blob: de659f6a815fd479561b6d2b1939e8f6624d1b02 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Helper functions used by the EFI stub on multiple
* architectures. This should be #included by the EFI stub
* implementation files.
*
* Copyright 2011 Intel Corporation; author Matt Fleming
*/
#include <linux/stdarg.h>
#include <linux/efi.h>
#include <linux/kernel.h>
#include <linux/overflow.h>
#include <asm/efi.h>
#include <asm/setup.h>
#include "efistub.h"
bool efi_nochunk;
bool efi_nokaslr = !IS_ENABLED(CONFIG_RANDOMIZE_BASE);
bool efi_novamap;
static bool efi_noinitrd;
static bool efi_nosoftreserve;
static bool efi_disable_pci_dma = IS_ENABLED(CONFIG_EFI_DISABLE_PCI_DMA);
int efi_mem_encrypt;
bool __pure __efi_soft_reserve_enabled(void)
{
return !efi_nosoftreserve;
}
/**
* efi_parse_options() - Parse EFI command line options
* @cmdline: kernel command line
*
* Parse the ASCII string @cmdline for EFI options, denoted by the efi=
* option, e.g. efi=nochunk.
*
* It should be noted that efi= is parsed in two very different
* environments, first in the early boot environment of the EFI boot
* stub, and subsequently during the kernel boot.
*
* Return: status code
*/
efi_status_t efi_parse_options(char const *cmdline)
{
size_t len;
efi_status_t status;
char *str, *buf;
if (!cmdline)
return EFI_SUCCESS;
len = strnlen(cmdline, COMMAND_LINE_SIZE - 1) + 1;
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, len, (void **)&buf);
if (status != EFI_SUCCESS)
return status;
memcpy(buf, cmdline, len - 1);
buf[len - 1] = '\0';
str = skip_spaces(buf);
while (*str) {
char *param, *val;
str = next_arg(str, &param, &val);
if (!val && !strcmp(param, "--"))
break;
if (!strcmp(param, "nokaslr")) {
efi_nokaslr = true;
} else if (!strcmp(param, "quiet")) {
efi_loglevel = CONSOLE_LOGLEVEL_QUIET;
} else if (!strcmp(param, "noinitrd")) {
efi_noinitrd = true;
} else if (IS_ENABLED(CONFIG_X86_64) && !strcmp(param, "no5lvl")) {
efi_no5lvl = true;
} else if (IS_ENABLED(CONFIG_ARCH_HAS_MEM_ENCRYPT) &&
!strcmp(param, "mem_encrypt") && val) {
if (parse_option_str(val, "on"))
efi_mem_encrypt = 1;
else if (parse_option_str(val, "off"))
efi_mem_encrypt = -1;
} else if (!strcmp(param, "efi") && val) {
efi_nochunk = parse_option_str(val, "nochunk");
efi_novamap |= parse_option_str(val, "novamap");
efi_nosoftreserve = IS_ENABLED(CONFIG_EFI_SOFT_RESERVE) &&
parse_option_str(val, "nosoftreserve");
if (parse_option_str(val, "disable_early_pci_dma"))
efi_disable_pci_dma = true;
if (parse_option_str(val, "no_disable_early_pci_dma"))
efi_disable_pci_dma = false;
if (parse_option_str(val, "debug"))
efi_loglevel = CONSOLE_LOGLEVEL_DEBUG;
} else if (!strcmp(param, "video") &&
val && strstarts(val, "efifb:")) {
efi_parse_option_graphics(val + strlen("efifb:"));
}
}
efi_bs_call(free_pool, buf);
return EFI_SUCCESS;
}
/*
* The EFI_LOAD_OPTION descriptor has the following layout:
* u32 Attributes;
* u16 FilePathListLength;
* u16 Description[];
* efi_device_path_protocol_t FilePathList[];
* u8 OptionalData[];
*
* This function validates and unpacks the variable-size data fields.
*/
static
bool efi_load_option_unpack(efi_load_option_unpacked_t *dest,
const efi_load_option_t *src, size_t size)
{
const void *pos;
u16 c;
efi_device_path_protocol_t header;
const efi_char16_t *description;
const efi_device_path_protocol_t *file_path_list;
if (size < offsetof(efi_load_option_t, variable_data))
return false;
pos = src->variable_data;
size -= offsetof(efi_load_option_t, variable_data);
if ((src->attributes & ~EFI_LOAD_OPTION_MASK) != 0)
return false;
/* Scan description. */
description = pos;
do {
if (size < sizeof(c))
return false;
c = *(const u16 *)pos;
pos += sizeof(c);
size -= sizeof(c);
} while (c != L'\0');
/* Scan file_path_list. */
file_path_list = pos;
do {
if (size < sizeof(header))
return false;
header = *(const efi_device_path_protocol_t *)pos;
if (header.length < sizeof(header))
return false;
if (size < header.length)
return false;
pos += header.length;
size -= header.length;
} while ((header.type != EFI_DEV_END_PATH && header.type != EFI_DEV_END_PATH2) ||
(header.sub_type != EFI_DEV_END_ENTIRE));
if (pos != (const void *)file_path_list + src->file_path_list_length)
return false;
dest->attributes = src->attributes;
dest->file_path_list_length = src->file_path_list_length;
dest->description = description;
dest->file_path_list = file_path_list;
dest->optional_data_size = size;
dest->optional_data = size ? pos : NULL;
return true;
}
/*
* At least some versions of Dell firmware pass the entire contents of the
* Boot#### variable, i.e. the EFI_LOAD_OPTION descriptor, rather than just the
* OptionalData field.
*
* Detect this case and extract OptionalData.
*/
void efi_apply_loadoptions_quirk(const void **load_options, u32 *load_options_size)
{
const efi_load_option_t *load_option = *load_options;
efi_load_option_unpacked_t load_option_unpacked;
if (!IS_ENABLED(CONFIG_X86))
return;
if (!load_option)
return;
if (*load_options_size < sizeof(*load_option))
return;
if ((load_option->attributes & ~EFI_LOAD_OPTION_BOOT_MASK) != 0)
return;
if (!efi_load_option_unpack(&load_option_unpacked, load_option, *load_options_size))
return;
efi_warn_once(FW_BUG "LoadOptions is an EFI_LOAD_OPTION descriptor\n");
efi_warn_once(FW_BUG "Using OptionalData as a workaround\n");
*load_options = load_option_unpacked.optional_data;
*load_options_size = load_option_unpacked.optional_data_size;
}
enum efistub_event_type {
EFISTUB_EVT_INITRD,
EFISTUB_EVT_LOAD_OPTIONS,
EFISTUB_EVT_COUNT,
};
#define STR_WITH_SIZE(s) sizeof(s), s
static const struct {
u32 pcr_index;
u32 event_id;
u32 event_data_len;
u8 event_data[52];
} events[] = {
[EFISTUB_EVT_INITRD] = {
9,
INITRD_EVENT_TAG_ID,
STR_WITH_SIZE("Linux initrd")
},
[EFISTUB_EVT_LOAD_OPTIONS] = {
9,
LOAD_OPTIONS_EVENT_TAG_ID,
STR_WITH_SIZE("LOADED_IMAGE::LoadOptions")
},
};
static_assert(sizeof(efi_tcg2_event_t) == sizeof(efi_cc_event_t));
union efistub_event {
efi_tcg2_event_t tcg2_data;
efi_cc_event_t cc_data;
};
struct efistub_measured_event {
union efistub_event event_data;
TCG_PCClientTaggedEvent tagged_event __packed;
};
static efi_status_t efi_measure_tagged_event(unsigned long load_addr,
unsigned long load_size,
enum efistub_event_type event)
{
union {
efi_status_t
(__efiapi *hash_log_extend_event)(void *, u64, efi_physical_addr_t,
u64, const union efistub_event *);
struct { u32 hash_log_extend_event; } mixed_mode;
} method;
struct efistub_measured_event *evt;
int size = struct_size(evt, tagged_event.tagged_event_data,
events[event].event_data_len);
efi_guid_t tcg2_guid = EFI_TCG2_PROTOCOL_GUID;
efi_tcg2_protocol_t *tcg2 = NULL;
union efistub_event ev;
efi_status_t status;
void *protocol;
efi_bs_call(locate_protocol, &tcg2_guid, NULL, (void **)&tcg2);
if (tcg2) {
ev.tcg2_data = (struct efi_tcg2_event){
.event_size = size,
.event_header.header_size = sizeof(ev.tcg2_data.event_header),
.event_header.header_version = EFI_TCG2_EVENT_HEADER_VERSION,
.event_header.pcr_index = events[event].pcr_index,
.event_header.event_type = EV_EVENT_TAG,
};
protocol = tcg2;
method.hash_log_extend_event =
(void *)efi_table_attr(tcg2, hash_log_extend_event);
} else {
efi_guid_t cc_guid = EFI_CC_MEASUREMENT_PROTOCOL_GUID;
efi_cc_protocol_t *cc = NULL;
efi_bs_call(locate_protocol, &cc_guid, NULL, (void **)&cc);
if (!cc)
return EFI_UNSUPPORTED;
ev.cc_data = (struct efi_cc_event){
.event_size = size,
.event_header.header_size = sizeof(ev.cc_data.event_header),
.event_header.header_version = EFI_CC_EVENT_HEADER_VERSION,
.event_header.event_type = EV_EVENT_TAG,
};
status = efi_call_proto(cc, map_pcr_to_mr_index,
events[event].pcr_index,
&ev.cc_data.event_header.mr_index);
if (status != EFI_SUCCESS)
goto fail;
protocol = cc;
method.hash_log_extend_event =
(void *)efi_table_attr(cc, hash_log_extend_event);
}
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, size, (void **)&evt);
if (status != EFI_SUCCESS)
goto fail;
*evt = (struct efistub_measured_event) {
.event_data = ev,
.tagged_event.tagged_event_id = events[event].event_id,
.tagged_event.tagged_event_data_size = events[event].event_data_len,
};
memcpy(evt->tagged_event.tagged_event_data, events[event].event_data,
events[event].event_data_len);
status = efi_fn_call(&method, hash_log_extend_event, protocol, 0,
load_addr, load_size, &evt->event_data);
efi_bs_call(free_pool, evt);
if (status == EFI_SUCCESS)
return EFI_SUCCESS;
fail:
efi_warn("Failed to measure data for event %d: 0x%lx\n", event, status);
return status;
}
/*
* Convert the unicode UEFI command line to ASCII to pass to kernel.
* Size of memory allocated return in *cmd_line_len.
* Returns NULL on error.
*/
char *efi_convert_cmdline(efi_loaded_image_t *image, int *cmd_line_len)
{
const efi_char16_t *options = efi_table_attr(image, load_options);
u32 options_size = efi_table_attr(image, load_options_size);
int options_bytes = 0, safe_options_bytes = 0; /* UTF-8 bytes */
unsigned long cmdline_addr = 0;
const efi_char16_t *s2;
bool in_quote = false;
efi_status_t status;
u32 options_chars;
if (options_size > 0)
efi_measure_tagged_event((unsigned long)options, options_size,
EFISTUB_EVT_LOAD_OPTIONS);
efi_apply_loadoptions_quirk((const void **)&options, &options_size);
options_chars = options_size / sizeof(efi_char16_t);
if (options) {
s2 = options;
while (options_bytes < COMMAND_LINE_SIZE && options_chars--) {
efi_char16_t c = *s2++;
if (c < 0x80) {
if (c == L'\0' || c == L'\n')
break;
if (c == L'"')
in_quote = !in_quote;
else if (!in_quote && isspace((char)c))
safe_options_bytes = options_bytes;
options_bytes++;
continue;
}
/*
* Get the number of UTF-8 bytes corresponding to a
* UTF-16 character.
* The first part handles everything in the BMP.
*/
options_bytes += 2 + (c >= 0x800);
/*
* Add one more byte for valid surrogate pairs. Invalid
* surrogates will be replaced with 0xfffd and take up
* only 3 bytes.
*/
if ((c & 0xfc00) == 0xd800) {
/*
* If the very last word is a high surrogate,
* we must ignore it since we can't access the
* low surrogate.
*/
if (!options_chars) {
options_bytes -= 3;
} else if ((*s2 & 0xfc00) == 0xdc00) {
options_bytes++;
options_chars--;
s2++;
}
}
}
if (options_bytes >= COMMAND_LINE_SIZE) {
options_bytes = safe_options_bytes;
efi_err("Command line is too long: truncated to %d bytes\n",
options_bytes);
}
}
options_bytes++; /* NUL termination */
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, options_bytes,
(void **)&cmdline_addr);
if (status != EFI_SUCCESS)
return NULL;
snprintf((char *)cmdline_addr, options_bytes, "%.*ls",
options_bytes - 1, options);
*cmd_line_len = options_bytes;
return (char *)cmdline_addr;
}
/**
* efi_exit_boot_services() - Exit boot services
* @handle: handle of the exiting image
* @priv: argument to be passed to @priv_func
* @priv_func: function to process the memory map before exiting boot services
*
* Handle calling ExitBootServices according to the requirements set out by the
* spec. Obtains the current memory map, and returns that info after calling
* ExitBootServices. The client must specify a function to perform any
* processing of the memory map data prior to ExitBootServices. A client
* specific structure may be passed to the function via priv. The client
* function may be called multiple times.
*
* Return: status code
*/
efi_status_t efi_exit_boot_services(void *handle, void *priv,
efi_exit_boot_map_processing priv_func)
{
struct efi_boot_memmap *map;
efi_status_t status;
if (efi_disable_pci_dma)
efi_pci_disable_bridge_busmaster();
status = efi_get_memory_map(&map, true);
if (status != EFI_SUCCESS)
return status;
status = priv_func(map, priv);
if (status != EFI_SUCCESS) {
efi_bs_call(free_pool, map);
return status;
}
status = efi_bs_call(exit_boot_services, handle, map->map_key);
if (status == EFI_INVALID_PARAMETER) {
/*
* The memory map changed between efi_get_memory_map() and
* exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
* EFI_BOOT_SERVICES.ExitBootServices we need to get the
* updated map, and try again. The spec implies one retry
* should be sufficent, which is confirmed against the EDK2
* implementation. Per the spec, we can only invoke
* get_memory_map() and exit_boot_services() - we cannot alloc
* so efi_get_memory_map() cannot be used, and we must reuse
* the buffer. For all practical purposes, the headroom in the
* buffer should account for any changes in the map so the call
* to get_memory_map() is expected to succeed here.
*/
map->map_size = map->buff_size;
status = efi_bs_call(get_memory_map,
&map->map_size,
&map->map,
&map->map_key,
&map->desc_size,
&map->desc_ver);
/* exit_boot_services() was called, thus cannot free */
if (status != EFI_SUCCESS)
return status;
status = priv_func(map, priv);
/* exit_boot_services() was called, thus cannot free */
if (status != EFI_SUCCESS)
return status;
status = efi_bs_call(exit_boot_services, handle, map->map_key);
}
return status;
}
/**
* get_efi_config_table() - retrieve UEFI configuration table
* @guid: GUID of the configuration table to be retrieved
* Return: pointer to the configuration table or NULL
*/
void *get_efi_config_table(efi_guid_t guid)
{
unsigned long tables = efi_table_attr(efi_system_table, tables);
int nr_tables = efi_table_attr(efi_system_table, nr_tables);
int i;
for (i = 0; i < nr_tables; i++) {
efi_config_table_t *t = (void *)tables;
if (efi_guidcmp(t->guid, guid) == 0)
return efi_table_attr(t, table);
tables += efi_is_native() ? sizeof(efi_config_table_t)
: sizeof(efi_config_table_32_t);
}
return NULL;
}
/*
* The LINUX_EFI_INITRD_MEDIA_GUID vendor media device path below provides a way
* for the firmware or bootloader to expose the initrd data directly to the stub
* via the trivial LoadFile2 protocol, which is defined in the UEFI spec, and is
* very easy to implement. It is a simple Linux initrd specific conduit between
* kernel and firmware, allowing us to put the EFI stub (being part of the
* kernel) in charge of where and when to load the initrd, while leaving it up
* to the firmware to decide whether it needs to expose its filesystem hierarchy
* via EFI protocols.
*/
static const struct {
struct efi_vendor_dev_path vendor;
struct efi_generic_dev_path end;
} __packed initrd_dev_path = {
{
{
EFI_DEV_MEDIA,
EFI_DEV_MEDIA_VENDOR,
sizeof(struct efi_vendor_dev_path),
},
LINUX_EFI_INITRD_MEDIA_GUID
}, {
EFI_DEV_END_PATH,
EFI_DEV_END_ENTIRE,
sizeof(struct efi_generic_dev_path)
}
};
/**
* efi_load_initrd_dev_path() - load the initrd from the Linux initrd device path
* @initrd: pointer of struct to store the address where the initrd was loaded
* and the size of the loaded initrd
* @max: upper limit for the initrd memory allocation
*
* Return:
* * %EFI_SUCCESS if the initrd was loaded successfully, in which
* case @load_addr and @load_size are assigned accordingly
* * %EFI_NOT_FOUND if no LoadFile2 protocol exists on the initrd device path
* * %EFI_OUT_OF_RESOURCES if memory allocation failed
* * %EFI_LOAD_ERROR in all other cases
*/
static
efi_status_t efi_load_initrd_dev_path(struct linux_efi_initrd *initrd,
unsigned long max)
{
efi_guid_t lf2_proto_guid = EFI_LOAD_FILE2_PROTOCOL_GUID;
efi_device_path_protocol_t *dp;
efi_load_file2_protocol_t *lf2;
efi_handle_t handle;
efi_status_t status;
dp = (efi_device_path_protocol_t *)&initrd_dev_path;
status = efi_bs_call(locate_device_path, &lf2_proto_guid, &dp, &handle);
if (status != EFI_SUCCESS)
return status;
status = efi_bs_call(handle_protocol, handle, &lf2_proto_guid,
(void **)&lf2);
if (status != EFI_SUCCESS)
return status;
initrd->size = 0;
status = efi_call_proto(lf2, load_file, dp, false, &initrd->size, NULL);
if (status != EFI_BUFFER_TOO_SMALL)
return EFI_LOAD_ERROR;
status = efi_allocate_pages(initrd->size, &initrd->base, max);
if (status != EFI_SUCCESS)
return status;
status = efi_call_proto(lf2, load_file, dp, false, &initrd->size,
(void *)initrd->base);
if (status != EFI_SUCCESS) {
efi_free(initrd->size, initrd->base);
return EFI_LOAD_ERROR;
}
return EFI_SUCCESS;
}
static
efi_status_t efi_load_initrd_cmdline(efi_loaded_image_t *image,
struct linux_efi_initrd *initrd,
unsigned long soft_limit,
unsigned long hard_limit)
{
if (image == NULL)
return EFI_UNSUPPORTED;
return handle_cmdline_files(image, L"initrd=", sizeof(L"initrd=") - 2,
soft_limit, hard_limit,
&initrd->base, &initrd->size);
}
/**
* efi_load_initrd() - Load initial RAM disk
* @image: EFI loaded image protocol
* @soft_limit: preferred address for loading the initrd
* @hard_limit: upper limit address for loading the initrd
*
* Return: status code
*/
efi_status_t efi_load_initrd(efi_loaded_image_t *image,
unsigned long soft_limit,
unsigned long hard_limit,
const struct linux_efi_initrd **out)
{
efi_guid_t tbl_guid = LINUX_EFI_INITRD_MEDIA_GUID;
efi_status_t status = EFI_SUCCESS;
struct linux_efi_initrd initrd, *tbl;
if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD) || efi_noinitrd)
return EFI_SUCCESS;
status = efi_load_initrd_dev_path(&initrd, hard_limit);
if (status == EFI_SUCCESS) {
efi_info("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
if (initrd.size > 0 &&
efi_measure_tagged_event(initrd.base, initrd.size,
EFISTUB_EVT_INITRD) == EFI_SUCCESS)
efi_info("Measured initrd data into PCR 9\n");
} else if (status == EFI_NOT_FOUND) {
status = efi_load_initrd_cmdline(image, &initrd, soft_limit,
hard_limit);
/* command line loader disabled or no initrd= passed? */
if (status == EFI_UNSUPPORTED || status == EFI_NOT_READY)
return EFI_SUCCESS;
if (status == EFI_SUCCESS)
efi_info("Loaded initrd from command line option\n");
}
if (status != EFI_SUCCESS)
goto failed;
status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(initrd),
(void **)&tbl);
if (status != EFI_SUCCESS)
goto free_initrd;
*tbl = initrd;
status = efi_bs_call(install_configuration_table, &tbl_guid, tbl);
if (status != EFI_SUCCESS)
goto free_tbl;
if (out)
*out = tbl;
return EFI_SUCCESS;
free_tbl:
efi_bs_call(free_pool, tbl);
free_initrd:
efi_free(initrd.size, initrd.base);
failed:
efi_err("Failed to load initrd: 0x%lx\n", status);
return status;
}
/**
* efi_wait_for_key() - Wait for key stroke
* @usec: number of microseconds to wait for key stroke
* @key: key entered
*
* Wait for up to @usec microseconds for a key stroke.
*
* Return: status code, EFI_SUCCESS if key received
*/
efi_status_t efi_wait_for_key(unsigned long usec, efi_input_key_t *key)
{
efi_event_t events[2], timer;
unsigned long index;
efi_simple_text_input_protocol_t *con_in;
efi_status_t status;
con_in = efi_table_attr(efi_system_table, con_in);
if (!con_in)
return EFI_UNSUPPORTED;
efi_set_event_at(events, 0, efi_table_attr(con_in, wait_for_key));
status = efi_bs_call(create_event, EFI_EVT_TIMER, 0, NULL, NULL, &timer);
if (status != EFI_SUCCESS)
return status;
status = efi_bs_call(set_timer, timer, EfiTimerRelative,
EFI_100NSEC_PER_USEC * usec);
if (status != EFI_SUCCESS)
return status;
efi_set_event_at(events, 1, timer);
status = efi_bs_call(wait_for_event, 2, events, &index);
if (status == EFI_SUCCESS) {
if (index == 0)
status = efi_call_proto(con_in, read_keystroke, key);
else
status = EFI_TIMEOUT;
}
efi_bs_call(close_event, timer);
return status;
}
/**
* efi_remap_image - Remap a loaded image with the appropriate permissions
* for code and data
*
* @image_base: the base of the image in memory
* @alloc_size: the size of the area in memory occupied by the image
* @code_size: the size of the leading part of the image containing code
* and read-only data
*
* efi_remap_image() uses the EFI memory attribute protocol to remap the code
* region of the loaded image read-only/executable, and the remainder
* read-write/non-executable. The code region is assumed to start at the base
* of the image, and will therefore cover the PE/COFF header as well.
*/
void efi_remap_image(unsigned long image_base, unsigned alloc_size,
unsigned long code_size)
{
efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
efi_memory_attribute_protocol_t *memattr;
efi_status_t status;
u64 attr;
/*
* If the firmware implements the EFI_MEMORY_ATTRIBUTE_PROTOCOL, let's
* invoke it to remap the text/rodata region of the decompressed image
* as read-only and the data/bss region as non-executable.
*/
status = efi_bs_call(locate_protocol, &guid, NULL, (void **)&memattr);
if (status != EFI_SUCCESS)
return;
// Get the current attributes for the entire region
status = memattr->get_memory_attributes(memattr, image_base,
alloc_size, &attr);
if (status != EFI_SUCCESS) {
efi_warn("Failed to retrieve memory attributes for image region: 0x%lx\n",
status);
return;
}
// Mark the code region as read-only
status = memattr->set_memory_attributes(memattr, image_base, code_size,
EFI_MEMORY_RO);
if (status != EFI_SUCCESS) {
efi_warn("Failed to remap code region read-only\n");
return;
}
// If the entire region was already mapped as non-exec, clear the
// attribute from the code region. Otherwise, set it on the data
// region.
if (attr & EFI_MEMORY_XP) {
status = memattr->clear_memory_attributes(memattr, image_base,
code_size,
EFI_MEMORY_XP);
if (status != EFI_SUCCESS)
efi_warn("Failed to remap code region executable\n");
} else {
status = memattr->set_memory_attributes(memattr,
image_base + code_size,
alloc_size - code_size,
EFI_MEMORY_XP);
if (status != EFI_SUCCESS)
efi_warn("Failed to remap data region non-executable\n");
}
}