| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/drm/habanalabs_accel.h> |
| #include "habanalabs.h" |
| |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| |
| #define CB_VA_POOL_SIZE (4UL * SZ_1G) |
| |
| static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 page_size = prop->pmmu.page_size; |
| int rc; |
| |
| if (!hdev->supports_cb_mapping) { |
| dev_err_ratelimited(hdev->dev, |
| "Mapping a CB to the device's MMU is not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (cb->is_mmu_mapped) |
| return 0; |
| |
| cb->roundup_size = roundup(cb->size, page_size); |
| |
| cb->virtual_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, cb->roundup_size); |
| if (!cb->virtual_addr) { |
| dev_err(hdev->dev, "Failed to allocate device virtual address for CB\n"); |
| return -ENOMEM; |
| } |
| |
| mutex_lock(&hdev->mmu_lock); |
| |
| rc = hl_mmu_map_contiguous(ctx, cb->virtual_addr, cb->bus_address, cb->roundup_size); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", cb->virtual_addr); |
| goto err_va_pool_free; |
| } |
| |
| rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV); |
| if (rc) |
| goto err_mmu_unmap; |
| |
| mutex_unlock(&hdev->mmu_lock); |
| |
| cb->is_mmu_mapped = true; |
| |
| return 0; |
| |
| err_mmu_unmap: |
| hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size); |
| err_va_pool_free: |
| mutex_unlock(&hdev->mmu_lock); |
| gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size); |
| |
| return rc; |
| } |
| |
| static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| mutex_lock(&hdev->mmu_lock); |
| hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size); |
| hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); |
| mutex_unlock(&hdev->mmu_lock); |
| |
| gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size); |
| } |
| |
| static void cb_fini(struct hl_device *hdev, struct hl_cb *cb) |
| { |
| if (cb->is_internal) |
| gen_pool_free(hdev->internal_cb_pool, |
| (uintptr_t)cb->kernel_address, cb->size); |
| else |
| hl_asic_dma_free_coherent(hdev, cb->size, cb->kernel_address, cb->bus_address); |
| |
| kfree(cb); |
| } |
| |
| static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb) |
| { |
| if (cb->is_pool) { |
| atomic_set(&cb->is_handle_destroyed, 0); |
| spin_lock(&hdev->cb_pool_lock); |
| list_add(&cb->pool_list, &hdev->cb_pool); |
| spin_unlock(&hdev->cb_pool_lock); |
| } else { |
| cb_fini(hdev, cb); |
| } |
| } |
| |
| static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size, |
| int ctx_id, bool internal_cb) |
| { |
| struct hl_cb *cb = NULL; |
| u32 cb_offset; |
| void *p; |
| |
| /* |
| * We use of GFP_ATOMIC here because this function can be called from |
| * the latency-sensitive code path for command submission. Due to H/W |
| * limitations in some of the ASICs, the kernel must copy the user CB |
| * that is designated for an external queue and actually enqueue |
| * the kernel's copy. Hence, we must never sleep in this code section |
| * and must use GFP_ATOMIC for all memory allocations. |
| */ |
| if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled) |
| cb = kzalloc(sizeof(*cb), GFP_ATOMIC); |
| |
| if (!cb) |
| cb = kzalloc(sizeof(*cb), GFP_KERNEL); |
| |
| if (!cb) |
| return NULL; |
| |
| if (internal_cb) { |
| p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size); |
| if (!p) { |
| kfree(cb); |
| return NULL; |
| } |
| |
| cb_offset = p - hdev->internal_cb_pool_virt_addr; |
| cb->is_internal = true; |
| cb->bus_address = hdev->internal_cb_va_base + cb_offset; |
| } else if (ctx_id == HL_KERNEL_ASID_ID) { |
| p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_ATOMIC); |
| if (!p) |
| p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_KERNEL); |
| } else { |
| p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, |
| GFP_USER | __GFP_ZERO); |
| } |
| |
| if (!p) { |
| dev_err(hdev->dev, |
| "failed to allocate %d of dma memory for CB\n", |
| cb_size); |
| kfree(cb); |
| return NULL; |
| } |
| |
| cb->kernel_address = p; |
| cb->size = cb_size; |
| |
| return cb; |
| } |
| |
| struct hl_cb_mmap_mem_alloc_args { |
| struct hl_device *hdev; |
| struct hl_ctx *ctx; |
| u32 cb_size; |
| bool internal_cb; |
| bool map_cb; |
| }; |
| |
| static void hl_cb_mmap_mem_release(struct hl_mmap_mem_buf *buf) |
| { |
| struct hl_cb *cb = buf->private; |
| |
| hl_debugfs_remove_cb(cb); |
| |
| if (cb->is_mmu_mapped) |
| cb_unmap_mem(cb->ctx, cb); |
| |
| hl_ctx_put(cb->ctx); |
| |
| cb_do_release(cb->hdev, cb); |
| } |
| |
| static int hl_cb_mmap_mem_alloc(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) |
| { |
| struct hl_cb_mmap_mem_alloc_args *cb_args = args; |
| struct hl_cb *cb; |
| int rc, ctx_id = cb_args->ctx->asid; |
| bool alloc_new_cb = true; |
| |
| if (!cb_args->internal_cb) { |
| /* Minimum allocation must be PAGE SIZE */ |
| if (cb_args->cb_size < PAGE_SIZE) |
| cb_args->cb_size = PAGE_SIZE; |
| |
| if (ctx_id == HL_KERNEL_ASID_ID && |
| cb_args->cb_size <= cb_args->hdev->asic_prop.cb_pool_cb_size) { |
| |
| spin_lock(&cb_args->hdev->cb_pool_lock); |
| if (!list_empty(&cb_args->hdev->cb_pool)) { |
| cb = list_first_entry(&cb_args->hdev->cb_pool, |
| typeof(*cb), pool_list); |
| list_del(&cb->pool_list); |
| spin_unlock(&cb_args->hdev->cb_pool_lock); |
| alloc_new_cb = false; |
| } else { |
| spin_unlock(&cb_args->hdev->cb_pool_lock); |
| dev_dbg(cb_args->hdev->dev, "CB pool is empty\n"); |
| } |
| } |
| } |
| |
| if (alloc_new_cb) { |
| cb = hl_cb_alloc(cb_args->hdev, cb_args->cb_size, ctx_id, cb_args->internal_cb); |
| if (!cb) |
| return -ENOMEM; |
| } |
| |
| cb->hdev = cb_args->hdev; |
| cb->ctx = cb_args->ctx; |
| cb->buf = buf; |
| cb->buf->mappable_size = cb->size; |
| cb->buf->private = cb; |
| |
| hl_ctx_get(cb->ctx); |
| |
| if (cb_args->map_cb) { |
| if (ctx_id == HL_KERNEL_ASID_ID) { |
| dev_err(cb_args->hdev->dev, |
| "CB mapping is not supported for kernel context\n"); |
| rc = -EINVAL; |
| goto release_cb; |
| } |
| |
| rc = cb_map_mem(cb_args->ctx, cb); |
| if (rc) |
| goto release_cb; |
| } |
| |
| hl_debugfs_add_cb(cb); |
| |
| return 0; |
| |
| release_cb: |
| hl_ctx_put(cb->ctx); |
| cb_do_release(cb_args->hdev, cb); |
| |
| return rc; |
| } |
| |
| static int hl_cb_mmap(struct hl_mmap_mem_buf *buf, |
| struct vm_area_struct *vma, void *args) |
| { |
| struct hl_cb *cb = buf->private; |
| |
| return cb->hdev->asic_funcs->mmap(cb->hdev, vma, cb->kernel_address, |
| cb->bus_address, cb->size); |
| } |
| |
| static struct hl_mmap_mem_buf_behavior cb_behavior = { |
| .topic = "CB", |
| .mem_id = HL_MMAP_TYPE_CB, |
| .alloc = hl_cb_mmap_mem_alloc, |
| .release = hl_cb_mmap_mem_release, |
| .mmap = hl_cb_mmap, |
| }; |
| |
| int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, |
| struct hl_ctx *ctx, u32 cb_size, bool internal_cb, |
| bool map_cb, u64 *handle) |
| { |
| struct hl_cb_mmap_mem_alloc_args args = { |
| .hdev = hdev, |
| .ctx = ctx, |
| .cb_size = cb_size, |
| .internal_cb = internal_cb, |
| .map_cb = map_cb, |
| }; |
| struct hl_mmap_mem_buf *buf; |
| int ctx_id = ctx->asid; |
| |
| if ((hdev->disabled) || (hdev->reset_info.in_reset && (ctx_id != HL_KERNEL_ASID_ID))) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is disabled or in reset. Can't create new CBs\n"); |
| return -EBUSY; |
| } |
| |
| if (cb_size > SZ_2M) { |
| dev_err(hdev->dev, "CB size %d must be less than %d\n", |
| cb_size, SZ_2M); |
| return -EINVAL; |
| } |
| |
| buf = hl_mmap_mem_buf_alloc( |
| mmg, &cb_behavior, |
| ctx_id == HL_KERNEL_ASID_ID ? GFP_ATOMIC : GFP_KERNEL, &args); |
| if (!buf) |
| return -ENOMEM; |
| |
| *handle = buf->handle; |
| |
| return 0; |
| } |
| |
| int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle) |
| { |
| struct hl_cb *cb; |
| int rc; |
| |
| cb = hl_cb_get(mmg, cb_handle); |
| if (!cb) { |
| dev_dbg(mmg->dev, "CB destroy failed, no CB was found for handle %#llx\n", |
| cb_handle); |
| return -EINVAL; |
| } |
| |
| /* Make sure that CB handle isn't destroyed more than once */ |
| rc = atomic_cmpxchg(&cb->is_handle_destroyed, 0, 1); |
| hl_cb_put(cb); |
| if (rc) { |
| dev_dbg(mmg->dev, "CB destroy failed, handle %#llx was already destroyed\n", |
| cb_handle); |
| return -EINVAL; |
| } |
| |
| rc = hl_mmap_mem_buf_put_handle(mmg, cb_handle); |
| if (rc < 0) |
| return rc; /* Invalid handle */ |
| |
| if (rc == 0) |
| dev_dbg(mmg->dev, "CB 0x%llx is destroyed while still in use\n", cb_handle); |
| |
| return 0; |
| } |
| |
| static int hl_cb_info(struct hl_mem_mgr *mmg, |
| u64 handle, u32 flags, u32 *usage_cnt, u64 *device_va) |
| { |
| struct hl_cb *cb; |
| int rc = 0; |
| |
| cb = hl_cb_get(mmg, handle); |
| if (!cb) { |
| dev_err(mmg->dev, |
| "CB info failed, no match to handle 0x%llx\n", handle); |
| return -EINVAL; |
| } |
| |
| if (flags & HL_CB_FLAGS_GET_DEVICE_VA) { |
| if (cb->is_mmu_mapped) { |
| *device_va = cb->virtual_addr; |
| } else { |
| dev_err(mmg->dev, "CB is not mapped to the device's MMU\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| } else { |
| *usage_cnt = atomic_read(&cb->cs_cnt); |
| } |
| |
| out: |
| hl_cb_put(cb); |
| return rc; |
| } |
| |
| int hl_cb_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv) |
| { |
| struct hl_fpriv *hpriv = file_priv->driver_priv; |
| struct hl_device *hdev = hpriv->hdev; |
| union hl_cb_args *args = data; |
| u64 handle = 0, device_va = 0; |
| enum hl_device_status status; |
| u32 usage_cnt = 0; |
| int rc; |
| |
| if (!hl_device_operational(hdev, &status)) { |
| dev_dbg_ratelimited(hdev->dev, |
| "Device is %s. Can't execute CB IOCTL\n", |
| hdev->status[status]); |
| return -EBUSY; |
| } |
| |
| switch (args->in.op) { |
| case HL_CB_OP_CREATE: |
| if (args->in.cb_size > HL_MAX_CB_SIZE) { |
| dev_err(hdev->dev, |
| "User requested CB size %d must be less than %d\n", |
| args->in.cb_size, HL_MAX_CB_SIZE); |
| rc = -EINVAL; |
| } else { |
| rc = hl_cb_create(hdev, &hpriv->mem_mgr, hpriv->ctx, |
| args->in.cb_size, false, |
| !!(args->in.flags & HL_CB_FLAGS_MAP), |
| &handle); |
| } |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.cb_handle = handle; |
| break; |
| |
| case HL_CB_OP_DESTROY: |
| rc = hl_cb_destroy(&hpriv->mem_mgr, |
| args->in.cb_handle); |
| break; |
| |
| case HL_CB_OP_INFO: |
| rc = hl_cb_info(&hpriv->mem_mgr, args->in.cb_handle, |
| args->in.flags, |
| &usage_cnt, |
| &device_va); |
| if (rc) |
| break; |
| |
| memset(&args->out, 0, sizeof(args->out)); |
| |
| if (args->in.flags & HL_CB_FLAGS_GET_DEVICE_VA) |
| args->out.device_va = device_va; |
| else |
| args->out.usage_cnt = usage_cnt; |
| break; |
| |
| default: |
| rc = -EINVAL; |
| break; |
| } |
| |
| return rc; |
| } |
| |
| struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle) |
| { |
| struct hl_mmap_mem_buf *buf; |
| |
| buf = hl_mmap_mem_buf_get(mmg, handle); |
| if (!buf) |
| return NULL; |
| return buf->private; |
| |
| } |
| |
| void hl_cb_put(struct hl_cb *cb) |
| { |
| hl_mmap_mem_buf_put(cb->buf); |
| } |
| |
| struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, |
| bool internal_cb) |
| { |
| u64 cb_handle; |
| struct hl_cb *cb; |
| int rc; |
| |
| rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx, cb_size, |
| internal_cb, false, &cb_handle); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to allocate CB for the kernel driver %d\n", rc); |
| return NULL; |
| } |
| |
| cb = hl_cb_get(&hdev->kernel_mem_mgr, cb_handle); |
| /* hl_cb_get should never fail here */ |
| if (!cb) { |
| dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n", |
| (u32) cb_handle); |
| goto destroy_cb; |
| } |
| |
| return cb; |
| |
| destroy_cb: |
| hl_cb_destroy(&hdev->kernel_mem_mgr, cb_handle); |
| |
| return NULL; |
| } |
| |
| int hl_cb_pool_init(struct hl_device *hdev) |
| { |
| struct hl_cb *cb; |
| int i; |
| |
| INIT_LIST_HEAD(&hdev->cb_pool); |
| spin_lock_init(&hdev->cb_pool_lock); |
| |
| for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) { |
| cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size, |
| HL_KERNEL_ASID_ID, false); |
| if (cb) { |
| cb->is_pool = true; |
| list_add(&cb->pool_list, &hdev->cb_pool); |
| } else { |
| hl_cb_pool_fini(hdev); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int hl_cb_pool_fini(struct hl_device *hdev) |
| { |
| struct hl_cb *cb, *tmp; |
| |
| list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) { |
| list_del(&cb->pool_list); |
| cb_fini(hdev, cb); |
| } |
| |
| return 0; |
| } |
| |
| int hl_cb_va_pool_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| if (!hdev->supports_cb_mapping) |
| return 0; |
| |
| ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1); |
| if (!ctx->cb_va_pool) { |
| dev_err(hdev->dev, |
| "Failed to create VA gen pool for CB mapping\n"); |
| return -ENOMEM; |
| } |
| |
| ctx->cb_va_pool_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, |
| CB_VA_POOL_SIZE, HL_MMU_VA_ALIGNMENT_NOT_NEEDED); |
| if (!ctx->cb_va_pool_base) { |
| rc = -ENOMEM; |
| goto err_pool_destroy; |
| } |
| rc = gen_pool_add(ctx->cb_va_pool, ctx->cb_va_pool_base, CB_VA_POOL_SIZE, -1); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to add memory to VA gen pool for CB mapping\n"); |
| goto err_unreserve_va_block; |
| } |
| |
| return 0; |
| |
| err_unreserve_va_block: |
| hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE); |
| err_pool_destroy: |
| gen_pool_destroy(ctx->cb_va_pool); |
| |
| return rc; |
| } |
| |
| void hl_cb_va_pool_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->supports_cb_mapping) |
| return; |
| |
| gen_pool_destroy(ctx->cb_va_pool); |
| hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE); |
| } |