| /* | 
 |  * Read-Copy Update mechanism for mutual exclusion | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, you can access it online at | 
 |  * http://www.gnu.org/licenses/gpl-2.0.html. | 
 |  * | 
 |  * Copyright IBM Corporation, 2001 | 
 |  * | 
 |  * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
 |  *	    Manfred Spraul <manfred@colorfullife.com> | 
 |  * | 
 |  * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 
 |  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
 |  * Papers: | 
 |  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf | 
 |  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 
 |  * | 
 |  * For detailed explanation of Read-Copy Update mechanism see - | 
 |  *		http://lse.sourceforge.net/locking/rcupdate.html | 
 |  * | 
 |  */ | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/export.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/tick.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 |  | 
 | #include "rcu.h" | 
 |  | 
 | MODULE_ALIAS("rcupdate"); | 
 | #ifdef MODULE_PARAM_PREFIX | 
 | #undef MODULE_PARAM_PREFIX | 
 | #endif | 
 | #define MODULE_PARAM_PREFIX "rcupdate." | 
 |  | 
 | module_param(rcu_expedited, int, 0); | 
 |  | 
 | #ifndef CONFIG_TINY_RCU | 
 |  | 
 | static atomic_t rcu_expedited_nesting = | 
 | 	ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0); | 
 |  | 
 | /* | 
 |  * Should normal grace-period primitives be expedited?  Intended for | 
 |  * use within RCU.  Note that this function takes the rcu_expedited | 
 |  * sysfs/boot variable into account as well as the rcu_expedite_gp() | 
 |  * nesting.  So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited() | 
 |  * returns false is a -really- bad idea. | 
 |  */ | 
 | bool rcu_gp_is_expedited(void) | 
 | { | 
 | 	return rcu_expedited || atomic_read(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_gp_is_expedited); | 
 |  | 
 | /** | 
 |  * rcu_expedite_gp - Expedite future RCU grace periods | 
 |  * | 
 |  * After a call to this function, future calls to synchronize_rcu() and | 
 |  * friends act as the corresponding synchronize_rcu_expedited() function | 
 |  * had instead been called. | 
 |  */ | 
 | void rcu_expedite_gp(void) | 
 | { | 
 | 	atomic_inc(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_expedite_gp); | 
 |  | 
 | /** | 
 |  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation | 
 |  * | 
 |  * Undo a prior call to rcu_expedite_gp().  If all prior calls to | 
 |  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(), | 
 |  * and if the rcu_expedited sysfs/boot parameter is not set, then all | 
 |  * subsequent calls to synchronize_rcu() and friends will return to | 
 |  * their normal non-expedited behavior. | 
 |  */ | 
 | void rcu_unexpedite_gp(void) | 
 | { | 
 | 	atomic_dec(&rcu_expedited_nesting); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_unexpedite_gp); | 
 |  | 
 | #endif /* #ifndef CONFIG_TINY_RCU */ | 
 |  | 
 | /* | 
 |  * Inform RCU of the end of the in-kernel boot sequence. | 
 |  */ | 
 | void rcu_end_inkernel_boot(void) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT)) | 
 | 		rcu_unexpedite_gp(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PREEMPT_RCU | 
 |  | 
 | /* | 
 |  * Preemptible RCU implementation for rcu_read_lock(). | 
 |  * Just increment ->rcu_read_lock_nesting, shared state will be updated | 
 |  * if we block. | 
 |  */ | 
 | void __rcu_read_lock(void) | 
 | { | 
 | 	current->rcu_read_lock_nesting++; | 
 | 	barrier();  /* critical section after entry code. */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | 
 |  | 
 | /* | 
 |  * Preemptible RCU implementation for rcu_read_unlock(). | 
 |  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost | 
 |  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | 
 |  * invoke rcu_read_unlock_special() to clean up after a context switch | 
 |  * in an RCU read-side critical section and other special cases. | 
 |  */ | 
 | void __rcu_read_unlock(void) | 
 | { | 
 | 	struct task_struct *t = current; | 
 |  | 
 | 	if (t->rcu_read_lock_nesting != 1) { | 
 | 		--t->rcu_read_lock_nesting; | 
 | 	} else { | 
 | 		barrier();  /* critical section before exit code. */ | 
 | 		t->rcu_read_lock_nesting = INT_MIN; | 
 | 		barrier();  /* assign before ->rcu_read_unlock_special load */ | 
 | 		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s))) | 
 | 			rcu_read_unlock_special(t); | 
 | 		barrier();  /* ->rcu_read_unlock_special load before assign */ | 
 | 		t->rcu_read_lock_nesting = 0; | 
 | 	} | 
 | #ifdef CONFIG_PROVE_LOCKING | 
 | 	{ | 
 | 		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting); | 
 |  | 
 | 		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); | 
 | 	} | 
 | #endif /* #ifdef CONFIG_PROVE_LOCKING */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | 
 |  | 
 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
 | static struct lock_class_key rcu_lock_key; | 
 | struct lockdep_map rcu_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_bh_lock_key; | 
 | struct lockdep_map rcu_bh_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_bh_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_sched_lock_key; | 
 | struct lockdep_map rcu_sched_lock_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); | 
 | EXPORT_SYMBOL_GPL(rcu_sched_lock_map); | 
 |  | 
 | static struct lock_class_key rcu_callback_key; | 
 | struct lockdep_map rcu_callback_map = | 
 | 	STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); | 
 | EXPORT_SYMBOL_GPL(rcu_callback_map); | 
 |  | 
 | int notrace debug_lockdep_rcu_enabled(void) | 
 | { | 
 | 	return rcu_scheduler_active && debug_locks && | 
 | 	       current->lockdep_recursion == 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); | 
 |  | 
 | /** | 
 |  * rcu_read_lock_held() - might we be in RCU read-side critical section? | 
 |  * | 
 |  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU | 
 |  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC, | 
 |  * this assumes we are in an RCU read-side critical section unless it can | 
 |  * prove otherwise.  This is useful for debug checks in functions that | 
 |  * require that they be called within an RCU read-side critical section. | 
 |  * | 
 |  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot | 
 |  * and while lockdep is disabled. | 
 |  * | 
 |  * Note that rcu_read_lock() and the matching rcu_read_unlock() must | 
 |  * occur in the same context, for example, it is illegal to invoke | 
 |  * rcu_read_unlock() in process context if the matching rcu_read_lock() | 
 |  * was invoked from within an irq handler. | 
 |  * | 
 |  * Note that rcu_read_lock() is disallowed if the CPU is either idle or | 
 |  * offline from an RCU perspective, so check for those as well. | 
 |  */ | 
 | int rcu_read_lock_held(void) | 
 | { | 
 | 	if (!debug_lockdep_rcu_enabled()) | 
 | 		return 1; | 
 | 	if (!rcu_is_watching()) | 
 | 		return 0; | 
 | 	if (!rcu_lockdep_current_cpu_online()) | 
 | 		return 0; | 
 | 	return lock_is_held(&rcu_lock_map); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_read_lock_held); | 
 |  | 
 | /** | 
 |  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? | 
 |  * | 
 |  * Check for bottom half being disabled, which covers both the | 
 |  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses | 
 |  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) | 
 |  * will show the situation.  This is useful for debug checks in functions | 
 |  * that require that they be called within an RCU read-side critical | 
 |  * section. | 
 |  * | 
 |  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. | 
 |  * | 
 |  * Note that rcu_read_lock() is disallowed if the CPU is either idle or | 
 |  * offline from an RCU perspective, so check for those as well. | 
 |  */ | 
 | int rcu_read_lock_bh_held(void) | 
 | { | 
 | 	if (!debug_lockdep_rcu_enabled()) | 
 | 		return 1; | 
 | 	if (!rcu_is_watching()) | 
 | 		return 0; | 
 | 	if (!rcu_lockdep_current_cpu_online()) | 
 | 		return 0; | 
 | 	return in_softirq() || irqs_disabled(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); | 
 |  | 
 | #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ | 
 |  | 
 | /** | 
 |  * wakeme_after_rcu() - Callback function to awaken a task after grace period | 
 |  * @head: Pointer to rcu_head member within rcu_synchronize structure | 
 |  * | 
 |  * Awaken the corresponding task now that a grace period has elapsed. | 
 |  */ | 
 | void wakeme_after_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct rcu_synchronize *rcu; | 
 |  | 
 | 	rcu = container_of(head, struct rcu_synchronize, head); | 
 | 	complete(&rcu->completion); | 
 | } | 
 |  | 
 | void wait_rcu_gp(call_rcu_func_t crf) | 
 | { | 
 | 	struct rcu_synchronize rcu; | 
 |  | 
 | 	init_rcu_head_on_stack(&rcu.head); | 
 | 	init_completion(&rcu.completion); | 
 | 	/* Will wake me after RCU finished. */ | 
 | 	crf(&rcu.head, wakeme_after_rcu); | 
 | 	/* Wait for it. */ | 
 | 	wait_for_completion(&rcu.completion); | 
 | 	destroy_rcu_head_on_stack(&rcu.head); | 
 | } | 
 | EXPORT_SYMBOL_GPL(wait_rcu_gp); | 
 |  | 
 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD | 
 | void init_rcu_head(struct rcu_head *head) | 
 | { | 
 | 	debug_object_init(head, &rcuhead_debug_descr); | 
 | } | 
 |  | 
 | void destroy_rcu_head(struct rcu_head *head) | 
 | { | 
 | 	debug_object_free(head, &rcuhead_debug_descr); | 
 | } | 
 |  | 
 | /* | 
 |  * fixup_activate is called when: | 
 |  * - an active object is activated | 
 |  * - an unknown object is activated (might be a statically initialized object) | 
 |  * Activation is performed internally by call_rcu(). | 
 |  */ | 
 | static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) | 
 | { | 
 | 	struct rcu_head *head = addr; | 
 |  | 
 | 	switch (state) { | 
 |  | 
 | 	case ODEBUG_STATE_NOTAVAILABLE: | 
 | 		/* | 
 | 		 * This is not really a fixup. We just make sure that it is | 
 | 		 * tracked in the object tracker. | 
 | 		 */ | 
 | 		debug_object_init(head, &rcuhead_debug_descr); | 
 | 		debug_object_activate(head, &rcuhead_debug_descr); | 
 | 		return 0; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects | 
 |  * @head: pointer to rcu_head structure to be initialized | 
 |  * | 
 |  * This function informs debugobjects of a new rcu_head structure that | 
 |  * has been allocated as an auto variable on the stack.  This function | 
 |  * is not required for rcu_head structures that are statically defined or | 
 |  * that are dynamically allocated on the heap.  This function has no | 
 |  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
 |  */ | 
 | void init_rcu_head_on_stack(struct rcu_head *head) | 
 | { | 
 | 	debug_object_init_on_stack(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); | 
 |  | 
 | /** | 
 |  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects | 
 |  * @head: pointer to rcu_head structure to be initialized | 
 |  * | 
 |  * This function informs debugobjects that an on-stack rcu_head structure | 
 |  * is about to go out of scope.  As with init_rcu_head_on_stack(), this | 
 |  * function is not required for rcu_head structures that are statically | 
 |  * defined or that are dynamically allocated on the heap.  Also as with | 
 |  * init_rcu_head_on_stack(), this function has no effect for | 
 |  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. | 
 |  */ | 
 | void destroy_rcu_head_on_stack(struct rcu_head *head) | 
 | { | 
 | 	debug_object_free(head, &rcuhead_debug_descr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); | 
 |  | 
 | struct debug_obj_descr rcuhead_debug_descr = { | 
 | 	.name = "rcu_head", | 
 | 	.fixup_activate = rcuhead_fixup_activate, | 
 | }; | 
 | EXPORT_SYMBOL_GPL(rcuhead_debug_descr); | 
 | #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ | 
 |  | 
 | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) | 
 | void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, | 
 | 			       unsigned long secs, | 
 | 			       unsigned long c_old, unsigned long c) | 
 | { | 
 | 	trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); | 
 | } | 
 | EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); | 
 | #else | 
 | #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ | 
 | 	do { } while (0) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_RCU_STALL_COMMON | 
 |  | 
 | #ifdef CONFIG_PROVE_RCU | 
 | #define RCU_STALL_DELAY_DELTA	       (5 * HZ) | 
 | #else | 
 | #define RCU_STALL_DELAY_DELTA	       0 | 
 | #endif | 
 |  | 
 | int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ | 
 | static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; | 
 |  | 
 | module_param(rcu_cpu_stall_suppress, int, 0644); | 
 | module_param(rcu_cpu_stall_timeout, int, 0644); | 
 |  | 
 | int rcu_jiffies_till_stall_check(void) | 
 | { | 
 | 	int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); | 
 |  | 
 | 	/* | 
 | 	 * Limit check must be consistent with the Kconfig limits | 
 | 	 * for CONFIG_RCU_CPU_STALL_TIMEOUT. | 
 | 	 */ | 
 | 	if (till_stall_check < 3) { | 
 | 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; | 
 | 		till_stall_check = 3; | 
 | 	} else if (till_stall_check > 300) { | 
 | 		ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; | 
 | 		till_stall_check = 300; | 
 | 	} | 
 | 	return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; | 
 | } | 
 |  | 
 | void rcu_sysrq_start(void) | 
 | { | 
 | 	if (!rcu_cpu_stall_suppress) | 
 | 		rcu_cpu_stall_suppress = 2; | 
 | } | 
 |  | 
 | void rcu_sysrq_end(void) | 
 | { | 
 | 	if (rcu_cpu_stall_suppress == 2) | 
 | 		rcu_cpu_stall_suppress = 0; | 
 | } | 
 |  | 
 | static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) | 
 | { | 
 | 	rcu_cpu_stall_suppress = 1; | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block rcu_panic_block = { | 
 | 	.notifier_call = rcu_panic, | 
 | }; | 
 |  | 
 | static int __init check_cpu_stall_init(void) | 
 | { | 
 | 	atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); | 
 | 	return 0; | 
 | } | 
 | early_initcall(check_cpu_stall_init); | 
 |  | 
 | #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ | 
 |  | 
 | #ifdef CONFIG_TASKS_RCU | 
 |  | 
 | /* | 
 |  * Simple variant of RCU whose quiescent states are voluntary context switch, | 
 |  * user-space execution, and idle.  As such, grace periods can take one good | 
 |  * long time.  There are no read-side primitives similar to rcu_read_lock() | 
 |  * and rcu_read_unlock() because this implementation is intended to get | 
 |  * the system into a safe state for some of the manipulations involved in | 
 |  * tracing and the like.  Finally, this implementation does not support | 
 |  * high call_rcu_tasks() rates from multiple CPUs.  If this is required, | 
 |  * per-CPU callback lists will be needed. | 
 |  */ | 
 |  | 
 | /* Global list of callbacks and associated lock. */ | 
 | static struct rcu_head *rcu_tasks_cbs_head; | 
 | static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
 | static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); | 
 | static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); | 
 |  | 
 | /* Track exiting tasks in order to allow them to be waited for. */ | 
 | DEFINE_SRCU(tasks_rcu_exit_srcu); | 
 |  | 
 | /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */ | 
 | static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; | 
 | module_param(rcu_task_stall_timeout, int, 0644); | 
 |  | 
 | static void rcu_spawn_tasks_kthread(void); | 
 |  | 
 | /* | 
 |  * Post an RCU-tasks callback.  First call must be from process context | 
 |  * after the scheduler if fully operational. | 
 |  */ | 
 | void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool needwake; | 
 |  | 
 | 	rhp->next = NULL; | 
 | 	rhp->func = func; | 
 | 	raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
 | 	needwake = !rcu_tasks_cbs_head; | 
 | 	*rcu_tasks_cbs_tail = rhp; | 
 | 	rcu_tasks_cbs_tail = &rhp->next; | 
 | 	raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
 | 	if (needwake) { | 
 | 		rcu_spawn_tasks_kthread(); | 
 | 		wake_up(&rcu_tasks_cbs_wq); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(call_rcu_tasks); | 
 |  | 
 | /** | 
 |  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. | 
 |  * | 
 |  * Control will return to the caller some time after a full rcu-tasks | 
 |  * grace period has elapsed, in other words after all currently | 
 |  * executing rcu-tasks read-side critical sections have elapsed.  These | 
 |  * read-side critical sections are delimited by calls to schedule(), | 
 |  * cond_resched_rcu_qs(), idle execution, userspace execution, calls | 
 |  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). | 
 |  * | 
 |  * This is a very specialized primitive, intended only for a few uses in | 
 |  * tracing and other situations requiring manipulation of function | 
 |  * preambles and profiling hooks.  The synchronize_rcu_tasks() function | 
 |  * is not (yet) intended for heavy use from multiple CPUs. | 
 |  * | 
 |  * Note that this guarantee implies further memory-ordering guarantees. | 
 |  * On systems with more than one CPU, when synchronize_rcu_tasks() returns, | 
 |  * each CPU is guaranteed to have executed a full memory barrier since the | 
 |  * end of its last RCU-tasks read-side critical section whose beginning | 
 |  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU | 
 |  * having an RCU-tasks read-side critical section that extends beyond | 
 |  * the return from synchronize_rcu_tasks() is guaranteed to have executed | 
 |  * a full memory barrier after the beginning of synchronize_rcu_tasks() | 
 |  * and before the beginning of that RCU-tasks read-side critical section. | 
 |  * Note that these guarantees include CPUs that are offline, idle, or | 
 |  * executing in user mode, as well as CPUs that are executing in the kernel. | 
 |  * | 
 |  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned | 
 |  * to its caller on CPU B, then both CPU A and CPU B are guaranteed | 
 |  * to have executed a full memory barrier during the execution of | 
 |  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU | 
 |  * (but again only if the system has more than one CPU). | 
 |  */ | 
 | void synchronize_rcu_tasks(void) | 
 | { | 
 | 	/* Complain if the scheduler has not started.  */ | 
 | 	rcu_lockdep_assert(!rcu_scheduler_active, | 
 | 			   "synchronize_rcu_tasks called too soon"); | 
 |  | 
 | 	/* Wait for the grace period. */ | 
 | 	wait_rcu_gp(call_rcu_tasks); | 
 | } | 
 | EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); | 
 |  | 
 | /** | 
 |  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. | 
 |  * | 
 |  * Although the current implementation is guaranteed to wait, it is not | 
 |  * obligated to, for example, if there are no pending callbacks. | 
 |  */ | 
 | void rcu_barrier_tasks(void) | 
 | { | 
 | 	/* There is only one callback queue, so this is easy.  ;-) */ | 
 | 	synchronize_rcu_tasks(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rcu_barrier_tasks); | 
 |  | 
 | /* See if tasks are still holding out, complain if so. */ | 
 | static void check_holdout_task(struct task_struct *t, | 
 | 			       bool needreport, bool *firstreport) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (!ACCESS_ONCE(t->rcu_tasks_holdout) || | 
 | 	    t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) || | 
 | 	    !ACCESS_ONCE(t->on_rq) || | 
 | 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) && | 
 | 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { | 
 | 		ACCESS_ONCE(t->rcu_tasks_holdout) = false; | 
 | 		list_del_init(&t->rcu_tasks_holdout_list); | 
 | 		put_task_struct(t); | 
 | 		return; | 
 | 	} | 
 | 	if (!needreport) | 
 | 		return; | 
 | 	if (*firstreport) { | 
 | 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); | 
 | 		*firstreport = false; | 
 | 	} | 
 | 	cpu = task_cpu(t); | 
 | 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", | 
 | 		 t, ".I"[is_idle_task(t)], | 
 | 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], | 
 | 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, | 
 | 		 t->rcu_tasks_idle_cpu, cpu); | 
 | 	sched_show_task(t); | 
 | } | 
 |  | 
 | /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ | 
 | static int __noreturn rcu_tasks_kthread(void *arg) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct task_struct *g, *t; | 
 | 	unsigned long lastreport; | 
 | 	struct rcu_head *list; | 
 | 	struct rcu_head *next; | 
 | 	LIST_HEAD(rcu_tasks_holdouts); | 
 |  | 
 | 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */ | 
 | 	housekeeping_affine(current); | 
 |  | 
 | 	/* | 
 | 	 * Each pass through the following loop makes one check for | 
 | 	 * newly arrived callbacks, and, if there are some, waits for | 
 | 	 * one RCU-tasks grace period and then invokes the callbacks. | 
 | 	 * This loop is terminated by the system going down.  ;-) | 
 | 	 */ | 
 | 	for (;;) { | 
 |  | 
 | 		/* Pick up any new callbacks. */ | 
 | 		raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); | 
 | 		list = rcu_tasks_cbs_head; | 
 | 		rcu_tasks_cbs_head = NULL; | 
 | 		rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; | 
 | 		raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); | 
 |  | 
 | 		/* If there were none, wait a bit and start over. */ | 
 | 		if (!list) { | 
 | 			wait_event_interruptible(rcu_tasks_cbs_wq, | 
 | 						 rcu_tasks_cbs_head); | 
 | 			if (!rcu_tasks_cbs_head) { | 
 | 				WARN_ON(signal_pending(current)); | 
 | 				schedule_timeout_interruptible(HZ/10); | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Wait for all pre-existing t->on_rq and t->nvcsw | 
 | 		 * transitions to complete.  Invoking synchronize_sched() | 
 | 		 * suffices because all these transitions occur with | 
 | 		 * interrupts disabled.  Without this synchronize_sched(), | 
 | 		 * a read-side critical section that started before the | 
 | 		 * grace period might be incorrectly seen as having started | 
 | 		 * after the grace period. | 
 | 		 * | 
 | 		 * This synchronize_sched() also dispenses with the | 
 | 		 * need for a memory barrier on the first store to | 
 | 		 * ->rcu_tasks_holdout, as it forces the store to happen | 
 | 		 * after the beginning of the grace period. | 
 | 		 */ | 
 | 		synchronize_sched(); | 
 |  | 
 | 		/* | 
 | 		 * There were callbacks, so we need to wait for an | 
 | 		 * RCU-tasks grace period.  Start off by scanning | 
 | 		 * the task list for tasks that are not already | 
 | 		 * voluntarily blocked.  Mark these tasks and make | 
 | 		 * a list of them in rcu_tasks_holdouts. | 
 | 		 */ | 
 | 		rcu_read_lock(); | 
 | 		for_each_process_thread(g, t) { | 
 | 			if (t != current && ACCESS_ONCE(t->on_rq) && | 
 | 			    !is_idle_task(t)) { | 
 | 				get_task_struct(t); | 
 | 				t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw); | 
 | 				ACCESS_ONCE(t->rcu_tasks_holdout) = true; | 
 | 				list_add(&t->rcu_tasks_holdout_list, | 
 | 					 &rcu_tasks_holdouts); | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		/* | 
 | 		 * Wait for tasks that are in the process of exiting. | 
 | 		 * This does only part of the job, ensuring that all | 
 | 		 * tasks that were previously exiting reach the point | 
 | 		 * where they have disabled preemption, allowing the | 
 | 		 * later synchronize_sched() to finish the job. | 
 | 		 */ | 
 | 		synchronize_srcu(&tasks_rcu_exit_srcu); | 
 |  | 
 | 		/* | 
 | 		 * Each pass through the following loop scans the list | 
 | 		 * of holdout tasks, removing any that are no longer | 
 | 		 * holdouts.  When the list is empty, we are done. | 
 | 		 */ | 
 | 		lastreport = jiffies; | 
 | 		while (!list_empty(&rcu_tasks_holdouts)) { | 
 | 			bool firstreport; | 
 | 			bool needreport; | 
 | 			int rtst; | 
 | 			struct task_struct *t1; | 
 |  | 
 | 			schedule_timeout_interruptible(HZ); | 
 | 			rtst = ACCESS_ONCE(rcu_task_stall_timeout); | 
 | 			needreport = rtst > 0 && | 
 | 				     time_after(jiffies, lastreport + rtst); | 
 | 			if (needreport) | 
 | 				lastreport = jiffies; | 
 | 			firstreport = true; | 
 | 			WARN_ON(signal_pending(current)); | 
 | 			list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, | 
 | 						rcu_tasks_holdout_list) { | 
 | 				check_holdout_task(t, needreport, &firstreport); | 
 | 				cond_resched(); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Because ->on_rq and ->nvcsw are not guaranteed | 
 | 		 * to have a full memory barriers prior to them in the | 
 | 		 * schedule() path, memory reordering on other CPUs could | 
 | 		 * cause their RCU-tasks read-side critical sections to | 
 | 		 * extend past the end of the grace period.  However, | 
 | 		 * because these ->nvcsw updates are carried out with | 
 | 		 * interrupts disabled, we can use synchronize_sched() | 
 | 		 * to force the needed ordering on all such CPUs. | 
 | 		 * | 
 | 		 * This synchronize_sched() also confines all | 
 | 		 * ->rcu_tasks_holdout accesses to be within the grace | 
 | 		 * period, avoiding the need for memory barriers for | 
 | 		 * ->rcu_tasks_holdout accesses. | 
 | 		 * | 
 | 		 * In addition, this synchronize_sched() waits for exiting | 
 | 		 * tasks to complete their final preempt_disable() region | 
 | 		 * of execution, cleaning up after the synchronize_srcu() | 
 | 		 * above. | 
 | 		 */ | 
 | 		synchronize_sched(); | 
 |  | 
 | 		/* Invoke the callbacks. */ | 
 | 		while (list) { | 
 | 			next = list->next; | 
 | 			local_bh_disable(); | 
 | 			list->func(list); | 
 | 			local_bh_enable(); | 
 | 			list = next; | 
 | 			cond_resched(); | 
 | 		} | 
 | 		schedule_timeout_uninterruptible(HZ/10); | 
 | 	} | 
 | } | 
 |  | 
 | /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ | 
 | static void rcu_spawn_tasks_kthread(void) | 
 | { | 
 | 	static DEFINE_MUTEX(rcu_tasks_kthread_mutex); | 
 | 	static struct task_struct *rcu_tasks_kthread_ptr; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) { | 
 | 		smp_mb(); /* Ensure caller sees full kthread. */ | 
 | 		return; | 
 | 	} | 
 | 	mutex_lock(&rcu_tasks_kthread_mutex); | 
 | 	if (rcu_tasks_kthread_ptr) { | 
 | 		mutex_unlock(&rcu_tasks_kthread_mutex); | 
 | 		return; | 
 | 	} | 
 | 	t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); | 
 | 	BUG_ON(IS_ERR(t)); | 
 | 	smp_mb(); /* Ensure others see full kthread. */ | 
 | 	ACCESS_ONCE(rcu_tasks_kthread_ptr) = t; | 
 | 	mutex_unlock(&rcu_tasks_kthread_mutex); | 
 | } | 
 |  | 
 | #endif /* #ifdef CONFIG_TASKS_RCU */ | 
 |  | 
 | #ifdef CONFIG_PROVE_RCU | 
 |  | 
 | /* | 
 |  * Early boot self test parameters, one for each flavor | 
 |  */ | 
 | static bool rcu_self_test; | 
 | static bool rcu_self_test_bh; | 
 | static bool rcu_self_test_sched; | 
 |  | 
 | module_param(rcu_self_test, bool, 0444); | 
 | module_param(rcu_self_test_bh, bool, 0444); | 
 | module_param(rcu_self_test_sched, bool, 0444); | 
 |  | 
 | static int rcu_self_test_counter; | 
 |  | 
 | static void test_callback(struct rcu_head *r) | 
 | { | 
 | 	rcu_self_test_counter++; | 
 | 	pr_info("RCU test callback executed %d\n", rcu_self_test_counter); | 
 | } | 
 |  | 
 | static void early_boot_test_call_rcu(void) | 
 | { | 
 | 	static struct rcu_head head; | 
 |  | 
 | 	call_rcu(&head, test_callback); | 
 | } | 
 |  | 
 | static void early_boot_test_call_rcu_bh(void) | 
 | { | 
 | 	static struct rcu_head head; | 
 |  | 
 | 	call_rcu_bh(&head, test_callback); | 
 | } | 
 |  | 
 | static void early_boot_test_call_rcu_sched(void) | 
 | { | 
 | 	static struct rcu_head head; | 
 |  | 
 | 	call_rcu_sched(&head, test_callback); | 
 | } | 
 |  | 
 | void rcu_early_boot_tests(void) | 
 | { | 
 | 	pr_info("Running RCU self tests\n"); | 
 |  | 
 | 	if (rcu_self_test) | 
 | 		early_boot_test_call_rcu(); | 
 | 	if (rcu_self_test_bh) | 
 | 		early_boot_test_call_rcu_bh(); | 
 | 	if (rcu_self_test_sched) | 
 | 		early_boot_test_call_rcu_sched(); | 
 | } | 
 |  | 
 | static int rcu_verify_early_boot_tests(void) | 
 | { | 
 | 	int ret = 0; | 
 | 	int early_boot_test_counter = 0; | 
 |  | 
 | 	if (rcu_self_test) { | 
 | 		early_boot_test_counter++; | 
 | 		rcu_barrier(); | 
 | 	} | 
 | 	if (rcu_self_test_bh) { | 
 | 		early_boot_test_counter++; | 
 | 		rcu_barrier_bh(); | 
 | 	} | 
 | 	if (rcu_self_test_sched) { | 
 | 		early_boot_test_counter++; | 
 | 		rcu_barrier_sched(); | 
 | 	} | 
 |  | 
 | 	if (rcu_self_test_counter != early_boot_test_counter) { | 
 | 		WARN_ON(1); | 
 | 		ret = -1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | late_initcall(rcu_verify_early_boot_tests); | 
 | #else | 
 | void rcu_early_boot_tests(void) {} | 
 | #endif /* CONFIG_PROVE_RCU */ |