| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H |
| #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| /* |
| * The "classic" 32-bit implementation of the PowerPC MMU uses a hash |
| * table containing PTEs, together with a set of 16 segment registers, |
| * to define the virtual to physical address mapping. |
| * |
| * We use the hash table as an extended TLB, i.e. a cache of currently |
| * active mappings. We maintain a two-level page table tree, much |
| * like that used by the i386, for the sake of the Linux memory |
| * management code. Low-level assembler code in hash_low_32.S |
| * (procedure hash_page) is responsible for extracting ptes from the |
| * tree and putting them into the hash table when necessary, and |
| * updating the accessed and modified bits in the page table tree. |
| */ |
| |
| #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ |
| #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ |
| #define _PAGE_READ 0x004 /* software: read access allowed */ |
| #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ |
| #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ |
| #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ |
| #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ |
| #define _PAGE_DIRTY 0x080 /* C: page changed */ |
| #define _PAGE_ACCESSED 0x100 /* R: page referenced */ |
| #define _PAGE_EXEC 0x200 /* software: exec allowed */ |
| #define _PAGE_WRITE 0x400 /* software: user write access allowed */ |
| #define _PAGE_SPECIAL 0x800 /* software: Special page */ |
| |
| #ifdef CONFIG_PTE_64BIT |
| /* We never clear the high word of the pte */ |
| #define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE) |
| #else |
| #define _PTE_NONE_MASK _PAGE_HASHPTE |
| #endif |
| |
| #define _PMD_PRESENT 0 |
| #define _PMD_PRESENT_MASK (PAGE_MASK) |
| #define _PMD_BAD (~PAGE_MASK) |
| |
| /* We borrow the _PAGE_READ bit to store the exclusive marker in swap PTEs. */ |
| #define _PAGE_SWP_EXCLUSIVE _PAGE_READ |
| |
| /* And here we include common definitions */ |
| |
| #define _PAGE_HPTEFLAGS _PAGE_HASHPTE |
| |
| /* |
| * Location of the PFN in the PTE. Most 32-bit platforms use the same |
| * as _PAGE_SHIFT here (ie, naturally aligned). |
| * Platform who don't just pre-define the value so we don't override it here. |
| */ |
| #define PTE_RPN_SHIFT (PAGE_SHIFT) |
| |
| /* |
| * The mask covered by the RPN must be a ULL on 32-bit platforms with |
| * 64-bit PTEs. |
| */ |
| #ifdef CONFIG_PTE_64BIT |
| #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) |
| #define MAX_POSSIBLE_PHYSMEM_BITS 36 |
| #else |
| #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) |
| #define MAX_POSSIBLE_PHYSMEM_BITS 32 |
| #endif |
| |
| /* |
| * _PAGE_CHG_MASK masks of bits that are to be preserved across |
| * pgprot changes. |
| */ |
| #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \ |
| _PAGE_ACCESSED | _PAGE_SPECIAL) |
| |
| /* |
| * We define 2 sets of base prot bits, one for basic pages (ie, |
| * cacheable kernel and user pages) and one for non cacheable |
| * pages. We always set _PAGE_COHERENT when SMP is enabled or |
| * the processor might need it for DMA coherency. |
| */ |
| #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) |
| #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT) |
| |
| #include <asm/pgtable-masks.h> |
| |
| /* Permission masks used for kernel mappings */ |
| #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) |
| #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) |
| #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED) |
| #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) |
| #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) |
| |
| #define PTE_INDEX_SIZE PTE_SHIFT |
| #define PMD_INDEX_SIZE 0 |
| #define PUD_INDEX_SIZE 0 |
| #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) |
| |
| #define PMD_CACHE_INDEX PMD_INDEX_SIZE |
| #define PUD_CACHE_INDEX PUD_INDEX_SIZE |
| |
| #ifndef __ASSEMBLY__ |
| #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) |
| #define PMD_TABLE_SIZE 0 |
| #define PUD_TABLE_SIZE 0 |
| #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) |
| |
| /* Bits to mask out from a PMD to get to the PTE page */ |
| #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) |
| #endif /* __ASSEMBLY__ */ |
| |
| #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) |
| #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) |
| |
| /* |
| * The normal case is that PTEs are 32-bits and we have a 1-page |
| * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| * |
| * For any >32-bit physical address platform, we can use the following |
| * two level page table layout where the pgdir is 8KB and the MS 13 bits |
| * are an index to the second level table. The combined pgdir/pmd first |
| * level has 2048 entries and the second level has 512 64-bit PTE entries. |
| * -Matt |
| */ |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
| #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| |
| #ifndef __ASSEMBLY__ |
| |
| int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); |
| void unmap_kernel_page(unsigned long va); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary |
| * value (for now) on others, from where we can start layout kernel |
| * virtual space that goes below PKMAP and FIXMAP |
| */ |
| |
| #define FIXADDR_SIZE 0 |
| #ifdef CONFIG_KASAN |
| #include <asm/kasan.h> |
| #define FIXADDR_TOP (KASAN_SHADOW_START - PAGE_SIZE) |
| #else |
| #define FIXADDR_TOP ((unsigned long)(-PAGE_SIZE)) |
| #endif |
| |
| /* |
| * ioremap_bot starts at that address. Early ioremaps move down from there, |
| * until mem_init() at which point this becomes the top of the vmalloc |
| * and ioremap space |
| */ |
| #ifdef CONFIG_HIGHMEM |
| #define IOREMAP_TOP PKMAP_BASE |
| #else |
| #define IOREMAP_TOP FIXADDR_START |
| #endif |
| |
| /* PPC32 shares vmalloc area with ioremap */ |
| #define IOREMAP_START VMALLOC_START |
| #define IOREMAP_END VMALLOC_END |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 16MB value just means that there will be a 64MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * We no longer map larger than phys RAM with the BATs so we don't have |
| * to worry about the VMALLOC_OFFSET causing problems. We do have to worry |
| * about clashes between our early calls to ioremap() that start growing down |
| * from ioremap_base being run into the VM area allocations (growing upwards |
| * from VMALLOC_START). For this reason we have ioremap_bot to check when |
| * we actually run into our mappings setup in the early boot with the VM |
| * system. This really does become a problem for machines with good amounts |
| * of RAM. -- Cort |
| */ |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */ |
| |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| |
| #ifdef CONFIG_KASAN_VMALLOC |
| #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) |
| #else |
| #define VMALLOC_END ioremap_bot |
| #endif |
| |
| #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M) |
| #define MODULES_SIZE (CONFIG_MODULES_SIZE * SZ_1M) |
| #define MODULES_VADDR (MODULES_END - MODULES_SIZE) |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| |
| /* Bits to mask out from a PGD to get to the PUD page */ |
| #define PGD_MASKED_BITS 0 |
| |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| /* |
| * Bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PowerPC PTE as closely as possible. |
| */ |
| |
| #define pte_clear(mm, addr, ptep) \ |
| do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) |
| #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| *pmdp = __pmd(0); |
| } |
| |
| |
| /* |
| * When flushing the tlb entry for a page, we also need to flush the hash |
| * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. |
| */ |
| extern int flush_hash_pages(unsigned context, unsigned long va, |
| unsigned long pmdval, int count); |
| |
| /* Add an HPTE to the hash table */ |
| extern void add_hash_page(unsigned context, unsigned long va, |
| unsigned long pmdval); |
| |
| /* Flush an entry from the TLB/hash table */ |
| static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr) |
| { |
| if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { |
| unsigned long ptephys = __pa(ptep) & PAGE_MASK; |
| |
| flush_hash_pages(mm->context.id, addr, ptephys, 1); |
| } |
| } |
| |
| /* |
| * PTE updates. This function is called whenever an existing |
| * valid PTE is updated. This does -not- include set_pte_at() |
| * which nowadays only sets a new PTE. |
| * |
| * Depending on the type of MMU, we may need to use atomic updates |
| * and the PTE may be either 32 or 64 bit wide. In the later case, |
| * when using atomic updates, only the low part of the PTE is |
| * accessed atomically. |
| */ |
| static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, |
| unsigned long clr, unsigned long set, int huge) |
| { |
| pte_basic_t old; |
| |
| if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) { |
| unsigned long tmp; |
| |
| asm volatile( |
| #ifndef CONFIG_PTE_64BIT |
| "1: lwarx %0, 0, %3\n" |
| " andc %1, %0, %4\n" |
| #else |
| "1: lwarx %L0, 0, %3\n" |
| " lwz %0, -4(%3)\n" |
| " andc %1, %L0, %4\n" |
| #endif |
| " or %1, %1, %5\n" |
| " stwcx. %1, 0, %3\n" |
| " bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| #ifndef CONFIG_PTE_64BIT |
| : "r" (p), |
| #else |
| : "b" ((unsigned long)(p) + 4), |
| #endif |
| "r" (clr), "r" (set), "m" (*p) |
| : "cc" ); |
| } else { |
| old = pte_val(*p); |
| |
| *p = __pte((old & ~(pte_basic_t)clr) | set); |
| } |
| |
| return old; |
| } |
| |
| /* |
| * 2.6 calls this without flushing the TLB entry; this is wrong |
| * for our hash-based implementation, we fix that up here. |
| */ |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int __ptep_test_and_clear_young(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); |
| if (old & _PAGE_HASHPTE) |
| flush_hash_entry(mm, ptep, addr); |
| |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); |
| } |
| |
| static inline void __ptep_set_access_flags(struct vm_area_struct *vma, |
| pte_t *ptep, pte_t entry, |
| unsigned long address, |
| int psize) |
| { |
| unsigned long set = pte_val(entry) & |
| (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| |
| pte_update(vma->vm_mm, address, ptep, 0, set, 0); |
| |
| flush_tlb_page(vma, address); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) |
| |
| #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) |
| #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) |
| |
| /* |
| * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that |
| * are !pte_none() && !pte_present(). |
| * |
| * Format of swap PTEs (32bit PTEs): |
| * |
| * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 |
| * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| * <----------------- offset --------------------> < type -> E H P |
| * |
| * E is the exclusive marker that is not stored in swap entries. |
| * _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0. |
| * |
| * For 64bit PTEs, the offset is extended by 32bit. |
| */ |
| #define __swp_type(entry) ((entry).val & 0x1f) |
| #define __swp_offset(entry) ((entry).val >> 5) |
| #define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) |
| |
| static inline int pte_swp_exclusive(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; |
| } |
| |
| static inline pte_t pte_swp_mkexclusive(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); |
| } |
| |
| static inline pte_t pte_swp_clear_exclusive(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); |
| } |
| |
| /* Generic accessors to PTE bits */ |
| static inline bool pte_read(pte_t pte) |
| { |
| return !!(pte_val(pte) & _PAGE_READ); |
| } |
| |
| static inline bool pte_write(pte_t pte) |
| { |
| return !!(pte_val(pte) & _PAGE_WRITE); |
| } |
| |
| static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } |
| static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } |
| static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } |
| static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } |
| static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } |
| |
| static inline int pte_present(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| static inline bool pte_hw_valid(pte_t pte) |
| { |
| return pte_val(pte) & _PAGE_PRESENT; |
| } |
| |
| static inline bool pte_hashpte(pte_t pte) |
| { |
| return !!(pte_val(pte) & _PAGE_HASHPTE); |
| } |
| |
| static inline bool pte_ci(pte_t pte) |
| { |
| return !!(pte_val(pte) & _PAGE_NO_CACHE); |
| } |
| |
| /* |
| * We only find page table entry in the last level |
| * Hence no need for other accessors |
| */ |
| #define pte_access_permitted pte_access_permitted |
| static inline bool pte_access_permitted(pte_t pte, bool write) |
| { |
| /* |
| * A read-only access is controlled by _PAGE_READ bit. |
| * We have _PAGE_READ set for WRITE |
| */ |
| if (!pte_present(pte) || !pte_read(pte)) |
| return false; |
| |
| if (write && !pte_write(pte)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| * |
| * Even if PTEs can be unsigned long long, a PFN is always an unsigned |
| * long for now. |
| */ |
| static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| { |
| return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | |
| pgprot_val(pgprot)); |
| } |
| |
| /* Generic modifiers for PTE bits */ |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_WRITE); |
| } |
| |
| static inline pte_t pte_exprotect(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_EXEC); |
| } |
| |
| static inline pte_t pte_mkclean(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkold(pte_t pte) |
| { |
| return __pte(pte_val(pte) & ~_PAGE_ACCESSED); |
| } |
| |
| static inline pte_t pte_mkexec(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_EXEC); |
| } |
| |
| static inline pte_t pte_mkpte(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pte_t pte_mkwrite_novma(pte_t pte) |
| { |
| /* |
| * write implies read, hence set both |
| */ |
| return __pte(pte_val(pte) | _PAGE_RW); |
| } |
| |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_DIRTY); |
| } |
| |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_ACCESSED); |
| } |
| |
| static inline pte_t pte_mkspecial(pte_t pte) |
| { |
| return __pte(pte_val(pte) | _PAGE_SPECIAL); |
| } |
| |
| static inline pte_t pte_mkhuge(pte_t pte) |
| { |
| return pte; |
| } |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| } |
| |
| |
| |
| /* This low level function performs the actual PTE insertion |
| * Setting the PTE depends on the MMU type and other factors. |
| * |
| * First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve |
| * the _PAGE_HASHPTE bit since we may not have invalidated the previous |
| * translation in the hash yet (done in a subsequent flush_tlb_xxx()) |
| * and see we need to keep track that this PTE needs invalidating. |
| * |
| * Second case is 32-bit with 64-bit PTE. In this case, we |
| * can just store as long as we do the two halves in the right order |
| * with a barrier in between. This is possible because we take care, |
| * in the hash code, to pre-invalidate if the PTE was already hashed, |
| * which synchronizes us with any concurrent invalidation. |
| * In the percpu case, we fallback to the simple update preserving |
| * the hash bits (ie, same as the non-SMP case). |
| * |
| * Third case is 32-bit in SMP mode with 32-bit PTEs. We use the |
| * helper pte_update() which does an atomic update. We need to do that |
| * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a |
| * per-CPU PTE such as a kmap_atomic, we also do a simple update preserving |
| * the hash bits instead. |
| */ |
| static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep, pte_t pte, int percpu) |
| { |
| if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) { |
| *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) | |
| (pte_val(pte) & ~_PAGE_HASHPTE)); |
| } else if (IS_ENABLED(CONFIG_PTE_64BIT)) { |
| if (pte_val(*ptep) & _PAGE_HASHPTE) |
| flush_hash_entry(mm, ptep, addr); |
| |
| asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" : |
| "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : |
| "r" (pte) : "memory"); |
| } else { |
| pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0); |
| } |
| } |
| |
| /* |
| * Macro to mark a page protection value as "uncacheable". |
| */ |
| |
| #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ |
| _PAGE_WRITETHRU) |
| |
| #define pgprot_noncached pgprot_noncached |
| static inline pgprot_t pgprot_noncached(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_NO_CACHE | _PAGE_GUARDED); |
| } |
| |
| #define pgprot_noncached_wc pgprot_noncached_wc |
| static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_NO_CACHE); |
| } |
| |
| #define pgprot_cached pgprot_cached |
| static inline pgprot_t pgprot_cached(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_COHERENT); |
| } |
| |
| #define pgprot_cached_wthru pgprot_cached_wthru |
| static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) |
| { |
| return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| _PAGE_COHERENT | _PAGE_WRITETHRU); |
| } |
| |
| #define pgprot_cached_noncoherent pgprot_cached_noncoherent |
| static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) |
| { |
| return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); |
| } |
| |
| #define pgprot_writecombine pgprot_writecombine |
| static inline pgprot_t pgprot_writecombine(pgprot_t prot) |
| { |
| return pgprot_noncached_wc(prot); |
| } |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ |