|  | /* | 
|  | * linux/mm/slab.c | 
|  | * Written by Mark Hemment, 1996/97. | 
|  | * (markhe@nextd.demon.co.uk) | 
|  | * | 
|  | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | 
|  | * | 
|  | * Major cleanup, different bufctl logic, per-cpu arrays | 
|  | *	(c) 2000 Manfred Spraul | 
|  | * | 
|  | * Cleanup, make the head arrays unconditional, preparation for NUMA | 
|  | * 	(c) 2002 Manfred Spraul | 
|  | * | 
|  | * An implementation of the Slab Allocator as described in outline in; | 
|  | *	UNIX Internals: The New Frontiers by Uresh Vahalia | 
|  | *	Pub: Prentice Hall	ISBN 0-13-101908-2 | 
|  | * or with a little more detail in; | 
|  | *	The Slab Allocator: An Object-Caching Kernel Memory Allocator | 
|  | *	Jeff Bonwick (Sun Microsystems). | 
|  | *	Presented at: USENIX Summer 1994 Technical Conference | 
|  | * | 
|  | * The memory is organized in caches, one cache for each object type. | 
|  | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | 
|  | * Each cache consists out of many slabs (they are small (usually one | 
|  | * page long) and always contiguous), and each slab contains multiple | 
|  | * initialized objects. | 
|  | * | 
|  | * This means, that your constructor is used only for newly allocated | 
|  | * slabs and you must pass objects with the same initializations to | 
|  | * kmem_cache_free. | 
|  | * | 
|  | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | 
|  | * normal). If you need a special memory type, then must create a new | 
|  | * cache for that memory type. | 
|  | * | 
|  | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | 
|  | *   full slabs with 0 free objects | 
|  | *   partial slabs | 
|  | *   empty slabs with no allocated objects | 
|  | * | 
|  | * If partial slabs exist, then new allocations come from these slabs, | 
|  | * otherwise from empty slabs or new slabs are allocated. | 
|  | * | 
|  | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | 
|  | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | 
|  | * | 
|  | * Each cache has a short per-cpu head array, most allocs | 
|  | * and frees go into that array, and if that array overflows, then 1/2 | 
|  | * of the entries in the array are given back into the global cache. | 
|  | * The head array is strictly LIFO and should improve the cache hit rates. | 
|  | * On SMP, it additionally reduces the spinlock operations. | 
|  | * | 
|  | * The c_cpuarray may not be read with enabled local interrupts - | 
|  | * it's changed with a smp_call_function(). | 
|  | * | 
|  | * SMP synchronization: | 
|  | *  constructors and destructors are called without any locking. | 
|  | *  Several members in struct kmem_cache and struct slab never change, they | 
|  | *	are accessed without any locking. | 
|  | *  The per-cpu arrays are never accessed from the wrong cpu, no locking, | 
|  | *  	and local interrupts are disabled so slab code is preempt-safe. | 
|  | *  The non-constant members are protected with a per-cache irq spinlock. | 
|  | * | 
|  | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | 
|  | * in 2000 - many ideas in the current implementation are derived from | 
|  | * his patch. | 
|  | * | 
|  | * Further notes from the original documentation: | 
|  | * | 
|  | * 11 April '97.  Started multi-threading - markhe | 
|  | *	The global cache-chain is protected by the mutex 'slab_mutex'. | 
|  | *	The sem is only needed when accessing/extending the cache-chain, which | 
|  | *	can never happen inside an interrupt (kmem_cache_create(), | 
|  | *	kmem_cache_shrink() and kmem_cache_reap()). | 
|  | * | 
|  | *	At present, each engine can be growing a cache.  This should be blocked. | 
|  | * | 
|  | * 15 March 2005. NUMA slab allocator. | 
|  | *	Shai Fultheim <shai@scalex86.org>. | 
|  | *	Shobhit Dayal <shobhit@calsoftinc.com> | 
|  | *	Alok N Kataria <alokk@calsoftinc.com> | 
|  | *	Christoph Lameter <christoph@lameter.com> | 
|  | * | 
|  | *	Modified the slab allocator to be node aware on NUMA systems. | 
|  | *	Each node has its own list of partial, free and full slabs. | 
|  | *	All object allocations for a node occur from node specific slab lists. | 
|  | */ | 
|  |  | 
|  | #include	<linux/slab.h> | 
|  | #include	<linux/mm.h> | 
|  | #include	<linux/poison.h> | 
|  | #include	<linux/swap.h> | 
|  | #include	<linux/cache.h> | 
|  | #include	<linux/interrupt.h> | 
|  | #include	<linux/init.h> | 
|  | #include	<linux/compiler.h> | 
|  | #include	<linux/cpuset.h> | 
|  | #include	<linux/proc_fs.h> | 
|  | #include	<linux/seq_file.h> | 
|  | #include	<linux/notifier.h> | 
|  | #include	<linux/kallsyms.h> | 
|  | #include	<linux/cpu.h> | 
|  | #include	<linux/sysctl.h> | 
|  | #include	<linux/module.h> | 
|  | #include	<linux/rcupdate.h> | 
|  | #include	<linux/string.h> | 
|  | #include	<linux/uaccess.h> | 
|  | #include	<linux/nodemask.h> | 
|  | #include	<linux/kmemleak.h> | 
|  | #include	<linux/mempolicy.h> | 
|  | #include	<linux/mutex.h> | 
|  | #include	<linux/fault-inject.h> | 
|  | #include	<linux/rtmutex.h> | 
|  | #include	<linux/reciprocal_div.h> | 
|  | #include	<linux/debugobjects.h> | 
|  | #include	<linux/kmemcheck.h> | 
|  | #include	<linux/memory.h> | 
|  | #include	<linux/prefetch.h> | 
|  |  | 
|  | #include	<net/sock.h> | 
|  |  | 
|  | #include	<asm/cacheflush.h> | 
|  | #include	<asm/tlbflush.h> | 
|  | #include	<asm/page.h> | 
|  |  | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include	"internal.h" | 
|  |  | 
|  | #include	"slab.h" | 
|  |  | 
|  | /* | 
|  | * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. | 
|  | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | * | 
|  | * STATS	- 1 to collect stats for /proc/slabinfo. | 
|  | *		  0 for faster, smaller code (especially in the critical paths). | 
|  | * | 
|  | * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | #define	DEBUG		1 | 
|  | #define	STATS		1 | 
|  | #define	FORCED_DEBUG	1 | 
|  | #else | 
|  | #define	DEBUG		0 | 
|  | #define	STATS		0 | 
|  | #define	FORCED_DEBUG	0 | 
|  | #endif | 
|  |  | 
|  | /* Shouldn't this be in a header file somewhere? */ | 
|  | #define	BYTES_PER_WORD		sizeof(void *) | 
|  | #define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long)) | 
|  |  | 
|  | #ifndef ARCH_KMALLOC_FLAGS | 
|  | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | 
|  | #endif | 
|  |  | 
|  | #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \ | 
|  | <= SLAB_OBJ_MIN_SIZE) ? 1 : 0) | 
|  |  | 
|  | #if FREELIST_BYTE_INDEX | 
|  | typedef unsigned char freelist_idx_t; | 
|  | #else | 
|  | typedef unsigned short freelist_idx_t; | 
|  | #endif | 
|  |  | 
|  | #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1) | 
|  |  | 
|  | /* | 
|  | * true if a page was allocated from pfmemalloc reserves for network-based | 
|  | * swap | 
|  | */ | 
|  | static bool pfmemalloc_active __read_mostly; | 
|  |  | 
|  | /* | 
|  | * struct array_cache | 
|  | * | 
|  | * Purpose: | 
|  | * - LIFO ordering, to hand out cache-warm objects from _alloc | 
|  | * - reduce the number of linked list operations | 
|  | * - reduce spinlock operations | 
|  | * | 
|  | * The limit is stored in the per-cpu structure to reduce the data cache | 
|  | * footprint. | 
|  | * | 
|  | */ | 
|  | struct array_cache { | 
|  | unsigned int avail; | 
|  | unsigned int limit; | 
|  | unsigned int batchcount; | 
|  | unsigned int touched; | 
|  | void *entry[];	/* | 
|  | * Must have this definition in here for the proper | 
|  | * alignment of array_cache. Also simplifies accessing | 
|  | * the entries. | 
|  | * | 
|  | * Entries should not be directly dereferenced as | 
|  | * entries belonging to slabs marked pfmemalloc will | 
|  | * have the lower bits set SLAB_OBJ_PFMEMALLOC | 
|  | */ | 
|  | }; | 
|  |  | 
|  | struct alien_cache { | 
|  | spinlock_t lock; | 
|  | struct array_cache ac; | 
|  | }; | 
|  |  | 
|  | #define SLAB_OBJ_PFMEMALLOC	1 | 
|  | static inline bool is_obj_pfmemalloc(void *objp) | 
|  | { | 
|  | return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC; | 
|  | } | 
|  |  | 
|  | static inline void set_obj_pfmemalloc(void **objp) | 
|  | { | 
|  | *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void clear_obj_pfmemalloc(void **objp) | 
|  | { | 
|  | *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bootstrap: The caches do not work without cpuarrays anymore, but the | 
|  | * cpuarrays are allocated from the generic caches... | 
|  | */ | 
|  | #define BOOT_CPUCACHE_ENTRIES	1 | 
|  | struct arraycache_init { | 
|  | struct array_cache cache; | 
|  | void *entries[BOOT_CPUCACHE_ENTRIES]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Need this for bootstrapping a per node allocator. | 
|  | */ | 
|  | #define NUM_INIT_LISTS (2 * MAX_NUMNODES) | 
|  | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; | 
|  | #define	CACHE_CACHE 0 | 
|  | #define	SIZE_NODE (MAX_NUMNODES) | 
|  |  | 
|  | static int drain_freelist(struct kmem_cache *cache, | 
|  | struct kmem_cache_node *n, int tofree); | 
|  | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | 
|  | int node, struct list_head *list); | 
|  | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list); | 
|  | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); | 
|  | static void cache_reap(struct work_struct *unused); | 
|  |  | 
|  | static int slab_early_init = 1; | 
|  |  | 
|  | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) | 
|  |  | 
|  | static void kmem_cache_node_init(struct kmem_cache_node *parent) | 
|  | { | 
|  | INIT_LIST_HEAD(&parent->slabs_full); | 
|  | INIT_LIST_HEAD(&parent->slabs_partial); | 
|  | INIT_LIST_HEAD(&parent->slabs_free); | 
|  | parent->shared = NULL; | 
|  | parent->alien = NULL; | 
|  | parent->colour_next = 0; | 
|  | spin_lock_init(&parent->list_lock); | 
|  | parent->free_objects = 0; | 
|  | parent->free_touched = 0; | 
|  | } | 
|  |  | 
|  | #define MAKE_LIST(cachep, listp, slab, nodeid)				\ | 
|  | do {								\ | 
|  | INIT_LIST_HEAD(listp);					\ | 
|  | list_splice(&get_node(cachep, nodeid)->slab, listp);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\ | 
|  | do {								\ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | 
|  | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define CFLGS_OFF_SLAB		(0x80000000UL) | 
|  | #define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB) | 
|  |  | 
|  | #define BATCHREFILL_LIMIT	16 | 
|  | /* | 
|  | * Optimization question: fewer reaps means less probability for unnessary | 
|  | * cpucache drain/refill cycles. | 
|  | * | 
|  | * OTOH the cpuarrays can contain lots of objects, | 
|  | * which could lock up otherwise freeable slabs. | 
|  | */ | 
|  | #define REAPTIMEOUT_AC		(2*HZ) | 
|  | #define REAPTIMEOUT_NODE	(4*HZ) | 
|  |  | 
|  | #if STATS | 
|  | #define	STATS_INC_ACTIVE(x)	((x)->num_active++) | 
|  | #define	STATS_DEC_ACTIVE(x)	((x)->num_active--) | 
|  | #define	STATS_INC_ALLOCED(x)	((x)->num_allocations++) | 
|  | #define	STATS_INC_GROWN(x)	((x)->grown++) | 
|  | #define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y)) | 
|  | #define	STATS_SET_HIGH(x)						\ | 
|  | do {								\ | 
|  | if ((x)->num_active > (x)->high_mark)			\ | 
|  | (x)->high_mark = (x)->num_active;		\ | 
|  | } while (0) | 
|  | #define	STATS_INC_ERR(x)	((x)->errors++) | 
|  | #define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++) | 
|  | #define	STATS_INC_NODEFREES(x)	((x)->node_frees++) | 
|  | #define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++) | 
|  | #define	STATS_SET_FREEABLE(x, i)					\ | 
|  | do {								\ | 
|  | if ((x)->max_freeable < i)				\ | 
|  | (x)->max_freeable = i;				\ | 
|  | } while (0) | 
|  | #define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit) | 
|  | #define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss) | 
|  | #define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit) | 
|  | #define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss) | 
|  | #else | 
|  | #define	STATS_INC_ACTIVE(x)	do { } while (0) | 
|  | #define	STATS_DEC_ACTIVE(x)	do { } while (0) | 
|  | #define	STATS_INC_ALLOCED(x)	do { } while (0) | 
|  | #define	STATS_INC_GROWN(x)	do { } while (0) | 
|  | #define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0) | 
|  | #define	STATS_SET_HIGH(x)	do { } while (0) | 
|  | #define	STATS_INC_ERR(x)	do { } while (0) | 
|  | #define	STATS_INC_NODEALLOCS(x)	do { } while (0) | 
|  | #define	STATS_INC_NODEFREES(x)	do { } while (0) | 
|  | #define STATS_INC_ACOVERFLOW(x)   do { } while (0) | 
|  | #define	STATS_SET_FREEABLE(x, i) do { } while (0) | 
|  | #define STATS_INC_ALLOCHIT(x)	do { } while (0) | 
|  | #define STATS_INC_ALLOCMISS(x)	do { } while (0) | 
|  | #define STATS_INC_FREEHIT(x)	do { } while (0) | 
|  | #define STATS_INC_FREEMISS(x)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | /* | 
|  | * memory layout of objects: | 
|  | * 0		: objp | 
|  | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that | 
|  | * 		the end of an object is aligned with the end of the real | 
|  | * 		allocation. Catches writes behind the end of the allocation. | 
|  | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: | 
|  | * 		redzone word. | 
|  | * cachep->obj_offset: The real object. | 
|  | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | 
|  | * cachep->size - 1* BYTES_PER_WORD: last caller address | 
|  | *					[BYTES_PER_WORD long] | 
|  | */ | 
|  | static int obj_offset(struct kmem_cache *cachep) | 
|  | { | 
|  | return cachep->obj_offset; | 
|  | } | 
|  |  | 
|  | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | return (unsigned long long*) (objp + obj_offset(cachep) - | 
|  | sizeof(unsigned long long)); | 
|  | } | 
|  |  | 
|  | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | return (unsigned long long *)(objp + cachep->size - | 
|  | sizeof(unsigned long long) - | 
|  | REDZONE_ALIGN); | 
|  | return (unsigned long long *) (objp + cachep->size - | 
|  | sizeof(unsigned long long)); | 
|  | } | 
|  |  | 
|  | static void **dbg_userword(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | 
|  | return (void **)(objp + cachep->size - BYTES_PER_WORD); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define obj_offset(x)			0 | 
|  | #define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
|  | #define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;}) | 
|  | #define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;}) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define OBJECT_FREE (0) | 
|  | #define OBJECT_ACTIVE (1) | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  |  | 
|  | static void set_obj_status(struct page *page, int idx, int val) | 
|  | { | 
|  | int freelist_size; | 
|  | char *status; | 
|  | struct kmem_cache *cachep = page->slab_cache; | 
|  |  | 
|  | freelist_size = cachep->num * sizeof(freelist_idx_t); | 
|  | status = (char *)page->freelist + freelist_size; | 
|  | status[idx] = val; | 
|  | } | 
|  |  | 
|  | static inline unsigned int get_obj_status(struct page *page, int idx) | 
|  | { | 
|  | int freelist_size; | 
|  | char *status; | 
|  | struct kmem_cache *cachep = page->slab_cache; | 
|  |  | 
|  | freelist_size = cachep->num * sizeof(freelist_idx_t); | 
|  | status = (char *)page->freelist + freelist_size; | 
|  |  | 
|  | return status[idx]; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void set_obj_status(struct page *page, int idx, int val) {} | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Do not go above this order unless 0 objects fit into the slab or | 
|  | * overridden on the command line. | 
|  | */ | 
|  | #define	SLAB_MAX_ORDER_HI	1 | 
|  | #define	SLAB_MAX_ORDER_LO	0 | 
|  | static int slab_max_order = SLAB_MAX_ORDER_LO; | 
|  | static bool slab_max_order_set __initdata; | 
|  |  | 
|  | static inline struct kmem_cache *virt_to_cache(const void *obj) | 
|  | { | 
|  | struct page *page = virt_to_head_page(obj); | 
|  | return page->slab_cache; | 
|  | } | 
|  |  | 
|  | static inline void *index_to_obj(struct kmem_cache *cache, struct page *page, | 
|  | unsigned int idx) | 
|  | { | 
|  | return page->s_mem + cache->size * idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to avoid an expensive divide : (offset / cache->size) | 
|  | *   Using the fact that size is a constant for a particular cache, | 
|  | *   we can replace (offset / cache->size) by | 
|  | *   reciprocal_divide(offset, cache->reciprocal_buffer_size) | 
|  | */ | 
|  | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | 
|  | const struct page *page, void *obj) | 
|  | { | 
|  | u32 offset = (obj - page->s_mem); | 
|  | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | 
|  | } | 
|  |  | 
|  | /* internal cache of cache description objs */ | 
|  | static struct kmem_cache kmem_cache_boot = { | 
|  | .batchcount = 1, | 
|  | .limit = BOOT_CPUCACHE_ENTRIES, | 
|  | .shared = 1, | 
|  | .size = sizeof(struct kmem_cache), | 
|  | .name = "kmem_cache", | 
|  | }; | 
|  |  | 
|  | #define BAD_ALIEN_MAGIC 0x01020304ul | 
|  |  | 
|  | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); | 
|  |  | 
|  | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | 
|  | { | 
|  | return this_cpu_ptr(cachep->cpu_cache); | 
|  | } | 
|  |  | 
|  | static size_t calculate_freelist_size(int nr_objs, size_t align) | 
|  | { | 
|  | size_t freelist_size; | 
|  |  | 
|  | freelist_size = nr_objs * sizeof(freelist_idx_t); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) | 
|  | freelist_size += nr_objs * sizeof(char); | 
|  |  | 
|  | if (align) | 
|  | freelist_size = ALIGN(freelist_size, align); | 
|  |  | 
|  | return freelist_size; | 
|  | } | 
|  |  | 
|  | static int calculate_nr_objs(size_t slab_size, size_t buffer_size, | 
|  | size_t idx_size, size_t align) | 
|  | { | 
|  | int nr_objs; | 
|  | size_t remained_size; | 
|  | size_t freelist_size; | 
|  | int extra_space = 0; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) | 
|  | extra_space = sizeof(char); | 
|  | /* | 
|  | * Ignore padding for the initial guess. The padding | 
|  | * is at most @align-1 bytes, and @buffer_size is at | 
|  | * least @align. In the worst case, this result will | 
|  | * be one greater than the number of objects that fit | 
|  | * into the memory allocation when taking the padding | 
|  | * into account. | 
|  | */ | 
|  | nr_objs = slab_size / (buffer_size + idx_size + extra_space); | 
|  |  | 
|  | /* | 
|  | * This calculated number will be either the right | 
|  | * amount, or one greater than what we want. | 
|  | */ | 
|  | remained_size = slab_size - nr_objs * buffer_size; | 
|  | freelist_size = calculate_freelist_size(nr_objs, align); | 
|  | if (remained_size < freelist_size) | 
|  | nr_objs--; | 
|  |  | 
|  | return nr_objs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of objects and left-over bytes for a given buffer size. | 
|  | */ | 
|  | static void cache_estimate(unsigned long gfporder, size_t buffer_size, | 
|  | size_t align, int flags, size_t *left_over, | 
|  | unsigned int *num) | 
|  | { | 
|  | int nr_objs; | 
|  | size_t mgmt_size; | 
|  | size_t slab_size = PAGE_SIZE << gfporder; | 
|  |  | 
|  | /* | 
|  | * The slab management structure can be either off the slab or | 
|  | * on it. For the latter case, the memory allocated for a | 
|  | * slab is used for: | 
|  | * | 
|  | * - One unsigned int for each object | 
|  | * - Padding to respect alignment of @align | 
|  | * - @buffer_size bytes for each object | 
|  | * | 
|  | * If the slab management structure is off the slab, then the | 
|  | * alignment will already be calculated into the size. Because | 
|  | * the slabs are all pages aligned, the objects will be at the | 
|  | * correct alignment when allocated. | 
|  | */ | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | mgmt_size = 0; | 
|  | nr_objs = slab_size / buffer_size; | 
|  |  | 
|  | } else { | 
|  | nr_objs = calculate_nr_objs(slab_size, buffer_size, | 
|  | sizeof(freelist_idx_t), align); | 
|  | mgmt_size = calculate_freelist_size(nr_objs, align); | 
|  | } | 
|  | *num = nr_objs; | 
|  | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) | 
|  |  | 
|  | static void __slab_error(const char *function, struct kmem_cache *cachep, | 
|  | char *msg) | 
|  | { | 
|  | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | 
|  | function, cachep->name, msg); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * By default on NUMA we use alien caches to stage the freeing of | 
|  | * objects allocated from other nodes. This causes massive memory | 
|  | * inefficiencies when using fake NUMA setup to split memory into a | 
|  | * large number of small nodes, so it can be disabled on the command | 
|  | * line | 
|  | */ | 
|  |  | 
|  | static int use_alien_caches __read_mostly = 1; | 
|  | static int __init noaliencache_setup(char *s) | 
|  | { | 
|  | use_alien_caches = 0; | 
|  | return 1; | 
|  | } | 
|  | __setup("noaliencache", noaliencache_setup); | 
|  |  | 
|  | static int __init slab_max_order_setup(char *str) | 
|  | { | 
|  | get_option(&str, &slab_max_order); | 
|  | slab_max_order = slab_max_order < 0 ? 0 : | 
|  | min(slab_max_order, MAX_ORDER - 1); | 
|  | slab_max_order_set = true; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("slab_max_order=", slab_max_order_setup); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Special reaping functions for NUMA systems called from cache_reap(). | 
|  | * These take care of doing round robin flushing of alien caches (containing | 
|  | * objects freed on different nodes from which they were allocated) and the | 
|  | * flushing of remote pcps by calling drain_node_pages. | 
|  | */ | 
|  | static DEFINE_PER_CPU(unsigned long, slab_reap_node); | 
|  |  | 
|  | static void init_reap_node(int cpu) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | node = next_node(cpu_to_mem(cpu), node_online_map); | 
|  | if (node == MAX_NUMNODES) | 
|  | node = first_node(node_online_map); | 
|  |  | 
|  | per_cpu(slab_reap_node, cpu) = node; | 
|  | } | 
|  |  | 
|  | static void next_reap_node(void) | 
|  | { | 
|  | int node = __this_cpu_read(slab_reap_node); | 
|  |  | 
|  | node = next_node(node, node_online_map); | 
|  | if (unlikely(node >= MAX_NUMNODES)) | 
|  | node = first_node(node_online_map); | 
|  | __this_cpu_write(slab_reap_node, node); | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define init_reap_node(cpu) do { } while (0) | 
|  | #define next_reap_node(void) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz | 
|  | * via the workqueue/eventd. | 
|  | * Add the CPU number into the expiration time to minimize the possibility of | 
|  | * the CPUs getting into lockstep and contending for the global cache chain | 
|  | * lock. | 
|  | */ | 
|  | static void start_cpu_timer(int cpu) | 
|  | { | 
|  | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); | 
|  |  | 
|  | /* | 
|  | * When this gets called from do_initcalls via cpucache_init(), | 
|  | * init_workqueues() has already run, so keventd will be setup | 
|  | * at that time. | 
|  | */ | 
|  | if (keventd_up() && reap_work->work.func == NULL) { | 
|  | init_reap_node(cpu); | 
|  | INIT_DEFERRABLE_WORK(reap_work, cache_reap); | 
|  | schedule_delayed_work_on(cpu, reap_work, | 
|  | __round_jiffies_relative(HZ, cpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_arraycache(struct array_cache *ac, int limit, int batch) | 
|  | { | 
|  | /* | 
|  | * The array_cache structures contain pointers to free object. | 
|  | * However, when such objects are allocated or transferred to another | 
|  | * cache the pointers are not cleared and they could be counted as | 
|  | * valid references during a kmemleak scan. Therefore, kmemleak must | 
|  | * not scan such objects. | 
|  | */ | 
|  | kmemleak_no_scan(ac); | 
|  | if (ac) { | 
|  | ac->avail = 0; | 
|  | ac->limit = limit; | 
|  | ac->batchcount = batch; | 
|  | ac->touched = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct array_cache *alloc_arraycache(int node, int entries, | 
|  | int batchcount, gfp_t gfp) | 
|  | { | 
|  | size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache); | 
|  | struct array_cache *ac = NULL; | 
|  |  | 
|  | ac = kmalloc_node(memsize, gfp, node); | 
|  | init_arraycache(ac, entries, batchcount); | 
|  | return ac; | 
|  | } | 
|  |  | 
|  | static inline bool is_slab_pfmemalloc(struct page *page) | 
|  | { | 
|  | return PageSlabPfmemalloc(page); | 
|  | } | 
|  |  | 
|  | /* Clears pfmemalloc_active if no slabs have pfmalloc set */ | 
|  | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | 
|  | struct array_cache *ac) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(cachep, numa_mem_id()); | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!pfmemalloc_active) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->slabs_full, lru) | 
|  | if (is_slab_pfmemalloc(page)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(page, &n->slabs_partial, lru) | 
|  | if (is_slab_pfmemalloc(page)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(page, &n->slabs_free, lru) | 
|  | if (is_slab_pfmemalloc(page)) | 
|  | goto out; | 
|  |  | 
|  | pfmemalloc_active = false; | 
|  | out: | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | 
|  | gfp_t flags, bool force_refill) | 
|  | { | 
|  | int i; | 
|  | void *objp = ac->entry[--ac->avail]; | 
|  |  | 
|  | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | 
|  | if (unlikely(is_obj_pfmemalloc(objp))) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (gfp_pfmemalloc_allowed(flags)) { | 
|  | clear_obj_pfmemalloc(&objp); | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | /* The caller cannot use PFMEMALLOC objects, find another one */ | 
|  | for (i = 0; i < ac->avail; i++) { | 
|  | /* If a !PFMEMALLOC object is found, swap them */ | 
|  | if (!is_obj_pfmemalloc(ac->entry[i])) { | 
|  | objp = ac->entry[i]; | 
|  | ac->entry[i] = ac->entry[ac->avail]; | 
|  | ac->entry[ac->avail] = objp; | 
|  | return objp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are empty slabs on the slabs_free list and we are | 
|  | * being forced to refill the cache, mark this one !pfmemalloc. | 
|  | */ | 
|  | n = get_node(cachep, numa_mem_id()); | 
|  | if (!list_empty(&n->slabs_free) && force_refill) { | 
|  | struct page *page = virt_to_head_page(objp); | 
|  | ClearPageSlabPfmemalloc(page); | 
|  | clear_obj_pfmemalloc(&objp); | 
|  | recheck_pfmemalloc_active(cachep, ac); | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | /* No !PFMEMALLOC objects available */ | 
|  | ac->avail++; | 
|  | objp = NULL; | 
|  | } | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static inline void *ac_get_obj(struct kmem_cache *cachep, | 
|  | struct array_cache *ac, gfp_t flags, bool force_refill) | 
|  | { | 
|  | void *objp; | 
|  |  | 
|  | if (unlikely(sk_memalloc_socks())) | 
|  | objp = __ac_get_obj(cachep, ac, flags, force_refill); | 
|  | else | 
|  | objp = ac->entry[--ac->avail]; | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static noinline void *__ac_put_obj(struct kmem_cache *cachep, | 
|  | struct array_cache *ac, void *objp) | 
|  | { | 
|  | if (unlikely(pfmemalloc_active)) { | 
|  | /* Some pfmemalloc slabs exist, check if this is one */ | 
|  | struct page *page = virt_to_head_page(objp); | 
|  | if (PageSlabPfmemalloc(page)) | 
|  | set_obj_pfmemalloc(&objp); | 
|  | } | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac, | 
|  | void *objp) | 
|  | { | 
|  | if (unlikely(sk_memalloc_socks())) | 
|  | objp = __ac_put_obj(cachep, ac, objp); | 
|  |  | 
|  | ac->entry[ac->avail++] = objp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transfer objects in one arraycache to another. | 
|  | * Locking must be handled by the caller. | 
|  | * | 
|  | * Return the number of entries transferred. | 
|  | */ | 
|  | static int transfer_objects(struct array_cache *to, | 
|  | struct array_cache *from, unsigned int max) | 
|  | { | 
|  | /* Figure out how many entries to transfer */ | 
|  | int nr = min3(from->avail, max, to->limit - to->avail); | 
|  |  | 
|  | if (!nr) | 
|  | return 0; | 
|  |  | 
|  | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | 
|  | sizeof(void *) *nr); | 
|  |  | 
|  | from->avail -= nr; | 
|  | to->avail += nr; | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  |  | 
|  | #define drain_alien_cache(cachep, alien) do { } while (0) | 
|  | #define reap_alien(cachep, n) do { } while (0) | 
|  |  | 
|  | static inline struct alien_cache **alloc_alien_cache(int node, | 
|  | int limit, gfp_t gfp) | 
|  | { | 
|  | return (struct alien_cache **)BAD_ALIEN_MAGIC; | 
|  | } | 
|  |  | 
|  | static inline void free_alien_cache(struct alien_cache **ac_ptr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | 
|  | gfp_t flags) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void *____cache_alloc_node(struct kmem_cache *cachep, | 
|  | gfp_t flags, int nodeid) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline gfp_t gfp_exact_node(gfp_t flags) | 
|  | { | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_NUMA */ | 
|  |  | 
|  | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); | 
|  | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); | 
|  |  | 
|  | static struct alien_cache *__alloc_alien_cache(int node, int entries, | 
|  | int batch, gfp_t gfp) | 
|  | { | 
|  | size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache); | 
|  | struct alien_cache *alc = NULL; | 
|  |  | 
|  | alc = kmalloc_node(memsize, gfp, node); | 
|  | init_arraycache(&alc->ac, entries, batch); | 
|  | spin_lock_init(&alc->lock); | 
|  | return alc; | 
|  | } | 
|  |  | 
|  | static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | 
|  | { | 
|  | struct alien_cache **alc_ptr; | 
|  | size_t memsize = sizeof(void *) * nr_node_ids; | 
|  | int i; | 
|  |  | 
|  | if (limit > 1) | 
|  | limit = 12; | 
|  | alc_ptr = kzalloc_node(memsize, gfp, node); | 
|  | if (!alc_ptr) | 
|  | return NULL; | 
|  |  | 
|  | for_each_node(i) { | 
|  | if (i == node || !node_online(i)) | 
|  | continue; | 
|  | alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp); | 
|  | if (!alc_ptr[i]) { | 
|  | for (i--; i >= 0; i--) | 
|  | kfree(alc_ptr[i]); | 
|  | kfree(alc_ptr); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | return alc_ptr; | 
|  | } | 
|  |  | 
|  | static void free_alien_cache(struct alien_cache **alc_ptr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!alc_ptr) | 
|  | return; | 
|  | for_each_node(i) | 
|  | kfree(alc_ptr[i]); | 
|  | kfree(alc_ptr); | 
|  | } | 
|  |  | 
|  | static void __drain_alien_cache(struct kmem_cache *cachep, | 
|  | struct array_cache *ac, int node, | 
|  | struct list_head *list) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(cachep, node); | 
|  |  | 
|  | if (ac->avail) { | 
|  | spin_lock(&n->list_lock); | 
|  | /* | 
|  | * Stuff objects into the remote nodes shared array first. | 
|  | * That way we could avoid the overhead of putting the objects | 
|  | * into the free lists and getting them back later. | 
|  | */ | 
|  | if (n->shared) | 
|  | transfer_objects(n->shared, ac, ac->limit); | 
|  |  | 
|  | free_block(cachep, ac->entry, ac->avail, node, list); | 
|  | ac->avail = 0; | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from cache_reap() to regularly drain alien caches round robin. | 
|  | */ | 
|  | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) | 
|  | { | 
|  | int node = __this_cpu_read(slab_reap_node); | 
|  |  | 
|  | if (n->alien) { | 
|  | struct alien_cache *alc = n->alien[node]; | 
|  | struct array_cache *ac; | 
|  |  | 
|  | if (alc) { | 
|  | ac = &alc->ac; | 
|  | if (ac->avail && spin_trylock_irq(&alc->lock)) { | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | __drain_alien_cache(cachep, ac, node, &list); | 
|  | spin_unlock_irq(&alc->lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void drain_alien_cache(struct kmem_cache *cachep, | 
|  | struct alien_cache **alien) | 
|  | { | 
|  | int i = 0; | 
|  | struct alien_cache *alc; | 
|  | struct array_cache *ac; | 
|  | unsigned long flags; | 
|  |  | 
|  | for_each_online_node(i) { | 
|  | alc = alien[i]; | 
|  | if (alc) { | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | ac = &alc->ac; | 
|  | spin_lock_irqsave(&alc->lock, flags); | 
|  | __drain_alien_cache(cachep, ac, i, &list); | 
|  | spin_unlock_irqrestore(&alc->lock, flags); | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __cache_free_alien(struct kmem_cache *cachep, void *objp, | 
|  | int node, int page_node) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | struct alien_cache *alien = NULL; | 
|  | struct array_cache *ac; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | n = get_node(cachep, node); | 
|  | STATS_INC_NODEFREES(cachep); | 
|  | if (n->alien && n->alien[page_node]) { | 
|  | alien = n->alien[page_node]; | 
|  | ac = &alien->ac; | 
|  | spin_lock(&alien->lock); | 
|  | if (unlikely(ac->avail == ac->limit)) { | 
|  | STATS_INC_ACOVERFLOW(cachep); | 
|  | __drain_alien_cache(cachep, ac, page_node, &list); | 
|  | } | 
|  | ac_put_obj(cachep, ac, objp); | 
|  | spin_unlock(&alien->lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | } else { | 
|  | n = get_node(cachep, page_node); | 
|  | spin_lock(&n->list_lock); | 
|  | free_block(cachep, &objp, 1, page_node, &list); | 
|  | spin_unlock(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | int page_node = page_to_nid(virt_to_page(objp)); | 
|  | int node = numa_mem_id(); | 
|  | /* | 
|  | * Make sure we are not freeing a object from another node to the array | 
|  | * cache on this cpu. | 
|  | */ | 
|  | if (likely(node == page_node)) | 
|  | return 0; | 
|  |  | 
|  | return __cache_free_alien(cachep, objp, node, page_node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct gfp mask to allocate from a specific node but do not invoke reclaim | 
|  | * or warn about failures. | 
|  | */ | 
|  | static inline gfp_t gfp_exact_node(gfp_t flags) | 
|  | { | 
|  | return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Allocates and initializes node for a node on each slab cache, used for | 
|  | * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node | 
|  | * will be allocated off-node since memory is not yet online for the new node. | 
|  | * When hotplugging memory or a cpu, existing node are not replaced if | 
|  | * already in use. | 
|  | * | 
|  | * Must hold slab_mutex. | 
|  | */ | 
|  | static int init_cache_node_node(int node) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct kmem_cache_node *n; | 
|  | const size_t memsize = sizeof(struct kmem_cache_node); | 
|  |  | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | /* | 
|  | * Set up the kmem_cache_node for cpu before we can | 
|  | * begin anything. Make sure some other cpu on this | 
|  | * node has not already allocated this | 
|  | */ | 
|  | n = get_node(cachep, node); | 
|  | if (!n) { | 
|  | n = kmalloc_node(memsize, GFP_KERNEL, node); | 
|  | if (!n) | 
|  | return -ENOMEM; | 
|  | kmem_cache_node_init(n); | 
|  | n->next_reap = jiffies + REAPTIMEOUT_NODE + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
|  |  | 
|  | /* | 
|  | * The kmem_cache_nodes don't come and go as CPUs | 
|  | * come and go.  slab_mutex is sufficient | 
|  | * protection here. | 
|  | */ | 
|  | cachep->node[node] = n; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&n->list_lock); | 
|  | n->free_limit = | 
|  | (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int slabs_tofree(struct kmem_cache *cachep, | 
|  | struct kmem_cache_node *n) | 
|  | { | 
|  | return (n->free_objects + cachep->num - 1) / cachep->num; | 
|  | } | 
|  |  | 
|  | static void cpuup_canceled(long cpu) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct kmem_cache_node *n = NULL; | 
|  | int node = cpu_to_mem(cpu); | 
|  | const struct cpumask *mask = cpumask_of_node(node); | 
|  |  | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | struct array_cache *nc; | 
|  | struct array_cache *shared; | 
|  | struct alien_cache **alien; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | n = get_node(cachep, node); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irq(&n->list_lock); | 
|  |  | 
|  | /* Free limit for this kmem_cache_node */ | 
|  | n->free_limit -= cachep->batchcount; | 
|  |  | 
|  | /* cpu is dead; no one can alloc from it. */ | 
|  | nc = per_cpu_ptr(cachep->cpu_cache, cpu); | 
|  | if (nc) { | 
|  | free_block(cachep, nc->entry, nc->avail, node, &list); | 
|  | nc->avail = 0; | 
|  | } | 
|  |  | 
|  | if (!cpumask_empty(mask)) { | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | goto free_slab; | 
|  | } | 
|  |  | 
|  | shared = n->shared; | 
|  | if (shared) { | 
|  | free_block(cachep, shared->entry, | 
|  | shared->avail, node, &list); | 
|  | n->shared = NULL; | 
|  | } | 
|  |  | 
|  | alien = n->alien; | 
|  | n->alien = NULL; | 
|  |  | 
|  | spin_unlock_irq(&n->list_lock); | 
|  |  | 
|  | kfree(shared); | 
|  | if (alien) { | 
|  | drain_alien_cache(cachep, alien); | 
|  | free_alien_cache(alien); | 
|  | } | 
|  |  | 
|  | free_slab: | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | /* | 
|  | * In the previous loop, all the objects were freed to | 
|  | * the respective cache's slabs,  now we can go ahead and | 
|  | * shrink each nodelist to its limit. | 
|  | */ | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | n = get_node(cachep, node); | 
|  | if (!n) | 
|  | continue; | 
|  | drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpuup_prepare(long cpu) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct kmem_cache_node *n = NULL; | 
|  | int node = cpu_to_mem(cpu); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * We need to do this right in the beginning since | 
|  | * alloc_arraycache's are going to use this list. | 
|  | * kmalloc_node allows us to add the slab to the right | 
|  | * kmem_cache_node and not this cpu's kmem_cache_node | 
|  | */ | 
|  | err = init_cache_node_node(node); | 
|  | if (err < 0) | 
|  | goto bad; | 
|  |  | 
|  | /* | 
|  | * Now we can go ahead with allocating the shared arrays and | 
|  | * array caches | 
|  | */ | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | struct array_cache *shared = NULL; | 
|  | struct alien_cache **alien = NULL; | 
|  |  | 
|  | if (cachep->shared) { | 
|  | shared = alloc_arraycache(node, | 
|  | cachep->shared * cachep->batchcount, | 
|  | 0xbaadf00d, GFP_KERNEL); | 
|  | if (!shared) | 
|  | goto bad; | 
|  | } | 
|  | if (use_alien_caches) { | 
|  | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); | 
|  | if (!alien) { | 
|  | kfree(shared); | 
|  | goto bad; | 
|  | } | 
|  | } | 
|  | n = get_node(cachep, node); | 
|  | BUG_ON(!n); | 
|  |  | 
|  | spin_lock_irq(&n->list_lock); | 
|  | if (!n->shared) { | 
|  | /* | 
|  | * We are serialised from CPU_DEAD or | 
|  | * CPU_UP_CANCELLED by the cpucontrol lock | 
|  | */ | 
|  | n->shared = shared; | 
|  | shared = NULL; | 
|  | } | 
|  | #ifdef CONFIG_NUMA | 
|  | if (!n->alien) { | 
|  | n->alien = alien; | 
|  | alien = NULL; | 
|  | } | 
|  | #endif | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | kfree(shared); | 
|  | free_alien_cache(alien); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | bad: | 
|  | cpuup_canceled(cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  | int err = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | mutex_lock(&slab_mutex); | 
|  | err = cpuup_prepare(cpu); | 
|  | mutex_unlock(&slab_mutex); | 
|  | break; | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | start_cpu_timer(cpu); | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | /* | 
|  | * Shutdown cache reaper. Note that the slab_mutex is | 
|  | * held so that if cache_reap() is invoked it cannot do | 
|  | * anything expensive but will only modify reap_work | 
|  | * and reschedule the timer. | 
|  | */ | 
|  | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); | 
|  | /* Now the cache_reaper is guaranteed to be not running. */ | 
|  | per_cpu(slab_reap_work, cpu).work.func = NULL; | 
|  | break; | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_DOWN_FAILED_FROZEN: | 
|  | start_cpu_timer(cpu); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | /* | 
|  | * Even if all the cpus of a node are down, we don't free the | 
|  | * kmem_cache_node of any cache. This to avoid a race between | 
|  | * cpu_down, and a kmalloc allocation from another cpu for | 
|  | * memory from the node of the cpu going down.  The node | 
|  | * structure is usually allocated from kmem_cache_create() and | 
|  | * gets destroyed at kmem_cache_destroy(). | 
|  | */ | 
|  | /* fall through */ | 
|  | #endif | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | mutex_lock(&slab_mutex); | 
|  | cpuup_canceled(cpu); | 
|  | mutex_unlock(&slab_mutex); | 
|  | break; | 
|  | } | 
|  | return notifier_from_errno(err); | 
|  | } | 
|  |  | 
|  | static struct notifier_block cpucache_notifier = { | 
|  | &cpuup_callback, NULL, 0 | 
|  | }; | 
|  |  | 
|  | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | 
|  | /* | 
|  | * Drains freelist for a node on each slab cache, used for memory hot-remove. | 
|  | * Returns -EBUSY if all objects cannot be drained so that the node is not | 
|  | * removed. | 
|  | * | 
|  | * Must hold slab_mutex. | 
|  | */ | 
|  | static int __meminit drain_cache_node_node(int node) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | int ret = 0; | 
|  |  | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | n = get_node(cachep, node); | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
|  |  | 
|  | if (!list_empty(&n->slabs_full) || | 
|  | !list_empty(&n->slabs_partial)) { | 
|  | ret = -EBUSY; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __meminit slab_memory_callback(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | struct memory_notify *mnb = arg; | 
|  | int ret = 0; | 
|  | int nid; | 
|  |  | 
|  | nid = mnb->status_change_nid; | 
|  | if (nid < 0) | 
|  | goto out; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_GOING_ONLINE: | 
|  | mutex_lock(&slab_mutex); | 
|  | ret = init_cache_node_node(nid); | 
|  | mutex_unlock(&slab_mutex); | 
|  | break; | 
|  | case MEM_GOING_OFFLINE: | 
|  | mutex_lock(&slab_mutex); | 
|  | ret = drain_cache_node_node(nid); | 
|  | mutex_unlock(&slab_mutex); | 
|  | break; | 
|  | case MEM_ONLINE: | 
|  | case MEM_OFFLINE: | 
|  | case MEM_CANCEL_ONLINE: | 
|  | case MEM_CANCEL_OFFLINE: | 
|  | break; | 
|  | } | 
|  | out: | 
|  | return notifier_from_errno(ret); | 
|  | } | 
|  | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | /* | 
|  | * swap the static kmem_cache_node with kmalloced memory | 
|  | */ | 
|  | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, | 
|  | int nodeid) | 
|  | { | 
|  | struct kmem_cache_node *ptr; | 
|  |  | 
|  | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); | 
|  | BUG_ON(!ptr); | 
|  |  | 
|  | memcpy(ptr, list, sizeof(struct kmem_cache_node)); | 
|  | /* | 
|  | * Do not assume that spinlocks can be initialized via memcpy: | 
|  | */ | 
|  | spin_lock_init(&ptr->list_lock); | 
|  |  | 
|  | MAKE_ALL_LISTS(cachep, ptr, nodeid); | 
|  | cachep->node[nodeid] = ptr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For setting up all the kmem_cache_node for cache whose buffer_size is same as | 
|  | * size of kmem_cache_node. | 
|  | */ | 
|  | static void __init set_up_node(struct kmem_cache *cachep, int index) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | cachep->node[node] = &init_kmem_cache_node[index + node]; | 
|  | cachep->node[node]->next_reap = jiffies + | 
|  | REAPTIMEOUT_NODE + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialisation.  Called after the page allocator have been initialised and | 
|  | * before smp_init(). | 
|  | */ | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) < | 
|  | sizeof(struct rcu_head)); | 
|  | kmem_cache = &kmem_cache_boot; | 
|  |  | 
|  | if (num_possible_nodes() == 1) | 
|  | use_alien_caches = 0; | 
|  |  | 
|  | for (i = 0; i < NUM_INIT_LISTS; i++) | 
|  | kmem_cache_node_init(&init_kmem_cache_node[i]); | 
|  |  | 
|  | /* | 
|  | * Fragmentation resistance on low memory - only use bigger | 
|  | * page orders on machines with more than 32MB of memory if | 
|  | * not overridden on the command line. | 
|  | */ | 
|  | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) | 
|  | slab_max_order = SLAB_MAX_ORDER_HI; | 
|  |  | 
|  | /* Bootstrap is tricky, because several objects are allocated | 
|  | * from caches that do not exist yet: | 
|  | * 1) initialize the kmem_cache cache: it contains the struct | 
|  | *    kmem_cache structures of all caches, except kmem_cache itself: | 
|  | *    kmem_cache is statically allocated. | 
|  | *    Initially an __init data area is used for the head array and the | 
|  | *    kmem_cache_node structures, it's replaced with a kmalloc allocated | 
|  | *    array at the end of the bootstrap. | 
|  | * 2) Create the first kmalloc cache. | 
|  | *    The struct kmem_cache for the new cache is allocated normally. | 
|  | *    An __init data area is used for the head array. | 
|  | * 3) Create the remaining kmalloc caches, with minimally sized | 
|  | *    head arrays. | 
|  | * 4) Replace the __init data head arrays for kmem_cache and the first | 
|  | *    kmalloc cache with kmalloc allocated arrays. | 
|  | * 5) Replace the __init data for kmem_cache_node for kmem_cache and | 
|  | *    the other cache's with kmalloc allocated memory. | 
|  | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | 
|  | */ | 
|  |  | 
|  | /* 1) create the kmem_cache */ | 
|  |  | 
|  | /* | 
|  | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids | 
|  | */ | 
|  | create_boot_cache(kmem_cache, "kmem_cache", | 
|  | offsetof(struct kmem_cache, node) + | 
|  | nr_node_ids * sizeof(struct kmem_cache_node *), | 
|  | SLAB_HWCACHE_ALIGN); | 
|  | list_add(&kmem_cache->list, &slab_caches); | 
|  | slab_state = PARTIAL; | 
|  |  | 
|  | /* | 
|  | * Initialize the caches that provide memory for the  kmem_cache_node | 
|  | * structures first.  Without this, further allocations will bug. | 
|  | */ | 
|  | kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node", | 
|  | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); | 
|  | slab_state = PARTIAL_NODE; | 
|  | setup_kmalloc_cache_index_table(); | 
|  |  | 
|  | slab_early_init = 0; | 
|  |  | 
|  | /* 5) Replace the bootstrap kmem_cache_node */ | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); | 
|  |  | 
|  | init_list(kmalloc_caches[INDEX_NODE], | 
|  | &init_kmem_cache_node[SIZE_NODE + nid], nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init_late(void) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | slab_state = UP; | 
|  |  | 
|  | /* 6) resize the head arrays to their final sizes */ | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(cachep, &slab_caches, list) | 
|  | if (enable_cpucache(cachep, GFP_NOWAIT)) | 
|  | BUG(); | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | /* Done! */ | 
|  | slab_state = FULL; | 
|  |  | 
|  | /* | 
|  | * Register a cpu startup notifier callback that initializes | 
|  | * cpu_cache_get for all new cpus | 
|  | */ | 
|  | register_cpu_notifier(&cpucache_notifier); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Register a memory hotplug callback that initializes and frees | 
|  | * node. | 
|  | */ | 
|  | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The reap timers are started later, with a module init call: That part | 
|  | * of the kernel is not yet operational. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static int __init cpucache_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Register the timers that return unneeded pages to the page allocator | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | start_cpu_timer(cpu); | 
|  |  | 
|  | /* Done! */ | 
|  | slab_state = FULL; | 
|  | return 0; | 
|  | } | 
|  | __initcall(cpucache_init); | 
|  |  | 
|  | static noinline void | 
|  | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | 
|  | { | 
|  | #if DEBUG | 
|  | struct kmem_cache_node *n; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  | int node; | 
|  | static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs)) | 
|  | return; | 
|  |  | 
|  | printk(KERN_WARNING | 
|  | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | 
|  | nodeid, gfpflags); | 
|  | printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n", | 
|  | cachep->name, cachep->size, cachep->gfporder); | 
|  |  | 
|  | for_each_kmem_cache_node(cachep, node, n) { | 
|  | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | 
|  | unsigned long active_slabs = 0, num_slabs = 0; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->slabs_full, lru) { | 
|  | active_objs += cachep->num; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(page, &n->slabs_partial, lru) { | 
|  | active_objs += page->active; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(page, &n->slabs_free, lru) | 
|  | num_slabs++; | 
|  |  | 
|  | free_objects += n->free_objects; | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  |  | 
|  | num_slabs += active_slabs; | 
|  | num_objs = num_slabs * cachep->num; | 
|  | printk(KERN_WARNING | 
|  | "  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | 
|  | node, active_slabs, num_slabs, active_objs, num_objs, | 
|  | free_objects); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface to system's page allocator. No need to hold the | 
|  | * kmem_cache_node ->list_lock. | 
|  | * | 
|  | * If we requested dmaable memory, we will get it. Even if we | 
|  | * did not request dmaable memory, we might get it, but that | 
|  | * would be relatively rare and ignorable. | 
|  | */ | 
|  | static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, | 
|  | int nodeid) | 
|  | { | 
|  | struct page *page; | 
|  | int nr_pages; | 
|  |  | 
|  | flags |= cachep->allocflags; | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | flags |= __GFP_RECLAIMABLE; | 
|  |  | 
|  | if (memcg_charge_slab(cachep, flags, cachep->gfporder)) | 
|  | return NULL; | 
|  |  | 
|  | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); | 
|  | if (!page) { | 
|  | memcg_uncharge_slab(cachep, cachep->gfporder); | 
|  | slab_out_of_memory(cachep, flags, nodeid); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ | 
|  | if (unlikely(page->pfmemalloc)) | 
|  | pfmemalloc_active = true; | 
|  |  | 
|  | nr_pages = (1 << cachep->gfporder); | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | add_zone_page_state(page_zone(page), | 
|  | NR_SLAB_RECLAIMABLE, nr_pages); | 
|  | else | 
|  | add_zone_page_state(page_zone(page), | 
|  | NR_SLAB_UNRECLAIMABLE, nr_pages); | 
|  | __SetPageSlab(page); | 
|  | if (page->pfmemalloc) | 
|  | SetPageSlabPfmemalloc(page); | 
|  |  | 
|  | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { | 
|  | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | 
|  |  | 
|  | if (cachep->ctor) | 
|  | kmemcheck_mark_uninitialized_pages(page, nr_pages); | 
|  | else | 
|  | kmemcheck_mark_unallocated_pages(page, nr_pages); | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface to system's page release. | 
|  | */ | 
|  | static void kmem_freepages(struct kmem_cache *cachep, struct page *page) | 
|  | { | 
|  | const unsigned long nr_freed = (1 << cachep->gfporder); | 
|  |  | 
|  | kmemcheck_free_shadow(page, cachep->gfporder); | 
|  |  | 
|  | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | sub_zone_page_state(page_zone(page), | 
|  | NR_SLAB_RECLAIMABLE, nr_freed); | 
|  | else | 
|  | sub_zone_page_state(page_zone(page), | 
|  | NR_SLAB_UNRECLAIMABLE, nr_freed); | 
|  |  | 
|  | BUG_ON(!PageSlab(page)); | 
|  | __ClearPageSlabPfmemalloc(page); | 
|  | __ClearPageSlab(page); | 
|  | page_mapcount_reset(page); | 
|  | page->mapping = NULL; | 
|  |  | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += nr_freed; | 
|  | __free_pages(page, cachep->gfporder); | 
|  | memcg_uncharge_slab(cachep, cachep->gfporder); | 
|  | } | 
|  |  | 
|  | static void kmem_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | struct page *page; | 
|  |  | 
|  | page = container_of(head, struct page, rcu_head); | 
|  | cachep = page->slab_cache; | 
|  |  | 
|  | kmem_freepages(cachep, page); | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, | 
|  | unsigned long caller) | 
|  | { | 
|  | int size = cachep->object_size; | 
|  |  | 
|  | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; | 
|  |  | 
|  | if (size < 5 * sizeof(unsigned long)) | 
|  | return; | 
|  |  | 
|  | *addr++ = 0x12345678; | 
|  | *addr++ = caller; | 
|  | *addr++ = smp_processor_id(); | 
|  | size -= 3 * sizeof(unsigned long); | 
|  | { | 
|  | unsigned long *sptr = &caller; | 
|  | unsigned long svalue; | 
|  |  | 
|  | while (!kstack_end(sptr)) { | 
|  | svalue = *sptr++; | 
|  | if (kernel_text_address(svalue)) { | 
|  | *addr++ = svalue; | 
|  | size -= sizeof(unsigned long); | 
|  | if (size <= sizeof(unsigned long)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  | *addr++ = 0x87654321; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) | 
|  | { | 
|  | int size = cachep->object_size; | 
|  | addr = &((char *)addr)[obj_offset(cachep)]; | 
|  |  | 
|  | memset(addr, val, size); | 
|  | *(unsigned char *)(addr + size - 1) = POISON_END; | 
|  | } | 
|  |  | 
|  | static void dump_line(char *data, int offset, int limit) | 
|  | { | 
|  | int i; | 
|  | unsigned char error = 0; | 
|  | int bad_count = 0; | 
|  |  | 
|  | printk(KERN_ERR "%03x: ", offset); | 
|  | for (i = 0; i < limit; i++) { | 
|  | if (data[offset + i] != POISON_FREE) { | 
|  | error = data[offset + i]; | 
|  | bad_count++; | 
|  | } | 
|  | } | 
|  | print_hex_dump(KERN_CONT, "", 0, 16, 1, | 
|  | &data[offset], limit, 1); | 
|  |  | 
|  | if (bad_count == 1) { | 
|  | error ^= POISON_FREE; | 
|  | if (!(error & (error - 1))) { | 
|  | printk(KERN_ERR "Single bit error detected. Probably " | 
|  | "bad RAM.\n"); | 
|  | #ifdef CONFIG_X86 | 
|  | printk(KERN_ERR "Run memtest86+ or a similar memory " | 
|  | "test tool.\n"); | 
|  | #else | 
|  | printk(KERN_ERR "Run a memory test tool.\n"); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) | 
|  | { | 
|  | int i, size; | 
|  | char *realobj; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", | 
|  | *dbg_redzone1(cachep, objp), | 
|  | *dbg_redzone2(cachep, objp)); | 
|  | } | 
|  |  | 
|  | if (cachep->flags & SLAB_STORE_USER) { | 
|  | printk(KERN_ERR "Last user: [<%p>](%pSR)\n", | 
|  | *dbg_userword(cachep, objp), | 
|  | *dbg_userword(cachep, objp)); | 
|  | } | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | size = cachep->object_size; | 
|  | for (i = 0; i < size && lines; i += 16, lines--) { | 
|  | int limit; | 
|  | limit = 16; | 
|  | if (i + limit > size) | 
|  | limit = size - i; | 
|  | dump_line(realobj, i, limit); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_poison_obj(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | char *realobj; | 
|  | int size, i; | 
|  | int lines = 0; | 
|  |  | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | size = cachep->object_size; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | char exp = POISON_FREE; | 
|  | if (i == size - 1) | 
|  | exp = POISON_END; | 
|  | if (realobj[i] != exp) { | 
|  | int limit; | 
|  | /* Mismatch ! */ | 
|  | /* Print header */ | 
|  | if (lines == 0) { | 
|  | printk(KERN_ERR | 
|  | "Slab corruption (%s): %s start=%p, len=%d\n", | 
|  | print_tainted(), cachep->name, realobj, size); | 
|  | print_objinfo(cachep, objp, 0); | 
|  | } | 
|  | /* Hexdump the affected line */ | 
|  | i = (i / 16) * 16; | 
|  | limit = 16; | 
|  | if (i + limit > size) | 
|  | limit = size - i; | 
|  | dump_line(realobj, i, limit); | 
|  | i += 16; | 
|  | lines++; | 
|  | /* Limit to 5 lines */ | 
|  | if (lines > 5) | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (lines != 0) { | 
|  | /* Print some data about the neighboring objects, if they | 
|  | * exist: | 
|  | */ | 
|  | struct page *page = virt_to_head_page(objp); | 
|  | unsigned int objnr; | 
|  |  | 
|  | objnr = obj_to_index(cachep, page, objp); | 
|  | if (objnr) { | 
|  | objp = index_to_obj(cachep, page, objnr - 1); | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", | 
|  | realobj, size); | 
|  | print_objinfo(cachep, objp, 2); | 
|  | } | 
|  | if (objnr + 1 < cachep->num) { | 
|  | objp = index_to_obj(cachep, page, objnr + 1); | 
|  | realobj = (char *)objp + obj_offset(cachep); | 
|  | printk(KERN_ERR "Next obj: start=%p, len=%d\n", | 
|  | realobj, size); | 
|  | print_objinfo(cachep, objp, 2); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if DEBUG | 
|  | static void slab_destroy_debugcheck(struct kmem_cache *cachep, | 
|  | struct page *page) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < cachep->num; i++) { | 
|  | void *objp = index_to_obj(cachep, page, i); | 
|  |  | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if (cachep->size % PAGE_SIZE == 0 && | 
|  | OFF_SLAB(cachep)) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->size / PAGE_SIZE, 1); | 
|  | else | 
|  | check_poison_obj(cachep, objp); | 
|  | #else | 
|  | check_poison_obj(cachep, objp); | 
|  | #endif | 
|  | } | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "start of a freed object " | 
|  | "was overwritten"); | 
|  | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "end of a freed object " | 
|  | "was overwritten"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void slab_destroy_debugcheck(struct kmem_cache *cachep, | 
|  | struct page *page) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * slab_destroy - destroy and release all objects in a slab | 
|  | * @cachep: cache pointer being destroyed | 
|  | * @page: page pointer being destroyed | 
|  | * | 
|  | * Destroy all the objs in a slab page, and release the mem back to the system. | 
|  | * Before calling the slab page must have been unlinked from the cache. The | 
|  | * kmem_cache_node ->list_lock is not held/needed. | 
|  | */ | 
|  | static void slab_destroy(struct kmem_cache *cachep, struct page *page) | 
|  | { | 
|  | void *freelist; | 
|  |  | 
|  | freelist = page->freelist; | 
|  | slab_destroy_debugcheck(cachep, page); | 
|  | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | struct rcu_head *head; | 
|  |  | 
|  | /* | 
|  | * RCU free overloads the RCU head over the LRU. | 
|  | * slab_page has been overloeaded over the LRU, | 
|  | * however it is not used from now on so that | 
|  | * we can use it safely. | 
|  | */ | 
|  | head = (void *)&page->rcu_head; | 
|  | call_rcu(head, kmem_rcu_free); | 
|  |  | 
|  | } else { | 
|  | kmem_freepages(cachep, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * From now on, we don't use freelist | 
|  | * although actual page can be freed in rcu context | 
|  | */ | 
|  | if (OFF_SLAB(cachep)) | 
|  | kmem_cache_free(cachep->freelist_cache, freelist); | 
|  | } | 
|  |  | 
|  | static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list) | 
|  | { | 
|  | struct page *page, *n; | 
|  |  | 
|  | list_for_each_entry_safe(page, n, list, lru) { | 
|  | list_del(&page->lru); | 
|  | slab_destroy(cachep, page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * calculate_slab_order - calculate size (page order) of slabs | 
|  | * @cachep: pointer to the cache that is being created | 
|  | * @size: size of objects to be created in this cache. | 
|  | * @align: required alignment for the objects. | 
|  | * @flags: slab allocation flags | 
|  | * | 
|  | * Also calculates the number of objects per slab. | 
|  | * | 
|  | * This could be made much more intelligent.  For now, try to avoid using | 
|  | * high order pages for slabs.  When the gfp() functions are more friendly | 
|  | * towards high-order requests, this should be changed. | 
|  | */ | 
|  | static size_t calculate_slab_order(struct kmem_cache *cachep, | 
|  | size_t size, size_t align, unsigned long flags) | 
|  | { | 
|  | unsigned long offslab_limit; | 
|  | size_t left_over = 0; | 
|  | int gfporder; | 
|  |  | 
|  | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { | 
|  | unsigned int num; | 
|  | size_t remainder; | 
|  |  | 
|  | cache_estimate(gfporder, size, align, flags, &remainder, &num); | 
|  | if (!num) | 
|  | continue; | 
|  |  | 
|  | /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */ | 
|  | if (num > SLAB_OBJ_MAX_NUM) | 
|  | break; | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | size_t freelist_size_per_obj = sizeof(freelist_idx_t); | 
|  | /* | 
|  | * Max number of objs-per-slab for caches which | 
|  | * use off-slab slabs. Needed to avoid a possible | 
|  | * looping condition in cache_grow(). | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK)) | 
|  | freelist_size_per_obj += sizeof(char); | 
|  | offslab_limit = size; | 
|  | offslab_limit /= freelist_size_per_obj; | 
|  |  | 
|  | if (num > offslab_limit) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Found something acceptable - save it away */ | 
|  | cachep->num = num; | 
|  | cachep->gfporder = gfporder; | 
|  | left_over = remainder; | 
|  |  | 
|  | /* | 
|  | * A VFS-reclaimable slab tends to have most allocations | 
|  | * as GFP_NOFS and we really don't want to have to be allocating | 
|  | * higher-order pages when we are unable to shrink dcache. | 
|  | */ | 
|  | if (flags & SLAB_RECLAIM_ACCOUNT) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Large number of objects is good, but very large slabs are | 
|  | * currently bad for the gfp()s. | 
|  | */ | 
|  | if (gfporder >= slab_max_order) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Acceptable internal fragmentation? | 
|  | */ | 
|  | if (left_over * 8 <= (PAGE_SIZE << gfporder)) | 
|  | break; | 
|  | } | 
|  | return left_over; | 
|  | } | 
|  |  | 
|  | static struct array_cache __percpu *alloc_kmem_cache_cpus( | 
|  | struct kmem_cache *cachep, int entries, int batchcount) | 
|  | { | 
|  | int cpu; | 
|  | size_t size; | 
|  | struct array_cache __percpu *cpu_cache; | 
|  |  | 
|  | size = sizeof(void *) * entries + sizeof(struct array_cache); | 
|  | cpu_cache = __alloc_percpu(size, sizeof(void *)); | 
|  |  | 
|  | if (!cpu_cache) | 
|  | return NULL; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | init_arraycache(per_cpu_ptr(cpu_cache, cpu), | 
|  | entries, batchcount); | 
|  | } | 
|  |  | 
|  | return cpu_cache; | 
|  | } | 
|  |  | 
|  | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | 
|  | { | 
|  | if (slab_state >= FULL) | 
|  | return enable_cpucache(cachep, gfp); | 
|  |  | 
|  | cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1); | 
|  | if (!cachep->cpu_cache) | 
|  | return 1; | 
|  |  | 
|  | if (slab_state == DOWN) { | 
|  | /* Creation of first cache (kmem_cache). */ | 
|  | set_up_node(kmem_cache, CACHE_CACHE); | 
|  | } else if (slab_state == PARTIAL) { | 
|  | /* For kmem_cache_node */ | 
|  | set_up_node(cachep, SIZE_NODE); | 
|  | } else { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | cachep->node[node] = kmalloc_node( | 
|  | sizeof(struct kmem_cache_node), gfp, node); | 
|  | BUG_ON(!cachep->node[node]); | 
|  | kmem_cache_node_init(cachep->node[node]); | 
|  | } | 
|  | } | 
|  |  | 
|  | cachep->node[numa_mem_id()]->next_reap = | 
|  | jiffies + REAPTIMEOUT_NODE + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
|  |  | 
|  | cpu_cache_get(cachep)->avail = 0; | 
|  | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | cpu_cache_get(cachep)->batchcount = 1; | 
|  | cpu_cache_get(cachep)->touched = 0; | 
|  | cachep->batchcount = 1; | 
|  | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long kmem_cache_flags(unsigned long object_size, | 
|  | unsigned long flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | struct kmem_cache * | 
|  | __kmem_cache_alias(const char *name, size_t size, size_t align, | 
|  | unsigned long flags, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | cachep = find_mergeable(size, align, flags, name, ctor); | 
|  | if (cachep) { | 
|  | cachep->refcount++; | 
|  |  | 
|  | /* | 
|  | * Adjust the object sizes so that we clear | 
|  | * the complete object on kzalloc. | 
|  | */ | 
|  | cachep->object_size = max_t(int, cachep->object_size, size); | 
|  | } | 
|  | return cachep; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __kmem_cache_create - Create a cache. | 
|  | * @cachep: cache management descriptor | 
|  | * @flags: SLAB flags | 
|  | * | 
|  | * Returns a ptr to the cache on success, NULL on failure. | 
|  | * Cannot be called within a int, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | */ | 
|  | int | 
|  | __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | 
|  | { | 
|  | size_t left_over, freelist_size; | 
|  | size_t ralign = BYTES_PER_WORD; | 
|  | gfp_t gfp; | 
|  | int err; | 
|  | size_t size = cachep->size; | 
|  |  | 
|  | #if DEBUG | 
|  | #if FORCED_DEBUG | 
|  | /* | 
|  | * Enable redzoning and last user accounting, except for caches with | 
|  | * large objects, if the increased size would increase the object size | 
|  | * above the next power of two: caches with object sizes just above a | 
|  | * power of two have a significant amount of internal fragmentation. | 
|  | */ | 
|  | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + | 
|  | 2 * sizeof(unsigned long long))) | 
|  | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; | 
|  | if (!(flags & SLAB_DESTROY_BY_RCU)) | 
|  | flags |= SLAB_POISON; | 
|  | #endif | 
|  | if (flags & SLAB_DESTROY_BY_RCU) | 
|  | BUG_ON(flags & SLAB_POISON); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check that size is in terms of words.  This is needed to avoid | 
|  | * unaligned accesses for some archs when redzoning is used, and makes | 
|  | * sure any on-slab bufctl's are also correctly aligned. | 
|  | */ | 
|  | if (size & (BYTES_PER_WORD - 1)) { | 
|  | size += (BYTES_PER_WORD - 1); | 
|  | size &= ~(BYTES_PER_WORD - 1); | 
|  | } | 
|  |  | 
|  | if (flags & SLAB_RED_ZONE) { | 
|  | ralign = REDZONE_ALIGN; | 
|  | /* If redzoning, ensure that the second redzone is suitably | 
|  | * aligned, by adjusting the object size accordingly. */ | 
|  | size += REDZONE_ALIGN - 1; | 
|  | size &= ~(REDZONE_ALIGN - 1); | 
|  | } | 
|  |  | 
|  | /* 3) caller mandated alignment */ | 
|  | if (ralign < cachep->align) { | 
|  | ralign = cachep->align; | 
|  | } | 
|  | /* disable debug if necessary */ | 
|  | if (ralign > __alignof__(unsigned long long)) | 
|  | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 
|  | /* | 
|  | * 4) Store it. | 
|  | */ | 
|  | cachep->align = ralign; | 
|  |  | 
|  | if (slab_is_available()) | 
|  | gfp = GFP_KERNEL; | 
|  | else | 
|  | gfp = GFP_NOWAIT; | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | /* | 
|  | * Both debugging options require word-alignment which is calculated | 
|  | * into align above. | 
|  | */ | 
|  | if (flags & SLAB_RED_ZONE) { | 
|  | /* add space for red zone words */ | 
|  | cachep->obj_offset += sizeof(unsigned long long); | 
|  | size += 2 * sizeof(unsigned long long); | 
|  | } | 
|  | if (flags & SLAB_STORE_USER) { | 
|  | /* user store requires one word storage behind the end of | 
|  | * the real object. But if the second red zone needs to be | 
|  | * aligned to 64 bits, we must allow that much space. | 
|  | */ | 
|  | if (flags & SLAB_RED_ZONE) | 
|  | size += REDZONE_ALIGN; | 
|  | else | 
|  | size += BYTES_PER_WORD; | 
|  | } | 
|  | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 
|  | if (size >= kmalloc_size(INDEX_NODE + 1) | 
|  | && cachep->object_size > cache_line_size() | 
|  | && ALIGN(size, cachep->align) < PAGE_SIZE) { | 
|  | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | 
|  | size = PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine if the slab management is 'on' or 'off' slab. | 
|  | * (bootstrapping cannot cope with offslab caches so don't do | 
|  | * it too early on. Always use on-slab management when | 
|  | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | 
|  | */ | 
|  | if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init && | 
|  | !(flags & SLAB_NOLEAKTRACE)) | 
|  | /* | 
|  | * Size is large, assume best to place the slab management obj | 
|  | * off-slab (should allow better packing of objs). | 
|  | */ | 
|  | flags |= CFLGS_OFF_SLAB; | 
|  |  | 
|  | size = ALIGN(size, cachep->align); | 
|  | /* | 
|  | * We should restrict the number of objects in a slab to implement | 
|  | * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition. | 
|  | */ | 
|  | if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE) | 
|  | size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align); | 
|  |  | 
|  | left_over = calculate_slab_order(cachep, size, cachep->align, flags); | 
|  |  | 
|  | if (!cachep->num) | 
|  | return -E2BIG; | 
|  |  | 
|  | freelist_size = calculate_freelist_size(cachep->num, cachep->align); | 
|  |  | 
|  | /* | 
|  | * If the slab has been placed off-slab, and we have enough space then | 
|  | * move it on-slab. This is at the expense of any extra colouring. | 
|  | */ | 
|  | if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) { | 
|  | flags &= ~CFLGS_OFF_SLAB; | 
|  | left_over -= freelist_size; | 
|  | } | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | /* really off slab. No need for manual alignment */ | 
|  | freelist_size = calculate_freelist_size(cachep->num, 0); | 
|  |  | 
|  | #ifdef CONFIG_PAGE_POISONING | 
|  | /* If we're going to use the generic kernel_map_pages() | 
|  | * poisoning, then it's going to smash the contents of | 
|  | * the redzone and userword anyhow, so switch them off. | 
|  | */ | 
|  | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | 
|  | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | cachep->colour_off = cache_line_size(); | 
|  | /* Offset must be a multiple of the alignment. */ | 
|  | if (cachep->colour_off < cachep->align) | 
|  | cachep->colour_off = cachep->align; | 
|  | cachep->colour = left_over / cachep->colour_off; | 
|  | cachep->freelist_size = freelist_size; | 
|  | cachep->flags = flags; | 
|  | cachep->allocflags = __GFP_COMP; | 
|  | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) | 
|  | cachep->allocflags |= GFP_DMA; | 
|  | cachep->size = size; | 
|  | cachep->reciprocal_buffer_size = reciprocal_value(size); | 
|  |  | 
|  | if (flags & CFLGS_OFF_SLAB) { | 
|  | cachep->freelist_cache = kmalloc_slab(freelist_size, 0u); | 
|  | /* | 
|  | * This is a possibility for one of the kmalloc_{dma,}_caches. | 
|  | * But since we go off slab only for object size greater than | 
|  | * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created | 
|  | * in ascending order,this should not happen at all. | 
|  | * But leave a BUG_ON for some lucky dude. | 
|  | */ | 
|  | BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache)); | 
|  | } | 
|  |  | 
|  | err = setup_cpu_cache(cachep, gfp); | 
|  | if (err) { | 
|  | __kmem_cache_shutdown(cachep); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | static void check_irq_off(void) | 
|  | { | 
|  | BUG_ON(!irqs_disabled()); | 
|  | } | 
|  |  | 
|  | static void check_irq_on(void) | 
|  | { | 
|  | BUG_ON(irqs_disabled()); | 
|  | } | 
|  |  | 
|  | static void check_spinlock_acquired(struct kmem_cache *cachep) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | check_irq_off(); | 
|  | assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | check_irq_off(); | 
|  | assert_spin_locked(&get_node(cachep, node)->list_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define check_irq_off()	do { } while(0) | 
|  | #define check_irq_on()	do { } while(0) | 
|  | #define check_spinlock_acquired(x) do { } while(0) | 
|  | #define check_spinlock_acquired_node(x, y) do { } while(0) | 
|  | #endif | 
|  |  | 
|  | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, | 
|  | struct array_cache *ac, | 
|  | int force, int node); | 
|  |  | 
|  | static void do_drain(void *arg) | 
|  | { | 
|  | struct kmem_cache *cachep = arg; | 
|  | struct array_cache *ac; | 
|  | int node = numa_mem_id(); | 
|  | struct kmem_cache_node *n; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | check_irq_off(); | 
|  | ac = cpu_cache_get(cachep); | 
|  | n = get_node(cachep, node); | 
|  | spin_lock(&n->list_lock); | 
|  | free_block(cachep, ac->entry, ac->avail, node, &list); | 
|  | spin_unlock(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | ac->avail = 0; | 
|  | } | 
|  |  | 
|  | static void drain_cpu_caches(struct kmem_cache *cachep) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | int node; | 
|  |  | 
|  | on_each_cpu(do_drain, cachep, 1); | 
|  | check_irq_on(); | 
|  | for_each_kmem_cache_node(cachep, node, n) | 
|  | if (n->alien) | 
|  | drain_alien_cache(cachep, n->alien); | 
|  |  | 
|  | for_each_kmem_cache_node(cachep, node, n) | 
|  | drain_array(cachep, n, n->shared, 1, node); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove slabs from the list of free slabs. | 
|  | * Specify the number of slabs to drain in tofree. | 
|  | * | 
|  | * Returns the actual number of slabs released. | 
|  | */ | 
|  | static int drain_freelist(struct kmem_cache *cache, | 
|  | struct kmem_cache_node *n, int tofree) | 
|  | { | 
|  | struct list_head *p; | 
|  | int nr_freed; | 
|  | struct page *page; | 
|  |  | 
|  | nr_freed = 0; | 
|  | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { | 
|  |  | 
|  | spin_lock_irq(&n->list_lock); | 
|  | p = n->slabs_free.prev; | 
|  | if (p == &n->slabs_free) { | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = list_entry(p, struct page, lru); | 
|  | #if DEBUG | 
|  | BUG_ON(page->active); | 
|  | #endif | 
|  | list_del(&page->lru); | 
|  | /* | 
|  | * Safe to drop the lock. The slab is no longer linked | 
|  | * to the cache. | 
|  | */ | 
|  | n->free_objects -= cache->num; | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | slab_destroy(cache, page); | 
|  | nr_freed++; | 
|  | } | 
|  | out: | 
|  | return nr_freed; | 
|  | } | 
|  |  | 
|  | int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate) | 
|  | { | 
|  | int ret = 0; | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | drain_cpu_caches(cachep); | 
|  |  | 
|  | check_irq_on(); | 
|  | for_each_kmem_cache_node(cachep, node, n) { | 
|  | drain_freelist(cachep, n, slabs_tofree(cachep, n)); | 
|  |  | 
|  | ret += !list_empty(&n->slabs_full) || | 
|  | !list_empty(&n->slabs_partial); | 
|  | } | 
|  | return (ret ? 1 : 0); | 
|  | } | 
|  |  | 
|  | int __kmem_cache_shutdown(struct kmem_cache *cachep) | 
|  | { | 
|  | int i; | 
|  | struct kmem_cache_node *n; | 
|  | int rc = __kmem_cache_shrink(cachep, false); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | free_percpu(cachep->cpu_cache); | 
|  |  | 
|  | /* NUMA: free the node structures */ | 
|  | for_each_kmem_cache_node(cachep, i, n) { | 
|  | kfree(n->shared); | 
|  | free_alien_cache(n->alien); | 
|  | kfree(n); | 
|  | cachep->node[i] = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the memory for a slab management obj. | 
|  | * | 
|  | * For a slab cache when the slab descriptor is off-slab, the | 
|  | * slab descriptor can't come from the same cache which is being created, | 
|  | * Because if it is the case, that means we defer the creation of | 
|  | * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point. | 
|  | * And we eventually call down to __kmem_cache_create(), which | 
|  | * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one. | 
|  | * This is a "chicken-and-egg" problem. | 
|  | * | 
|  | * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches, | 
|  | * which are all initialized during kmem_cache_init(). | 
|  | */ | 
|  | static void *alloc_slabmgmt(struct kmem_cache *cachep, | 
|  | struct page *page, int colour_off, | 
|  | gfp_t local_flags, int nodeid) | 
|  | { | 
|  | void *freelist; | 
|  | void *addr = page_address(page); | 
|  |  | 
|  | if (OFF_SLAB(cachep)) { | 
|  | /* Slab management obj is off-slab. */ | 
|  | freelist = kmem_cache_alloc_node(cachep->freelist_cache, | 
|  | local_flags, nodeid); | 
|  | if (!freelist) | 
|  | return NULL; | 
|  | } else { | 
|  | freelist = addr + colour_off; | 
|  | colour_off += cachep->freelist_size; | 
|  | } | 
|  | page->active = 0; | 
|  | page->s_mem = addr + colour_off; | 
|  | return freelist; | 
|  | } | 
|  |  | 
|  | static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx) | 
|  | { | 
|  | return ((freelist_idx_t *)page->freelist)[idx]; | 
|  | } | 
|  |  | 
|  | static inline void set_free_obj(struct page *page, | 
|  | unsigned int idx, freelist_idx_t val) | 
|  | { | 
|  | ((freelist_idx_t *)(page->freelist))[idx] = val; | 
|  | } | 
|  |  | 
|  | static void cache_init_objs(struct kmem_cache *cachep, | 
|  | struct page *page) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cachep->num; i++) { | 
|  | void *objp = index_to_obj(cachep, page, i); | 
|  | #if DEBUG | 
|  | /* need to poison the objs? */ | 
|  | if (cachep->flags & SLAB_POISON) | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = NULL; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | } | 
|  | /* | 
|  | * Constructors are not allowed to allocate memory from the same | 
|  | * cache which they are a constructor for.  Otherwise, deadlock. | 
|  | * They must also be threaded. | 
|  | */ | 
|  | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | 
|  | cachep->ctor(objp + obj_offset(cachep)); | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "constructor overwrote the" | 
|  | " end of an object"); | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | 
|  | slab_error(cachep, "constructor overwrote the" | 
|  | " start of an object"); | 
|  | } | 
|  | if ((cachep->size % PAGE_SIZE) == 0 && | 
|  | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->size / PAGE_SIZE, 0); | 
|  | #else | 
|  | if (cachep->ctor) | 
|  | cachep->ctor(objp); | 
|  | #endif | 
|  | set_obj_status(page, i, OBJECT_FREE); | 
|  | set_free_obj(page, i, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | if (CONFIG_ZONE_DMA_FLAG) { | 
|  | if (flags & GFP_DMA) | 
|  | BUG_ON(!(cachep->allocflags & GFP_DMA)); | 
|  | else | 
|  | BUG_ON(cachep->allocflags & GFP_DMA); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *slab_get_obj(struct kmem_cache *cachep, struct page *page, | 
|  | int nodeid) | 
|  | { | 
|  | void *objp; | 
|  |  | 
|  | objp = index_to_obj(cachep, page, get_free_obj(page, page->active)); | 
|  | page->active++; | 
|  | #if DEBUG | 
|  | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); | 
|  | #endif | 
|  |  | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | static void slab_put_obj(struct kmem_cache *cachep, struct page *page, | 
|  | void *objp, int nodeid) | 
|  | { | 
|  | unsigned int objnr = obj_to_index(cachep, page, objp); | 
|  | #if DEBUG | 
|  | unsigned int i; | 
|  |  | 
|  | /* Verify that the slab belongs to the intended node */ | 
|  | WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid); | 
|  |  | 
|  | /* Verify double free bug */ | 
|  | for (i = page->active; i < cachep->num; i++) { | 
|  | if (get_free_obj(page, i) == objnr) { | 
|  | printk(KERN_ERR "slab: double free detected in cache " | 
|  | "'%s', objp %p\n", cachep->name, objp); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | page->active--; | 
|  | set_free_obj(page, page->active, objnr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map pages beginning at addr to the given cache and slab. This is required | 
|  | * for the slab allocator to be able to lookup the cache and slab of a | 
|  | * virtual address for kfree, ksize, and slab debugging. | 
|  | */ | 
|  | static void slab_map_pages(struct kmem_cache *cache, struct page *page, | 
|  | void *freelist) | 
|  | { | 
|  | page->slab_cache = cache; | 
|  | page->freelist = freelist; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Grow (by 1) the number of slabs within a cache.  This is called by | 
|  | * kmem_cache_alloc() when there are no active objs left in a cache. | 
|  | */ | 
|  | static int cache_grow(struct kmem_cache *cachep, | 
|  | gfp_t flags, int nodeid, struct page *page) | 
|  | { | 
|  | void *freelist; | 
|  | size_t offset; | 
|  | gfp_t local_flags; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | /* | 
|  | * Be lazy and only check for valid flags here,  keeping it out of the | 
|  | * critical path in kmem_cache_alloc(). | 
|  | */ | 
|  | if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | 
|  | pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); | 
|  | BUG(); | 
|  | } | 
|  | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
|  |  | 
|  | /* Take the node list lock to change the colour_next on this node */ | 
|  | check_irq_off(); | 
|  | n = get_node(cachep, nodeid); | 
|  | spin_lock(&n->list_lock); | 
|  |  | 
|  | /* Get colour for the slab, and cal the next value. */ | 
|  | offset = n->colour_next; | 
|  | n->colour_next++; | 
|  | if (n->colour_next >= cachep->colour) | 
|  | n->colour_next = 0; | 
|  | spin_unlock(&n->list_lock); | 
|  |  | 
|  | offset *= cachep->colour_off; | 
|  |  | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * The test for missing atomic flag is performed here, rather than | 
|  | * the more obvious place, simply to reduce the critical path length | 
|  | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | 
|  | * will eventually be caught here (where it matters). | 
|  | */ | 
|  | kmem_flagcheck(cachep, flags); | 
|  |  | 
|  | /* | 
|  | * Get mem for the objs.  Attempt to allocate a physical page from | 
|  | * 'nodeid'. | 
|  | */ | 
|  | if (!page) | 
|  | page = kmem_getpages(cachep, local_flags, nodeid); | 
|  | if (!page) | 
|  | goto failed; | 
|  |  | 
|  | /* Get slab management. */ | 
|  | freelist = alloc_slabmgmt(cachep, page, offset, | 
|  | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); | 
|  | if (!freelist) | 
|  | goto opps1; | 
|  |  | 
|  | slab_map_pages(cachep, page, freelist); | 
|  |  | 
|  | cache_init_objs(cachep, page); | 
|  |  | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | check_irq_off(); | 
|  | spin_lock(&n->list_lock); | 
|  |  | 
|  | /* Make slab active. */ | 
|  | list_add_tail(&page->lru, &(n->slabs_free)); | 
|  | STATS_INC_GROWN(cachep); | 
|  | n->free_objects += cachep->num; | 
|  | spin_unlock(&n->list_lock); | 
|  | return 1; | 
|  | opps1: | 
|  | kmem_freepages(cachep, page); | 
|  | failed: | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  |  | 
|  | /* | 
|  | * Perform extra freeing checks: | 
|  | * - detect bad pointers. | 
|  | * - POISON/RED_ZONE checking | 
|  | */ | 
|  | static void kfree_debugcheck(const void *objp) | 
|  | { | 
|  | if (!virt_addr_valid(objp)) { | 
|  | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | 
|  | (unsigned long)objp); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) | 
|  | { | 
|  | unsigned long long redzone1, redzone2; | 
|  |  | 
|  | redzone1 = *dbg_redzone1(cache, obj); | 
|  | redzone2 = *dbg_redzone2(cache, obj); | 
|  |  | 
|  | /* | 
|  | * Redzone is ok. | 
|  | */ | 
|  | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | 
|  | return; | 
|  |  | 
|  | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | 
|  | slab_error(cache, "double free detected"); | 
|  | else | 
|  | slab_error(cache, "memory outside object was overwritten"); | 
|  |  | 
|  | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", | 
|  | obj, redzone1, redzone2); | 
|  | } | 
|  |  | 
|  | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, | 
|  | unsigned long caller) | 
|  | { | 
|  | unsigned int objnr; | 
|  | struct page *page; | 
|  |  | 
|  | BUG_ON(virt_to_cache(objp) != cachep); | 
|  |  | 
|  | objp -= obj_offset(cachep); | 
|  | kfree_debugcheck(objp); | 
|  | page = virt_to_head_page(objp); | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | verify_redzone_free(cachep, objp); | 
|  | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | 
|  | } | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = (void *)caller; | 
|  |  | 
|  | objnr = obj_to_index(cachep, page, objp); | 
|  |  | 
|  | BUG_ON(objnr >= cachep->num); | 
|  | BUG_ON(objp != index_to_obj(cachep, page, objnr)); | 
|  |  | 
|  | set_obj_status(page, objnr, OBJECT_FREE); | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { | 
|  | store_stackinfo(cachep, objp, caller); | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->size / PAGE_SIZE, 0); | 
|  | } else { | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | } | 
|  | #else | 
|  | poison_obj(cachep, objp, POISON_FREE); | 
|  | #endif | 
|  | } | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define kfree_debugcheck(x) do { } while(0) | 
|  | #define cache_free_debugcheck(x,objp,z) (objp) | 
|  | #endif | 
|  |  | 
|  | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, | 
|  | bool force_refill) | 
|  | { | 
|  | int batchcount; | 
|  | struct kmem_cache_node *n; | 
|  | struct array_cache *ac; | 
|  | int node; | 
|  |  | 
|  | check_irq_off(); | 
|  | node = numa_mem_id(); | 
|  | if (unlikely(force_refill)) | 
|  | goto force_grow; | 
|  | retry: | 
|  | ac = cpu_cache_get(cachep); | 
|  | batchcount = ac->batchcount; | 
|  | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | 
|  | /* | 
|  | * If there was little recent activity on this cache, then | 
|  | * perform only a partial refill.  Otherwise we could generate | 
|  | * refill bouncing. | 
|  | */ | 
|  | batchcount = BATCHREFILL_LIMIT; | 
|  | } | 
|  | n = get_node(cachep, node); | 
|  |  | 
|  | BUG_ON(ac->avail > 0 || !n); | 
|  | spin_lock(&n->list_lock); | 
|  |  | 
|  | /* See if we can refill from the shared array */ | 
|  | if (n->shared && transfer_objects(ac, n->shared, batchcount)) { | 
|  | n->shared->touched = 1; | 
|  | goto alloc_done; | 
|  | } | 
|  |  | 
|  | while (batchcount > 0) { | 
|  | struct list_head *entry; | 
|  | struct page *page; | 
|  | /* Get slab alloc is to come from. */ | 
|  | entry = n->slabs_partial.next; | 
|  | if (entry == &n->slabs_partial) { | 
|  | n->free_touched = 1; | 
|  | entry = n->slabs_free.next; | 
|  | if (entry == &n->slabs_free) | 
|  | goto must_grow; | 
|  | } | 
|  |  | 
|  | page = list_entry(entry, struct page, lru); | 
|  | check_spinlock_acquired(cachep); | 
|  |  | 
|  | /* | 
|  | * The slab was either on partial or free list so | 
|  | * there must be at least one object available for | 
|  | * allocation. | 
|  | */ | 
|  | BUG_ON(page->active >= cachep->num); | 
|  |  | 
|  | while (page->active < cachep->num && batchcount--) { | 
|  | STATS_INC_ALLOCED(cachep); | 
|  | STATS_INC_ACTIVE(cachep); | 
|  | STATS_SET_HIGH(cachep); | 
|  |  | 
|  | ac_put_obj(cachep, ac, slab_get_obj(cachep, page, | 
|  | node)); | 
|  | } | 
|  |  | 
|  | /* move slabp to correct slabp list: */ | 
|  | list_del(&page->lru); | 
|  | if (page->active == cachep->num) | 
|  | list_add(&page->lru, &n->slabs_full); | 
|  | else | 
|  | list_add(&page->lru, &n->slabs_partial); | 
|  | } | 
|  |  | 
|  | must_grow: | 
|  | n->free_objects -= ac->avail; | 
|  | alloc_done: | 
|  | spin_unlock(&n->list_lock); | 
|  |  | 
|  | if (unlikely(!ac->avail)) { | 
|  | int x; | 
|  | force_grow: | 
|  | x = cache_grow(cachep, gfp_exact_node(flags), node, NULL); | 
|  |  | 
|  | /* cache_grow can reenable interrupts, then ac could change. */ | 
|  | ac = cpu_cache_get(cachep); | 
|  | node = numa_mem_id(); | 
|  |  | 
|  | /* no objects in sight? abort */ | 
|  | if (!x && (ac->avail == 0 || force_refill)) | 
|  | return NULL; | 
|  |  | 
|  | if (!ac->avail)		/* objects refilled by interrupt? */ | 
|  | goto retry; | 
|  | } | 
|  | ac->touched = 1; | 
|  |  | 
|  | return ac_get_obj(cachep, ac, flags, force_refill); | 
|  | } | 
|  |  | 
|  | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, | 
|  | gfp_t flags) | 
|  | { | 
|  | might_sleep_if(flags & __GFP_WAIT); | 
|  | #if DEBUG | 
|  | kmem_flagcheck(cachep, flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if DEBUG | 
|  | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, | 
|  | gfp_t flags, void *objp, unsigned long caller) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (!objp) | 
|  | return objp; | 
|  | if (cachep->flags & SLAB_POISON) { | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) | 
|  | kernel_map_pages(virt_to_page(objp), | 
|  | cachep->size / PAGE_SIZE, 1); | 
|  | else | 
|  | check_poison_obj(cachep, objp); | 
|  | #else | 
|  | check_poison_obj(cachep, objp); | 
|  | #endif | 
|  | poison_obj(cachep, objp, POISON_INUSE); | 
|  | } | 
|  | if (cachep->flags & SLAB_STORE_USER) | 
|  | *dbg_userword(cachep, objp) = (void *)caller; | 
|  |  | 
|  | if (cachep->flags & SLAB_RED_ZONE) { | 
|  | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || | 
|  | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | 
|  | slab_error(cachep, "double free, or memory outside" | 
|  | " object was overwritten"); | 
|  | printk(KERN_ERR | 
|  | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", | 
|  | objp, *dbg_redzone1(cachep, objp), | 
|  | *dbg_redzone2(cachep, objp)); | 
|  | } | 
|  | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | 
|  | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | 
|  | } | 
|  |  | 
|  | page = virt_to_head_page(objp); | 
|  | set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE); | 
|  | objp += obj_offset(cachep); | 
|  | if (cachep->ctor && cachep->flags & SLAB_POISON) | 
|  | cachep->ctor(objp); | 
|  | if (ARCH_SLAB_MINALIGN && | 
|  | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | 
|  | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | 
|  | objp, (int)ARCH_SLAB_MINALIGN); | 
|  | } | 
|  | return objp; | 
|  | } | 
|  | #else | 
|  | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | 
|  | #endif | 
|  |  | 
|  | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | if (unlikely(cachep == kmem_cache)) | 
|  | return false; | 
|  |  | 
|  | return should_failslab(cachep->object_size, flags, cachep->flags); | 
|  | } | 
|  |  | 
|  | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | void *objp; | 
|  | struct array_cache *ac; | 
|  | bool force_refill = false; | 
|  |  | 
|  | check_irq_off(); | 
|  |  | 
|  | ac = cpu_cache_get(cachep); | 
|  | if (likely(ac->avail)) { | 
|  | ac->touched = 1; | 
|  | objp = ac_get_obj(cachep, ac, flags, false); | 
|  |  | 
|  | /* | 
|  | * Allow for the possibility all avail objects are not allowed | 
|  | * by the current flags | 
|  | */ | 
|  | if (objp) { | 
|  | STATS_INC_ALLOCHIT(cachep); | 
|  | goto out; | 
|  | } | 
|  | force_refill = true; | 
|  | } | 
|  |  | 
|  | STATS_INC_ALLOCMISS(cachep); | 
|  | objp = cache_alloc_refill(cachep, flags, force_refill); | 
|  | /* | 
|  | * the 'ac' may be updated by cache_alloc_refill(), | 
|  | * and kmemleak_erase() requires its correct value. | 
|  | */ | 
|  | ac = cpu_cache_get(cachep); | 
|  |  | 
|  | out: | 
|  | /* | 
|  | * To avoid a false negative, if an object that is in one of the | 
|  | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | 
|  | * treat the array pointers as a reference to the object. | 
|  | */ | 
|  | if (objp) | 
|  | kmemleak_erase(&ac->entry[ac->avail]); | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set. | 
|  | * | 
|  | * If we are in_interrupt, then process context, including cpusets and | 
|  | * mempolicy, may not apply and should not be used for allocation policy. | 
|  | */ | 
|  | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | int nid_alloc, nid_here; | 
|  |  | 
|  | if (in_interrupt() || (flags & __GFP_THISNODE)) | 
|  | return NULL; | 
|  | nid_alloc = nid_here = numa_mem_id(); | 
|  | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | 
|  | nid_alloc = cpuset_slab_spread_node(); | 
|  | else if (current->mempolicy) | 
|  | nid_alloc = mempolicy_slab_node(); | 
|  | if (nid_alloc != nid_here) | 
|  | return ____cache_alloc_node(cachep, flags, nid_alloc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fallback function if there was no memory available and no objects on a | 
|  | * certain node and fall back is permitted. First we scan all the | 
|  | * available node for available objects. If that fails then we | 
|  | * perform an allocation without specifying a node. This allows the page | 
|  | * allocator to do its reclaim / fallback magic. We then insert the | 
|  | * slab into the proper nodelist and then allocate from it. | 
|  | */ | 
|  | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) | 
|  | { | 
|  | struct zonelist *zonelist; | 
|  | gfp_t local_flags; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | enum zone_type high_zoneidx = gfp_zone(flags); | 
|  | void *obj = NULL; | 
|  | int nid; | 
|  | unsigned int cpuset_mems_cookie; | 
|  |  | 
|  | if (flags & __GFP_THISNODE) | 
|  | return NULL; | 
|  |  | 
|  | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 
|  |  | 
|  | retry_cpuset: | 
|  | cpuset_mems_cookie = read_mems_allowed_begin(); | 
|  | zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
|  |  | 
|  | retry: | 
|  | /* | 
|  | * Look through allowed nodes for objects available | 
|  | * from existing per node queues. | 
|  | */ | 
|  | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
|  | nid = zone_to_nid(zone); | 
|  |  | 
|  | if (cpuset_zone_allowed(zone, flags) && | 
|  | get_node(cache, nid) && | 
|  | get_node(cache, nid)->free_objects) { | 
|  | obj = ____cache_alloc_node(cache, | 
|  | gfp_exact_node(flags), nid); | 
|  | if (obj) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!obj) { | 
|  | /* | 
|  | * This allocation will be performed within the constraints | 
|  | * of the current cpuset / memory policy requirements. | 
|  | * We may trigger various forms of reclaim on the allowed | 
|  | * set and go into memory reserves if necessary. | 
|  | */ | 
|  | struct page *page; | 
|  |  | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  | kmem_flagcheck(cache, flags); | 
|  | page = kmem_getpages(cache, local_flags, numa_mem_id()); | 
|  | if (local_flags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  | if (page) { | 
|  | /* | 
|  | * Insert into the appropriate per node queues | 
|  | */ | 
|  | nid = page_to_nid(page); | 
|  | if (cache_grow(cache, flags, nid, page)) { | 
|  | obj = ____cache_alloc_node(cache, | 
|  | gfp_exact_node(flags), nid); | 
|  | if (!obj) | 
|  | /* | 
|  | * Another processor may allocate the | 
|  | * objects in the slab since we are | 
|  | * not holding any locks. | 
|  | */ | 
|  | goto retry; | 
|  | } else { | 
|  | /* cache_grow already freed obj */ | 
|  | obj = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie))) | 
|  | goto retry_cpuset; | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A interface to enable slab creation on nodeid | 
|  | */ | 
|  | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | 
|  | int nodeid) | 
|  | { | 
|  | struct list_head *entry; | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  | void *obj; | 
|  | int x; | 
|  |  | 
|  | VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES); | 
|  | n = get_node(cachep, nodeid); | 
|  | BUG_ON(!n); | 
|  |  | 
|  | retry: | 
|  | check_irq_off(); | 
|  | spin_lock(&n->list_lock); | 
|  | entry = n->slabs_partial.next; | 
|  | if (entry == &n->slabs_partial) { | 
|  | n->free_touched = 1; | 
|  | entry = n->slabs_free.next; | 
|  | if (entry == &n->slabs_free) | 
|  | goto must_grow; | 
|  | } | 
|  |  | 
|  | page = list_entry(entry, struct page, lru); | 
|  | check_spinlock_acquired_node(cachep, nodeid); | 
|  |  | 
|  | STATS_INC_NODEALLOCS(cachep); | 
|  | STATS_INC_ACTIVE(cachep); | 
|  | STATS_SET_HIGH(cachep); | 
|  |  | 
|  | BUG_ON(page->active == cachep->num); | 
|  |  | 
|  | obj = slab_get_obj(cachep, page, nodeid); | 
|  | n->free_objects--; | 
|  | /* move slabp to correct slabp list: */ | 
|  | list_del(&page->lru); | 
|  |  | 
|  | if (page->active == cachep->num) | 
|  | list_add(&page->lru, &n->slabs_full); | 
|  | else | 
|  | list_add(&page->lru, &n->slabs_partial); | 
|  |  | 
|  | spin_unlock(&n->list_lock); | 
|  | goto done; | 
|  |  | 
|  | must_grow: | 
|  | spin_unlock(&n->list_lock); | 
|  | x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL); | 
|  | if (x) | 
|  | goto retry; | 
|  |  | 
|  | return fallback_alloc(cachep, flags); | 
|  |  | 
|  | done: | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | static __always_inline void * | 
|  | slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | 
|  | unsigned long caller) | 
|  | { | 
|  | unsigned long save_flags; | 
|  | void *ptr; | 
|  | int slab_node = numa_mem_id(); | 
|  |  | 
|  | flags &= gfp_allowed_mask; | 
|  |  | 
|  | lockdep_trace_alloc(flags); | 
|  |  | 
|  | if (slab_should_failslab(cachep, flags)) | 
|  | return NULL; | 
|  |  | 
|  | cachep = memcg_kmem_get_cache(cachep, flags); | 
|  |  | 
|  | cache_alloc_debugcheck_before(cachep, flags); | 
|  | local_irq_save(save_flags); | 
|  |  | 
|  | if (nodeid == NUMA_NO_NODE) | 
|  | nodeid = slab_node; | 
|  |  | 
|  | if (unlikely(!get_node(cachep, nodeid))) { | 
|  | /* Node not bootstrapped yet */ | 
|  | ptr = fallback_alloc(cachep, flags); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nodeid == slab_node) { | 
|  | /* | 
|  | * Use the locally cached objects if possible. | 
|  | * However ____cache_alloc does not allow fallback | 
|  | * to other nodes. It may fail while we still have | 
|  | * objects on other nodes available. | 
|  | */ | 
|  | ptr = ____cache_alloc(cachep, flags); | 
|  | if (ptr) | 
|  | goto out; | 
|  | } | 
|  | /* ___cache_alloc_node can fall back to other nodes */ | 
|  | ptr = ____cache_alloc_node(cachep, flags, nodeid); | 
|  | out: | 
|  | local_irq_restore(save_flags); | 
|  | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | 
|  | kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, | 
|  | flags); | 
|  |  | 
|  | if (likely(ptr)) { | 
|  | kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); | 
|  | if (unlikely(flags & __GFP_ZERO)) | 
|  | memset(ptr, 0, cachep->object_size); | 
|  | } | 
|  |  | 
|  | memcg_kmem_put_cache(cachep); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | 
|  | { | 
|  | void *objp; | 
|  |  | 
|  | if (current->mempolicy || cpuset_do_slab_mem_spread()) { | 
|  | objp = alternate_node_alloc(cache, flags); | 
|  | if (objp) | 
|  | goto out; | 
|  | } | 
|  | objp = ____cache_alloc(cache, flags); | 
|  |  | 
|  | /* | 
|  | * We may just have run out of memory on the local node. | 
|  | * ____cache_alloc_node() knows how to locate memory on other nodes | 
|  | */ | 
|  | if (!objp) | 
|  | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | 
|  |  | 
|  | out: | 
|  | return objp; | 
|  | } | 
|  | #else | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | return ____cache_alloc(cachep, flags); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | static __always_inline void * | 
|  | slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) | 
|  | { | 
|  | unsigned long save_flags; | 
|  | void *objp; | 
|  |  | 
|  | flags &= gfp_allowed_mask; | 
|  |  | 
|  | lockdep_trace_alloc(flags); | 
|  |  | 
|  | if (slab_should_failslab(cachep, flags)) | 
|  | return NULL; | 
|  |  | 
|  | cachep = memcg_kmem_get_cache(cachep, flags); | 
|  |  | 
|  | cache_alloc_debugcheck_before(cachep, flags); | 
|  | local_irq_save(save_flags); | 
|  | objp = __do_cache_alloc(cachep, flags); | 
|  | local_irq_restore(save_flags); | 
|  | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | 
|  | kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, | 
|  | flags); | 
|  | prefetchw(objp); | 
|  |  | 
|  | if (likely(objp)) { | 
|  | kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); | 
|  | if (unlikely(flags & __GFP_ZERO)) | 
|  | memset(objp, 0, cachep->object_size); | 
|  | } | 
|  |  | 
|  | memcg_kmem_put_cache(cachep); | 
|  | return objp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller needs to acquire correct kmem_cache_node's list_lock | 
|  | * @list: List of detached free slabs should be freed by caller | 
|  | */ | 
|  | static void free_block(struct kmem_cache *cachep, void **objpp, | 
|  | int nr_objects, int node, struct list_head *list) | 
|  | { | 
|  | int i; | 
|  | struct kmem_cache_node *n = get_node(cachep, node); | 
|  |  | 
|  | for (i = 0; i < nr_objects; i++) { | 
|  | void *objp; | 
|  | struct page *page; | 
|  |  | 
|  | clear_obj_pfmemalloc(&objpp[i]); | 
|  | objp = objpp[i]; | 
|  |  | 
|  | page = virt_to_head_page(objp); | 
|  | list_del(&page->lru); | 
|  | check_spinlock_acquired_node(cachep, node); | 
|  | slab_put_obj(cachep, page, objp, node); | 
|  | STATS_DEC_ACTIVE(cachep); | 
|  | n->free_objects++; | 
|  |  | 
|  | /* fixup slab chains */ | 
|  | if (page->active == 0) { | 
|  | if (n->free_objects > n->free_limit) { | 
|  | n->free_objects -= cachep->num; | 
|  | list_add_tail(&page->lru, list); | 
|  | } else { | 
|  | list_add(&page->lru, &n->slabs_free); | 
|  | } | 
|  | } else { | 
|  | /* Unconditionally move a slab to the end of the | 
|  | * partial list on free - maximum time for the | 
|  | * other objects to be freed, too. | 
|  | */ | 
|  | list_add_tail(&page->lru, &n->slabs_partial); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | 
|  | { | 
|  | int batchcount; | 
|  | struct kmem_cache_node *n; | 
|  | int node = numa_mem_id(); | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | batchcount = ac->batchcount; | 
|  | #if DEBUG | 
|  | BUG_ON(!batchcount || batchcount > ac->avail); | 
|  | #endif | 
|  | check_irq_off(); | 
|  | n = get_node(cachep, node); | 
|  | spin_lock(&n->list_lock); | 
|  | if (n->shared) { | 
|  | struct array_cache *shared_array = n->shared; | 
|  | int max = shared_array->limit - shared_array->avail; | 
|  | if (max) { | 
|  | if (batchcount > max) | 
|  | batchcount = max; | 
|  | memcpy(&(shared_array->entry[shared_array->avail]), | 
|  | ac->entry, sizeof(void *) * batchcount); | 
|  | shared_array->avail += batchcount; | 
|  | goto free_done; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_block(cachep, ac->entry, batchcount, node, &list); | 
|  | free_done: | 
|  | #if STATS | 
|  | { | 
|  | int i = 0; | 
|  | struct list_head *p; | 
|  |  | 
|  | p = n->slabs_free.next; | 
|  | while (p != &(n->slabs_free)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = list_entry(p, struct page, lru); | 
|  | BUG_ON(page->active); | 
|  |  | 
|  | i++; | 
|  | p = p->next; | 
|  | } | 
|  | STATS_SET_FREEABLE(cachep, i); | 
|  | } | 
|  | #endif | 
|  | spin_unlock(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | ac->avail -= batchcount; | 
|  | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release an obj back to its cache. If the obj has a constructed state, it must | 
|  | * be in this state _before_ it is released.  Called with disabled ints. | 
|  | */ | 
|  | static inline void __cache_free(struct kmem_cache *cachep, void *objp, | 
|  | unsigned long caller) | 
|  | { | 
|  | struct array_cache *ac = cpu_cache_get(cachep); | 
|  |  | 
|  | check_irq_off(); | 
|  | kmemleak_free_recursive(objp, cachep->flags); | 
|  | objp = cache_free_debugcheck(cachep, objp, caller); | 
|  |  | 
|  | kmemcheck_slab_free(cachep, objp, cachep->object_size); | 
|  |  | 
|  | /* | 
|  | * Skip calling cache_free_alien() when the platform is not numa. | 
|  | * This will avoid cache misses that happen while accessing slabp (which | 
|  | * is per page memory  reference) to get nodeid. Instead use a global | 
|  | * variable to skip the call, which is mostly likely to be present in | 
|  | * the cache. | 
|  | */ | 
|  | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) | 
|  | return; | 
|  |  | 
|  | if (ac->avail < ac->limit) { | 
|  | STATS_INC_FREEHIT(cachep); | 
|  | } else { | 
|  | STATS_INC_FREEMISS(cachep); | 
|  | cache_flusharray(cachep, ac); | 
|  | } | 
|  |  | 
|  | ac_put_obj(cachep, ac, objp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_alloc - Allocate an object | 
|  | * @cachep: The cache to allocate from. | 
|  | * @flags: See kmalloc(). | 
|  | * | 
|  | * Allocate an object from this cache.  The flags are only relevant | 
|  | * if the cache has no available objects. | 
|  | */ | 
|  | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | 
|  | { | 
|  | void *ret = slab_alloc(cachep, flags, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc(_RET_IP_, ret, | 
|  | cachep->object_size, cachep->size, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void * | 
|  | kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = slab_alloc(cachep, flags, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc(_RET_IP_, ret, | 
|  | size, cachep->size, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /** | 
|  | * kmem_cache_alloc_node - Allocate an object on the specified node | 
|  | * @cachep: The cache to allocate from. | 
|  | * @flags: See kmalloc(). | 
|  | * @nodeid: node number of the target node. | 
|  | * | 
|  | * Identical to kmem_cache_alloc but it will allocate memory on the given | 
|  | * node, which can improve the performance for cpu bound structures. | 
|  | * | 
|  | * Fallback to other node is possible if __GFP_THISNODE is not set. | 
|  | */ | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) | 
|  | { | 
|  | void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
|  | cachep->object_size, cachep->size, | 
|  | flags, nodeid); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, | 
|  | gfp_t flags, | 
|  | int nodeid, | 
|  | size_t size) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, | 
|  | size, cachep->size, | 
|  | flags, nodeid); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
|  | #endif | 
|  |  | 
|  | static __always_inline void * | 
|  | __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | cachep = kmalloc_slab(size, flags); | 
|  | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
|  | return cachep; | 
|  | return kmem_cache_alloc_node_trace(cachep, flags, node, size); | 
|  | } | 
|  |  | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | return __do_kmalloc_node(size, flags, node, _RET_IP_); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  |  | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | 
|  | int node, unsigned long caller) | 
|  | { | 
|  | return __do_kmalloc_node(size, flags, node, caller); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node_track_caller); | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /** | 
|  | * __do_kmalloc - allocate memory | 
|  | * @size: how many bytes of memory are required. | 
|  | * @flags: the type of memory to allocate (see kmalloc). | 
|  | * @caller: function caller for debug tracking of the caller | 
|  | */ | 
|  | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | 
|  | unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *cachep; | 
|  | void *ret; | 
|  |  | 
|  | cachep = kmalloc_slab(size, flags); | 
|  | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 
|  | return cachep; | 
|  | ret = slab_alloc(cachep, flags, caller); | 
|  |  | 
|  | trace_kmalloc(caller, ret, | 
|  | size, cachep->size, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | return __do_kmalloc(size, flags, _RET_IP_); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  |  | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) | 
|  | { | 
|  | return __do_kmalloc(size, flags, caller); | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_track_caller); | 
|  |  | 
|  | /** | 
|  | * kmem_cache_free - Deallocate an object | 
|  | * @cachep: The cache the allocation was from. | 
|  | * @objp: The previously allocated object. | 
|  | * | 
|  | * Free an object which was previously allocated from this | 
|  | * cache. | 
|  | */ | 
|  | void kmem_cache_free(struct kmem_cache *cachep, void *objp) | 
|  | { | 
|  | unsigned long flags; | 
|  | cachep = cache_from_obj(cachep, objp); | 
|  | if (!cachep) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | debug_check_no_locks_freed(objp, cachep->object_size); | 
|  | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) | 
|  | debug_check_no_obj_freed(objp, cachep->object_size); | 
|  | __cache_free(cachep, objp, _RET_IP_); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | trace_kmem_cache_free(_RET_IP_, objp); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | /** | 
|  | * kfree - free previously allocated memory | 
|  | * @objp: pointer returned by kmalloc. | 
|  | * | 
|  | * If @objp is NULL, no operation is performed. | 
|  | * | 
|  | * Don't free memory not originally allocated by kmalloc() | 
|  | * or you will run into trouble. | 
|  | */ | 
|  | void kfree(const void *objp) | 
|  | { | 
|  | struct kmem_cache *c; | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_kfree(_RET_IP_, objp); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(objp))) | 
|  | return; | 
|  | local_irq_save(flags); | 
|  | kfree_debugcheck(objp); | 
|  | c = virt_to_cache(objp); | 
|  | debug_check_no_locks_freed(objp, c->object_size); | 
|  |  | 
|  | debug_check_no_obj_freed(objp, c->object_size); | 
|  | __cache_free(c, (void *)objp, _RET_IP_); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | /* | 
|  | * This initializes kmem_cache_node or resizes various caches for all nodes. | 
|  | */ | 
|  | static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp) | 
|  | { | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  | struct array_cache *new_shared; | 
|  | struct alien_cache **new_alien = NULL; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  |  | 
|  | if (use_alien_caches) { | 
|  | new_alien = alloc_alien_cache(node, cachep->limit, gfp); | 
|  | if (!new_alien) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | new_shared = NULL; | 
|  | if (cachep->shared) { | 
|  | new_shared = alloc_arraycache(node, | 
|  | cachep->shared*cachep->batchcount, | 
|  | 0xbaadf00d, gfp); | 
|  | if (!new_shared) { | 
|  | free_alien_cache(new_alien); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | n = get_node(cachep, node); | 
|  | if (n) { | 
|  | struct array_cache *shared = n->shared; | 
|  | LIST_HEAD(list); | 
|  |  | 
|  | spin_lock_irq(&n->list_lock); | 
|  |  | 
|  | if (shared) | 
|  | free_block(cachep, shared->entry, | 
|  | shared->avail, node, &list); | 
|  |  | 
|  | n->shared = new_shared; | 
|  | if (!n->alien) { | 
|  | n->alien = new_alien; | 
|  | new_alien = NULL; | 
|  | } | 
|  | n->free_limit = (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | kfree(shared); | 
|  | free_alien_cache(new_alien); | 
|  | continue; | 
|  | } | 
|  | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); | 
|  | if (!n) { | 
|  | free_alien_cache(new_alien); | 
|  | kfree(new_shared); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | kmem_cache_node_init(n); | 
|  | n->next_reap = jiffies + REAPTIMEOUT_NODE + | 
|  | ((unsigned long)cachep) % REAPTIMEOUT_NODE; | 
|  | n->shared = new_shared; | 
|  | n->alien = new_alien; | 
|  | n->free_limit = (1 + nr_cpus_node(node)) * | 
|  | cachep->batchcount + cachep->num; | 
|  | cachep->node[node] = n; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (!cachep->list.next) { | 
|  | /* Cache is not active yet. Roll back what we did */ | 
|  | node--; | 
|  | while (node >= 0) { | 
|  | n = get_node(cachep, node); | 
|  | if (n) { | 
|  | kfree(n->shared); | 
|  | free_alien_cache(n->alien); | 
|  | kfree(n); | 
|  | cachep->node[node] = NULL; | 
|  | } | 
|  | node--; | 
|  | } | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Always called with the slab_mutex held */ | 
|  | static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, | 
|  | int batchcount, int shared, gfp_t gfp) | 
|  | { | 
|  | struct array_cache __percpu *cpu_cache, *prev; | 
|  | int cpu; | 
|  |  | 
|  | cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount); | 
|  | if (!cpu_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | prev = cachep->cpu_cache; | 
|  | cachep->cpu_cache = cpu_cache; | 
|  | kick_all_cpus_sync(); | 
|  |  | 
|  | check_irq_on(); | 
|  | cachep->batchcount = batchcount; | 
|  | cachep->limit = limit; | 
|  | cachep->shared = shared; | 
|  |  | 
|  | if (!prev) | 
|  | goto alloc_node; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | LIST_HEAD(list); | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  | struct array_cache *ac = per_cpu_ptr(prev, cpu); | 
|  |  | 
|  | node = cpu_to_mem(cpu); | 
|  | n = get_node(cachep, node); | 
|  | spin_lock_irq(&n->list_lock); | 
|  | free_block(cachep, ac->entry, ac->avail, node, &list); | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | free_percpu(prev); | 
|  |  | 
|  | alloc_node: | 
|  | return alloc_kmem_cache_node(cachep, gfp); | 
|  | } | 
|  |  | 
|  | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, | 
|  | int batchcount, int shared, gfp_t gfp) | 
|  | { | 
|  | int ret; | 
|  | struct kmem_cache *c; | 
|  |  | 
|  | ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | 
|  |  | 
|  | if (slab_state < FULL) | 
|  | return ret; | 
|  |  | 
|  | if ((ret < 0) || !is_root_cache(cachep)) | 
|  | return ret; | 
|  |  | 
|  | lockdep_assert_held(&slab_mutex); | 
|  | for_each_memcg_cache(c, cachep) { | 
|  | /* return value determined by the root cache only */ | 
|  | __do_tune_cpucache(c, limit, batchcount, shared, gfp); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Called with slab_mutex held always */ | 
|  | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) | 
|  | { | 
|  | int err; | 
|  | int limit = 0; | 
|  | int shared = 0; | 
|  | int batchcount = 0; | 
|  |  | 
|  | if (!is_root_cache(cachep)) { | 
|  | struct kmem_cache *root = memcg_root_cache(cachep); | 
|  | limit = root->limit; | 
|  | shared = root->shared; | 
|  | batchcount = root->batchcount; | 
|  | } | 
|  |  | 
|  | if (limit && shared && batchcount) | 
|  | goto skip_setup; | 
|  | /* | 
|  | * The head array serves three purposes: | 
|  | * - create a LIFO ordering, i.e. return objects that are cache-warm | 
|  | * - reduce the number of spinlock operations. | 
|  | * - reduce the number of linked list operations on the slab and | 
|  | *   bufctl chains: array operations are cheaper. | 
|  | * The numbers are guessed, we should auto-tune as described by | 
|  | * Bonwick. | 
|  | */ | 
|  | if (cachep->size > 131072) | 
|  | limit = 1; | 
|  | else if (cachep->size > PAGE_SIZE) | 
|  | limit = 8; | 
|  | else if (cachep->size > 1024) | 
|  | limit = 24; | 
|  | else if (cachep->size > 256) | 
|  | limit = 54; | 
|  | else | 
|  | limit = 120; | 
|  |  | 
|  | /* | 
|  | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | 
|  | * allocation behaviour: Most allocs on one cpu, most free operations | 
|  | * on another cpu. For these cases, an efficient object passing between | 
|  | * cpus is necessary. This is provided by a shared array. The array | 
|  | * replaces Bonwick's magazine layer. | 
|  | * On uniprocessor, it's functionally equivalent (but less efficient) | 
|  | * to a larger limit. Thus disabled by default. | 
|  | */ | 
|  | shared = 0; | 
|  | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) | 
|  | shared = 8; | 
|  |  | 
|  | #if DEBUG | 
|  | /* | 
|  | * With debugging enabled, large batchcount lead to excessively long | 
|  | * periods with disabled local interrupts. Limit the batchcount | 
|  | */ | 
|  | if (limit > 32) | 
|  | limit = 32; | 
|  | #endif | 
|  | batchcount = (limit + 1) / 2; | 
|  | skip_setup: | 
|  | err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp); | 
|  | if (err) | 
|  | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | 
|  | cachep->name, -err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drain an array if it contains any elements taking the node lock only if | 
|  | * necessary. Note that the node listlock also protects the array_cache | 
|  | * if drain_array() is used on the shared array. | 
|  | */ | 
|  | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, | 
|  | struct array_cache *ac, int force, int node) | 
|  | { | 
|  | LIST_HEAD(list); | 
|  | int tofree; | 
|  |  | 
|  | if (!ac || !ac->avail) | 
|  | return; | 
|  | if (ac->touched && !force) { | 
|  | ac->touched = 0; | 
|  | } else { | 
|  | spin_lock_irq(&n->list_lock); | 
|  | if (ac->avail) { | 
|  | tofree = force ? ac->avail : (ac->limit + 4) / 5; | 
|  | if (tofree > ac->avail) | 
|  | tofree = (ac->avail + 1) / 2; | 
|  | free_block(cachep, ac->entry, tofree, node, &list); | 
|  | ac->avail -= tofree; | 
|  | memmove(ac->entry, &(ac->entry[tofree]), | 
|  | sizeof(void *) * ac->avail); | 
|  | } | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | slabs_destroy(cachep, &list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cache_reap - Reclaim memory from caches. | 
|  | * @w: work descriptor | 
|  | * | 
|  | * Called from workqueue/eventd every few seconds. | 
|  | * Purpose: | 
|  | * - clear the per-cpu caches for this CPU. | 
|  | * - return freeable pages to the main free memory pool. | 
|  | * | 
|  | * If we cannot acquire the cache chain mutex then just give up - we'll try | 
|  | * again on the next iteration. | 
|  | */ | 
|  | static void cache_reap(struct work_struct *w) | 
|  | { | 
|  | struct kmem_cache *searchp; | 
|  | struct kmem_cache_node *n; | 
|  | int node = numa_mem_id(); | 
|  | struct delayed_work *work = to_delayed_work(w); | 
|  |  | 
|  | if (!mutex_trylock(&slab_mutex)) | 
|  | /* Give up. Setup the next iteration. */ | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(searchp, &slab_caches, list) { | 
|  | check_irq_on(); | 
|  |  | 
|  | /* | 
|  | * We only take the node lock if absolutely necessary and we | 
|  | * have established with reasonable certainty that | 
|  | * we can do some work if the lock was obtained. | 
|  | */ | 
|  | n = get_node(searchp, node); | 
|  |  | 
|  | reap_alien(searchp, n); | 
|  |  | 
|  | drain_array(searchp, n, cpu_cache_get(searchp), 0, node); | 
|  |  | 
|  | /* | 
|  | * These are racy checks but it does not matter | 
|  | * if we skip one check or scan twice. | 
|  | */ | 
|  | if (time_after(n->next_reap, jiffies)) | 
|  | goto next; | 
|  |  | 
|  | n->next_reap = jiffies + REAPTIMEOUT_NODE; | 
|  |  | 
|  | drain_array(searchp, n, n->shared, 0, node); | 
|  |  | 
|  | if (n->free_touched) | 
|  | n->free_touched = 0; | 
|  | else { | 
|  | int freed; | 
|  |  | 
|  | freed = drain_freelist(searchp, n, (n->free_limit + | 
|  | 5 * searchp->num - 1) / (5 * searchp->num)); | 
|  | STATS_ADD_REAPED(searchp, freed); | 
|  | } | 
|  | next: | 
|  | cond_resched(); | 
|  | } | 
|  | check_irq_on(); | 
|  | mutex_unlock(&slab_mutex); | 
|  | next_reap_node(); | 
|  | out: | 
|  | /* Set up the next iteration */ | 
|  | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLABINFO | 
|  | void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long active_objs; | 
|  | unsigned long num_objs; | 
|  | unsigned long active_slabs = 0; | 
|  | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | 
|  | const char *name; | 
|  | char *error = NULL; | 
|  | int node; | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | active_objs = 0; | 
|  | num_slabs = 0; | 
|  | for_each_kmem_cache_node(cachep, node, n) { | 
|  |  | 
|  | check_irq_on(); | 
|  | spin_lock_irq(&n->list_lock); | 
|  |  | 
|  | list_for_each_entry(page, &n->slabs_full, lru) { | 
|  | if (page->active != cachep->num && !error) | 
|  | error = "slabs_full accounting error"; | 
|  | active_objs += cachep->num; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(page, &n->slabs_partial, lru) { | 
|  | if (page->active == cachep->num && !error) | 
|  | error = "slabs_partial accounting error"; | 
|  | if (!page->active && !error) | 
|  | error = "slabs_partial accounting error"; | 
|  | active_objs += page->active; | 
|  | active_slabs++; | 
|  | } | 
|  | list_for_each_entry(page, &n->slabs_free, lru) { | 
|  | if (page->active && !error) | 
|  | error = "slabs_free accounting error"; | 
|  | num_slabs++; | 
|  | } | 
|  | free_objects += n->free_objects; | 
|  | if (n->shared) | 
|  | shared_avail += n->shared->avail; | 
|  |  | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | } | 
|  | num_slabs += active_slabs; | 
|  | num_objs = num_slabs * cachep->num; | 
|  | if (num_objs - active_objs != free_objects && !error) | 
|  | error = "free_objects accounting error"; | 
|  |  | 
|  | name = cachep->name; | 
|  | if (error) | 
|  | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | 
|  |  | 
|  | sinfo->active_objs = active_objs; | 
|  | sinfo->num_objs = num_objs; | 
|  | sinfo->active_slabs = active_slabs; | 
|  | sinfo->num_slabs = num_slabs; | 
|  | sinfo->shared_avail = shared_avail; | 
|  | sinfo->limit = cachep->limit; | 
|  | sinfo->batchcount = cachep->batchcount; | 
|  | sinfo->shared = cachep->shared; | 
|  | sinfo->objects_per_slab = cachep->num; | 
|  | sinfo->cache_order = cachep->gfporder; | 
|  | } | 
|  |  | 
|  | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | 
|  | { | 
|  | #if STATS | 
|  | {			/* node stats */ | 
|  | unsigned long high = cachep->high_mark; | 
|  | unsigned long allocs = cachep->num_allocations; | 
|  | unsigned long grown = cachep->grown; | 
|  | unsigned long reaped = cachep->reaped; | 
|  | unsigned long errors = cachep->errors; | 
|  | unsigned long max_freeable = cachep->max_freeable; | 
|  | unsigned long node_allocs = cachep->node_allocs; | 
|  | unsigned long node_frees = cachep->node_frees; | 
|  | unsigned long overflows = cachep->node_overflow; | 
|  |  | 
|  | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " | 
|  | "%4lu %4lu %4lu %4lu %4lu", | 
|  | allocs, high, grown, | 
|  | reaped, errors, max_freeable, node_allocs, | 
|  | node_frees, overflows); | 
|  | } | 
|  | /* cpu stats */ | 
|  | { | 
|  | unsigned long allochit = atomic_read(&cachep->allochit); | 
|  | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | 
|  | unsigned long freehit = atomic_read(&cachep->freehit); | 
|  | unsigned long freemiss = atomic_read(&cachep->freemiss); | 
|  |  | 
|  | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | 
|  | allochit, allocmiss, freehit, freemiss); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define MAX_SLABINFO_WRITE 128 | 
|  | /** | 
|  | * slabinfo_write - Tuning for the slab allocator | 
|  | * @file: unused | 
|  | * @buffer: user buffer | 
|  | * @count: data length | 
|  | * @ppos: unused | 
|  | */ | 
|  | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; | 
|  | int limit, batchcount, shared, res; | 
|  | struct kmem_cache *cachep; | 
|  |  | 
|  | if (count > MAX_SLABINFO_WRITE) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&kbuf, buffer, count)) | 
|  | return -EFAULT; | 
|  | kbuf[MAX_SLABINFO_WRITE] = '\0'; | 
|  |  | 
|  | tmp = strchr(kbuf, ' '); | 
|  | if (!tmp) | 
|  | return -EINVAL; | 
|  | *tmp = '\0'; | 
|  | tmp++; | 
|  | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find the cache in the chain of caches. */ | 
|  | mutex_lock(&slab_mutex); | 
|  | res = -EINVAL; | 
|  | list_for_each_entry(cachep, &slab_caches, list) { | 
|  | if (!strcmp(cachep->name, kbuf)) { | 
|  | if (limit < 1 || batchcount < 1 || | 
|  | batchcount > limit || shared < 0) { | 
|  | res = 0; | 
|  | } else { | 
|  | res = do_tune_cpucache(cachep, limit, | 
|  | batchcount, shared, | 
|  | GFP_KERNEL); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | if (res >= 0) | 
|  | res = count; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  |  | 
|  | static inline int add_caller(unsigned long *n, unsigned long v) | 
|  | { | 
|  | unsigned long *p; | 
|  | int l; | 
|  | if (!v) | 
|  | return 1; | 
|  | l = n[1]; | 
|  | p = n + 2; | 
|  | while (l) { | 
|  | int i = l/2; | 
|  | unsigned long *q = p + 2 * i; | 
|  | if (*q == v) { | 
|  | q[1]++; | 
|  | return 1; | 
|  | } | 
|  | if (*q > v) { | 
|  | l = i; | 
|  | } else { | 
|  | p = q + 2; | 
|  | l -= i + 1; | 
|  | } | 
|  | } | 
|  | if (++n[1] == n[0]) | 
|  | return 0; | 
|  | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | 
|  | p[0] = v; | 
|  | p[1] = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void handle_slab(unsigned long *n, struct kmem_cache *c, | 
|  | struct page *page) | 
|  | { | 
|  | void *p; | 
|  | int i; | 
|  |  | 
|  | if (n[0] == n[1]) | 
|  | return; | 
|  | for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) { | 
|  | if (get_obj_status(page, i) != OBJECT_ACTIVE) | 
|  | continue; | 
|  |  | 
|  | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void show_symbol(struct seq_file *m, unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | unsigned long offset, size; | 
|  | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; | 
|  |  | 
|  | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { | 
|  | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); | 
|  | if (modname[0]) | 
|  | seq_printf(m, " [%s]", modname); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | seq_printf(m, "%p", (void *)address); | 
|  | } | 
|  |  | 
|  | static int leaks_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  | const char *name; | 
|  | unsigned long *x = m->private; | 
|  | int node; | 
|  | int i; | 
|  |  | 
|  | if (!(cachep->flags & SLAB_STORE_USER)) | 
|  | return 0; | 
|  | if (!(cachep->flags & SLAB_RED_ZONE)) | 
|  | return 0; | 
|  |  | 
|  | /* OK, we can do it */ | 
|  |  | 
|  | x[1] = 0; | 
|  |  | 
|  | for_each_kmem_cache_node(cachep, node, n) { | 
|  |  | 
|  | check_irq_on(); | 
|  | spin_lock_irq(&n->list_lock); | 
|  |  | 
|  | list_for_each_entry(page, &n->slabs_full, lru) | 
|  | handle_slab(x, cachep, page); | 
|  | list_for_each_entry(page, &n->slabs_partial, lru) | 
|  | handle_slab(x, cachep, page); | 
|  | spin_unlock_irq(&n->list_lock); | 
|  | } | 
|  | name = cachep->name; | 
|  | if (x[0] == x[1]) { | 
|  | /* Increase the buffer size */ | 
|  | mutex_unlock(&slab_mutex); | 
|  | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | 
|  | if (!m->private) { | 
|  | /* Too bad, we are really out */ | 
|  | m->private = x; | 
|  | mutex_lock(&slab_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  | *(unsigned long *)m->private = x[0] * 2; | 
|  | kfree(x); | 
|  | mutex_lock(&slab_mutex); | 
|  | /* Now make sure this entry will be retried */ | 
|  | m->count = m->size; | 
|  | return 0; | 
|  | } | 
|  | for (i = 0; i < x[1]; i++) { | 
|  | seq_printf(m, "%s: %lu ", name, x[2*i+3]); | 
|  | show_symbol(m, x[2*i+2]); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations slabstats_op = { | 
|  | .start = slab_start, | 
|  | .next = slab_next, | 
|  | .stop = slab_stop, | 
|  | .show = leaks_show, | 
|  | }; | 
|  |  | 
|  | static int slabstats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | unsigned long *n; | 
|  |  | 
|  | n = __seq_open_private(file, &slabstats_op, PAGE_SIZE); | 
|  | if (!n) | 
|  | return -ENOMEM; | 
|  |  | 
|  | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabstats_operations = { | 
|  | .open		= slabstats_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release_private, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_SLAB_LEAK | 
|  | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ksize - get the actual amount of memory allocated for a given object | 
|  | * @objp: Pointer to the object | 
|  | * | 
|  | * kmalloc may internally round up allocations and return more memory | 
|  | * than requested. ksize() can be used to determine the actual amount of | 
|  | * memory allocated. The caller may use this additional memory, even though | 
|  | * a smaller amount of memory was initially specified with the kmalloc call. | 
|  | * The caller must guarantee that objp points to a valid object previously | 
|  | * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
|  | * must not be freed during the duration of the call. | 
|  | */ | 
|  | size_t ksize(const void *objp) | 
|  | { | 
|  | BUG_ON(!objp); | 
|  | if (unlikely(objp == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | return virt_to_cache(objp)->object_size; | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); |