| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine -- Performance Monitoring Unit support |
| * |
| * Copyright 2015 Red Hat, Inc. and/or its affiliates. |
| * |
| * Authors: |
| * Avi Kivity <avi@redhat.com> |
| * Gleb Natapov <gleb@redhat.com> |
| * Wei Huang <wei@redhat.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/perf_event.h> |
| #include <linux/bsearch.h> |
| #include <linux/sort.h> |
| #include <asm/perf_event.h> |
| #include <asm/cpu_device_id.h> |
| #include "x86.h" |
| #include "cpuid.h" |
| #include "lapic.h" |
| #include "pmu.h" |
| |
| /* This is enough to filter the vast majority of currently defined events. */ |
| #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 |
| |
| struct x86_pmu_capability __read_mostly kvm_pmu_cap; |
| EXPORT_SYMBOL_GPL(kvm_pmu_cap); |
| |
| struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel; |
| EXPORT_SYMBOL_GPL(kvm_pmu_eventsel); |
| |
| /* Precise Distribution of Instructions Retired (PDIR) */ |
| static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { |
| X86_MATCH_VFM(INTEL_ICELAKE_D, NULL), |
| X86_MATCH_VFM(INTEL_ICELAKE_X, NULL), |
| /* Instruction-Accurate PDIR (PDIR++) */ |
| X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), |
| {} |
| }; |
| |
| /* Precise Distribution (PDist) */ |
| static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { |
| X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), |
| {} |
| }; |
| |
| /* NOTE: |
| * - Each perf counter is defined as "struct kvm_pmc"; |
| * - There are two types of perf counters: general purpose (gp) and fixed. |
| * gp counters are stored in gp_counters[] and fixed counters are stored |
| * in fixed_counters[] respectively. Both of them are part of "struct |
| * kvm_pmu"; |
| * - pmu.c understands the difference between gp counters and fixed counters. |
| * However AMD doesn't support fixed-counters; |
| * - There are three types of index to access perf counters (PMC): |
| * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD |
| * has MSR_K7_PERFCTRn and, for families 15H and later, |
| * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are |
| * aliased to MSR_K7_PERFCTRn. |
| * 2. MSR Index (named idx): This normally is used by RDPMC instruction. |
| * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access |
| * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except |
| * that it also supports fixed counters. idx can be used to as index to |
| * gp and fixed counters. |
| * 3. Global PMC Index (named pmc): pmc is an index specific to PMU |
| * code. Each pmc, stored in kvm_pmc.idx field, is unique across |
| * all perf counters (both gp and fixed). The mapping relationship |
| * between pmc and perf counters is as the following: |
| * * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters |
| * [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed |
| * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H |
| * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters |
| */ |
| |
| static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; |
| |
| #define KVM_X86_PMU_OP(func) \ |
| DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ |
| *(((struct kvm_pmu_ops *)0)->func)); |
| #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP |
| #include <asm/kvm-x86-pmu-ops.h> |
| |
| void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) |
| { |
| memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); |
| |
| #define __KVM_X86_PMU_OP(func) \ |
| static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); |
| #define KVM_X86_PMU_OP(func) \ |
| WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) |
| #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP |
| #include <asm/kvm-x86-pmu-ops.h> |
| #undef __KVM_X86_PMU_OP |
| } |
| |
| static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| bool skip_pmi = false; |
| |
| if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { |
| if (!in_pmi) { |
| /* |
| * TODO: KVM is currently _choosing_ to not generate records |
| * for emulated instructions, avoiding BUFFER_OVF PMI when |
| * there are no records. Strictly speaking, it should be done |
| * as well in the right context to improve sampling accuracy. |
| */ |
| skip_pmi = true; |
| } else { |
| /* Indicate PEBS overflow PMI to guest. */ |
| skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, |
| (unsigned long *)&pmu->global_status); |
| } |
| } else { |
| __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); |
| } |
| |
| if (pmc->intr && !skip_pmi) |
| kvm_make_request(KVM_REQ_PMI, pmc->vcpu); |
| } |
| |
| static void kvm_perf_overflow(struct perf_event *perf_event, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct kvm_pmc *pmc = perf_event->overflow_handler_context; |
| |
| /* |
| * Ignore asynchronous overflow events for counters that are scheduled |
| * to be reprogrammed, e.g. if a PMI for the previous event races with |
| * KVM's handling of a related guest WRMSR. |
| */ |
| if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) |
| return; |
| |
| __kvm_perf_overflow(pmc, true); |
| |
| kvm_make_request(KVM_REQ_PMU, pmc->vcpu); |
| } |
| |
| static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) |
| { |
| /* |
| * For some model specific pebs counters with special capabilities |
| * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise |
| * level to the maximum value (currently 3, backwards compatible) |
| * so that the perf subsystem would assign specific hardware counter |
| * with that capability for vPMC. |
| */ |
| if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || |
| (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) |
| return 3; |
| |
| /* |
| * The non-zero precision level of guest event makes the ordinary |
| * guest event becomes a guest PEBS event and triggers the host |
| * PEBS PMI handler to determine whether the PEBS overflow PMI |
| * comes from the host counters or the guest. |
| */ |
| return 1; |
| } |
| |
| static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value) |
| { |
| u64 sample_period = (-counter_value) & pmc_bitmask(pmc); |
| |
| if (!sample_period) |
| sample_period = pmc_bitmask(pmc) + 1; |
| return sample_period; |
| } |
| |
| static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, |
| bool exclude_user, bool exclude_kernel, |
| bool intr) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| struct perf_event *event; |
| struct perf_event_attr attr = { |
| .type = type, |
| .size = sizeof(attr), |
| .pinned = true, |
| .exclude_idle = true, |
| .exclude_host = 1, |
| .exclude_user = exclude_user, |
| .exclude_kernel = exclude_kernel, |
| .config = config, |
| }; |
| bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); |
| |
| attr.sample_period = get_sample_period(pmc, pmc->counter); |
| |
| if ((attr.config & HSW_IN_TX_CHECKPOINTED) && |
| (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) { |
| /* |
| * HSW_IN_TX_CHECKPOINTED is not supported with nonzero |
| * period. Just clear the sample period so at least |
| * allocating the counter doesn't fail. |
| */ |
| attr.sample_period = 0; |
| } |
| if (pebs) { |
| /* |
| * For most PEBS hardware events, the difference in the software |
| * precision levels of guest and host PEBS events will not affect |
| * the accuracy of the PEBS profiling result, because the "event IP" |
| * in the PEBS record is calibrated on the guest side. |
| */ |
| attr.precise_ip = pmc_get_pebs_precise_level(pmc); |
| } |
| |
| event = perf_event_create_kernel_counter(&attr, -1, current, |
| kvm_perf_overflow, pmc); |
| if (IS_ERR(event)) { |
| pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", |
| PTR_ERR(event), pmc->idx); |
| return PTR_ERR(event); |
| } |
| |
| pmc->perf_event = event; |
| pmc_to_pmu(pmc)->event_count++; |
| pmc->is_paused = false; |
| pmc->intr = intr || pebs; |
| return 0; |
| } |
| |
| static bool pmc_pause_counter(struct kvm_pmc *pmc) |
| { |
| u64 counter = pmc->counter; |
| u64 prev_counter; |
| |
| /* update counter, reset event value to avoid redundant accumulation */ |
| if (pmc->perf_event && !pmc->is_paused) |
| counter += perf_event_pause(pmc->perf_event, true); |
| |
| /* |
| * Snapshot the previous counter *after* accumulating state from perf. |
| * If overflow already happened, hardware (via perf) is responsible for |
| * generating a PMI. KVM just needs to detect overflow on emulated |
| * counter events that haven't yet been processed. |
| */ |
| prev_counter = counter & pmc_bitmask(pmc); |
| |
| counter += pmc->emulated_counter; |
| pmc->counter = counter & pmc_bitmask(pmc); |
| |
| pmc->emulated_counter = 0; |
| pmc->is_paused = true; |
| |
| return pmc->counter < prev_counter; |
| } |
| |
| static bool pmc_resume_counter(struct kvm_pmc *pmc) |
| { |
| if (!pmc->perf_event) |
| return false; |
| |
| /* recalibrate sample period and check if it's accepted by perf core */ |
| if (is_sampling_event(pmc->perf_event) && |
| perf_event_period(pmc->perf_event, |
| get_sample_period(pmc, pmc->counter))) |
| return false; |
| |
| if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != |
| (!!pmc->perf_event->attr.precise_ip)) |
| return false; |
| |
| /* reuse perf_event to serve as pmc_reprogram_counter() does*/ |
| perf_event_enable(pmc->perf_event); |
| pmc->is_paused = false; |
| |
| return true; |
| } |
| |
| static void pmc_release_perf_event(struct kvm_pmc *pmc) |
| { |
| if (pmc->perf_event) { |
| perf_event_release_kernel(pmc->perf_event); |
| pmc->perf_event = NULL; |
| pmc->current_config = 0; |
| pmc_to_pmu(pmc)->event_count--; |
| } |
| } |
| |
| static void pmc_stop_counter(struct kvm_pmc *pmc) |
| { |
| if (pmc->perf_event) { |
| pmc->counter = pmc_read_counter(pmc); |
| pmc_release_perf_event(pmc); |
| } |
| } |
| |
| static void pmc_update_sample_period(struct kvm_pmc *pmc) |
| { |
| if (!pmc->perf_event || pmc->is_paused || |
| !is_sampling_event(pmc->perf_event)) |
| return; |
| |
| perf_event_period(pmc->perf_event, |
| get_sample_period(pmc, pmc->counter)); |
| } |
| |
| void pmc_write_counter(struct kvm_pmc *pmc, u64 val) |
| { |
| /* |
| * Drop any unconsumed accumulated counts, the WRMSR is a write, not a |
| * read-modify-write. Adjust the counter value so that its value is |
| * relative to the current count, as reading the current count from |
| * perf is faster than pausing and repgrogramming the event in order to |
| * reset it to '0'. Note, this very sneakily offsets the accumulated |
| * emulated count too, by using pmc_read_counter()! |
| */ |
| pmc->emulated_counter = 0; |
| pmc->counter += val - pmc_read_counter(pmc); |
| pmc->counter &= pmc_bitmask(pmc); |
| pmc_update_sample_period(pmc); |
| } |
| EXPORT_SYMBOL_GPL(pmc_write_counter); |
| |
| static int filter_cmp(const void *pa, const void *pb, u64 mask) |
| { |
| u64 a = *(u64 *)pa & mask; |
| u64 b = *(u64 *)pb & mask; |
| |
| return (a > b) - (a < b); |
| } |
| |
| |
| static int filter_sort_cmp(const void *pa, const void *pb) |
| { |
| return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | |
| KVM_PMU_MASKED_ENTRY_EXCLUDE)); |
| } |
| |
| /* |
| * For the event filter, searching is done on the 'includes' list and |
| * 'excludes' list separately rather than on the 'events' list (which |
| * has both). As a result the exclude bit can be ignored. |
| */ |
| static int filter_event_cmp(const void *pa, const void *pb) |
| { |
| return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); |
| } |
| |
| static int find_filter_index(u64 *events, u64 nevents, u64 key) |
| { |
| u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), |
| filter_event_cmp); |
| |
| if (!fe) |
| return -1; |
| |
| return fe - events; |
| } |
| |
| static bool is_filter_entry_match(u64 filter_event, u64 umask) |
| { |
| u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); |
| u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; |
| |
| BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> |
| (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != |
| ARCH_PERFMON_EVENTSEL_UMASK); |
| |
| return (umask & mask) == match; |
| } |
| |
| static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) |
| { |
| u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; |
| u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; |
| int i, index; |
| |
| index = find_filter_index(events, nevents, event_select); |
| if (index < 0) |
| return false; |
| |
| /* |
| * Entries are sorted by the event select. Walk the list in both |
| * directions to process all entries with the targeted event select. |
| */ |
| for (i = index; i < nevents; i++) { |
| if (filter_event_cmp(&events[i], &event_select)) |
| break; |
| |
| if (is_filter_entry_match(events[i], umask)) |
| return true; |
| } |
| |
| for (i = index - 1; i >= 0; i--) { |
| if (filter_event_cmp(&events[i], &event_select)) |
| break; |
| |
| if (is_filter_entry_match(events[i], umask)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, |
| u64 eventsel) |
| { |
| if (filter_contains_match(f->includes, f->nr_includes, eventsel) && |
| !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) |
| return f->action == KVM_PMU_EVENT_ALLOW; |
| |
| return f->action == KVM_PMU_EVENT_DENY; |
| } |
| |
| static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, |
| int idx) |
| { |
| int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX; |
| |
| if (filter->action == KVM_PMU_EVENT_DENY && |
| test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) |
| return false; |
| if (filter->action == KVM_PMU_EVENT_ALLOW && |
| !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool check_pmu_event_filter(struct kvm_pmc *pmc) |
| { |
| struct kvm_x86_pmu_event_filter *filter; |
| struct kvm *kvm = pmc->vcpu->kvm; |
| |
| filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); |
| if (!filter) |
| return true; |
| |
| if (pmc_is_gp(pmc)) |
| return is_gp_event_allowed(filter, pmc->eventsel); |
| |
| return is_fixed_event_allowed(filter, pmc->idx); |
| } |
| |
| static bool pmc_event_is_allowed(struct kvm_pmc *pmc) |
| { |
| return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) && |
| check_pmu_event_filter(pmc); |
| } |
| |
| static int reprogram_counter(struct kvm_pmc *pmc) |
| { |
| struct kvm_pmu *pmu = pmc_to_pmu(pmc); |
| u64 eventsel = pmc->eventsel; |
| u64 new_config = eventsel; |
| bool emulate_overflow; |
| u8 fixed_ctr_ctrl; |
| |
| emulate_overflow = pmc_pause_counter(pmc); |
| |
| if (!pmc_event_is_allowed(pmc)) |
| return 0; |
| |
| if (emulate_overflow) |
| __kvm_perf_overflow(pmc, false); |
| |
| if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) |
| printk_once("kvm pmu: pin control bit is ignored\n"); |
| |
| if (pmc_is_fixed(pmc)) { |
| fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, |
| pmc->idx - KVM_FIXED_PMC_BASE_IDX); |
| if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL) |
| eventsel |= ARCH_PERFMON_EVENTSEL_OS; |
| if (fixed_ctr_ctrl & INTEL_FIXED_0_USER) |
| eventsel |= ARCH_PERFMON_EVENTSEL_USR; |
| if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI) |
| eventsel |= ARCH_PERFMON_EVENTSEL_INT; |
| new_config = (u64)fixed_ctr_ctrl; |
| } |
| |
| if (pmc->current_config == new_config && pmc_resume_counter(pmc)) |
| return 0; |
| |
| pmc_release_perf_event(pmc); |
| |
| pmc->current_config = new_config; |
| |
| return pmc_reprogram_counter(pmc, PERF_TYPE_RAW, |
| (eventsel & pmu->raw_event_mask), |
| !(eventsel & ARCH_PERFMON_EVENTSEL_USR), |
| !(eventsel & ARCH_PERFMON_EVENTSEL_OS), |
| eventsel & ARCH_PERFMON_EVENTSEL_INT); |
| } |
| |
| void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) |
| { |
| DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| int bit; |
| |
| bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX); |
| |
| /* |
| * The reprogramming bitmap can be written asynchronously by something |
| * other than the task that holds vcpu->mutex, take care to clear only |
| * the bits that will actually processed. |
| */ |
| BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t)); |
| atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi); |
| |
| kvm_for_each_pmc(pmu, pmc, bit, bitmap) { |
| /* |
| * If reprogramming fails, e.g. due to contention, re-set the |
| * regprogram bit set, i.e. opportunistically try again on the |
| * next PMU refresh. Don't make a new request as doing so can |
| * stall the guest if reprogramming repeatedly fails. |
| */ |
| if (reprogram_counter(pmc)) |
| set_bit(pmc->idx, pmu->reprogram_pmi); |
| } |
| |
| /* |
| * Release unused perf_events if the corresponding guest MSRs weren't |
| * accessed during the last vCPU time slice (need_cleanup is set when |
| * the vCPU is scheduled back in). |
| */ |
| if (unlikely(pmu->need_cleanup)) |
| kvm_pmu_cleanup(vcpu); |
| } |
| |
| int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx) |
| { |
| /* |
| * On Intel, VMX interception has priority over RDPMC exceptions that |
| * aren't already handled by the emulator, i.e. there are no additional |
| * check needed for Intel PMUs. |
| * |
| * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts, |
| * i.e. an invalid PMC results in a #GP, not #VMEXIT. |
| */ |
| if (!kvm_pmu_ops.check_rdpmc_early) |
| return 0; |
| |
| return kvm_pmu_call(check_rdpmc_early)(vcpu, idx); |
| } |
| |
| bool is_vmware_backdoor_pmc(u32 pmc_idx) |
| { |
| switch (pmc_idx) { |
| case VMWARE_BACKDOOR_PMC_HOST_TSC: |
| case VMWARE_BACKDOOR_PMC_REAL_TIME: |
| case VMWARE_BACKDOOR_PMC_APPARENT_TIME: |
| return true; |
| } |
| return false; |
| } |
| |
| static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) |
| { |
| u64 ctr_val; |
| |
| switch (idx) { |
| case VMWARE_BACKDOOR_PMC_HOST_TSC: |
| ctr_val = rdtsc(); |
| break; |
| case VMWARE_BACKDOOR_PMC_REAL_TIME: |
| ctr_val = ktime_get_boottime_ns(); |
| break; |
| case VMWARE_BACKDOOR_PMC_APPARENT_TIME: |
| ctr_val = ktime_get_boottime_ns() + |
| vcpu->kvm->arch.kvmclock_offset; |
| break; |
| default: |
| return 1; |
| } |
| |
| *data = ctr_val; |
| return 0; |
| } |
| |
| int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| u64 mask = ~0ull; |
| |
| if (!pmu->version) |
| return 1; |
| |
| if (is_vmware_backdoor_pmc(idx)) |
| return kvm_pmu_rdpmc_vmware(vcpu, idx, data); |
| |
| pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask); |
| if (!pmc) |
| return 1; |
| |
| if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && |
| (kvm_x86_call(get_cpl)(vcpu) != 0) && |
| kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) |
| return 1; |
| |
| *data = pmc_read_counter(pmc) & mask; |
| return 0; |
| } |
| |
| void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) |
| { |
| if (lapic_in_kernel(vcpu)) { |
| kvm_pmu_call(deliver_pmi)(vcpu); |
| kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); |
| } |
| } |
| |
| bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| switch (msr) { |
| case MSR_CORE_PERF_GLOBAL_STATUS: |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| case MSR_CORE_PERF_GLOBAL_OVF_CTRL: |
| return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)); |
| default: |
| break; |
| } |
| return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) || |
| kvm_pmu_call(is_valid_msr)(vcpu, msr); |
| } |
| |
| static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr); |
| |
| if (pmc) |
| __set_bit(pmc->idx, pmu->pmc_in_use); |
| } |
| |
| int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| u32 msr = msr_info->index; |
| |
| switch (msr) { |
| case MSR_CORE_PERF_GLOBAL_STATUS: |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: |
| msr_info->data = pmu->global_status; |
| break; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| msr_info->data = pmu->global_ctrl; |
| break; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: |
| case MSR_CORE_PERF_GLOBAL_OVF_CTRL: |
| msr_info->data = 0; |
| break; |
| default: |
| return kvm_pmu_call(get_msr)(vcpu, msr_info); |
| } |
| |
| return 0; |
| } |
| |
| int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| u32 msr = msr_info->index; |
| u64 data = msr_info->data; |
| u64 diff; |
| |
| /* |
| * Note, AMD ignores writes to reserved bits and read-only PMU MSRs, |
| * whereas Intel generates #GP on attempts to write reserved/RO MSRs. |
| */ |
| switch (msr) { |
| case MSR_CORE_PERF_GLOBAL_STATUS: |
| if (!msr_info->host_initiated) |
| return 1; /* RO MSR */ |
| fallthrough; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: |
| /* Per PPR, Read-only MSR. Writes are ignored. */ |
| if (!msr_info->host_initiated) |
| break; |
| |
| if (data & pmu->global_status_rsvd) |
| return 1; |
| |
| pmu->global_status = data; |
| break; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: |
| data &= ~pmu->global_ctrl_rsvd; |
| fallthrough; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| if (!kvm_valid_perf_global_ctrl(pmu, data)) |
| return 1; |
| |
| if (pmu->global_ctrl != data) { |
| diff = pmu->global_ctrl ^ data; |
| pmu->global_ctrl = data; |
| reprogram_counters(pmu, diff); |
| } |
| break; |
| case MSR_CORE_PERF_GLOBAL_OVF_CTRL: |
| /* |
| * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in |
| * GLOBAL_STATUS, and so the set of reserved bits is the same. |
| */ |
| if (data & pmu->global_status_rsvd) |
| return 1; |
| fallthrough; |
| case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: |
| if (!msr_info->host_initiated) |
| pmu->global_status &= ~data; |
| break; |
| default: |
| kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); |
| return kvm_pmu_call(set_msr)(vcpu, msr_info); |
| } |
| |
| return 0; |
| } |
| |
| static void kvm_pmu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| int i; |
| |
| pmu->need_cleanup = false; |
| |
| bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX); |
| |
| kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) { |
| pmc_stop_counter(pmc); |
| pmc->counter = 0; |
| pmc->emulated_counter = 0; |
| |
| if (pmc_is_gp(pmc)) |
| pmc->eventsel = 0; |
| } |
| |
| pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0; |
| |
| kvm_pmu_call(reset)(vcpu); |
| } |
| |
| |
| /* |
| * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID |
| * and/or PERF_CAPABILITIES. |
| */ |
| void kvm_pmu_refresh(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) |
| return; |
| |
| /* |
| * Stop/release all existing counters/events before realizing the new |
| * vPMU model. |
| */ |
| kvm_pmu_reset(vcpu); |
| |
| pmu->version = 0; |
| pmu->nr_arch_gp_counters = 0; |
| pmu->nr_arch_fixed_counters = 0; |
| pmu->counter_bitmask[KVM_PMC_GP] = 0; |
| pmu->counter_bitmask[KVM_PMC_FIXED] = 0; |
| pmu->reserved_bits = 0xffffffff00200000ull; |
| pmu->raw_event_mask = X86_RAW_EVENT_MASK; |
| pmu->global_ctrl_rsvd = ~0ull; |
| pmu->global_status_rsvd = ~0ull; |
| pmu->fixed_ctr_ctrl_rsvd = ~0ull; |
| pmu->pebs_enable_rsvd = ~0ull; |
| pmu->pebs_data_cfg_rsvd = ~0ull; |
| bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX); |
| |
| if (!vcpu->kvm->arch.enable_pmu) |
| return; |
| |
| kvm_pmu_call(refresh)(vcpu); |
| |
| /* |
| * At RESET, both Intel and AMD CPUs set all enable bits for general |
| * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that |
| * was written for v1 PMUs don't unknowingly leave GP counters disabled |
| * in the global controls). Emulate that behavior when refreshing the |
| * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL. |
| */ |
| if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters) |
| pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0); |
| } |
| |
| void kvm_pmu_init(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| |
| memset(pmu, 0, sizeof(*pmu)); |
| kvm_pmu_call(init)(vcpu); |
| kvm_pmu_refresh(vcpu); |
| } |
| |
| /* Release perf_events for vPMCs that have been unused for a full time slice. */ |
| void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc = NULL; |
| DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); |
| int i; |
| |
| pmu->need_cleanup = false; |
| |
| bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, |
| pmu->pmc_in_use, X86_PMC_IDX_MAX); |
| |
| kvm_for_each_pmc(pmu, pmc, i, bitmask) { |
| if (pmc->perf_event && !pmc_speculative_in_use(pmc)) |
| pmc_stop_counter(pmc); |
| } |
| |
| kvm_pmu_call(cleanup)(vcpu); |
| |
| bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); |
| } |
| |
| void kvm_pmu_destroy(struct kvm_vcpu *vcpu) |
| { |
| kvm_pmu_reset(vcpu); |
| } |
| |
| static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) |
| { |
| pmc->emulated_counter++; |
| kvm_pmu_request_counter_reprogram(pmc); |
| } |
| |
| static inline bool cpl_is_matched(struct kvm_pmc *pmc) |
| { |
| bool select_os, select_user; |
| u64 config; |
| |
| if (pmc_is_gp(pmc)) { |
| config = pmc->eventsel; |
| select_os = config & ARCH_PERFMON_EVENTSEL_OS; |
| select_user = config & ARCH_PERFMON_EVENTSEL_USR; |
| } else { |
| config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, |
| pmc->idx - KVM_FIXED_PMC_BASE_IDX); |
| select_os = config & INTEL_FIXED_0_KERNEL; |
| select_user = config & INTEL_FIXED_0_USER; |
| } |
| |
| /* |
| * Skip the CPL lookup, which isn't free on Intel, if the result will |
| * be the same regardless of the CPL. |
| */ |
| if (select_os == select_user) |
| return select_os; |
| |
| return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os : |
| select_user; |
| } |
| |
| void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 eventsel) |
| { |
| DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); |
| struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
| struct kvm_pmc *pmc; |
| int i; |
| |
| BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX); |
| |
| if (!kvm_pmu_has_perf_global_ctrl(pmu)) |
| bitmap_copy(bitmap, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX); |
| else if (!bitmap_and(bitmap, pmu->all_valid_pmc_idx, |
| (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX)) |
| return; |
| |
| kvm_for_each_pmc(pmu, pmc, i, bitmap) { |
| /* |
| * Ignore checks for edge detect (all events currently emulated |
| * but KVM are always rising edges), pin control (unsupported |
| * by modern CPUs), and counter mask and its invert flag (KVM |
| * doesn't emulate multiple events in a single clock cycle). |
| * |
| * Note, the uppermost nibble of AMD's mask overlaps Intel's |
| * IN_TX (bit 32) and IN_TXCP (bit 33), as well as two reserved |
| * bits (bits 35:34). Checking the "in HLE/RTM transaction" |
| * flags is correct as the vCPU can't be in a transaction if |
| * KVM is emulating an instruction. Checking the reserved bits |
| * might be wrong if they are defined in the future, but so |
| * could ignoring them, so do the simple thing for now. |
| */ |
| if (((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB) || |
| !pmc_event_is_allowed(pmc) || !cpl_is_matched(pmc)) |
| continue; |
| |
| kvm_pmu_incr_counter(pmc); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); |
| |
| static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) |
| { |
| u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | |
| KVM_PMU_MASKED_ENTRY_UMASK_MASK | |
| KVM_PMU_MASKED_ENTRY_UMASK_MATCH | |
| KVM_PMU_MASKED_ENTRY_EXCLUDE; |
| int i; |
| |
| for (i = 0; i < filter->nevents; i++) { |
| if (filter->events[i] & ~mask) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) |
| { |
| int i, j; |
| |
| for (i = 0, j = 0; i < filter->nevents; i++) { |
| /* |
| * Skip events that are impossible to match against a guest |
| * event. When filtering, only the event select + unit mask |
| * of the guest event is used. To maintain backwards |
| * compatibility, impossible filters can't be rejected :-( |
| */ |
| if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | |
| ARCH_PERFMON_EVENTSEL_UMASK)) |
| continue; |
| /* |
| * Convert userspace events to a common in-kernel event so |
| * only one code path is needed to support both events. For |
| * the in-kernel events use masked events because they are |
| * flexible enough to handle both cases. To convert to masked |
| * events all that's needed is to add an "all ones" umask_mask, |
| * (unmasked filter events don't support EXCLUDE). |
| */ |
| filter->events[j++] = filter->events[i] | |
| (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); |
| } |
| |
| filter->nevents = j; |
| } |
| |
| static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) |
| { |
| int i; |
| |
| if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) |
| convert_to_masked_filter(filter); |
| else if (!is_masked_filter_valid(filter)) |
| return -EINVAL; |
| |
| /* |
| * Sort entries by event select and includes vs. excludes so that all |
| * entries for a given event select can be processed efficiently during |
| * filtering. The EXCLUDE flag uses a more significant bit than the |
| * event select, and so the sorted list is also effectively split into |
| * includes and excludes sub-lists. |
| */ |
| sort(&filter->events, filter->nevents, sizeof(filter->events[0]), |
| filter_sort_cmp, NULL); |
| |
| i = filter->nevents; |
| /* Find the first EXCLUDE event (only supported for masked events). */ |
| if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { |
| for (i = 0; i < filter->nevents; i++) { |
| if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) |
| break; |
| } |
| } |
| |
| filter->nr_includes = i; |
| filter->nr_excludes = filter->nevents - filter->nr_includes; |
| filter->includes = filter->events; |
| filter->excludes = filter->events + filter->nr_includes; |
| |
| return 0; |
| } |
| |
| int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_pmu_event_filter __user *user_filter = argp; |
| struct kvm_x86_pmu_event_filter *filter; |
| struct kvm_pmu_event_filter tmp; |
| struct kvm_vcpu *vcpu; |
| unsigned long i; |
| size_t size; |
| int r; |
| |
| if (copy_from_user(&tmp, user_filter, sizeof(tmp))) |
| return -EFAULT; |
| |
| if (tmp.action != KVM_PMU_EVENT_ALLOW && |
| tmp.action != KVM_PMU_EVENT_DENY) |
| return -EINVAL; |
| |
| if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) |
| return -EINVAL; |
| |
| if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) |
| return -E2BIG; |
| |
| size = struct_size(filter, events, tmp.nevents); |
| filter = kzalloc(size, GFP_KERNEL_ACCOUNT); |
| if (!filter) |
| return -ENOMEM; |
| |
| filter->action = tmp.action; |
| filter->nevents = tmp.nevents; |
| filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; |
| filter->flags = tmp.flags; |
| |
| r = -EFAULT; |
| if (copy_from_user(filter->events, user_filter->events, |
| sizeof(filter->events[0]) * filter->nevents)) |
| goto cleanup; |
| |
| r = prepare_filter_lists(filter); |
| if (r) |
| goto cleanup; |
| |
| mutex_lock(&kvm->lock); |
| filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, |
| mutex_is_locked(&kvm->lock)); |
| mutex_unlock(&kvm->lock); |
| synchronize_srcu_expedited(&kvm->srcu); |
| |
| BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > |
| sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); |
| |
| kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); |
| |
| r = 0; |
| cleanup: |
| kfree(filter); |
| return r; |
| } |