blob: 745e5248803daf66d652eda98876e825ff922067 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020-2024 Intel Corporation
*/
#include "ivpu_drv.h"
#include "ivpu_hw.h"
#include "ivpu_hw_btrs.h"
#include "ivpu_hw_btrs_lnl_reg.h"
#include "ivpu_hw_btrs_mtl_reg.h"
#include "ivpu_hw_reg_io.h"
#include "ivpu_pm.h"
#define BTRS_MTL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR)) | \
(REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR)))
#define BTRS_LNL_IRQ_MASK ((REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR)) | \
(REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR)) | \
(REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR)) | \
(REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR)) | \
(REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR)) | \
(REG_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR)))
#define BTRS_MTL_ALL_IRQ_MASK (BTRS_MTL_IRQ_MASK | (REG_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, \
FREQ_CHANGE)))
#define BTRS_IRQ_DISABLE_MASK ((u32)-1)
#define BTRS_LNL_ALL_IRQ_MASK ((u32)-1)
#define BTRS_MTL_WP_CONFIG_1_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_5_3)
#define BTRS_MTL_WP_CONFIG_1_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_1_TILE, MTL_PLL_RATIO_4_3)
#define BTRS_MTL_WP_CONFIG_2_TILE_5_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_5_3)
#define BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO WP_CONFIG(MTL_CONFIG_2_TILE, MTL_PLL_RATIO_4_3)
#define BTRS_MTL_WP_CONFIG_0_TILE_PLL_OFF WP_CONFIG(0, 0)
#define PLL_CDYN_DEFAULT 0x80
#define PLL_EPP_DEFAULT 0x80
#define PLL_CONFIG_DEFAULT 0x0
#define PLL_SIMULATION_FREQ 10000000
#define PLL_REF_CLK_FREQ 50000000
#define PLL_TIMEOUT_US (1500 * USEC_PER_MSEC)
#define IDLE_TIMEOUT_US (5 * USEC_PER_MSEC)
#define TIMEOUT_US (150 * USEC_PER_MSEC)
/* Work point configuration values */
#define WP_CONFIG(tile, ratio) (((tile) << 8) | (ratio))
#define MTL_CONFIG_1_TILE 0x01
#define MTL_CONFIG_2_TILE 0x02
#define MTL_PLL_RATIO_5_3 0x01
#define MTL_PLL_RATIO_4_3 0x02
#define BTRS_MTL_TILE_FUSE_ENABLE_BOTH 0x0
#define BTRS_MTL_TILE_SKU_BOTH 0x3630
#define BTRS_LNL_TILE_MAX_NUM 6
#define BTRS_LNL_TILE_MAX_MASK 0x3f
#define WEIGHTS_DEFAULT 0xf711f711u
#define WEIGHTS_ATS_DEFAULT 0x0000f711u
#define DCT_REQ 0x2
#define DCT_ENABLE 0x1
#define DCT_DISABLE 0x0
int ivpu_hw_btrs_irqs_clear_with_0_mtl(struct ivpu_device *vdev)
{
REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, BTRS_MTL_ALL_IRQ_MASK);
if (REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) == BTRS_MTL_ALL_IRQ_MASK) {
/* Writing 1s does not clear the interrupt status register */
REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
return true;
}
return false;
}
static void freq_ratios_init_mtl(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
u32 fmin_fuse, fmax_fuse;
fmin_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMIN_FUSE);
hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMIN_FUSE, PN_RATIO, fmin_fuse);
fmax_fuse = REGB_RD32(VPU_HW_BTRS_MTL_FMAX_FUSE);
hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_MTL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
}
static void freq_ratios_init_lnl(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
u32 fmin_fuse, fmax_fuse;
fmin_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMIN_FUSE);
hw->pll.min_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, MIN_RATIO, fmin_fuse);
hw->pll.pn_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMIN_FUSE, PN_RATIO, fmin_fuse);
fmax_fuse = REGB_RD32(VPU_HW_BTRS_LNL_FMAX_FUSE);
hw->pll.max_ratio = REG_GET_FLD(VPU_HW_BTRS_LNL_FMAX_FUSE, MAX_RATIO, fmax_fuse);
}
void ivpu_hw_btrs_freq_ratios_init(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
freq_ratios_init_mtl(vdev);
else
freq_ratios_init_lnl(vdev);
hw->pll.min_ratio = clamp_t(u8, ivpu_pll_min_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
hw->pll.max_ratio = clamp_t(u8, ivpu_pll_max_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
hw->pll.pn_ratio = clamp_t(u8, hw->pll.pn_ratio, hw->pll.min_ratio, hw->pll.max_ratio);
}
static bool tile_disable_check(u32 config)
{
/* Allowed values: 0 or one bit from range 0-5 (6 tiles) */
if (config == 0)
return true;
if (config > BIT(BTRS_LNL_TILE_MAX_NUM - 1))
return false;
if ((config & (config - 1)) == 0)
return true;
return false;
}
static int read_tile_config_fuse(struct ivpu_device *vdev, u32 *tile_fuse_config)
{
u32 fuse;
u32 config;
fuse = REGB_RD32(VPU_HW_BTRS_LNL_TILE_FUSE);
if (!REG_TEST_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, VALID, fuse)) {
ivpu_err(vdev, "Fuse: invalid (0x%x)\n", fuse);
return -EIO;
}
config = REG_GET_FLD(VPU_HW_BTRS_LNL_TILE_FUSE, CONFIG, fuse);
if (!tile_disable_check(config)) {
ivpu_err(vdev, "Fuse: Invalid tile disable config (0x%x)\n", config);
return -EIO;
}
if (config)
ivpu_dbg(vdev, MISC, "Fuse: %d tiles enabled. Tile number %d disabled\n",
BTRS_LNL_TILE_MAX_NUM - 1, ffs(config) - 1);
else
ivpu_dbg(vdev, MISC, "Fuse: All %d tiles enabled\n", BTRS_LNL_TILE_MAX_NUM);
*tile_fuse_config = config;
return 0;
}
static int info_init_mtl(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
hw->tile_fuse = BTRS_MTL_TILE_FUSE_ENABLE_BOTH;
hw->sku = BTRS_MTL_TILE_SKU_BOTH;
hw->config = BTRS_MTL_WP_CONFIG_2_TILE_4_3_RATIO;
hw->sched_mode = ivpu_sched_mode;
return 0;
}
static int info_init_lnl(struct ivpu_device *vdev)
{
struct ivpu_hw_info *hw = vdev->hw;
u32 tile_fuse_config;
int ret;
ret = read_tile_config_fuse(vdev, &tile_fuse_config);
if (ret)
return ret;
hw->sched_mode = ivpu_sched_mode;
hw->tile_fuse = tile_fuse_config;
hw->pll.profiling_freq = PLL_PROFILING_FREQ_DEFAULT;
return 0;
}
int ivpu_hw_btrs_info_init(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return info_init_mtl(vdev);
else
return info_init_lnl(vdev);
}
static int wp_request_sync(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_POLL_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
else
return REGB_POLL_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, 0, PLL_TIMEOUT_US);
}
static int wait_for_status_ready(struct ivpu_device *vdev, bool enable)
{
u32 exp_val = enable ? 0x1 : 0x0;
if (IVPU_WA(punit_disabled))
return 0;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
else
return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, exp_val, PLL_TIMEOUT_US);
}
struct wp_request {
u16 min;
u16 max;
u16 target;
u16 cfg;
u16 epp;
u16 cdyn;
};
static void wp_request_mtl(struct ivpu_device *vdev, struct wp_request *wp)
{
u32 val;
val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD0, val);
val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, EPP, PLL_EPP_DEFAULT, val);
REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD1, val);
val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_PAYLOAD2, val);
val = REGB_RD32(VPU_HW_BTRS_MTL_WP_REQ_CMD);
val = REG_SET_FLD(VPU_HW_BTRS_MTL_WP_REQ_CMD, SEND, val);
REGB_WR32(VPU_HW_BTRS_MTL_WP_REQ_CMD, val);
}
static void wp_request_lnl(struct ivpu_device *vdev, struct wp_request *wp)
{
u32 val;
val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MIN_RATIO, wp->min, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, MAX_RATIO, wp->max, val);
REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD0, val);
val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, TARGET_RATIO, wp->target, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, EPP, wp->epp, val);
REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD1, val);
val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CONFIG, wp->cfg, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, CDYN, wp->cdyn, val);
REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_PAYLOAD2, val);
val = REGB_RD32(VPU_HW_BTRS_LNL_WP_REQ_CMD);
val = REG_SET_FLD(VPU_HW_BTRS_LNL_WP_REQ_CMD, SEND, val);
REGB_WR32(VPU_HW_BTRS_LNL_WP_REQ_CMD, val);
}
static void wp_request(struct ivpu_device *vdev, struct wp_request *wp)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
wp_request_mtl(vdev, wp);
else
wp_request_lnl(vdev, wp);
}
static int wp_request_send(struct ivpu_device *vdev, struct wp_request *wp)
{
int ret;
ret = wp_request_sync(vdev);
if (ret) {
ivpu_err(vdev, "Failed to sync before workpoint request: %d\n", ret);
return ret;
}
wp_request(vdev, wp);
ret = wp_request_sync(vdev);
if (ret)
ivpu_err(vdev, "Failed to sync after workpoint request: %d\n", ret);
return ret;
}
static void prepare_wp_request(struct ivpu_device *vdev, struct wp_request *wp, bool enable)
{
struct ivpu_hw_info *hw = vdev->hw;
wp->min = hw->pll.min_ratio;
wp->max = hw->pll.max_ratio;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
wp->target = enable ? hw->pll.pn_ratio : 0;
wp->cfg = enable ? hw->config : 0;
wp->cdyn = 0;
wp->epp = 0;
} else {
wp->target = hw->pll.pn_ratio;
wp->cfg = enable ? PLL_CONFIG_DEFAULT : 0;
wp->cdyn = enable ? PLL_CDYN_DEFAULT : 0;
wp->epp = enable ? PLL_EPP_DEFAULT : 0;
}
/* Simics cannot start without at least one tile */
if (enable && ivpu_is_simics(vdev))
wp->cfg = 1;
}
static int wait_for_pll_lock(struct ivpu_device *vdev, bool enable)
{
u32 exp_val = enable ? 0x1 : 0x0;
if (ivpu_hw_btrs_gen(vdev) != IVPU_HW_BTRS_MTL)
return 0;
if (IVPU_WA(punit_disabled))
return 0;
return REGB_POLL_FLD(VPU_HW_BTRS_MTL_PLL_STATUS, LOCK, exp_val, PLL_TIMEOUT_US);
}
int ivpu_hw_btrs_wp_drive(struct ivpu_device *vdev, bool enable)
{
struct wp_request wp;
int ret;
if (IVPU_WA(punit_disabled)) {
ivpu_dbg(vdev, PM, "Skipping workpoint request\n");
return 0;
}
prepare_wp_request(vdev, &wp, enable);
ivpu_dbg(vdev, PM, "PLL workpoint request: %u Hz, config: 0x%x, epp: 0x%x, cdyn: 0x%x\n",
PLL_RATIO_TO_FREQ(wp.target), wp.cfg, wp.epp, wp.cdyn);
ret = wp_request_send(vdev, &wp);
if (ret) {
ivpu_err(vdev, "Failed to send workpoint request: %d\n", ret);
return ret;
}
ret = wait_for_pll_lock(vdev, enable);
if (ret) {
ivpu_err(vdev, "Timed out waiting for PLL lock\n");
return ret;
}
ret = wait_for_status_ready(vdev, enable);
if (ret) {
ivpu_err(vdev, "Timed out waiting for NPU ready status\n");
return ret;
}
return 0;
}
static int d0i3_drive_mtl(struct ivpu_device *vdev, bool enable)
{
int ret;
u32 val;
ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
return ret;
}
val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL);
if (enable)
val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
else
val = REG_CLR_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, I3, val);
REGB_WR32(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, val);
ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret)
ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
return ret;
}
static int d0i3_drive_lnl(struct ivpu_device *vdev, bool enable)
{
int ret;
u32 val;
ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Failed to sync before D0i3 transition: %d\n", ret);
return ret;
}
val = REGB_RD32(VPU_HW_BTRS_LNL_D0I3_CONTROL);
if (enable)
val = REG_SET_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
else
val = REG_CLR_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, I3, val);
REGB_WR32(VPU_HW_BTRS_LNL_D0I3_CONTROL, val);
ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_D0I3_CONTROL, INPROGRESS, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Failed to sync after D0i3 transition: %d\n", ret);
return ret;
}
return 0;
}
static int d0i3_drive(struct ivpu_device *vdev, bool enable)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return d0i3_drive_mtl(vdev, enable);
else
return d0i3_drive_lnl(vdev, enable);
}
int ivpu_hw_btrs_d0i3_enable(struct ivpu_device *vdev)
{
int ret;
if (IVPU_WA(punit_disabled))
return 0;
ret = d0i3_drive(vdev, true);
if (ret)
ivpu_err(vdev, "Failed to enable D0i3: %d\n", ret);
udelay(5); /* VPU requires 5 us to complete the transition */
return ret;
}
int ivpu_hw_btrs_d0i3_disable(struct ivpu_device *vdev)
{
int ret;
if (IVPU_WA(punit_disabled))
return 0;
ret = d0i3_drive(vdev, false);
if (ret)
ivpu_err(vdev, "Failed to disable D0i3: %d\n", ret);
return ret;
}
int ivpu_hw_btrs_wait_for_clock_res_own_ack(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return 0;
if (ivpu_is_simics(vdev))
return 0;
return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, CLOCK_RESOURCE_OWN_ACK, 1, TIMEOUT_US);
}
void ivpu_hw_btrs_set_port_arbitration_weights_lnl(struct ivpu_device *vdev)
{
REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS, WEIGHTS_DEFAULT);
REGB_WR32(VPU_HW_BTRS_LNL_PORT_ARBITRATION_WEIGHTS_ATS, WEIGHTS_ATS_DEFAULT);
}
static int ip_reset_mtl(struct ivpu_device *vdev)
{
int ret;
u32 val;
ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Timed out waiting for TRIGGER bit\n");
return ret;
}
val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_IP_RESET);
val = REG_SET_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, val);
REGB_WR32(VPU_HW_BTRS_MTL_VPU_IP_RESET, val);
ret = REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret)
ivpu_err(vdev, "Timed out waiting for RESET completion\n");
return ret;
}
static int ip_reset_lnl(struct ivpu_device *vdev)
{
int ret;
u32 val;
ivpu_hw_btrs_clock_relinquish_disable_lnl(vdev);
ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret) {
ivpu_err(vdev, "Wait for *_TRIGGER timed out\n");
return ret;
}
val = REGB_RD32(VPU_HW_BTRS_LNL_IP_RESET);
val = REG_SET_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, val);
REGB_WR32(VPU_HW_BTRS_LNL_IP_RESET, val);
ret = REGB_POLL_FLD(VPU_HW_BTRS_LNL_IP_RESET, TRIGGER, 0, TIMEOUT_US);
if (ret)
ivpu_err(vdev, "Timed out waiting for RESET completion\n");
return ret;
}
int ivpu_hw_btrs_ip_reset(struct ivpu_device *vdev)
{
if (IVPU_WA(punit_disabled))
return 0;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return ip_reset_mtl(vdev);
else
return ip_reset_lnl(vdev);
}
void ivpu_hw_btrs_profiling_freq_reg_set_lnl(struct ivpu_device *vdev)
{
u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
if (vdev->hw->pll.profiling_freq == PLL_PROFILING_FREQ_DEFAULT)
val = REG_CLR_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
else
val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, PERF_CLK, val);
REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
}
void ivpu_hw_btrs_ats_print_lnl(struct ivpu_device *vdev)
{
ivpu_dbg(vdev, MISC, "Buttress ATS: %s\n",
REGB_RD32(VPU_HW_BTRS_LNL_HM_ATS) ? "Enable" : "Disable");
}
void ivpu_hw_btrs_clock_relinquish_disable_lnl(struct ivpu_device *vdev)
{
u32 val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
val = REG_SET_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, DISABLE_CLK_RELINQUISH, val);
REGB_WR32(VPU_HW_BTRS_LNL_VPU_STATUS, val);
}
bool ivpu_hw_btrs_is_idle(struct ivpu_device *vdev)
{
u32 val;
if (IVPU_WA(punit_disabled))
return true;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
val = REGB_RD32(VPU_HW_BTRS_MTL_VPU_STATUS);
return REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, READY, val) &&
REG_TEST_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, val);
} else {
val = REGB_RD32(VPU_HW_BTRS_LNL_VPU_STATUS);
return REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, READY, val) &&
REG_TEST_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, val);
}
}
int ivpu_hw_btrs_wait_for_idle(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_POLL_FLD(VPU_HW_BTRS_MTL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
else
return REGB_POLL_FLD(VPU_HW_BTRS_LNL_VPU_STATUS, IDLE, 0x1, IDLE_TIMEOUT_US);
}
/* Handler for IRQs from Buttress core (irqB) */
bool ivpu_hw_btrs_irq_handler_mtl(struct ivpu_device *vdev, int irq)
{
u32 status = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
bool schedule_recovery = false;
if (!status)
return false;
if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, FREQ_CHANGE, status))
ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x",
REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL));
if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, status)) {
ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
REGB_WR32(VPU_HW_BTRS_MTL_ATS_ERR_CLEAR, 0x1);
schedule_recovery = true;
}
if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, status)) {
u32 ufi_log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
ufi_log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, ufi_log),
REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, ufi_log),
REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, ufi_log));
REGB_WR32(VPU_HW_BTRS_MTL_UFI_ERR_CLEAR, 0x1);
schedule_recovery = true;
}
/* This must be done after interrupts are cleared at the source. */
if (IVPU_WA(interrupt_clear_with_0))
/*
* Writing 1 triggers an interrupt, so we can't perform read update write.
* Clear local interrupt status by writing 0 to all bits.
*/
REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, 0x0);
else
REGB_WR32(VPU_HW_BTRS_MTL_INTERRUPT_STAT, status);
if (schedule_recovery)
ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
return true;
}
/* Handler for IRQs from Buttress core (irqB) */
bool ivpu_hw_btrs_irq_handler_lnl(struct ivpu_device *vdev, int irq)
{
u32 status = REGB_RD32(VPU_HW_BTRS_LNL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
bool schedule_recovery = false;
if (!status)
return false;
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, status)) {
ivpu_dbg(vdev, IRQ, "Survivability IRQ\n");
if (!kfifo_put(&vdev->hw->irq.fifo, IVPU_HW_IRQ_SRC_DCT))
ivpu_err_ratelimited(vdev, "IRQ FIFO full\n");
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, FREQ_CHANGE, status))
ivpu_dbg(vdev, IRQ, "FREQ_CHANGE irq: %08x", REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ));
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, status)) {
ivpu_err(vdev, "ATS_ERR LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
REGB_WR32(VPU_HW_BTRS_LNL_ATS_ERR_CLEAR, 0x1);
schedule_recovery = true;
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, status)) {
ivpu_err(vdev, "CFI0_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
REGB_WR32(VPU_HW_BTRS_LNL_CFI0_ERR_CLEAR, 0x1);
schedule_recovery = true;
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, status)) {
ivpu_err(vdev, "CFI1_ERR 0x%08x", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
REGB_WR32(VPU_HW_BTRS_LNL_CFI1_ERR_CLEAR, 0x1);
schedule_recovery = true;
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, status)) {
ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x",
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_CLEAR, 0x1);
schedule_recovery = true;
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, status)) {
ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x",
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
REGB_WR32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_CLEAR, 0x1);
schedule_recovery = true;
}
/* This must be done after interrupts are cleared at the source. */
REGB_WR32(VPU_HW_BTRS_LNL_INTERRUPT_STAT, status);
if (schedule_recovery)
ivpu_pm_trigger_recovery(vdev, "Buttress IRQ");
return true;
}
int ivpu_hw_btrs_dct_get_request(struct ivpu_device *vdev, bool *enable)
{
u32 val = REGB_RD32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW);
u32 cmd = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, CMD, val);
u32 param1 = REG_GET_FLD(VPU_HW_BTRS_LNL_PCODE_MAILBOX_SHADOW, PARAM1, val);
if (cmd != DCT_REQ) {
ivpu_err_ratelimited(vdev, "Unsupported PCODE command: 0x%x\n", cmd);
return -EBADR;
}
switch (param1) {
case DCT_ENABLE:
*enable = true;
return 0;
case DCT_DISABLE:
*enable = false;
return 0;
default:
ivpu_err_ratelimited(vdev, "Invalid PARAM1 value: %u\n", param1);
return -EINVAL;
}
}
void ivpu_hw_btrs_dct_set_status(struct ivpu_device *vdev, bool enable, u32 active_percent)
{
u32 val = 0;
u32 cmd = enable ? DCT_ENABLE : DCT_DISABLE;
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, CMD, DCT_REQ, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM1, cmd, val);
val = REG_SET_FLD_NUM(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, PARAM2, active_percent, val);
REGB_WR32(VPU_HW_BTRS_LNL_PCODE_MAILBOX_STATUS, val);
}
static u32 pll_ratio_to_freq_mtl(u32 ratio, u32 config)
{
u32 pll_clock = PLL_REF_CLK_FREQ * ratio;
u32 cpu_clock;
if ((config & 0xff) == MTL_PLL_RATIO_4_3)
cpu_clock = pll_clock * 2 / 4;
else
cpu_clock = pll_clock * 2 / 5;
return cpu_clock;
}
u32 ivpu_hw_btrs_ratio_to_freq(struct ivpu_device *vdev, u32 ratio)
{
struct ivpu_hw_info *hw = vdev->hw;
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return pll_ratio_to_freq_mtl(ratio, hw->config);
else
return PLL_RATIO_TO_FREQ(ratio);
}
static u32 pll_freq_get_mtl(struct ivpu_device *vdev)
{
u32 pll_curr_ratio;
pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_MTL_CURRENT_PLL);
pll_curr_ratio &= VPU_HW_BTRS_MTL_CURRENT_PLL_RATIO_MASK;
if (!ivpu_is_silicon(vdev))
return PLL_SIMULATION_FREQ;
return pll_ratio_to_freq_mtl(pll_curr_ratio, vdev->hw->config);
}
static u32 pll_freq_get_lnl(struct ivpu_device *vdev)
{
u32 pll_curr_ratio;
pll_curr_ratio = REGB_RD32(VPU_HW_BTRS_LNL_PLL_FREQ);
pll_curr_ratio &= VPU_HW_BTRS_LNL_PLL_FREQ_RATIO_MASK;
return PLL_RATIO_TO_FREQ(pll_curr_ratio);
}
u32 ivpu_hw_btrs_pll_freq_get(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return pll_freq_get_mtl(vdev);
else
return pll_freq_get_lnl(vdev);
}
u32 ivpu_hw_btrs_telemetry_offset_get(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_OFFSET);
else
return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_OFFSET);
}
u32 ivpu_hw_btrs_telemetry_size_get(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_SIZE);
else
return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_SIZE);
}
u32 ivpu_hw_btrs_telemetry_enable_get(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return REGB_RD32(VPU_HW_BTRS_MTL_VPU_TELEMETRY_ENABLE);
else
return REGB_RD32(VPU_HW_BTRS_LNL_VPU_TELEMETRY_ENABLE);
}
void ivpu_hw_btrs_global_int_disable(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
else
REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
}
void ivpu_hw_btrs_global_int_enable(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
else
REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
}
void ivpu_hw_btrs_irq_enable(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, (u32)(~BTRS_MTL_IRQ_MASK));
REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x0);
} else {
REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, (u32)(~BTRS_LNL_IRQ_MASK));
REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x0);
}
}
void ivpu_hw_btrs_irq_disable(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL) {
REGB_WR32(VPU_HW_BTRS_MTL_GLOBAL_INT_MASK, 0x1);
REGB_WR32(VPU_HW_BTRS_MTL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
} else {
REGB_WR32(VPU_HW_BTRS_LNL_GLOBAL_INT_MASK, 0x1);
REGB_WR32(VPU_HW_BTRS_LNL_LOCAL_INT_MASK, BTRS_IRQ_DISABLE_MASK);
}
}
static void diagnose_failure_mtl(struct ivpu_device *vdev)
{
u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_MTL_IRQ_MASK;
if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, ATS_ERR, reg))
ivpu_err(vdev, "ATS_ERR irq 0x%016llx", REGB_RD64(VPU_HW_BTRS_MTL_ATS_ERR_LOG_0));
if (REG_TEST_FLD(VPU_HW_BTRS_MTL_INTERRUPT_STAT, UFI_ERR, reg)) {
u32 log = REGB_RD32(VPU_HW_BTRS_MTL_UFI_ERR_LOG);
ivpu_err(vdev, "UFI_ERR irq (0x%08x) opcode: 0x%02lx axi_id: 0x%02lx cq_id: 0x%03lx",
log, REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, OPCODE, log),
REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, AXI_ID, log),
REG_GET_FLD(VPU_HW_BTRS_MTL_UFI_ERR_LOG, CQ_ID, log));
}
}
static void diagnose_failure_lnl(struct ivpu_device *vdev)
{
u32 reg = REGB_RD32(VPU_HW_BTRS_MTL_INTERRUPT_STAT) & BTRS_LNL_IRQ_MASK;
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, ATS_ERR, reg)) {
ivpu_err(vdev, "ATS_ERR_LOG1 0x%08x ATS_ERR_LOG2 0x%08x\n",
REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG1),
REGB_RD32(VPU_HW_BTRS_LNL_ATS_ERR_LOG2));
}
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI0_ERR, reg))
ivpu_err(vdev, "CFI0_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI0_ERR_LOG));
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, CFI1_ERR, reg))
ivpu_err(vdev, "CFI1_ERR_LOG 0x%08x\n", REGB_RD32(VPU_HW_BTRS_LNL_CFI1_ERR_LOG));
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR0_ERR, reg))
ivpu_err(vdev, "IMR_ERR_CFI0 LOW: 0x%08x HIGH: 0x%08x\n",
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_LOW),
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI0_HIGH));
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, IMR1_ERR, reg))
ivpu_err(vdev, "IMR_ERR_CFI1 LOW: 0x%08x HIGH: 0x%08x\n",
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_LOW),
REGB_RD32(VPU_HW_BTRS_LNL_IMR_ERR_CFI1_HIGH));
if (REG_TEST_FLD(VPU_HW_BTRS_LNL_INTERRUPT_STAT, SURV_ERR, reg))
ivpu_err(vdev, "Survivability IRQ\n");
}
void ivpu_hw_btrs_diagnose_failure(struct ivpu_device *vdev)
{
if (ivpu_hw_btrs_gen(vdev) == IVPU_HW_BTRS_MTL)
return diagnose_failure_mtl(vdev);
else
return diagnose_failure_lnl(vdev);
}