
| netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| |
| int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| int efx_mcdi_flush_rxqs(struct efx_nic *efx) |
| { |
| struct efx_channel *channel; |
| struct efx_rx_queue *rx_queue; |
| MCDI_DECLARE_BUF(inbuf, |
| MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); |
| int rc, count; |
| |
| BUILD_BUG_ON(EFX_MAX_CHANNELS > |
| MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); |
| |
| count = 0; |
| efx_for_each_channel(channel, efx) { |
| efx_for_each_channel_rx_queue(rx_queue, channel) { |
| if (rx_queue->flush_pending) { |
| rx_queue->flush_pending = false; |
| atomic_dec(&efx->rxq_flush_pending); |
| MCDI_SET_ARRAY_DWORD( |
| inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, |
| count, efx_rx_queue_index(rx_queue)); |
| count++; |
| } |
| } |
| } |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, |
| MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); |
| WARN_ON(rc < 0); |
| |
| return rc; |
| } |
| |
| int efx_mcdi_wol_filter_reset(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); |
| return rc; |
| } |
| |
| int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, |
| unsigned int *flags) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); |
| MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); |
| MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); |
| rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| |
| if (!flags) |
| return 0; |
| |
| if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) |
| *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); |
| else |
| *flags = 0; |
| |
| return 0; |
| } |
| |
| int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, |
| unsigned int *enabled_out) |
| { |
| MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); |
| size_t outlen; |
| int rc; |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| goto fail; |
| |
| if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { |
| rc = -EIO; |
| goto fail; |
| } |
| |
| if (impl_out) |
| *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); |
| |
| if (enabled_out) |
| *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); |
| |
| return 0; |
| |
| fail: |
| /* Older firmware lacks GET_WORKAROUNDS and this isn't especially |
| * terrifying. The call site will have to deal with it though. |
| */ |
| netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR, |
| efx->net_dev, "%s: failed rc=%d\n", __func__, rc); |
| return rc; |
| } |
| |
| #ifdef CONFIG_SFC_MTD |
| |
| #define EFX_MCDI_NVRAM_LEN_MAX 128 |
| |
| static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, |
| loff_t offset, u8 *buffer, size_t length) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); |
| MCDI_DECLARE_BUF(outbuf, |
| MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); |
| size_t outlen; |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); |
| MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); |
| MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), |
| outbuf, sizeof(outbuf), &outlen); |
| if (rc) |
| return rc; |
| |
| memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); |
| return 0; |
| } |
| |
| static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, |
| loff_t offset, const u8 *buffer, size_t length) |
| { |
| MCDI_DECLARE_BUF(inbuf, |
| MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); |
| MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); |
| MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); |
| memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, |
| ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, |
| loff_t offset, size_t length) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); |
| MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); |
| MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) |
| { |
| MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); |
| int rc; |
| |
| MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); |
| |
| BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); |
| |
| rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), |
| NULL, 0, NULL); |
| return rc; |
| } |
| |
| int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, |
| size_t len, size_t *retlen, u8 *buffer) |
| { |
| struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| loff_t offset = start; |
| loff_t end = min_t(loff_t, start + len, mtd->size); |
| size_t chunk; |
| int rc = 0; |
| |
| while (offset < end) { |
| chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); |
| rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, |
| buffer, chunk); |
| if (rc) |
| goto out; |
| offset += chunk; |
| buffer += chunk; |
| } |
| out: |
| *retlen = offset - start; |
| return rc; |
| } |
| |
| int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) |
| { |
| struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); |
| loff_t end = min_t(loff_t, start + len, mtd->size); |
| size_t chunk = part->common.mtd.erasesize; |
| int rc = 0; |
| |
| if (!part->updating) { |
| rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); |
| if (rc) |
| goto out; |
| part->updating = true; |
| } |
| |
| /* The MCDI interface can in fact do multiple erase blocks at once; |
| * but erasing may be slow, so we make multiple calls here to avoid |
| * tripping the MCDI RPC timeout. */ |
| while (offset < end) { |
| rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, |
| chunk); |
| if (rc) |
| goto out; |
| offset += chunk; |
| } |
| out: |
| return rc; |
| } |
| |
| int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, |
| size_t len, size_t *retlen, const u8 *buffer) |
| { |
| struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| loff_t offset = start; |
| loff_t end = min_t(loff_t, start + len, mtd->size); |
| size_t chunk; |
| int rc = 0; |
| |
| if (!part->updating) { |
| rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); |
| if (rc) |
| goto out; |
| part->updating = true; |
| } |
| |
| while (offset < end) { |
| chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); |
| rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, |
| buffer, chunk); |
| if (rc) |
| goto out; |
| offset += chunk; |
| buffer += chunk; |
| } |
| out: |
| *retlen = offset - start; |
| return rc; |
| } |
| |
| int efx_mcdi_mtd_sync(struct mtd_info *mtd) |
| { |
| struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); |
| struct efx_nic *efx = mtd->priv; |
| int rc = 0; |
| |
| if (part->updating) { |
| part->updating = false; |
| rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); |
| } |
| |
| return rc; |
| } |
| |
| void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) |
| { |
| struct efx_mcdi_mtd_partition *mcdi_part = |
| container_of(part, struct efx_mcdi_mtd_partition, common); |
| struct efx_nic *efx = part->mtd.priv; |
| |
| snprintf(part->name, sizeof(part->name), "%s %s:%02x", |
| efx->name, part->type_name, mcdi_part->fw_subtype); |
| } |
| |
| #endif /* CONFIG_SFC_MTD */ |