| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2012,2013 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * Derived from arch/arm/include/asm/kvm_host.h: |
| * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| */ |
| |
| #ifndef __ARM64_KVM_HOST_H__ |
| #define __ARM64_KVM_HOST_H__ |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/bitmap.h> |
| #include <linux/types.h> |
| #include <linux/jump_label.h> |
| #include <linux/kvm_types.h> |
| #include <linux/maple_tree.h> |
| #include <linux/percpu.h> |
| #include <linux/psci.h> |
| #include <asm/arch_gicv3.h> |
| #include <asm/barrier.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cputype.h> |
| #include <asm/daifflags.h> |
| #include <asm/fpsimd.h> |
| #include <asm/kvm.h> |
| #include <asm/kvm_asm.h> |
| #include <asm/vncr_mapping.h> |
| |
| #define __KVM_HAVE_ARCH_INTC_INITIALIZED |
| |
| #define KVM_HALT_POLL_NS_DEFAULT 500000 |
| |
| #include <kvm/arm_vgic.h> |
| #include <kvm/arm_arch_timer.h> |
| #include <kvm/arm_pmu.h> |
| |
| #define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS |
| |
| #define KVM_VCPU_MAX_FEATURES 7 |
| #define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1) |
| |
| #define KVM_REQ_SLEEP \ |
| KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) |
| #define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1) |
| #define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2) |
| #define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3) |
| #define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4) |
| #define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5) |
| #define KVM_REQ_SUSPEND KVM_ARCH_REQ(6) |
| #define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7) |
| |
| #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \ |
| KVM_DIRTY_LOG_INITIALLY_SET) |
| |
| #define KVM_HAVE_MMU_RWLOCK |
| |
| /* |
| * Mode of operation configurable with kvm-arm.mode early param. |
| * See Documentation/admin-guide/kernel-parameters.txt for more information. |
| */ |
| enum kvm_mode { |
| KVM_MODE_DEFAULT, |
| KVM_MODE_PROTECTED, |
| KVM_MODE_NV, |
| KVM_MODE_NONE, |
| }; |
| #ifdef CONFIG_KVM |
| enum kvm_mode kvm_get_mode(void); |
| #else |
| static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; }; |
| #endif |
| |
| DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use); |
| |
| extern unsigned int __ro_after_init kvm_sve_max_vl; |
| extern unsigned int __ro_after_init kvm_host_sve_max_vl; |
| int __init kvm_arm_init_sve(void); |
| |
| u32 __attribute_const__ kvm_target_cpu(void); |
| void kvm_reset_vcpu(struct kvm_vcpu *vcpu); |
| void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu); |
| |
| struct kvm_hyp_memcache { |
| phys_addr_t head; |
| unsigned long nr_pages; |
| }; |
| |
| static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc, |
| phys_addr_t *p, |
| phys_addr_t (*to_pa)(void *virt)) |
| { |
| *p = mc->head; |
| mc->head = to_pa(p); |
| mc->nr_pages++; |
| } |
| |
| static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc, |
| void *(*to_va)(phys_addr_t phys)) |
| { |
| phys_addr_t *p = to_va(mc->head); |
| |
| if (!mc->nr_pages) |
| return NULL; |
| |
| mc->head = *p; |
| mc->nr_pages--; |
| |
| return p; |
| } |
| |
| static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc, |
| unsigned long min_pages, |
| void *(*alloc_fn)(void *arg), |
| phys_addr_t (*to_pa)(void *virt), |
| void *arg) |
| { |
| while (mc->nr_pages < min_pages) { |
| phys_addr_t *p = alloc_fn(arg); |
| |
| if (!p) |
| return -ENOMEM; |
| push_hyp_memcache(mc, p, to_pa); |
| } |
| |
| return 0; |
| } |
| |
| static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc, |
| void (*free_fn)(void *virt, void *arg), |
| void *(*to_va)(phys_addr_t phys), |
| void *arg) |
| { |
| while (mc->nr_pages) |
| free_fn(pop_hyp_memcache(mc, to_va), arg); |
| } |
| |
| void free_hyp_memcache(struct kvm_hyp_memcache *mc); |
| int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages); |
| |
| struct kvm_vmid { |
| atomic64_t id; |
| }; |
| |
| struct kvm_s2_mmu { |
| struct kvm_vmid vmid; |
| |
| /* |
| * stage2 entry level table |
| * |
| * Two kvm_s2_mmu structures in the same VM can point to the same |
| * pgd here. This happens when running a guest using a |
| * translation regime that isn't affected by its own stage-2 |
| * translation, such as a non-VHE hypervisor running at vEL2, or |
| * for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the |
| * canonical stage-2 page tables. |
| */ |
| phys_addr_t pgd_phys; |
| struct kvm_pgtable *pgt; |
| |
| /* |
| * VTCR value used on the host. For a non-NV guest (or a NV |
| * guest that runs in a context where its own S2 doesn't |
| * apply), its T0SZ value reflects that of the IPA size. |
| * |
| * For a shadow S2 MMU, T0SZ reflects the PARange exposed to |
| * the guest. |
| */ |
| u64 vtcr; |
| |
| /* The last vcpu id that ran on each physical CPU */ |
| int __percpu *last_vcpu_ran; |
| |
| #define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0 |
| /* |
| * Memory cache used to split |
| * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It |
| * is used to allocate stage2 page tables while splitting huge |
| * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE |
| * influences both the capacity of the split page cache, and |
| * how often KVM reschedules. Be wary of raising CHUNK_SIZE |
| * too high. |
| * |
| * Protected by kvm->slots_lock. |
| */ |
| struct kvm_mmu_memory_cache split_page_cache; |
| uint64_t split_page_chunk_size; |
| |
| struct kvm_arch *arch; |
| |
| /* |
| * For a shadow stage-2 MMU, the virtual vttbr used by the |
| * host to parse the guest S2. |
| * This either contains: |
| * - the virtual VTTBR programmed by the guest hypervisor with |
| * CnP cleared |
| * - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid |
| * |
| * We also cache the full VTCR which gets used for TLB invalidation, |
| * taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted |
| * to be cached in a TLB" to the letter. |
| */ |
| u64 tlb_vttbr; |
| u64 tlb_vtcr; |
| |
| /* |
| * true when this represents a nested context where virtual |
| * HCR_EL2.VM == 1 |
| */ |
| bool nested_stage2_enabled; |
| |
| /* |
| * 0: Nobody is currently using this, check vttbr for validity |
| * >0: Somebody is actively using this. |
| */ |
| atomic_t refcnt; |
| }; |
| |
| struct kvm_arch_memory_slot { |
| }; |
| |
| /** |
| * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests |
| * |
| * @std_bmap: Bitmap of standard secure service calls |
| * @std_hyp_bmap: Bitmap of standard hypervisor service calls |
| * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls |
| */ |
| struct kvm_smccc_features { |
| unsigned long std_bmap; |
| unsigned long std_hyp_bmap; |
| unsigned long vendor_hyp_bmap; |
| }; |
| |
| typedef unsigned int pkvm_handle_t; |
| |
| struct kvm_protected_vm { |
| pkvm_handle_t handle; |
| struct kvm_hyp_memcache teardown_mc; |
| bool enabled; |
| }; |
| |
| struct kvm_mpidr_data { |
| u64 mpidr_mask; |
| DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx); |
| }; |
| |
| static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr) |
| { |
| unsigned long index = 0, mask = data->mpidr_mask; |
| unsigned long aff = mpidr & MPIDR_HWID_BITMASK; |
| |
| bitmap_gather(&index, &aff, &mask, fls(mask)); |
| |
| return index; |
| } |
| |
| struct kvm_sysreg_masks; |
| |
| enum fgt_group_id { |
| __NO_FGT_GROUP__, |
| HFGxTR_GROUP, |
| HDFGRTR_GROUP, |
| HDFGWTR_GROUP = HDFGRTR_GROUP, |
| HFGITR_GROUP, |
| HAFGRTR_GROUP, |
| |
| /* Must be last */ |
| __NR_FGT_GROUP_IDS__ |
| }; |
| |
| struct kvm_arch { |
| struct kvm_s2_mmu mmu; |
| |
| /* |
| * Fine-Grained UNDEF, mimicking the FGT layout defined by the |
| * architecture. We track them globally, as we present the |
| * same feature-set to all vcpus. |
| * |
| * Index 0 is currently spare. |
| */ |
| u64 fgu[__NR_FGT_GROUP_IDS__]; |
| |
| /* |
| * Stage 2 paging state for VMs with nested S2 using a virtual |
| * VMID. |
| */ |
| struct kvm_s2_mmu *nested_mmus; |
| size_t nested_mmus_size; |
| int nested_mmus_next; |
| |
| /* Interrupt controller */ |
| struct vgic_dist vgic; |
| |
| /* Timers */ |
| struct arch_timer_vm_data timer_data; |
| |
| /* Mandated version of PSCI */ |
| u32 psci_version; |
| |
| /* Protects VM-scoped configuration data */ |
| struct mutex config_lock; |
| |
| /* |
| * If we encounter a data abort without valid instruction syndrome |
| * information, report this to user space. User space can (and |
| * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is |
| * supported. |
| */ |
| #define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0 |
| /* Memory Tagging Extension enabled for the guest */ |
| #define KVM_ARCH_FLAG_MTE_ENABLED 1 |
| /* At least one vCPU has ran in the VM */ |
| #define KVM_ARCH_FLAG_HAS_RAN_ONCE 2 |
| /* The vCPU feature set for the VM is configured */ |
| #define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3 |
| /* PSCI SYSTEM_SUSPEND enabled for the guest */ |
| #define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4 |
| /* VM counter offset */ |
| #define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5 |
| /* Timer PPIs made immutable */ |
| #define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6 |
| /* Initial ID reg values loaded */ |
| #define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7 |
| /* Fine-Grained UNDEF initialised */ |
| #define KVM_ARCH_FLAG_FGU_INITIALIZED 8 |
| unsigned long flags; |
| |
| /* VM-wide vCPU feature set */ |
| DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES); |
| |
| /* MPIDR to vcpu index mapping, optional */ |
| struct kvm_mpidr_data *mpidr_data; |
| |
| /* |
| * VM-wide PMU filter, implemented as a bitmap and big enough for |
| * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+). |
| */ |
| unsigned long *pmu_filter; |
| struct arm_pmu *arm_pmu; |
| |
| cpumask_var_t supported_cpus; |
| |
| /* PMCR_EL0.N value for the guest */ |
| u8 pmcr_n; |
| |
| /* Iterator for idreg debugfs */ |
| u8 idreg_debugfs_iter; |
| |
| /* Hypercall features firmware registers' descriptor */ |
| struct kvm_smccc_features smccc_feat; |
| struct maple_tree smccc_filter; |
| |
| /* |
| * Emulated CPU ID registers per VM |
| * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it |
| * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. |
| * |
| * These emulated idregs are VM-wide, but accessed from the context of a vCPU. |
| * Atomic access to multiple idregs are guarded by kvm_arch.config_lock. |
| */ |
| #define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id)) |
| #define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1) |
| u64 id_regs[KVM_ARM_ID_REG_NUM]; |
| |
| u64 ctr_el0; |
| |
| /* Masks for VNCR-baked sysregs */ |
| struct kvm_sysreg_masks *sysreg_masks; |
| |
| /* |
| * For an untrusted host VM, 'pkvm.handle' is used to lookup |
| * the associated pKVM instance in the hypervisor. |
| */ |
| struct kvm_protected_vm pkvm; |
| }; |
| |
| struct kvm_vcpu_fault_info { |
| u64 esr_el2; /* Hyp Syndrom Register */ |
| u64 far_el2; /* Hyp Fault Address Register */ |
| u64 hpfar_el2; /* Hyp IPA Fault Address Register */ |
| u64 disr_el1; /* Deferred [SError] Status Register */ |
| }; |
| |
| /* |
| * VNCR() just places the VNCR_capable registers in the enum after |
| * __VNCR_START__, and the value (after correction) to be an 8-byte offset |
| * from the VNCR base. As we don't require the enum to be otherwise ordered, |
| * we need the terrible hack below to ensure that we correctly size the |
| * sys_regs array, no matter what. |
| * |
| * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful |
| * treasure trove of bit hacks: |
| * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax |
| */ |
| #define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y)))) |
| #define VNCR(r) \ |
| __before_##r, \ |
| r = __VNCR_START__ + ((VNCR_ ## r) / 8), \ |
| __after_##r = __MAX__(__before_##r - 1, r) |
| |
| enum vcpu_sysreg { |
| __INVALID_SYSREG__, /* 0 is reserved as an invalid value */ |
| MPIDR_EL1, /* MultiProcessor Affinity Register */ |
| CLIDR_EL1, /* Cache Level ID Register */ |
| CSSELR_EL1, /* Cache Size Selection Register */ |
| TPIDR_EL0, /* Thread ID, User R/W */ |
| TPIDRRO_EL0, /* Thread ID, User R/O */ |
| TPIDR_EL1, /* Thread ID, Privileged */ |
| CNTKCTL_EL1, /* Timer Control Register (EL1) */ |
| PAR_EL1, /* Physical Address Register */ |
| MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */ |
| OSLSR_EL1, /* OS Lock Status Register */ |
| DISR_EL1, /* Deferred Interrupt Status Register */ |
| |
| /* Performance Monitors Registers */ |
| PMCR_EL0, /* Control Register */ |
| PMSELR_EL0, /* Event Counter Selection Register */ |
| PMEVCNTR0_EL0, /* Event Counter Register (0-30) */ |
| PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30, |
| PMCCNTR_EL0, /* Cycle Counter Register */ |
| PMEVTYPER0_EL0, /* Event Type Register (0-30) */ |
| PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30, |
| PMCCFILTR_EL0, /* Cycle Count Filter Register */ |
| PMCNTENSET_EL0, /* Count Enable Set Register */ |
| PMINTENSET_EL1, /* Interrupt Enable Set Register */ |
| PMOVSSET_EL0, /* Overflow Flag Status Set Register */ |
| PMUSERENR_EL0, /* User Enable Register */ |
| |
| /* Pointer Authentication Registers in a strict increasing order. */ |
| APIAKEYLO_EL1, |
| APIAKEYHI_EL1, |
| APIBKEYLO_EL1, |
| APIBKEYHI_EL1, |
| APDAKEYLO_EL1, |
| APDAKEYHI_EL1, |
| APDBKEYLO_EL1, |
| APDBKEYHI_EL1, |
| APGAKEYLO_EL1, |
| APGAKEYHI_EL1, |
| |
| /* Memory Tagging Extension registers */ |
| RGSR_EL1, /* Random Allocation Tag Seed Register */ |
| GCR_EL1, /* Tag Control Register */ |
| TFSRE0_EL1, /* Tag Fault Status Register (EL0) */ |
| |
| POR_EL0, /* Permission Overlay Register 0 (EL0) */ |
| |
| /* FP/SIMD/SVE */ |
| SVCR, |
| FPMR, |
| |
| /* 32bit specific registers. */ |
| DACR32_EL2, /* Domain Access Control Register */ |
| IFSR32_EL2, /* Instruction Fault Status Register */ |
| FPEXC32_EL2, /* Floating-Point Exception Control Register */ |
| DBGVCR32_EL2, /* Debug Vector Catch Register */ |
| |
| /* EL2 registers */ |
| SCTLR_EL2, /* System Control Register (EL2) */ |
| ACTLR_EL2, /* Auxiliary Control Register (EL2) */ |
| MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */ |
| CPTR_EL2, /* Architectural Feature Trap Register (EL2) */ |
| HACR_EL2, /* Hypervisor Auxiliary Control Register */ |
| ZCR_EL2, /* SVE Control Register (EL2) */ |
| TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */ |
| TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */ |
| TCR_EL2, /* Translation Control Register (EL2) */ |
| SPSR_EL2, /* EL2 saved program status register */ |
| ELR_EL2, /* EL2 exception link register */ |
| AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */ |
| AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */ |
| ESR_EL2, /* Exception Syndrome Register (EL2) */ |
| FAR_EL2, /* Fault Address Register (EL2) */ |
| HPFAR_EL2, /* Hypervisor IPA Fault Address Register */ |
| MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */ |
| AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */ |
| VBAR_EL2, /* Vector Base Address Register (EL2) */ |
| RVBAR_EL2, /* Reset Vector Base Address Register */ |
| CONTEXTIDR_EL2, /* Context ID Register (EL2) */ |
| CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */ |
| SP_EL2, /* EL2 Stack Pointer */ |
| CNTHP_CTL_EL2, |
| CNTHP_CVAL_EL2, |
| CNTHV_CTL_EL2, |
| CNTHV_CVAL_EL2, |
| |
| __VNCR_START__, /* Any VNCR-capable reg goes after this point */ |
| |
| VNCR(SCTLR_EL1),/* System Control Register */ |
| VNCR(ACTLR_EL1),/* Auxiliary Control Register */ |
| VNCR(CPACR_EL1),/* Coprocessor Access Control */ |
| VNCR(ZCR_EL1), /* SVE Control */ |
| VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */ |
| VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */ |
| VNCR(TCR_EL1), /* Translation Control Register */ |
| VNCR(TCR2_EL1), /* Extended Translation Control Register */ |
| VNCR(ESR_EL1), /* Exception Syndrome Register */ |
| VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */ |
| VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */ |
| VNCR(FAR_EL1), /* Fault Address Register */ |
| VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */ |
| VNCR(VBAR_EL1), /* Vector Base Address Register */ |
| VNCR(CONTEXTIDR_EL1), /* Context ID Register */ |
| VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */ |
| VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */ |
| VNCR(ELR_EL1), |
| VNCR(SP_EL1), |
| VNCR(SPSR_EL1), |
| VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */ |
| VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */ |
| VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */ |
| VNCR(HCR_EL2), /* Hypervisor Configuration Register */ |
| VNCR(HSTR_EL2), /* Hypervisor System Trap Register */ |
| VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */ |
| VNCR(VTCR_EL2), /* Virtualization Translation Control Register */ |
| VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */ |
| VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */ |
| |
| /* Permission Indirection Extension registers */ |
| VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */ |
| VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */ |
| |
| VNCR(POR_EL1), /* Permission Overlay Register 1 (EL1) */ |
| |
| VNCR(HFGRTR_EL2), |
| VNCR(HFGWTR_EL2), |
| VNCR(HFGITR_EL2), |
| VNCR(HDFGRTR_EL2), |
| VNCR(HDFGWTR_EL2), |
| VNCR(HAFGRTR_EL2), |
| |
| VNCR(CNTVOFF_EL2), |
| VNCR(CNTV_CVAL_EL0), |
| VNCR(CNTV_CTL_EL0), |
| VNCR(CNTP_CVAL_EL0), |
| VNCR(CNTP_CTL_EL0), |
| |
| VNCR(ICH_HCR_EL2), |
| |
| NR_SYS_REGS /* Nothing after this line! */ |
| }; |
| |
| struct kvm_sysreg_masks { |
| struct { |
| u64 res0; |
| u64 res1; |
| } mask[NR_SYS_REGS - __VNCR_START__]; |
| }; |
| |
| struct kvm_cpu_context { |
| struct user_pt_regs regs; /* sp = sp_el0 */ |
| |
| u64 spsr_abt; |
| u64 spsr_und; |
| u64 spsr_irq; |
| u64 spsr_fiq; |
| |
| struct user_fpsimd_state fp_regs; |
| |
| u64 sys_regs[NR_SYS_REGS]; |
| |
| struct kvm_vcpu *__hyp_running_vcpu; |
| |
| /* This pointer has to be 4kB aligned. */ |
| u64 *vncr_array; |
| }; |
| |
| struct cpu_sve_state { |
| __u64 zcr_el1; |
| |
| /* |
| * Ordering is important since __sve_save_state/__sve_restore_state |
| * relies on it. |
| */ |
| __u32 fpsr; |
| __u32 fpcr; |
| |
| /* Must be SVE_VQ_BYTES (128 bit) aligned. */ |
| __u8 sve_regs[]; |
| }; |
| |
| /* |
| * This structure is instantiated on a per-CPU basis, and contains |
| * data that is: |
| * |
| * - tied to a single physical CPU, and |
| * - either have a lifetime that does not extend past vcpu_put() |
| * - or is an invariant for the lifetime of the system |
| * |
| * Use host_data_ptr(field) as a way to access a pointer to such a |
| * field. |
| */ |
| struct kvm_host_data { |
| struct kvm_cpu_context host_ctxt; |
| |
| /* |
| * All pointers in this union are hyp VA. |
| * sve_state is only used in pKVM and if system_supports_sve(). |
| */ |
| union { |
| struct user_fpsimd_state *fpsimd_state; |
| struct cpu_sve_state *sve_state; |
| }; |
| |
| union { |
| /* HYP VA pointer to the host storage for FPMR */ |
| u64 *fpmr_ptr; |
| /* |
| * Used by pKVM only, as it needs to provide storage |
| * for the host |
| */ |
| u64 fpmr; |
| }; |
| |
| /* Ownership of the FP regs */ |
| enum { |
| FP_STATE_FREE, |
| FP_STATE_HOST_OWNED, |
| FP_STATE_GUEST_OWNED, |
| } fp_owner; |
| |
| /* |
| * host_debug_state contains the host registers which are |
| * saved and restored during world switches. |
| */ |
| struct { |
| /* {Break,watch}point registers */ |
| struct kvm_guest_debug_arch regs; |
| /* Statistical profiling extension */ |
| u64 pmscr_el1; |
| /* Self-hosted trace */ |
| u64 trfcr_el1; |
| /* Values of trap registers for the host before guest entry. */ |
| u64 mdcr_el2; |
| } host_debug_state; |
| }; |
| |
| struct kvm_host_psci_config { |
| /* PSCI version used by host. */ |
| u32 version; |
| u32 smccc_version; |
| |
| /* Function IDs used by host if version is v0.1. */ |
| struct psci_0_1_function_ids function_ids_0_1; |
| |
| bool psci_0_1_cpu_suspend_implemented; |
| bool psci_0_1_cpu_on_implemented; |
| bool psci_0_1_cpu_off_implemented; |
| bool psci_0_1_migrate_implemented; |
| }; |
| |
| extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config); |
| #define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config) |
| |
| extern s64 kvm_nvhe_sym(hyp_physvirt_offset); |
| #define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset) |
| |
| extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS]; |
| #define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map) |
| |
| struct vcpu_reset_state { |
| unsigned long pc; |
| unsigned long r0; |
| bool be; |
| bool reset; |
| }; |
| |
| struct kvm_vcpu_arch { |
| struct kvm_cpu_context ctxt; |
| |
| /* |
| * Guest floating point state |
| * |
| * The architecture has two main floating point extensions, |
| * the original FPSIMD and SVE. These have overlapping |
| * register views, with the FPSIMD V registers occupying the |
| * low 128 bits of the SVE Z registers. When the core |
| * floating point code saves the register state of a task it |
| * records which view it saved in fp_type. |
| */ |
| void *sve_state; |
| enum fp_type fp_type; |
| unsigned int sve_max_vl; |
| |
| /* Stage 2 paging state used by the hardware on next switch */ |
| struct kvm_s2_mmu *hw_mmu; |
| |
| /* Values of trap registers for the guest. */ |
| u64 hcr_el2; |
| u64 hcrx_el2; |
| u64 mdcr_el2; |
| u64 cptr_el2; |
| |
| /* Exception Information */ |
| struct kvm_vcpu_fault_info fault; |
| |
| /* Configuration flags, set once and for all before the vcpu can run */ |
| u8 cflags; |
| |
| /* Input flags to the hypervisor code, potentially cleared after use */ |
| u8 iflags; |
| |
| /* State flags for kernel bookkeeping, unused by the hypervisor code */ |
| u8 sflags; |
| |
| /* |
| * Don't run the guest (internal implementation need). |
| * |
| * Contrary to the flags above, this is set/cleared outside of |
| * a vcpu context, and thus cannot be mixed with the flags |
| * themselves (or the flag accesses need to be made atomic). |
| */ |
| bool pause; |
| |
| /* |
| * We maintain more than a single set of debug registers to support |
| * debugging the guest from the host and to maintain separate host and |
| * guest state during world switches. vcpu_debug_state are the debug |
| * registers of the vcpu as the guest sees them. |
| * |
| * external_debug_state contains the debug values we want to debug the |
| * guest. This is set via the KVM_SET_GUEST_DEBUG ioctl. |
| * |
| * debug_ptr points to the set of debug registers that should be loaded |
| * onto the hardware when running the guest. |
| */ |
| struct kvm_guest_debug_arch *debug_ptr; |
| struct kvm_guest_debug_arch vcpu_debug_state; |
| struct kvm_guest_debug_arch external_debug_state; |
| |
| /* VGIC state */ |
| struct vgic_cpu vgic_cpu; |
| struct arch_timer_cpu timer_cpu; |
| struct kvm_pmu pmu; |
| |
| /* |
| * Guest registers we preserve during guest debugging. |
| * |
| * These shadow registers are updated by the kvm_handle_sys_reg |
| * trap handler if the guest accesses or updates them while we |
| * are using guest debug. |
| */ |
| struct { |
| u32 mdscr_el1; |
| bool pstate_ss; |
| } guest_debug_preserved; |
| |
| /* vcpu power state */ |
| struct kvm_mp_state mp_state; |
| spinlock_t mp_state_lock; |
| |
| /* Cache some mmu pages needed inside spinlock regions */ |
| struct kvm_mmu_memory_cache mmu_page_cache; |
| |
| /* Virtual SError ESR to restore when HCR_EL2.VSE is set */ |
| u64 vsesr_el2; |
| |
| /* Additional reset state */ |
| struct vcpu_reset_state reset_state; |
| |
| /* Guest PV state */ |
| struct { |
| u64 last_steal; |
| gpa_t base; |
| } steal; |
| |
| /* Per-vcpu CCSIDR override or NULL */ |
| u32 *ccsidr; |
| }; |
| |
| /* |
| * Each 'flag' is composed of a comma-separated triplet: |
| * |
| * - the flag-set it belongs to in the vcpu->arch structure |
| * - the value for that flag |
| * - the mask for that flag |
| * |
| * __vcpu_single_flag() builds such a triplet for a single-bit flag. |
| * unpack_vcpu_flag() extract the flag value from the triplet for |
| * direct use outside of the flag accessors. |
| */ |
| #define __vcpu_single_flag(_set, _f) _set, (_f), (_f) |
| |
| #define __unpack_flag(_set, _f, _m) _f |
| #define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__) |
| |
| #define __build_check_flag(v, flagset, f, m) \ |
| do { \ |
| typeof(v->arch.flagset) *_fset; \ |
| \ |
| /* Check that the flags fit in the mask */ \ |
| BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \ |
| /* Check that the flags fit in the type */ \ |
| BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \ |
| } while (0) |
| |
| #define __vcpu_get_flag(v, flagset, f, m) \ |
| ({ \ |
| __build_check_flag(v, flagset, f, m); \ |
| \ |
| READ_ONCE(v->arch.flagset) & (m); \ |
| }) |
| |
| /* |
| * Note that the set/clear accessors must be preempt-safe in order to |
| * avoid nesting them with load/put which also manipulate flags... |
| */ |
| #ifdef __KVM_NVHE_HYPERVISOR__ |
| /* the nVHE hypervisor is always non-preemptible */ |
| #define __vcpu_flags_preempt_disable() |
| #define __vcpu_flags_preempt_enable() |
| #else |
| #define __vcpu_flags_preempt_disable() preempt_disable() |
| #define __vcpu_flags_preempt_enable() preempt_enable() |
| #endif |
| |
| #define __vcpu_set_flag(v, flagset, f, m) \ |
| do { \ |
| typeof(v->arch.flagset) *fset; \ |
| \ |
| __build_check_flag(v, flagset, f, m); \ |
| \ |
| fset = &v->arch.flagset; \ |
| __vcpu_flags_preempt_disable(); \ |
| if (HWEIGHT(m) > 1) \ |
| *fset &= ~(m); \ |
| *fset |= (f); \ |
| __vcpu_flags_preempt_enable(); \ |
| } while (0) |
| |
| #define __vcpu_clear_flag(v, flagset, f, m) \ |
| do { \ |
| typeof(v->arch.flagset) *fset; \ |
| \ |
| __build_check_flag(v, flagset, f, m); \ |
| \ |
| fset = &v->arch.flagset; \ |
| __vcpu_flags_preempt_disable(); \ |
| *fset &= ~(m); \ |
| __vcpu_flags_preempt_enable(); \ |
| } while (0) |
| |
| #define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__) |
| #define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__) |
| #define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__) |
| |
| /* SVE exposed to guest */ |
| #define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0)) |
| /* SVE config completed */ |
| #define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1)) |
| /* PTRAUTH exposed to guest */ |
| #define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2)) |
| /* KVM_ARM_VCPU_INIT completed */ |
| #define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3)) |
| |
| /* Exception pending */ |
| #define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0)) |
| /* |
| * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't |
| * be set together with an exception... |
| */ |
| #define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1)) |
| /* Target EL/MODE (not a single flag, but let's abuse the macro) */ |
| #define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1)) |
| |
| /* Helpers to encode exceptions with minimum fuss */ |
| #define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK) |
| #define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL) |
| #define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL |
| |
| /* |
| * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following |
| * values: |
| * |
| * For AArch32 EL1: |
| */ |
| #define EXCEPT_AA32_UND __vcpu_except_flags(0) |
| #define EXCEPT_AA32_IABT __vcpu_except_flags(1) |
| #define EXCEPT_AA32_DABT __vcpu_except_flags(2) |
| /* For AArch64: */ |
| #define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0) |
| #define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1) |
| #define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2) |
| #define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3) |
| /* For AArch64 with NV: */ |
| #define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4) |
| #define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5) |
| #define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6) |
| #define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7) |
| /* Guest debug is live */ |
| #define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4)) |
| /* Save SPE context if active */ |
| #define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5)) |
| /* Save TRBE context if active */ |
| #define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6)) |
| |
| /* SVE enabled for host EL0 */ |
| #define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0)) |
| /* SME enabled for EL0 */ |
| #define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1)) |
| /* Physical CPU not in supported_cpus */ |
| #define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2)) |
| /* WFIT instruction trapped */ |
| #define IN_WFIT __vcpu_single_flag(sflags, BIT(3)) |
| /* vcpu system registers loaded on physical CPU */ |
| #define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4)) |
| /* Software step state is Active-pending */ |
| #define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5)) |
| /* PMUSERENR for the guest EL0 is on physical CPU */ |
| #define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6)) |
| /* WFI instruction trapped */ |
| #define IN_WFI __vcpu_single_flag(sflags, BIT(7)) |
| |
| |
| /* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */ |
| #define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \ |
| sve_ffr_offset((vcpu)->arch.sve_max_vl)) |
| |
| #define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl) |
| |
| #define vcpu_sve_zcr_elx(vcpu) \ |
| (unlikely(is_hyp_ctxt(vcpu)) ? ZCR_EL2 : ZCR_EL1) |
| |
| #define vcpu_sve_state_size(vcpu) ({ \ |
| size_t __size_ret; \ |
| unsigned int __vcpu_vq; \ |
| \ |
| if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \ |
| __size_ret = 0; \ |
| } else { \ |
| __vcpu_vq = vcpu_sve_max_vq(vcpu); \ |
| __size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \ |
| } \ |
| \ |
| __size_ret; \ |
| }) |
| |
| #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \ |
| KVM_GUESTDBG_USE_SW_BP | \ |
| KVM_GUESTDBG_USE_HW | \ |
| KVM_GUESTDBG_SINGLESTEP) |
| |
| #define vcpu_has_sve(vcpu) (system_supports_sve() && \ |
| vcpu_get_flag(vcpu, GUEST_HAS_SVE)) |
| |
| #ifdef CONFIG_ARM64_PTR_AUTH |
| #define vcpu_has_ptrauth(vcpu) \ |
| ((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \ |
| cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \ |
| vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH)) |
| #else |
| #define vcpu_has_ptrauth(vcpu) false |
| #endif |
| |
| #define vcpu_on_unsupported_cpu(vcpu) \ |
| vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU) |
| |
| #define vcpu_set_on_unsupported_cpu(vcpu) \ |
| vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU) |
| |
| #define vcpu_clear_on_unsupported_cpu(vcpu) \ |
| vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU) |
| |
| #define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs) |
| |
| /* |
| * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the |
| * memory backed version of a register, and not the one most recently |
| * accessed by a running VCPU. For example, for userspace access or |
| * for system registers that are never context switched, but only |
| * emulated. |
| * |
| * Don't bother with VNCR-based accesses in the nVHE code, it has no |
| * business dealing with NV. |
| */ |
| static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r) |
| { |
| #if !defined (__KVM_NVHE_HYPERVISOR__) |
| if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) && |
| r >= __VNCR_START__ && ctxt->vncr_array)) |
| return &ctxt->vncr_array[r - __VNCR_START__]; |
| #endif |
| return (u64 *)&ctxt->sys_regs[r]; |
| } |
| |
| #define __ctxt_sys_reg(c,r) \ |
| ({ \ |
| BUILD_BUG_ON(__builtin_constant_p(r) && \ |
| (r) >= NR_SYS_REGS); \ |
| ___ctxt_sys_reg(c, r); \ |
| }) |
| |
| #define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r)) |
| |
| u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg); |
| #define __vcpu_sys_reg(v,r) \ |
| (*({ \ |
| const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \ |
| u64 *__r = __ctxt_sys_reg(ctxt, (r)); \ |
| if (vcpu_has_nv((v)) && (r) >= __VNCR_START__) \ |
| *__r = kvm_vcpu_sanitise_vncr_reg((v), (r)); \ |
| __r; \ |
| })) |
| |
| u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg); |
| void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg); |
| |
| static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val) |
| { |
| /* |
| * *** VHE ONLY *** |
| * |
| * System registers listed in the switch are not saved on every |
| * exit from the guest but are only saved on vcpu_put. |
| * |
| * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but |
| * should never be listed below, because the guest cannot modify its |
| * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's |
| * thread when emulating cross-VCPU communication. |
| */ |
| if (!has_vhe()) |
| return false; |
| |
| switch (reg) { |
| case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; |
| case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; |
| case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; |
| case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; |
| case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break; |
| case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break; |
| case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break; |
| case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break; |
| case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break; |
| case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break; |
| case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break; |
| case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break; |
| case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break; |
| case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break; |
| case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break; |
| case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break; |
| case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break; |
| case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break; |
| case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break; |
| case PAR_EL1: *val = read_sysreg_par(); break; |
| case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break; |
| case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break; |
| case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break; |
| case ZCR_EL1: *val = read_sysreg_s(SYS_ZCR_EL12); break; |
| default: return false; |
| } |
| |
| return true; |
| } |
| |
| static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg) |
| { |
| /* |
| * *** VHE ONLY *** |
| * |
| * System registers listed in the switch are not restored on every |
| * entry to the guest but are only restored on vcpu_load. |
| * |
| * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but |
| * should never be listed below, because the MPIDR should only be set |
| * once, before running the VCPU, and never changed later. |
| */ |
| if (!has_vhe()) |
| return false; |
| |
| switch (reg) { |
| case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; |
| case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; |
| case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; |
| case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; |
| case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break; |
| case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break; |
| case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break; |
| case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break; |
| case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break; |
| case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break; |
| case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break; |
| case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break; |
| case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break; |
| case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break; |
| case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break; |
| case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break; |
| case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break; |
| case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break; |
| case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break; |
| case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break; |
| case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break; |
| case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break; |
| case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break; |
| case ZCR_EL1: write_sysreg_s(val, SYS_ZCR_EL12); break; |
| default: return false; |
| } |
| |
| return true; |
| } |
| |
| struct kvm_vm_stat { |
| struct kvm_vm_stat_generic generic; |
| }; |
| |
| struct kvm_vcpu_stat { |
| struct kvm_vcpu_stat_generic generic; |
| u64 hvc_exit_stat; |
| u64 wfe_exit_stat; |
| u64 wfi_exit_stat; |
| u64 mmio_exit_user; |
| u64 mmio_exit_kernel; |
| u64 signal_exits; |
| u64 exits; |
| }; |
| |
| unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu); |
| int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices); |
| int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); |
| int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg); |
| |
| unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu); |
| int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices); |
| |
| int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events); |
| |
| int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| struct kvm_vcpu_events *events); |
| |
| void kvm_arm_halt_guest(struct kvm *kvm); |
| void kvm_arm_resume_guest(struct kvm *kvm); |
| |
| #define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid) |
| |
| #ifndef __KVM_NVHE_HYPERVISOR__ |
| #define kvm_call_hyp_nvhe(f, ...) \ |
| ({ \ |
| struct arm_smccc_res res; \ |
| \ |
| arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \ |
| ##__VA_ARGS__, &res); \ |
| WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \ |
| \ |
| res.a1; \ |
| }) |
| |
| /* |
| * The couple of isb() below are there to guarantee the same behaviour |
| * on VHE as on !VHE, where the eret to EL1 acts as a context |
| * synchronization event. |
| */ |
| #define kvm_call_hyp(f, ...) \ |
| do { \ |
| if (has_vhe()) { \ |
| f(__VA_ARGS__); \ |
| isb(); \ |
| } else { \ |
| kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ |
| } \ |
| } while(0) |
| |
| #define kvm_call_hyp_ret(f, ...) \ |
| ({ \ |
| typeof(f(__VA_ARGS__)) ret; \ |
| \ |
| if (has_vhe()) { \ |
| ret = f(__VA_ARGS__); \ |
| isb(); \ |
| } else { \ |
| ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \ |
| } \ |
| \ |
| ret; \ |
| }) |
| #else /* __KVM_NVHE_HYPERVISOR__ */ |
| #define kvm_call_hyp(f, ...) f(__VA_ARGS__) |
| #define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__) |
| #define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__) |
| #endif /* __KVM_NVHE_HYPERVISOR__ */ |
| |
| int handle_exit(struct kvm_vcpu *vcpu, int exception_index); |
| void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index); |
| |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu); |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu); |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu); |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu); |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu); |
| int kvm_handle_sys_reg(struct kvm_vcpu *vcpu); |
| int kvm_handle_cp10_id(struct kvm_vcpu *vcpu); |
| |
| void kvm_sys_regs_create_debugfs(struct kvm *kvm); |
| void kvm_reset_sys_regs(struct kvm_vcpu *vcpu); |
| |
| int __init kvm_sys_reg_table_init(void); |
| struct sys_reg_desc; |
| int __init populate_sysreg_config(const struct sys_reg_desc *sr, |
| unsigned int idx); |
| int __init populate_nv_trap_config(void); |
| |
| bool lock_all_vcpus(struct kvm *kvm); |
| void unlock_all_vcpus(struct kvm *kvm); |
| |
| void kvm_calculate_traps(struct kvm_vcpu *vcpu); |
| |
| /* MMIO helpers */ |
| void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data); |
| unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len); |
| |
| int kvm_handle_mmio_return(struct kvm_vcpu *vcpu); |
| int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa); |
| |
| /* |
| * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event, |
| * arrived in guest context. For arm64, any event that arrives while a vCPU is |
| * loaded is considered to be "in guest". |
| */ |
| static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu) |
| { |
| return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu; |
| } |
| |
| long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu); |
| gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu); |
| void kvm_update_stolen_time(struct kvm_vcpu *vcpu); |
| |
| bool kvm_arm_pvtime_supported(void); |
| int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| |
| extern unsigned int __ro_after_init kvm_arm_vmid_bits; |
| int __init kvm_arm_vmid_alloc_init(void); |
| void __init kvm_arm_vmid_alloc_free(void); |
| bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid); |
| void kvm_arm_vmid_clear_active(void); |
| |
| static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch) |
| { |
| vcpu_arch->steal.base = INVALID_GPA; |
| } |
| |
| static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch) |
| { |
| return (vcpu_arch->steal.base != INVALID_GPA); |
| } |
| |
| void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome); |
| |
| struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr); |
| |
| DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data); |
| |
| /* |
| * How we access per-CPU host data depends on the where we access it from, |
| * and the mode we're in: |
| * |
| * - VHE and nVHE hypervisor bits use their locally defined instance |
| * |
| * - the rest of the kernel use either the VHE or nVHE one, depending on |
| * the mode we're running in. |
| * |
| * Unless we're in protected mode, fully deprivileged, and the nVHE |
| * per-CPU stuff is exclusively accessible to the protected EL2 code. |
| * In this case, the EL1 code uses the *VHE* data as its private state |
| * (which makes sense in a way as there shouldn't be any shared state |
| * between the host and the hypervisor). |
| * |
| * Yes, this is all totally trivial. Shoot me now. |
| */ |
| #if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__) |
| #define host_data_ptr(f) (&this_cpu_ptr(&kvm_host_data)->f) |
| #else |
| #define host_data_ptr(f) \ |
| (static_branch_unlikely(&kvm_protected_mode_initialized) ? \ |
| &this_cpu_ptr(&kvm_host_data)->f : \ |
| &this_cpu_ptr_hyp_sym(kvm_host_data)->f) |
| #endif |
| |
| /* Check whether the FP regs are owned by the guest */ |
| static inline bool guest_owns_fp_regs(void) |
| { |
| return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED; |
| } |
| |
| /* Check whether the FP regs are owned by the host */ |
| static inline bool host_owns_fp_regs(void) |
| { |
| return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED; |
| } |
| |
| static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt) |
| { |
| /* The host's MPIDR is immutable, so let's set it up at boot time */ |
| ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr(); |
| } |
| |
| static inline bool kvm_system_needs_idmapped_vectors(void) |
| { |
| return cpus_have_final_cap(ARM64_SPECTRE_V3A); |
| } |
| |
| static inline void kvm_arch_sync_events(struct kvm *kvm) {} |
| |
| void kvm_arm_init_debug(void); |
| void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu); |
| void kvm_arm_setup_debug(struct kvm_vcpu *vcpu); |
| void kvm_arm_clear_debug(struct kvm_vcpu *vcpu); |
| void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu); |
| |
| #define kvm_vcpu_os_lock_enabled(vcpu) \ |
| (!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK)) |
| |
| int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, |
| struct kvm_device_attr *attr); |
| |
| int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, |
| struct kvm_arm_copy_mte_tags *copy_tags); |
| int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, |
| struct kvm_arm_counter_offset *offset); |
| int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, |
| struct reg_mask_range *range); |
| |
| /* Guest/host FPSIMD coordination helpers */ |
| int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu); |
| |
| static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr) |
| { |
| return (!has_vhe() && attr->exclude_host); |
| } |
| |
| /* Flags for host debug state */ |
| void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu); |
| void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu); |
| |
| #ifdef CONFIG_KVM |
| void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr); |
| void kvm_clr_pmu_events(u64 clr); |
| bool kvm_set_pmuserenr(u64 val); |
| #else |
| static inline void kvm_set_pmu_events(u64 set, struct perf_event_attr *attr) {} |
| static inline void kvm_clr_pmu_events(u64 clr) {} |
| static inline bool kvm_set_pmuserenr(u64 val) |
| { |
| return false; |
| } |
| #endif |
| |
| void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu); |
| void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu); |
| |
| int __init kvm_set_ipa_limit(void); |
| u32 kvm_get_pa_bits(struct kvm *kvm); |
| |
| #define __KVM_HAVE_ARCH_VM_ALLOC |
| struct kvm *kvm_arch_alloc_vm(void); |
| |
| #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS |
| |
| #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE |
| |
| #define kvm_vm_is_protected(kvm) (is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled) |
| |
| #define vcpu_is_protected(vcpu) kvm_vm_is_protected((vcpu)->kvm) |
| |
| int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature); |
| bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu); |
| |
| #define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED) |
| |
| #define kvm_has_mte(kvm) \ |
| (system_supports_mte() && \ |
| test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags)) |
| |
| #define kvm_supports_32bit_el0() \ |
| (system_supports_32bit_el0() && \ |
| !static_branch_unlikely(&arm64_mismatched_32bit_el0)) |
| |
| #define kvm_vm_has_ran_once(kvm) \ |
| (test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags)) |
| |
| static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature) |
| { |
| return test_bit(feature, ka->vcpu_features); |
| } |
| |
| #define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f)) |
| |
| #define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED) |
| |
| int kvm_trng_call(struct kvm_vcpu *vcpu); |
| #ifdef CONFIG_KVM |
| extern phys_addr_t hyp_mem_base; |
| extern phys_addr_t hyp_mem_size; |
| void __init kvm_hyp_reserve(void); |
| #else |
| static inline void kvm_hyp_reserve(void) { } |
| #endif |
| |
| void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu); |
| bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu); |
| |
| static inline u64 *__vm_id_reg(struct kvm_arch *ka, u32 reg) |
| { |
| switch (reg) { |
| case sys_reg(3, 0, 0, 1, 0) ... sys_reg(3, 0, 0, 7, 7): |
| return &ka->id_regs[IDREG_IDX(reg)]; |
| case SYS_CTR_EL0: |
| return &ka->ctr_el0; |
| default: |
| WARN_ON_ONCE(1); |
| return NULL; |
| } |
| } |
| |
| #define kvm_read_vm_id_reg(kvm, reg) \ |
| ({ u64 __val = *__vm_id_reg(&(kvm)->arch, reg); __val; }) |
| |
| void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val); |
| |
| #define __expand_field_sign_unsigned(id, fld, val) \ |
| ((u64)SYS_FIELD_VALUE(id, fld, val)) |
| |
| #define __expand_field_sign_signed(id, fld, val) \ |
| ({ \ |
| u64 __val = SYS_FIELD_VALUE(id, fld, val); \ |
| sign_extend64(__val, id##_##fld##_WIDTH - 1); \ |
| }) |
| |
| #define get_idreg_field_unsigned(kvm, id, fld) \ |
| ({ \ |
| u64 __val = kvm_read_vm_id_reg((kvm), SYS_##id); \ |
| FIELD_GET(id##_##fld##_MASK, __val); \ |
| }) |
| |
| #define get_idreg_field_signed(kvm, id, fld) \ |
| ({ \ |
| u64 __val = get_idreg_field_unsigned(kvm, id, fld); \ |
| sign_extend64(__val, id##_##fld##_WIDTH - 1); \ |
| }) |
| |
| #define get_idreg_field_enum(kvm, id, fld) \ |
| get_idreg_field_unsigned(kvm, id, fld) |
| |
| #define kvm_cmp_feat_signed(kvm, id, fld, op, limit) \ |
| (get_idreg_field_signed((kvm), id, fld) op __expand_field_sign_signed(id, fld, limit)) |
| |
| #define kvm_cmp_feat_unsigned(kvm, id, fld, op, limit) \ |
| (get_idreg_field_unsigned((kvm), id, fld) op __expand_field_sign_unsigned(id, fld, limit)) |
| |
| #define kvm_cmp_feat(kvm, id, fld, op, limit) \ |
| (id##_##fld##_SIGNED ? \ |
| kvm_cmp_feat_signed(kvm, id, fld, op, limit) : \ |
| kvm_cmp_feat_unsigned(kvm, id, fld, op, limit)) |
| |
| #define kvm_has_feat(kvm, id, fld, limit) \ |
| kvm_cmp_feat(kvm, id, fld, >=, limit) |
| |
| #define kvm_has_feat_enum(kvm, id, fld, val) \ |
| kvm_cmp_feat_unsigned(kvm, id, fld, ==, val) |
| |
| #define kvm_has_feat_range(kvm, id, fld, min, max) \ |
| (kvm_cmp_feat(kvm, id, fld, >=, min) && \ |
| kvm_cmp_feat(kvm, id, fld, <=, max)) |
| |
| /* Check for a given level of PAuth support */ |
| #define kvm_has_pauth(k, l) \ |
| ({ \ |
| bool pa, pi, pa3; \ |
| \ |
| pa = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l); \ |
| pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP); \ |
| pi = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l); \ |
| pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP); \ |
| pa3 = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l); \ |
| pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP); \ |
| \ |
| (pa + pi + pa3) == 1; \ |
| }) |
| |
| #define kvm_has_fpmr(k) \ |
| (system_supports_fpmr() && \ |
| kvm_has_feat((k), ID_AA64PFR2_EL1, FPMR, IMP)) |
| |
| #endif /* __ARM64_KVM_HOST_H__ */ |