blob: f63b051f25a0a982747045b0921eacccc4a0fe68 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD CPU Microcode Update Driver for Linux
*
* This driver allows to upgrade microcode on F10h AMD
* CPUs and later.
*
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
* 2013-2018 Borislav Petkov <bp@alien8.de>
*
* Author: Peter Oruba <peter.oruba@amd.com>
*
* Based on work by:
* Tigran Aivazian <aivazian.tigran@gmail.com>
*
* early loader:
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
* Fixes: Borislav Petkov <bp@suse.de>
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/cpu.h>
#include <asm/msr.h>
#include "internal.h"
struct ucode_patch {
struct list_head plist;
void *data;
unsigned int size;
u32 patch_id;
u16 equiv_cpu;
};
static LIST_HEAD(microcode_cache);
#define UCODE_MAGIC 0x00414d44
#define UCODE_EQUIV_CPU_TABLE_TYPE 0x00000000
#define UCODE_UCODE_TYPE 0x00000001
#define SECTION_HDR_SIZE 8
#define CONTAINER_HDR_SZ 12
struct equiv_cpu_entry {
u32 installed_cpu;
u32 fixed_errata_mask;
u32 fixed_errata_compare;
u16 equiv_cpu;
u16 res;
} __packed;
struct microcode_header_amd {
u32 data_code;
u32 patch_id;
u16 mc_patch_data_id;
u8 mc_patch_data_len;
u8 init_flag;
u32 mc_patch_data_checksum;
u32 nb_dev_id;
u32 sb_dev_id;
u16 processor_rev_id;
u8 nb_rev_id;
u8 sb_rev_id;
u8 bios_api_rev;
u8 reserved1[3];
u32 match_reg[8];
} __packed;
struct microcode_amd {
struct microcode_header_amd hdr;
unsigned int mpb[];
};
static struct equiv_cpu_table {
unsigned int num_entries;
struct equiv_cpu_entry *entry;
} equiv_table;
union zen_patch_rev {
struct {
__u32 rev : 8,
stepping : 4,
model : 4,
__reserved : 4,
ext_model : 4,
ext_fam : 8;
};
__u32 ucode_rev;
};
union cpuid_1_eax {
struct {
__u32 stepping : 4,
model : 4,
family : 4,
__reserved0 : 4,
ext_model : 4,
ext_fam : 8,
__reserved1 : 4;
};
__u32 full;
};
/*
* This points to the current valid container of microcode patches which we will
* save from the initrd/builtin before jettisoning its contents. @mc is the
* microcode patch we found to match.
*/
struct cont_desc {
struct microcode_amd *mc;
u32 psize;
u8 *data;
size_t size;
};
/*
* Microcode patch container file is prepended to the initrd in cpio
* format. See Documentation/arch/x86/microcode.rst
*/
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
/*
* This is CPUID(1).EAX on the BSP. It is used in two ways:
*
* 1. To ignore the equivalence table on Zen1 and newer.
*
* 2. To match which patches to load because the patch revision ID
* already contains the f/m/s for which the microcode is destined
* for.
*/
static u32 bsp_cpuid_1_eax __ro_after_init;
static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
{
union zen_patch_rev p;
union cpuid_1_eax c;
p.ucode_rev = val;
c.full = 0;
c.stepping = p.stepping;
c.model = p.model;
c.ext_model = p.ext_model;
c.family = 0xf;
c.ext_fam = p.ext_fam;
return c;
}
static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
{
unsigned int i;
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return 0;
if (!et || !et->num_entries)
return 0;
for (i = 0; i < et->num_entries; i++) {
struct equiv_cpu_entry *e = &et->entry[i];
if (sig == e->installed_cpu)
return e->equiv_cpu;
}
return 0;
}
/*
* Check whether there is a valid microcode container file at the beginning
* of @buf of size @buf_size.
*/
static bool verify_container(const u8 *buf, size_t buf_size)
{
u32 cont_magic;
if (buf_size <= CONTAINER_HDR_SZ) {
pr_debug("Truncated microcode container header.\n");
return false;
}
cont_magic = *(const u32 *)buf;
if (cont_magic != UCODE_MAGIC) {
pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
return false;
}
return true;
}
/*
* Check whether there is a valid, non-truncated CPU equivalence table at the
* beginning of @buf of size @buf_size.
*/
static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
{
const u32 *hdr = (const u32 *)buf;
u32 cont_type, equiv_tbl_len;
if (!verify_container(buf, buf_size))
return false;
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return true;
cont_type = hdr[1];
if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
pr_debug("Wrong microcode container equivalence table type: %u.\n",
cont_type);
return false;
}
buf_size -= CONTAINER_HDR_SZ;
equiv_tbl_len = hdr[2];
if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
buf_size < equiv_tbl_len) {
pr_debug("Truncated equivalence table.\n");
return false;
}
return true;
}
/*
* Check whether there is a valid, non-truncated microcode patch section at the
* beginning of @buf of size @buf_size.
*
* On success, @sh_psize returns the patch size according to the section header,
* to the caller.
*/
static bool
__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
{
u32 p_type, p_size;
const u32 *hdr;
if (buf_size < SECTION_HDR_SIZE) {
pr_debug("Truncated patch section.\n");
return false;
}
hdr = (const u32 *)buf;
p_type = hdr[0];
p_size = hdr[1];
if (p_type != UCODE_UCODE_TYPE) {
pr_debug("Invalid type field (0x%x) in container file section header.\n",
p_type);
return false;
}
if (p_size < sizeof(struct microcode_header_amd)) {
pr_debug("Patch of size %u too short.\n", p_size);
return false;
}
*sh_psize = p_size;
return true;
}
/*
* Check whether the passed remaining file @buf_size is large enough to contain
* a patch of the indicated @sh_psize (and also whether this size does not
* exceed the per-family maximum). @sh_psize is the size read from the section
* header.
*/
static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
{
u8 family = x86_family(bsp_cpuid_1_eax);
u32 max_size;
if (family >= 0x15)
return min_t(u32, sh_psize, buf_size);
#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
switch (family) {
case 0x10 ... 0x12:
max_size = F1XH_MPB_MAX_SIZE;
break;
case 0x14:
max_size = F14H_MPB_MAX_SIZE;
break;
default:
WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
return 0;
}
if (sh_psize > min_t(u32, buf_size, max_size))
return 0;
return sh_psize;
}
/*
* Verify the patch in @buf.
*
* Returns:
* negative: on error
* positive: patch is not for this family, skip it
* 0: success
*/
static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
{
u8 family = x86_family(bsp_cpuid_1_eax);
struct microcode_header_amd *mc_hdr;
unsigned int ret;
u32 sh_psize;
u16 proc_id;
u8 patch_fam;
if (!__verify_patch_section(buf, buf_size, &sh_psize))
return -1;
/*
* The section header length is not included in this indicated size
* but is present in the leftover file length so we need to subtract
* it before passing this value to the function below.
*/
buf_size -= SECTION_HDR_SIZE;
/*
* Check if the remaining buffer is big enough to contain a patch of
* size sh_psize, as the section claims.
*/
if (buf_size < sh_psize) {
pr_debug("Patch of size %u truncated.\n", sh_psize);
return -1;
}
ret = __verify_patch_size(sh_psize, buf_size);
if (!ret) {
pr_debug("Per-family patch size mismatch.\n");
return -1;
}
*patch_size = sh_psize;
mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
return -1;
}
proc_id = mc_hdr->processor_rev_id;
patch_fam = 0xf + (proc_id >> 12);
if (patch_fam != family)
return 1;
return 0;
}
static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
{
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
else
return eq_id == mc->hdr.processor_rev_id;
}
/*
* This scans the ucode blob for the proper container as we can have multiple
* containers glued together. Returns the equivalence ID from the equivalence
* table or 0 if none found.
* Returns the amount of bytes consumed while scanning. @desc contains all the
* data we're going to use in later stages of the application.
*/
static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
{
struct equiv_cpu_table table;
size_t orig_size = size;
u32 *hdr = (u32 *)ucode;
u16 eq_id;
u8 *buf;
if (!verify_equivalence_table(ucode, size))
return 0;
buf = ucode;
table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
/*
* Find the equivalence ID of our CPU in this table. Even if this table
* doesn't contain a patch for the CPU, scan through the whole container
* so that it can be skipped in case there are other containers appended.
*/
eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
buf += hdr[2] + CONTAINER_HDR_SZ;
size -= hdr[2] + CONTAINER_HDR_SZ;
/*
* Scan through the rest of the container to find where it ends. We do
* some basic sanity-checking too.
*/
while (size > 0) {
struct microcode_amd *mc;
u32 patch_size;
int ret;
ret = verify_patch(buf, size, &patch_size);
if (ret < 0) {
/*
* Patch verification failed, skip to the next container, if
* there is one. Before exit, check whether that container has
* found a patch already. If so, use it.
*/
goto out;
} else if (ret > 0) {
goto skip;
}
mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
if (mc_patch_matches(mc, eq_id)) {
desc->psize = patch_size;
desc->mc = mc;
}
skip:
/* Skip patch section header too: */
buf += patch_size + SECTION_HDR_SIZE;
size -= patch_size + SECTION_HDR_SIZE;
}
out:
/*
* If we have found a patch (desc->mc), it means we're looking at the
* container which has a patch for this CPU so return 0 to mean, @ucode
* already points to the proper container. Otherwise, we return the size
* we scanned so that we can advance to the next container in the
* buffer.
*/
if (desc->mc) {
desc->data = ucode;
desc->size = orig_size - size;
return 0;
}
return orig_size - size;
}
/*
* Scan the ucode blob for the proper container as we can have multiple
* containers glued together.
*/
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
while (size) {
size_t s = parse_container(ucode, size, desc);
if (!s)
return;
/* catch wraparound */
if (size >= s) {
ucode += s;
size -= s;
} else {
return;
}
}
}
static int __apply_microcode_amd(struct microcode_amd *mc)
{
u32 rev, dummy;
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
/* verify patch application was successful */
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev != mc->hdr.patch_id)
return -1;
return 0;
}
/*
* Early load occurs before we can vmalloc(). So we look for the microcode
* patch container file in initrd, traverse equivalent cpu table, look for a
* matching microcode patch, and update, all in initrd memory in place.
* When vmalloc() is available for use later -- on 64-bit during first AP load,
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
* load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory.
*
* Returns true if container found (sets @desc), false otherwise.
*/
static bool early_apply_microcode(u32 old_rev, void *ucode, size_t size)
{
struct cont_desc desc = { 0 };
struct microcode_amd *mc;
bool ret = false;
scan_containers(ucode, size, &desc);
mc = desc.mc;
if (!mc)
return ret;
/*
* Allow application of the same revision to pick up SMT-specific
* changes even if the revision of the other SMT thread is already
* up-to-date.
*/
if (old_rev > mc->hdr.patch_id)
return ret;
return !__apply_microcode_amd(mc);
}
static bool get_builtin_microcode(struct cpio_data *cp)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
u8 family = x86_family(bsp_cpuid_1_eax);
struct firmware fw;
if (IS_ENABLED(CONFIG_X86_32))
return false;
if (family >= 0x15)
snprintf(fw_name, sizeof(fw_name),
"amd-ucode/microcode_amd_fam%02hhxh.bin", family);
if (firmware_request_builtin(&fw, fw_name)) {
cp->size = fw.size;
cp->data = (void *)fw.data;
return true;
}
return false;
}
static void __init find_blobs_in_containers(struct cpio_data *ret)
{
struct cpio_data cp;
if (!get_builtin_microcode(&cp))
cp = find_microcode_in_initrd(ucode_path);
*ret = cp;
}
void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
{
struct cpio_data cp = { };
u32 dummy;
bsp_cpuid_1_eax = cpuid_1_eax;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->old_rev, dummy);
/* Needed in load_microcode_amd() */
ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
find_blobs_in_containers(&cp);
if (!(cp.data && cp.size))
return;
if (early_apply_microcode(ed->old_rev, cp.data, cp.size))
native_rdmsr(MSR_AMD64_PATCH_LEVEL, ed->new_rev, dummy);
}
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size);
static int __init save_microcode_in_initrd(void)
{
unsigned int cpuid_1_eax = native_cpuid_eax(1);
struct cpuinfo_x86 *c = &boot_cpu_data;
struct cont_desc desc = { 0 };
enum ucode_state ret;
struct cpio_data cp;
if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
return 0;
find_blobs_in_containers(&cp);
if (!(cp.data && cp.size))
return -EINVAL;
scan_containers(cp.data, cp.size, &desc);
if (!desc.mc)
return -EINVAL;
ret = load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
if (ret > UCODE_UPDATED)
return -EINVAL;
return 0;
}
early_initcall(save_microcode_in_initrd);
static inline bool patch_cpus_equivalent(struct ucode_patch *p, struct ucode_patch *n)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
/* Zap stepping */
p_cid.stepping = 0;
n_cid.stepping = 0;
return p_cid.full == n_cid.full;
} else {
return p->equiv_cpu == n->equiv_cpu;
}
}
/*
* a small, trivial cache of per-family ucode patches
*/
static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
{
struct ucode_patch *p;
struct ucode_patch n;
n.equiv_cpu = equiv_cpu;
n.patch_id = uci->cpu_sig.rev;
WARN_ON_ONCE(!n.patch_id);
list_for_each_entry(p, &microcode_cache, plist)
if (patch_cpus_equivalent(p, &n))
return p;
return NULL;
}
static inline bool patch_newer(struct ucode_patch *p, struct ucode_patch *n)
{
/* Zen and newer hardcode the f/m/s in the patch ID */
if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
union zen_patch_rev zp, zn;
zp.ucode_rev = p->patch_id;
zn.ucode_rev = n->patch_id;
return zn.rev > zp.rev;
} else {
return n->patch_id > p->patch_id;
}
}
static void update_cache(struct ucode_patch *new_patch)
{
struct ucode_patch *p;
list_for_each_entry(p, &microcode_cache, plist) {
if (patch_cpus_equivalent(p, new_patch)) {
if (!patch_newer(p, new_patch)) {
/* we already have the latest patch */
kfree(new_patch->data);
kfree(new_patch);
return;
}
list_replace(&p->plist, &new_patch->plist);
kfree(p->data);
kfree(p);
return;
}
}
/* no patch found, add it */
list_add_tail(&new_patch->plist, &microcode_cache);
}
static void free_cache(void)
{
struct ucode_patch *p, *tmp;
list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
__list_del(p->plist.prev, p->plist.next);
kfree(p->data);
kfree(p);
}
}
static struct ucode_patch *find_patch(unsigned int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
u32 rev, dummy __always_unused;
u16 equiv_id = 0;
/* fetch rev if not populated yet: */
if (!uci->cpu_sig.rev) {
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
uci->cpu_sig.rev = rev;
}
if (x86_family(bsp_cpuid_1_eax) < 0x17) {
equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
if (!equiv_id)
return NULL;
}
return cache_find_patch(uci, equiv_id);
}
void reload_ucode_amd(unsigned int cpu)
{
u32 rev, dummy __always_unused;
struct microcode_amd *mc;
struct ucode_patch *p;
p = find_patch(cpu);
if (!p)
return;
mc = p->data;
rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc))
pr_info_once("reload revision: 0x%08x\n", mc->hdr.patch_id);
}
}
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct ucode_patch *p;
csig->sig = cpuid_eax(0x00000001);
csig->rev = c->microcode;
/*
* a patch could have been loaded early, set uci->mc so that
* mc_bp_resume() can call apply_microcode()
*/
p = find_patch(cpu);
if (p && (p->patch_id == csig->rev))
uci->mc = p->data;
return 0;
}
static enum ucode_state apply_microcode_amd(int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct microcode_amd *mc_amd;
struct ucode_cpu_info *uci;
struct ucode_patch *p;
enum ucode_state ret;
u32 rev;
BUG_ON(raw_smp_processor_id() != cpu);
uci = ucode_cpu_info + cpu;
p = find_patch(cpu);
if (!p)
return UCODE_NFOUND;
rev = uci->cpu_sig.rev;
mc_amd = p->data;
uci->mc = p->data;
/* need to apply patch? */
if (rev > mc_amd->hdr.patch_id) {
ret = UCODE_OK;
goto out;
}
if (__apply_microcode_amd(mc_amd)) {
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
cpu, mc_amd->hdr.patch_id);
return UCODE_ERROR;
}
rev = mc_amd->hdr.patch_id;
ret = UCODE_UPDATED;
out:
uci->cpu_sig.rev = rev;
c->microcode = rev;
/* Update boot_cpu_data's revision too, if we're on the BSP: */
if (c->cpu_index == boot_cpu_data.cpu_index)
boot_cpu_data.microcode = rev;
return ret;
}
void load_ucode_amd_ap(unsigned int cpuid_1_eax)
{
unsigned int cpu = smp_processor_id();
ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
apply_microcode_amd(cpu);
}
static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
{
u32 equiv_tbl_len;
const u32 *hdr;
if (!verify_equivalence_table(buf, buf_size))
return 0;
hdr = (const u32 *)buf;
equiv_tbl_len = hdr[2];
/* Zen and newer do not need an equivalence table. */
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
goto out;
equiv_table.entry = vmalloc(equiv_tbl_len);
if (!equiv_table.entry) {
pr_err("failed to allocate equivalent CPU table\n");
return 0;
}
memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
out:
/* add header length */
return equiv_tbl_len + CONTAINER_HDR_SZ;
}
static void free_equiv_cpu_table(void)
{
if (x86_family(bsp_cpuid_1_eax) >= 0x17)
return;
vfree(equiv_table.entry);
memset(&equiv_table, 0, sizeof(equiv_table));
}
static void cleanup(void)
{
free_equiv_cpu_table();
free_cache();
}
/*
* Return a non-negative value even if some of the checks failed so that
* we can skip over the next patch. If we return a negative value, we
* signal a grave error like a memory allocation has failed and the
* driver cannot continue functioning normally. In such cases, we tear
* down everything we've used up so far and exit.
*/
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
unsigned int *patch_size)
{
struct microcode_header_amd *mc_hdr;
struct ucode_patch *patch;
u16 proc_id;
int ret;
ret = verify_patch(fw, leftover, patch_size);
if (ret)
return ret;
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
if (!patch->data) {
pr_err("Patch data allocation failure.\n");
kfree(patch);
return -EINVAL;
}
patch->size = *patch_size;
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
proc_id = mc_hdr->processor_rev_id;
INIT_LIST_HEAD(&patch->plist);
patch->patch_id = mc_hdr->patch_id;
patch->equiv_cpu = proc_id;
pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
__func__, patch->patch_id, proc_id);
/* ... and add to cache. */
update_cache(patch);
return 0;
}
/* Scan the blob in @data and add microcode patches to the cache. */
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
size_t size)
{
u8 *fw = (u8 *)data;
size_t offset;
offset = install_equiv_cpu_table(data, size);
if (!offset)
return UCODE_ERROR;
fw += offset;
size -= offset;
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
pr_err("invalid type field in container file section header\n");
free_equiv_cpu_table();
return UCODE_ERROR;
}
while (size > 0) {
unsigned int crnt_size = 0;
int ret;
ret = verify_and_add_patch(family, fw, size, &crnt_size);
if (ret < 0)
return UCODE_ERROR;
fw += crnt_size + SECTION_HDR_SIZE;
size -= (crnt_size + SECTION_HDR_SIZE);
}
return UCODE_OK;
}
static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
{
struct cpuinfo_x86 *c;
unsigned int nid, cpu;
struct ucode_patch *p;
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK) {
cleanup();
return ret;
}
for_each_node(nid) {
cpu = cpumask_first(cpumask_of_node(nid));
c = &cpu_data(cpu);
p = find_patch(cpu);
if (!p)
continue;
if (c->microcode >= p->patch_id)
continue;
ret = UCODE_NEW;
}
return ret;
}
/*
* AMD microcode firmware naming convention, up to family 15h they are in
* the legacy file:
*
* amd-ucode/microcode_amd.bin
*
* This legacy file is always smaller than 2K in size.
*
* Beginning with family 15h, they are in family-specific firmware files:
*
* amd-ucode/microcode_amd_fam15h.bin
* amd-ucode/microcode_amd_fam16h.bin
* ...
*
* These might be larger than 2K.
*/
static enum ucode_state request_microcode_amd(int cpu, struct device *device)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
struct cpuinfo_x86 *c = &cpu_data(cpu);
enum ucode_state ret = UCODE_NFOUND;
const struct firmware *fw;
if (force_minrev)
return UCODE_NFOUND;
if (c->x86 >= 0x15)
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
pr_debug("failed to load file %s\n", fw_name);
goto out;
}
ret = UCODE_ERROR;
if (!verify_container(fw->data, fw->size))
goto fw_release;
ret = load_microcode_amd(c->x86, fw->data, fw->size);
fw_release:
release_firmware(fw);
out:
return ret;
}
static void microcode_fini_cpu_amd(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->mc = NULL;
}
static struct microcode_ops microcode_amd_ops = {
.request_microcode_fw = request_microcode_amd,
.collect_cpu_info = collect_cpu_info_amd,
.apply_microcode = apply_microcode_amd,
.microcode_fini_cpu = microcode_fini_cpu_amd,
.nmi_safe = true,
};
struct microcode_ops * __init init_amd_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
return NULL;
}
return &microcode_amd_ops;
}
void __exit exit_amd_microcode(void)
{
cleanup();
}